Determinación electroquímica de glifosato con electrodos de carbono vítreo modificados con PEDOT/Cu

dc.contributor.advisorSandoval Rojas, Andrea del Pilar
dc.contributor.authorMalaver Amaya, Daniela
dc.contributor.researchgroupElectroquímica y Termodinámica Computacionalspa
dc.date.accessioned2025-04-23T15:24:33Z
dc.date.available2025-04-23T15:24:33Z
dc.date.issued2024
dc.descriptionilustraciones, fotografías, gráficas, imágenes, tablasspa
dc.description.abstractEl glifosato es el herbicida más utilizado a nivel mundial, pero su uso genera preocupaciones debido a sus efectos adversos en el medio ambiente y la salud humana. Este estudio presenta un método de detección basado en técnicas electroquímicas, valoradas por su rapidez y rentabilidad en comparación con otras técnicas analíticas. El método se fundamenta en la capacidad del glifosato para formar complejos con cobre, detectables mediante técnicas electroquímicas. Se utilizó un electrodo de carbono vítreo modificado con poli(3,4-etilendioxitiofeno) (PEDOT). Sobre esta superficie se redujo cobre electroquímicamente en una disolución reguladora de fosfatos con pH 7,4 y 1,4 M de cloruros. La detección indirecta del glifosato se realizó mediante voltamperometría diferencial de pulso (VDP), que permite distinguir la corriente generada por la oxidación del cobre de las corrientes capacitivas. Se obtuvieron señales de oxidación asociadas al proceso de Cu(0) a Cu(I). La cuantificación del glifosato se realizó midiendo la diferencia de corriente entre los voltamperogramas de la disolución con glifosato y el blanco, utilizando parámetros optimizados: amplitud de pulso de 200 mV, tiempo de pulso de 50 ms y periodo de 0,8 s. Se establecieron dos intervalos lineales, para concentraciones altas entre 6 y 500 mg kg-1 y para concentraciones bajas entre 0,02-0,10 mg kg-1. Los límites de detección y cuantificación encontrados fueron de 0,010 mg kg-1 y 0,029 mg kg-1, respectivamente. (Texto tomado de la fuente)spa
dc.description.abstractGlyphosate is the most widely used herbicide worldwide, but its use raises concerns due to its adverse effects on the environment and human health. This study presents a detection method based on electrochemical techniques, valued for their speed and cost-effectiveness compared to other analytical techniques. The method is based on glyphosate's ability to form complexes with copper, which are detectable through electrochemical techniques. A glassy carbon electrode modified with poly(3,4-ethylenedioxythiophene) (PEDOT) was employed. Copper was electrodeposited onto the modified electrode in a phosphate buffer solution (pH 7.4) containing 1.4 M chloride ions. Glyphosate indirect detection was carried out using differential pulse voltammetry (DPV), which allows distinguishing the current generated by copper oxidation from capacitive currents. Oxidation signals associated with the Cu(0) to Cu(I) transition were obtained. Glyphosate quantification was achieved by measuring the current difference between the voltammograms of a solution containing glyphosate and a blank solution, with optimized parameters: 200 mV pulse amplitude, 50 ms pulse time, and 0.8 s period. Two linear intervals were established: one for high concentrations (6–500 mg kg-1) and another for low concentrations (0.02–0.10 mg kg-1), with detection and quantification limits of 0.010 mg kg-1 and 0.029 mg kg-1, respectively.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaElectroquímica analíticaspa
dc.format.extentxviii, 120 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88096
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesAbdullah, M. P., Daud, J., Hong, K. S., & Yew, C. H. (1995). Improved method for the determination of glyphosate in water. Journal of Chromatography A, 697(1-2), 363-369.spa
