Implementación de una red de sensores inalámbricos utilizando estrategias de FOG Computing en sistemas de reconocimiento de voz
| dc.contributor.advisor | Camargo Bareño, Carlos Iván | spa |
| dc.contributor.author | Patiño Sosa, Kevin Dario | spa |
| dc.contributor.researchgroup | Grupo de Microelectrónica de la Universidad Nacional de Colombia - GMUN | spa |
| dc.date.accessioned | 2021-01-27T22:13:11Z | spa |
| dc.date.available | 2021-01-27T22:13:11Z | spa |
| dc.date.issued | 2020-08-19 | spa |
| dc.description.abstract | In the context of intelligent home control, speech recognition is postulated as a research topic because it represents a clear challenge in terms of defining a network architecture, protocol selection and low-latency processing. One of the main goals of recognition is to provide a real-time interface between the human and the machine, hence microphones are those sensors that collect information, and are integrated through a wireless network to transmit data to a processing unit. Two development boards with arrays of microphones were selected and a network of wireless sensors was formed. With the data collected from the microphones, signal conditioning algorithms were performed at the sensor nodes, then the data stream was transmitted to the main node or Internet gateway, on which the processing strategies in the fog were developed. Finally, the system was able to determine the performance of combined border and fog computing with respect to voice recognition systems hosted in the cloud. | spa |
| dc.description.abstract | En el contexto de control inteligente de hogares, el reconocimiento de voz se postula como tema de investigación porque representa un claro desafı́o en términos de la definición de una arquitectura de red, la selección de protocolos y el procesamiento de baja latencia. Uno de los principales objetivos del reconocimiento es proporcionar una interfaz en tiempo real entre el usuario humano y la máquina, de ahı́ que los micrófonos son aquellos sensores que recolectan información, y se integran por medio de una red inalámbrica para transmitir datos a una interfaz de procesamiento. Se seleccionaron dos tarjetas de desarrollo con arreglos de micrófonos y se conformó una red de sensores inalámbricos. Con los datos recopilados de los micrófonos se realizaron algoritmos de acondicionamiento de señal en los nodos sensores, posteriormente se transmitió el flujo de datos al nodo principal o puerta de enlace a Internet, sobre este se desarrollaron las estrategias de procesamiento en la niebla. Finalmente, con el sistema realizado se logró determinar el desempeño de la computación combinada entre la frontera y la niebla respecto a los sistemas de reconocimiento de voz alojados en la nube. | spa |
| dc.description.additional | Línea de Investigación: sistemas embebidos. | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | 92 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.citation | Patiño Sosa, K. D. (2020). Implementación de una red de sensores inalámbricos utilizando estrategias de FOG Computing en sistemas de reconocimiento de voz [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional. | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78958 | |
| dc.language.iso | spa | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Electrónica | spa |
| dc.relation.references | Internet Engineering Task Force (IETF) , “The Constrained Application Protocol (CoAP).” https://tools.ietf.org/html/rfc7252, Junio 2014. Standards Track. | spa |
| dc.relation.references | A. Banksa, E. Briggs, K. Borgendale, and R. Gupta, “MQTT Version 5.0.” http: //mqtt.org/documentation, March 2019. OASIS Standard. | spa |
| dc.relation.references | Internet Engineering Task Force (IETF), “Extensible Messaging and Presence Protocol (XMPP): Core.” https://tools.ietf.org/html/rfc6120, Marzo 2011. Standards Track. | spa |
| dc.relation.references | A. Stanford-Clark and H. L. Truong, “MQTT For Sensor Networks (MQTT-SN) Pro- tocol Specification.” http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_ spec_v1.2.pdf, Noviembre 2013. Version 1.2. | spa |
| dc.relation.references | OASIS Standard, “OASIS Advanced Message Queuing Protocol(AMQP).” http: //docs.oasis-open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf, Octubre 2012. Version 1.0. | spa |