dc.relation.referencesAllison, P. D. (1999). Multiple regression: A primer. Pine Forge Press.spa
dc.relation.referencesAlza-Camacho, W. R., García-Colmenares, J. M., & Chaparro-Acuña, S. P. (2016). Determinación voltamétrica de paraquat y glifosato en aguas superficiales. Ciencia y Tecnología Agropecuaria, 17(3), 331-345.spa
dc.relation.referencesAoki, K., Tokuda, K., & Matsuda, H. (1984). Theory of differential pulse voltammetry at stationary planar electrodes. Journal of electroanalytical chemistry and interfacial electrochemistry, 175(1-2), 1-13.spa
dc.relation.referencesAristov, N., & Habekost, A. (2015). Cyclic voltammetry-A versatile electrochemical method investigating electron transfer processes. World J. Chem. Educ, 3(5), 115-119.spa
dc.relation.referencesArmbruster, D. A., & Pry, T. (2008). Limit of blank, limit of detection and limit of quantitation. The clinical biochemist reviews, 29(Suppl 1), S49.spa
dc.relation.referencesBai, S. H., & Ogbourne, S. M. (2016). Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination. Environmental Science and Pollution Research, 23, 18988-19001.spa
dc.relation.referencesBarbosa, P. F. P., Vieira, E. G., Cumba, L. R., Paim, L. L., Nakamura, A. P. R., Andrade, R. D. A., & do Carmo, D. R. (2019). Voltammetric techniques for pesticides and herbicides detection-an overview. International Journal of Electrochemical Science, 14(4), 3418-3433.spa
dc.relation.referencesBard, A. L. (2001). Electrochemical Methods Fundamentals and Applications (2nd ed.). John Wiley & Sons.spa
dc.relation.referencesBenbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe, 28(1), 1-15.spa
dc.relation.referencesBensalah, N. (2012). Pitting corrosion. InTech.spa
dc.relation.referencesBernal, E., & Guo, X. (2014). Limit of detection and limit of quantification determination in gas chromatography. Advances in gas chromatography, 3(1), 57-63.spa
dc.relation.referencesBianchi, G., & Longhi, P. (1973). Copper in sea-water, potential-pH diagrams. Corrosion Science, 13(11), 853-864.spa
dc.relation.referencesBohórquez Vivas, D. J. (2020) Métodos analíticos para la determinación de Glifosato en matrices ambientales.spa
dc.relation.referencesBrønstad, J. O., & Friestad, H. O. (1976). Method for determination of glyphosate residues in natural waters based on polarography of the N-nitroso derivative. Analyst, 101(1207), 820-824.spa
dc.relation.referencesÇağlar, S., & Kolankaya, D. (2008). The effect of sub-acute and sub-chronic exposure of rats to the glyphosate-based herbicide Roundup. Environmental toxicology and pharmacology, 25(1), 57-62.spa
dc.relation.referencesCahuantzi‐Muñoz, S. L., González‐Fuentes, M. A., Ortiz‐Frade, L. A., Torres, E., Ţălu, Ş., Trejo, G., & Méndez‐Albores, A. (2019). Electrochemical biosensor for sensitive quantification of glyphosate in maize kernels. Electroanalysis, 31(5), 927-935.spa
dc.relation.referencesCao, Y., Wang, L., Shen, C., Wang, C., Hu, X., & Wang, G. (2019). An electrochemical sensor on the hierarchically porous Cu-BTC MOF platform for glyphosate determination. Sensors and Actuators B: Chemical, 283, 487-494.spa
dc.relation.referencesChen, K., & Xue, D. (2014). Reaction route to the crystallization of copper oxides. Applied Science and Convergence Technology, 23(1), 14-26.spa
dc.relation.referencesCho, S. H., & Park, S. M. (2006). Electrochemistry of conductive polymers 39. Contacts between conducting polymers and noble metal nanoparticles studied by current-sensing atomic force microscopy. The Journal of Physical Chemistry B, 110(51), 25656-25664.spa
dc.relation.referencesCoutinho, C. F. B., Silva, M. O., Machado, S. A. S., & Mazo, L. H. (2007). Influence of glyphosate on the copper dissolution in phosphate buffer. Applied surface science, 253(6), 3270-3275.spa
dc.relation.referencesCoutinho, C. F., & Mazo, L. H. (2005). Complexos metálicos com o herbicida glifosato: revisão. Química Nova, 28, 1038-1045.spa
dc.relation.referencesCoutinho, C. F., Coutinho, L. F., & Mazo, L. H. (2009). Estudo do comportamento eletroquímico de substâncias complexantes utilizando eletrodo de cobre. Química Nova, 32, 228-233.spa
dc.relation.referencesCox, J. A., & Cheng, K. H. (1974). Determination of phosphate by cathodic stripping voltammetry at a glassy carbon electrode. Analytical Letters, 7(10), 659-670.spa
dc.relation.referencesCurrie, L. A. (1995). Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Pure and applied chemistry, 67(10), 1699-1723.spa
dc.relation.referencesCysewska, K., Karczewski, J., & Jasiński, P. (2015). Influence of electropolymerization conditions on the morphological and electrical properties of PEDOT film. Electrochimica Acta, 176, 156-161.spa
dc.relation.referencesDaniele, P. G., De Stefano, C., Prenesti, E., & Sammartano, S. (1997). Copper (II) complexes of N-(phosphonomethyl) glycine in aqueous solution: a thermodynamic and spectrophotometric study. Talanta, 45(2), 425-431.spa
dc.relation.referencesDantzig, G. B. (1990). Origins of the simplex method. In A history of scientific computing (pp. 141-151). Davis, J. R. (2001). Copper and copper alloys. ASM international.spa
dc.relation.referencesDekanski, A., Stevanović, J., Stevanović, R., Nikolić, B. Ž., & Jovanović, V. M. (2001). Glassy carbon electrodes. Carbon, 39(8), 1195–1205. doi:10.1016/s0008-6223(00)00228-1spa
dc.relation.referencesdel Carmen Aguirre, M., Urreta, S. E., & Gomez, C. G. (2019). A Cu2+-Cu/glassy carbon system for glyphosate determination. Sensors and Actuators B: Chemical, 284, 675-683.spa
dc.relation.referencesDhamu, V. N., Poudyal, D. C., Muthukumar, S., & Prasad, S. (2021). A highly sensitive electrochemical sensor system to detect and distinguish between glyphosate and glufosinate. Journal of The Electrochemical Society, 168(5), 057531.spa
dc.relation.referencesDing, J., Guo, H., Liu, W. W., Zhang, W. W., & Wang, J. W. (2015). Current progress on the detection of glyphosate in environmental samples. J. Sci. Appl. Biomed, 3(06), 88-95.spa
dc.relation.referencesdos Santos, S. C., Galli, A., Felsner, M. L., & Justi, K. C. (2014). Desenvolvimento de Metodologia Eletroanalítica para a Determinação do Pesticida Glifosato em Amostras Ambientais. Revista Virtual de Química, 6(4), 866-883.spa
dc.relation.referencesDu, X., & Wang, Z. (2003). Effects of polymerization potential on the properties of electrosynthesized PEDOT films. Electrochimica Acta, 48(12), 1713-1717.spa
dc.relation.referencesDuke, S. O. (2018). The history and current status of glyphosate. Pest management science, 74(5), 1027-1034.spa
dc.relation.referencesDuke, S. O., & Powles, S. B. (2008). Glyphosate: a once‐in‐a‐century herbicide. Pest Management Science: formerly Pesticide Science, 64(4), 319-325.spa
dc.relation.referencesDuke, S. O., Baerson, S. R., & Rimando, A. M. (2003). Glyphosate. Encyclopedia of Agrochemicals.spa
dc.relation.referencesDumanlı, O., & Onar, A. N. (2009). Activation of glassy carbon electrodes by photocatalytic pretreatment. Electrochimica acta, 54(26), 6438-6444.spa
dc.relation.referencesEngstrom, R. C., & Strasser, V. A. (1984). Characterization of electrochemically pretreated glassy carbon electrodes. Analytical Chemistry, 56(2), 136-141.spa
dc.relation.referencesFagan, D. T., Hu, I. F., & Kuwana, T. (1985). Vacuum heat-treatment for activation of glassy carbon electrodes. Analytical chemistry, 57(14), 2759-2763.spa
dc.relation.referencesFicken, F. A. (2015). The simplex method of linear programming. Courier Dover Publications.spa
dc.relation.referencesGasnier, C., Dumont, C., Benachour, N., Clair, E., Chagnon, M. C., & Séralini, G. E. (2009). Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology, 262(3), 184-191.spa