| dc.relation.references | OBJECT MANAGEMENT GROUP, “Data Distribution Service (DDS).” https:// www.omg.org/spec/DDS/, Abril 2015. Version 1.4. | spa |
| dc.relation.references | Network Working Group, “Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content.” https://tools.ietf.org/html/rfc7231, Junio 2014. Standards Track. | spa |
| dc.relation.references | Cisco, “White Paper - Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are.” https://www.cisco.com/c/dam/en_us/solutions/trends/ iot/docs/computing-overview.pdf, 2015. | spa |
| dc.relation.references | MATRIX Labs , “MATRIX Voice.” https://www.matrix.one/products/voice, 2020. En Lı́nea agosto 2020. | spa |
| dc.relation.references | MATRIX Labs , “MATRIX Creator.” https://www.matrix.one/products/creator, 2020. En Lı́nea agosto 2020. | spa |
| dc.relation.references | A. Rahmani, Fog Computing in the Internet of Things : Intelligence at the Edge. Cham, Switzerland: Springer International Publishing AG Imprint Springer, 2018. | spa |
| dc.relation.references | J. Benesty, Design of circular differential microphone arrays. Cham Switzerland: Sprin- ger, 2015. | spa |
| dc.relation.references | W. Dargie, Fundamentals of wireless sensor networks : theory and practice. Chichester, West Sussex, U.K. Hoboken, NJ: Wiley, 2010. | spa |
| dc.relation.references | L. Rabiner, Introduction to digital speech processing. Hanover, Mass: Now Publishers, 2007. | spa |
| dc.relation.references | Abdulla AlShehhi, M. Luai Hammadih, M. Sami Zitouni, Saif AlKindi, Nazar Ali, and Luis Weruaga arXiv, 2017. | spa |
| dc.relation.references | Tiana-Roig, Elisabet and Jacobsen, Finn and Fernandez-Grande, Efren, “Beamforming with a circular microphone array for localization of environmental noise sources,” The Journal of the Acoustical Society of America, vol. 128, pp. 3535–42, 12 2010. | spa |
| dc.relation.references | IOT-OPEN.EU consortium partners, Introduction to the IoT. IOT-OPEN.EU consor- tium and Erasmus+, 2019. | spa |
| dc.relation.references | International Telecommunication Union (ITU), “ITU-T Y.2060 - Internet of things (IoT).” https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=y. 2060, 2012. | spa |
| dc.relation.references | International Organization for Standardization (ISO), “ISO/IEC 20924- Information technology — Internet of Things (IoT) — Vocabulary.” https://www.iso.org/obp/ ui/#iso:std:iso-iec:20924:ed-1:v1:en:term:3.2.1, 2018. | spa |
| dc.relation.references | IEEE Standards Association (IEEE SA), “Towards a Definition of the Internet of Things (IoT).” https://iot.ieee.org/definition.html, 2015. | spa |
| dc.relation.references | ILNAS, “INTERNET OF THINGS (IoT) - NATIONAL TECHNI- CAL STANDARDIZATION REPORT.” https://portail-qualite. public.lu/fr/publications/normes-normalisation/etudes/ national-technical-standardization-report-iot-june-2020.html, 2020. | spa |
| dc.relation.references | ILNAS, “WHITE PAPER INTERNET OF THINGS (IoT) - TECHNO- LOGY, ECONOMIC VIEW AND TECHNICAL STANDARDIZATION.” https://portail-qualite.public.lu/fr/publications/normes-normalisation/ etudes/ilnas-white-paper-iot.html, 2018. | spa |
| dc.relation.references | B. Dorsemaine, J. Gaulier, J. Wary, N. Kheir, and P. Urien, “Internet of things: A de- finition taxonomy,” International Conference on Next Generation Mobile Applications, Services and Technologies, pp. 72–77, 2015. | spa |
| dc.relation.references | A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of things: A survey on enabling technologies, protocols, and applications,” IEEE Commu- nications Surveys Tutorials, vol. 17, no. 4, p. 2347–2376, 2015. | spa |
| dc.relation.references | S. Pradeep Raj, “Internet of things: A research oriented introductory,” International Journal of Ad Hoc and Ubiquitous Computing, vol. 29, p. 4–14, Sep 2018. | spa |
| dc.relation.references | R. Mehta, J. Sahni, and K. Khanna, “Internet of Things: Vision, Applications and Challenges,” International Conference on Computational Intelligence and Data Science (ICCIDS 2018), vol. 132, pp. 1263 – 1269, 2018. | spa |
| dc.relation.references | A. E. Hakim, “Internet of Things (IoT) System Architecture and Technologies, White Paper,” Feb. 2018. | spa |
| dc.relation.references | P. Sethi and S. R. Sarangi, “Internet of Things: Architectures, Protocols, and Applica- tions,” Journal of Electrical and Computer Engineering, Jan 2017. | spa |