dc.relation.referencesGholivand, M. B., Akbari, A., & Norouzi, L. (2018). Development of a novel hollow fiber-pencil graphite modified electrochemical sensor for the ultra-trace analysis of glyphosate. Sensors and Actuators B: Chemical, 272, 415-424.spa
dc.relation.referencesGill, J. P. K., Sethi, N., & Mohan, A. (2017). Analysis of the glyphosate herbicide in water, soil and food using derivatising agents. Environmental Chemistry Letters, 15, 85-100.spa
dc.relation.referencesGirault, H. H. (2004). Analytical and physical electrochemistry (1st ed.). Marcel Dekker.spa
dc.relation.referencesGonzález Basto, M. C. Validation of the square wave anodic stripping voltammetry methodology for cadmium quantification in Theobroma cacao L. beans (Doctoral dissertation, Universidad Nacional de Colombia).spa
dc.relation.referencesGourier, D., & Tourillon, G. (1986). Production of highly ordered organic conducting polymers (poly-(3-methylthiophene)) under electrochemical inclusion of copper (2+) ions: an ESR study. The Journal of Physical Chemistry, 90(22), 5561-5565.spa
dc.relation.referencesGuziejewski, D., Stojanov, L., Gulaboski, R., & Mirceski, V. (2022). Reversible and quasireversible electron transfer under conditions of differential square-wave voltammetry. The Journal of Physical Chemistry C, 126(12), 5584-5591.spa
dc.relation.referencesHarris, D. C. (2003). Análisis químico cuantitativo. Argentina: Reverté.spa
dc.relation.referencesHorth, H., & Blackmore, K. (2009). Survey of glyphosate and AMPA in groundwaters and surface waters in Europe. WRC report no. UC8073, 2.spa
dc.relation.referencesHu, F., Karweik, D. H., & Kuwana, T. (1985). Activation and deactivation of glassy carbon electrodes. Journal of electroanalytical chemistry and interfacial electrochemistry, 188(1-2), 59-72.spa
dc.relation.referencesHuhn, C. (2018). More and enhanced glyphosate analysis is needed. Analytical and bioanalytical chemistry, 410, 3041-3045.spa
dc.relation.referencesIlieva, M., & Tsakova, V. (2004). Copper modified poly (3, 4-ethylenedioxythiophene): Part I: Potentiostatic experiments. Synthetic metals, 141(3), 287-292.spa
dc.relation.referencesIlieva, M., & Tsakova, V. (2004). Copper modified poly (3, 4-ethylenedioxythiophene): Part II: Potentiostatic experiments. Synthetic metals, 141(3), 287-292.spa
dc.relation.referencesIlieva, M., & Tsakova, V. (2005). Copper electrocrystallization in PEDOT in presence and absence of copper–polymer-stabilized species. Electrochimica acta, 50(7-8), 1669-1674spa
dc.relation.referencesInesi, A. (1986). Instrumental Methods in Electrochemistry.: R. Greef, R. Peat, LM Peter, D. Pletcher and J. Robinson (Editors). Ellis Horwood, New York, Chichester, Brisbane, Toronto, 1985, 443 pp., 49-50spa
dc.relation.referencesInternational Association of Environmental Analytical Chemistry (IAEAC); (1994). Sample Handling of Pesticides in Water; Barcelona, España.spa
dc.relation.referencesJámbor, A., & Molnár-Perl, I. (2009). Amino acid analysis by high-performance liquid chromatography after derivatization with 9-fluorenylmethyloxycarbonyl chloride: Literature overview and further study. Journal of Chromatography A, 1216(15), 3064-3077.spa
dc.relation.referencesJin, J., Takahashi, F., Kaneko, T., & Nakamura, T. (2010). Characterization of electrochemiluminescence of tris (2, 2′-bipyridine) ruthenium (II) with glyphosate as coreactant in aqueous solution. Electrochimica acta, 55(20), 5532-5537.spa
dc.relation.referencesKamau, G. N. (1988). Surface preparation of glassy carbon electrodes. Analytica Chimica Acta, 207, 1–16. doi:10.1016/s0003-2670(00)80777-1spa
dc.relation.referencesKamau, G. N., Willis, W. S., & Rusling, J. F. (1985). Electrochemical and Electron Spectroscopic Studies of Highly Polished Glassy Carbon Electrodes. Analytical Chemistry, 57(2), 545–551. doi:10.1021/ac50001a049spa