| dc.relation.references | Jim Green, CTO Data Virtualization, “White Paper - The Internet of Things Reference Model.” https://www.iotwf.com/resources, 2014. | spa |
| dc.relation.references | Ángel Asensio, Álvaro Marco, R. Blasco, and R. Casas, “Protocol and Architecture to Bring Things into Internet of Things,” International Journal of Distributed Sensor Networks, vol. 10, no. 4, 2014. | spa |
| dc.relation.references | V. Timcenko, N. Zogovic, and B. Djordjevic, “Interoperability for the sustainability assessment framework in IoT like environments,” International Conference on Informa- tion Society and Techology, Marzo 2018. | spa |
| dc.relation.references | A. Triantafyllou, P. Sarigiannidis, and T. D. Lagkas, “Network Protocols, Schemes, and Mechanisms for Internet of Things (IoT): Features, Open Challenges, and Trends,” vol. 2018, Sep 2018. | spa |
| dc.relation.references | I. Hedi, I. Speh, and A. Sarabok, “IoT network protocols comparison for the purpose of IoT constrained networks,” 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 501–505, 2017. | spa |
| dc.relation.references | T. Salman and R. Jain, “A Survey of Protocols and Standards for Internet of Things,” vol. 1, Mar. 2017. | spa |
| dc.relation.references | Agencia Nacional del Espectro - ANE, “Resolución 105 del 27 de marzo de 2020.” https: //normograma.mintic.gov.co/mintic/docs/resolucion_ane_0105_2020.htm, Mar- zo 2020. Cuadro Nacional de Atribución de Bandas de Frecuencias (CNABF). | spa |
| dc.relation.references | Nick Wood - Insight SiP, “Which wireless technology will win the lightweight WAN battle?.” https://www.embedded.com/ which-wireless-technology-will-win-the-lightweight-wan-battle/, Mayo 2020. Blog. | spa |
| dc.relation.references | C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context aware computing for the internet of things: A survey,” IEEE Communications Surveys and Tutorials, vol. 16, no. 1, p. 414–454, 2014. | spa |
| dc.relation.references | A. Tewari and B. B. Gupta, “Security, privacy and trust of different layers in Internet-of- Things (IoTs) framework,” Future Generation Computer Systems, vol. 108, pp. 909–920, 2020. | spa |
| dc.relation.references | G. Mei, N. Xu, J. Qin, B. Wang, and P. Qi, “A Survey of Internet of Things (IoT) for Geohazard Prevention: Applications, Technologies, and Challenges,” IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4371–4386, 2020. | spa |
| dc.relation.references | D. B.D. and F. Al-Turjman, “A hybrid secure routing and monitoring mechanism in IoT-based wireless sensor networks,” Ad Hoc Networks, vol. 97, 2020. | spa |
| dc.relation.references | H. Lamaazi and N. Benamar, “A comprehensive survey on enhancements and limitations of the RPL protocol: A focus on the objective function,” Ad Hoc Networks, vol. 96, 2020. | spa |
| dc.relation.references | A. Abdullah, H. Kaur, and R. Biswas, Universal layers of IoT architecture and its security analysis, vol. 1030 of Advances in Intelligent Systems and Computing. 2020. | spa |
| dc.relation.references | P. Kayal, “A Comparison of IoT Application Layer Protocols Through A Smart Par- king Implementation,” Master’s thesis, Computer Networking, North Carolina State University, 2017. | spa |
| dc.relation.references | L. D. Xu, W. He, and S. Li, “Internet of Things in Industries: A Survey,” IEEE Transac- tions on Industrial Informatics, vol. 10, p. 2233–2243, Nov 2014. | spa |
| dc.relation.references | I. Butun, P. Osterberg, and H. Song, “Security of the Internet of Things: Vulnerabilities, Attacks, and Countermeasures,” IEEE Communications Surveys and Tutorials, vol. 22, no. 1, pp. 616–644, 2020. | spa |
| dc.relation.references | Wireless Sensor Networks project team, “White Paper - Internet of Things: Wireless Sensor Networks.” https://www.iec.ch/whitepaper/pdf/iecWP-internetofthings-LR-en.pdf, 2015. | spa |
| dc.relation.references | A. Flammini and E. Sisinni, “Wireless Sensor Networking in the Internet of Things and Cloud Computing Era,” Procedia Engineering, vol. 87, p. 672–679, Enero 2014. | spa |
| dc.relation.references | OpenFog Consortium Architecture Working Group, “OpenFog Reference Architectu- re for Fog Computing.” https://www.iiconsortium.org/pdf/OpenFog_Reference_ Architecture_2_09_17.pdf, 2017. | spa |