dc.relation.referencesKhenifi, A., Derriche, Z., Forano, C., Prevot, V., Mousty, C., Scavetta, E., ... & Tonelli, D. (2009). Glyphosate and glufosinate detection at electrogenerated NiAl-LDH thin films. Analytica Chimica Acta, 654(2), 97-102.spa
dc.relation.referencesKiema, G. K., Aktay, M., & McDermott, M. T. (2003). Preparation of reproducible glassy carbon electrodes by removal of polishing impurities. Journal of Electroanalytical Chemistry, 540, 7-15.spa
dc.relation.referencesKing, F., & Kolar, M. (2000). The copper container corrosion model used in AECL’s second case study. Ontario Power Generation report.spa
dc.relation.referencesKissinger, P. T., & Heineman, W. R. (1983). Cyclic voltammetry. Journal of Chemical Education, 60(9), 702.spa
dc.relation.referencesKlingler, R. J., & Kochi, J. K. (1981). Electron-transfer kinetics from cyclic voltammetry. Quantitative description of electrochemical reversibility. The Journal of Physical Chemistry, 85(12), 1731-1741.spa
dc.relation.referencesLaguarda-Miro, N., Ferreira, F. W., García-Breijo, E., Ibáñez-Civera, J., Gil-Sánchez, L., & Garrigues-Baixauli, J. (2012). Glyphosate detection by voltammetric techniques. A comparison between statistical methods and an artificial neural network. Sensors and Actuators B: Chemical, 171, 528-536.spa
dc.relation.referencesMelo Martínez, O, López Pérez, L y Melo Martínez, S. (2020). Diseño de experimentos: métodos y aplicaciones. Universidad Nacional de Colombia.spa
dc.relation.referencesMensink, H., & Janssen, P. (1994). Glyphosate (No. 159). World Health Organization.spa
dc.relation.referencesMerck KGaA, Darmstadt, Alemania y/o sus filiales. (n.d.). 10X Phosphate-Buffered Saline (PBS) for Western Blotting. 10x phosphate-buffered saline (PBS) for western blotting. https://www.sigmaaldrich.com/CO/es/support/calculators-and-apps/10x-phosphate-buffered-salinespa
dc.relation.referencesMiller, J. N., & Miller, J. C. (2002). Estadística y quimiometría para química analítica (No. 543.062: 519.23 MIL).spa
dc.relation.referencesMinisterio de la Protección Social. (22 de agosto de 2007) Resolución Número 2906 de 2007. Por la cual se establecen los Límites Máximos de Residuos de Plaguicidas – LMR en alimentos para consumo humano y en piensos o forrajes. DO 46735. https://www.mincit.gov.co/temas-interes/reglamentos-tecnicos/rt-conjuntos/resolucion-2906-del-22-de-agosto-de-2007-1.aspxspa
dc.relation.referencesMocak, J., Bond, A. M., Mitchell, S., & Scollary, G. (1997). A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: application to voltammetric and stripping techniques (technical report). Pure and Applied Chemistry, 69(2), 297-32spa
dc.relation.referencesMolina Osorio, A. F. (2014). Estudio de la reacción de reducción electroquímica de CO2 sobre electrodos sólidos modificados con Poli-(3, 4-etilendioxitiofeno)(PEDOT) Poli-(3, 4-etilendioxitiofeno)(PEDOT) (Doctoral dissertation).spa
dc.relation.referencesMonge Romero, I. C. (2013). Estudio electro catalítico de la reacción de reducción de oxígeno sobre películas ultra delgadas de polianilina (PANI). Sintetizadas vía electroquímica sobre electrodos de carbón vítreo, platino y oro modificados con películas de poli-(3, 4-etilendioxitiofeno)(PEDOT).spa
dc.relation.referencesMontgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons.spa
dc.relation.referencesMoore, D. S. (2009). Introduction to the Practice of Statistics. WH Freeman and company.spa
dc.relation.referencesMoraes, F. C., Mascaro, L. H., Machado, S. A., & Brett, C. M. (2010). Direct electrochemical determination of glyphosate at copper phthalocyanine/multiwalled carbon nanotube film electrodes. Electroanalysis, 22(14), 1586-1591.spa
dc.relation.referencesMoreno-Piza, O. J., & Suarez-Herrera, M. F. (2022). Electrochemical study of the redox processes of elemental sulfur in organic solvents using poly (3, 4-ethylene-dioxy-thiophene) modified glassy carbon electrodes as working electrodes and ionic liquids as electrolytes. Electrochimica Acta, 436, 141442.spa
dc.relation.referencesMuneer, M., & Boxall, C. (2008). Photocatalyzed degradation of a pesticide derivative glyphosate in aqueous suspensions of titanium dioxide. International Journal of Photoenergy, 2008.spa
dc.relation.referencesNational Health and Medical Research Council (NHMRC); (2011). Australian drinking water guidelines 6, Commonwealth of Australia; Canberra, Australia.spa
dc.relation.referencesNedelkoska, T. V., & Low, G. C. (2004). High-performance liquid chromatographic determination of glyphosate in water and plant material after pre-column derivatisation with 9-fluorenylmethyl chloroformate. Analytica Chimica Acta, 511(1), 145-153.spa
dc.relation.referencesOkada, E., Coggan, T., Anumol, T., Clarke, B., & Allinson, G. (2019). A simple and rapid direct injection method for the determination of glyphosate and AMPA in environmental water samples. Analytical and bioanalytical chemistry, 411, 715-724.spa
dc.relation.referencesOliveira, G. C., Moccelini, S. K., Castilho, M., Terezo, A. J., Possavatz, J., Magalhães, M. R., & Dores, E. F. (2012). Biosensor based on atemoya peroxidase immobilised on modified nanoclay for glyphosate biomonitoring. Talanta, 98, 130-136spa
dc.relation.referencesOliveira, P. C., Maximiano, E. M., Oliveira, P. A., Camargo, J. S., Fiorucci, A. R., & Arruda, G. J. (2018). Direct electrochemical detection of glyphosate at carbon paste electrode and its determination in samples of milk, orange juice, and agricultural formulation. Journal of Environmental Science and Health, Part B, 53(12), 817-823.spa
dc.relation.referencesO'Mahony, A. M., Compton, R. G. (2011). "The use of single pulse chronopotentiometry to explore electrode kinetics: A review." Electrochimica Acta, 56(25), 9194-9207. M., Compton, R. G. (2011). "The use of single pulse chronopotentiometry to explore electrode kinetics: A review." Electrochimica Acta, 56(25), 9194-9207spa
dc.relation.referencesOtt, R. L., & Longnecker, M. T. (2015). An introduction to statistical methods and data analysis. Cengage Learning.spa
dc.relation.referencesPadilla Alonso, D. J. (2014). Estudio de líquidos iónicos como solventes de extracción en el análisis de glifosato en agua.spa
dc.relation.referencesParry, E. P., & Osteryoung, R. A. (1965). Evaluation of analytical pulse polarography. Analytical Chemistry, 37(13), 1634-1637.spa
dc.relation.referencesPelzer, J., Scholz, F., Henrion, G., & Nitschke, L. (1989). Optimization of parameters for differential pulse voltammetry at the hanging mercury drop electrode. Electroanalysis, 1(5), 437-440.spa
dc.relation.referencesPourbaix, M. (1966). Atlas of electrochemical equilibria in aqueous solutions. NACE.spa
dc.relation.referencesPoverenov, E., Li, M., Bitler, A., & Bendikov, M. (2010). Major effect of electropolymerization solvent on morphology and electrochromic properties of PEDOT films. Chemistry of Materials, 22(13), 4019-4025.spa
dc.relation.referencesReddy, K. J., Wang, L., & Gloss, S. P. (1995). Solubility and mobility of copper, zinc and lead in acidic environments. Plant and Soil, 171, 53-58.spa
dc.relation.referencesRegiart, M., Kumar, A., Gonçalves, J. M., Silva Junior, G. J., Masini, J. C., Angnes, L., & Bertotti, M. (2020). An electrochemically synthesized nanoporous copper microsensor for highly sensitive and selective determination of glyphosate. ChemElectroChem, 7(7), 1558-1566.spa
dc.relation.referencesRen, M., Zhou, H., & Zhai, H. J. (2021). Obvious enhancement in electrochemical capacitive properties for poly (3, 4-ethylenedioxythiophene) electrodes prepared under optimized conditions. Journal of Materials Science: Materials in Electronics, 32, 10078-10088.spa
dc.relation.referencesRice, R. J., Pontikos, N. M., & McCreery, R. L. (1990). AME" CHEMICAL SOCIETY. J. Am. Chem. SOC, 112(12). 0002-7863/90/1512-4617$02.50/0spa
dc.relation.referencesRieger, P. H. (1994). Electrochemistry (2nd ed.). Chapman & Hall.spa
dc.relation.referencesRiveros, G., León, M., & Ramírez, D. (2016). Effect of chloride ions on the structural, optical, morphological, and electrochemical properties of Cu2O films electrodeposited on Fluorine-doped tin Oxide substrate from a DMSO solution. Journal of the Chilean Chemical Society, 61(4), 3219-3223.spa
dc.relation.referencesRodríguez Jaume, M. J., & Mora Catalá, R. (2001). Estadística informática: casos y ejemplos con el SPSS. Publicaciones de la Universidad de Alicante.spa
dc.relation.referencesRojano Delgado, A. M. (2012). Plataformas analíticas en metabolómica y su aplicación para el estudio de la resistencia-sensibilidad a herbicidas.spa
dc.relation.referencesSandoval, A. P., Feliu, J. M., Torresi, R. M., & Suárez-Herrera, M. F. (2014). Electrochemical properties of poly (3, 4-ethylenedioxythiophene) grown on Pt (111) in imidazolium ionic liquids. Rsc Advances, 4(7), 3383-3391.spa
dc.relation.referencesSanz de Paz, D. (2015). Comportamiento electroquímico del ion Ag (I) sobre electrodo de Pt en Cloruro de 1-Butil-3 Metil-Imidazolio (BMIMCl) entre 343-363 K.spa
dc.relation.referencesScharifker, B., & Hills, G. (1983). Theoretical and experimental studies of multiple nucleation. Electrochimica acta, 28(7), 879-889.spa
dc.relation.referencesScholz, F. (2015). Voltammetric techniques of analysis: the essentials. ChemTexts, 1(4), 17.spa
dc.relation.referencesShrivastava, S., Kumar, A., Verma, N., Chen, B. Y., & Chang, C. T. (2021). Voltammetric detection of aqueous glyphosate on a copper and poly (pyrrole)‐electromodified activated carbon fiber. Electroanalysis, 33(4), 916-924.spa
dc.relation.referencesSierra, E. V., Méndez, M. A., Sarria, V. M., & Cortés, M. T. (2008). Electrooxidación de glifosato sobre electrodos de níquel y cobre. Química Nova, 31, 220-226.spa
dc.relation.referencesSimoes, F. R., Mattoso, L. H. C., & Vaz, C. M. P. (2006). Conducting polymers as sensor materials for the electrochemical detection of pesticides. Sensor Letters, 4(3), 319-324.spa
dc.relation.referencesSingh, S., Kumar, V., Gill, J. P., Datta, S., Singh, S., Dhaka, V., Kapoor, D., Wani, A. B., Dhanjal, D. S., Kumar, M., Harikumar, S. L., & Singh, J. (2020). Herbicide glyphosate: Toxicity and microbial degradation. International Journal of Environmental Research and Public Health, 17(20), 7519.spa
dc.relation.referencesSivakumar, C., & Berchmans, S. (2018). Methanol electro-oxidation by nanostructured Pt/Cu bimetallic on poly 3, 4 ethylenedioxythiophene (PEDOT). Electrochimica Acta, 282, 163-170.spa
dc.relation.referencesSonga, E. A., Arotiba, O. A., Owino, J. H., Jahed, N., Baker, P. G., & Iwuoha, E. I. (2009 - I). Electrochemical detection of glyphosate herbicide using horseradish peroxidase immobilized on sulfonated polymer matrix. Bioelectrochemistry, 75(2), 117-123.spa
dc.relation.referencesSonga, E. A., Somerset, V. S., Waryo, T., Baker, P. G., & Iwuoha, E. I. (2009 - II). Amperometric nanobiosensor for quantitative determination of glyphosate and glufosinate residues in corn samples. Pure and Applied Chemistry, 81(1), 123-139.spa
dc.relation.referencesŠtulík, K., Pacáková, V., Le, K., & Hennisen, B. (1988). Amperometric flow detection with a copper working electrode—response mechanism and application to various compounds. Talanta, 35(6), 455-460.spa
dc.relation.referencesSuárez Herrera, M. F. (2011). Electroquímica física e interfacial: una aproximación teórica. Universidad Nacional de Colombia. Facultad de Ciencias.spa
dc.relation.referencesSubramaniam, V., & Hoggard, P. E. (1988). Metal complexes of glyphosate. Journal of agricultural and food chemistry, 36(6), 1326-1329.spa
dc.relation.referencesTeague, M., Li, S., & Cong, H. (2018). Interfacial Corrosion of Copper and the Formation of Copper Hydroxychloride.spa
dc.relation.referencesTeófilo, R. F., Reis, E. L., Reis, C., Silva, G. A. D., & Kubota, L. T. (2004). Experimental design employed to square wave voltammetry response optimization for the glyphosate determination. Journal of the Brazilian Chemical Society, 15, 865-871.spa
dc.relation.referencesToss, V., Leito, I., Yurchenko, S., Freiberg, R., & Kruve, A. (2017). Determination of glyphosate in surface water with high organic matter content. Environmental Science and Pollution Research, 24, 7880-7888.spa
dc.relation.referencesTsui, T. K. (2002). Aquatic toxicity and environmental fate of glyphosate-based herbicides (Doctoral dissertation, Chinese University of Hong Kong).spa
dc.relation.referencesTu, M., Hurd, C., & Randall, J. M. (2001). Weed control methods handbook: tools & techniques for use in natural areas.spa
dc.relation.referencesUnited Nations Office on Drugs, Crime. Laboratory, & Scientific Section. (2009). Guidance for the Validation of Analytical Methodology and Calibration of Equipment Used for Testing of Illicit Drugs in Seized Materials and Biological Specimens: A Commitment to Quality and Continuous Improvement. United Nations Publications.spa
dc.relation.referencesUnited States Environmental Protection Agency (US EPA); (2009). EPA 816-F-09-004, National Primary Drinking Water Regulation; Washington D.C., United States of America.spa
dc.relation.referencesValle, A. L., Mello, F. C. C., Alves-Balvedi, R. P., Rodrigues, L. P., & Goulart, L. R. (2019). Glyphosate detection: methods, needs and challenges. Environmental chemistry letters, 17, 291-317.spa
dc.relation.referencesVan der Linden, W. E., & Dieker, J. W. (1980). Glassy carbon as electrode material in electro- analytical chemistry. Analytica Chimica Acta, 119(1), 1–24. doi:10.1016/s0003-2670(00)00025-8spa
dc.relation.referencesVarona, M., Henao, G. L., Díaz, S., Lancheros, A., Murcia, Á., Rodríguez, N., & Álvarez, V. H. (2009). Evaluación de los efectos del glifosato y otros plaguicidas en la salud humana en zonas objeto del programa de erradicación de cultivos ilícitos. Biomédica, 29(3), 456-475.spa
dc.relation.referencesVashist, S. K., & Luong, J. H. (2018). Bioanalytical requirements and regulatory guidelines for immunoassays. In Handbook of immunoassay technologies (pp. 81-95). Academic Pressspa
dc.relation.referencesVidal, E., Negro, A., Cassano, A., & Zalazar, C. (2015). Simplified reaction kinetics, models and experiments for glyphosate degradation in water by the UV/H2O2 process. Photochemical & Photobiological Sciences, 14(2), 366-377.spa
dc.relation.referencesWang, J. (2006). Analytical Electrochemistry (3rd ed.). John Wiley & Sons.spa
dc.relation.referencesWalters, F. H. (1991). Sequential simplex optimization: a technique for improving quality and productivity in research, development, and manufacturing.spa
dc.relation.referencesWang, S., Liu, B., Yuan, D., & Ma, J. (2016). A simple method for the determination of glyphosate and aminomethylphosphonic acid in seawater matrix with high performance liquid chromatography and fluorescence detection. Talanta, 161, 700-706.spa
dc.relation.referencesWang, S., Yao, Y., Zhao, J., Han, X., Chai, C., & Dai, P. (2022). A novel electrochemical sensor for glyphosate detection based on Ti 3 C 2 T x/Cu-BTC nanocomposite. RSC advances, 12(9), 5164-5172.spa
dc.relation.referencesWinfield, T. W., Bashe, W. J., & Baker, T. V. (1990). Method 547 Determination of Glyphosate in Drinking Water by Direct-Aqueous-Injection Hplc, Post-Column Derivatization, and Fluorescence Detection. Technol. Appl, 1, 1-16.spa
dc.relation.