| dc.relation.references | I. Ud Din, M. Guizani, S. Hassan, B.-S. Kim, M. Khurram Khan, M. Atiquzzaman, and S. H. Ahmed, “The internet of things: A review of enabled technologies and future challenges,” IEEE Access, vol. 7, p. 7606–7640, 2019. | spa |
| dc.relation.references | J. Castellanos and M. Carter, “Fog Computing in the context of Smart Home, voice assistant and the future of IoT,” Revista Colombiana de Computación, vol. 21, pp. 6–12, 06 2020. | spa |
| dc.relation.references | S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the Suitability of Fog Computing in the Context of Internet of Things,” IEEE Transactions on Cloud Computing, vol. 6, p. 46–59, Enero 2018. | spa |
| dc.relation.references | Patrick R. Schaumont (auth.), A Practical Introduction to Hardware/Software Codesign. Springer US, 2 ed., 2013. | spa |
| dc.relation.references | J. Teich, “Hardware/Software Codesign: The Past, the Present, and Predicting the Future,” Proceedings of the IEEE, vol. 100, no. Special Centennial Issue, pp. 1411–1430, 2012. | spa |
| dc.relation.references | Corral Garcı́a, Javier and González-Sánchez, J.L. and Pérez-Toledano, Miguel, “Eva- luation of Strategies for the Development of Efficient Code for Raspberry Pi Devices,” Sensors, vol. 18, p. 4066, 11 2018. | spa |
| dc.relation.references | Raspberry Pi, “Raspberry Pi 4 Computer Model B,” Raspberry Pi Trading Ltd, 2020. | spa |
| dc.relation.references | Moxfyre, “Pulse density modulation.” https://commons.wikimedia.org/wiki/File: Pulse_density_modulation.svg, 2007. En Lı́nea agosto 2020. | spa |
| dc.relation.references | J. Arzi, “Small tutorial on CIC filters,” TSD Conseil, 2015. | spa |
| dc.relation.references | Application Note 455, “Understanding CIC Compensation Filters,” Altera Corporation, 2007. | spa |
| dc.relation.references | M. P. Donadio, “CIC Filter Introduction,” Iowegian, 2000. | spa |
| dc.relation.references | M. Mizumachi and M. Origuchi, “Advanced delay-and-sum beamformer with deep neu- ral network,” International Congress on Acoustics, 2016. | spa |
| dc.relation.references | Espressif Systems, “API Reference, Networking APIs, Wi-Fi.” https://docs. espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/ esp_wifi.html, 2019. En Lı́nea agosto 2020. | spa |
| dc.relation.references | Espressif Systems, “API Reference, Application Protocols, ESP-MQTT.” https: //docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/ protocols/mqtt.html, 2019. En Lı́nea agosto 2020. | spa |
| dc.relation.references | Amazon Inc., “Overview of the Alexa Voice Service Device (AVS) SDK.” https:// developer.amazon.com/en-US/docs/alexa/avs-device-sdk/overview.html, 2020. En Lı́nea agosto 2020. | spa |
| dc.relation.references | Amazon Inc., “Amazon Alexa: Set Up Raspberry Pi.” https://developer.amazon. com/en-US/docs/alexa/alexa-voice-service/set-up-raspberry-pi.html, 2020. En Lı́nea agosto 2020. | spa |
| dc.relation.references | Michael Hansen, “Rhasspy Voice Assistant: Audio Input.” https://rhasspy. readthedocs.io/en/latest/audio-input/, 2020. En Lı́nea agosto 2020. | spa |
| dc.relation.references | Michael Hansen, “Rhasspy Voice Assistant: Services.” readthedocs.io/en/latest/, 2020. En Lı́nea agosto 2020. | spa |
| dc.relation.references | FCC, “Reporte FCC.” https://fcc.report/FCC-ID/2ALM5-MTXC1, julio 2017. | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | 629 - Otras ramas de la ingeniería | spa |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
| dc.subject.proposal | IoT | eng |
| dc.subject.proposal | IoT | spa |
| dc.subject.proposal | Computación en la frontera | spa |
| dc.subject.proposal | Edge computing | eng |
| dc.subject.proposal | Wireless sensor networks | eng |
| dc.subject.proposal | Computación en la niebla | spa |
| dc.subject.proposal | Red de sesores inalámbricos | spa |
| dc.subject.proposal | Speech recognition | eng |
| dc.subject.proposal | Microphone array | eng |
| dc.subject.proposal | Reconocimiento de voz | spa |
| dc.subject.proposal | Arreglos de micrófonos | spa |
| dc.subject.proposal | Internet de las cosas | spa |
| dc.title | Implementación de una red de sensores inalámbricos utilizando estrategias de FOG Computing en sistemas de reconocimiento de voz | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |

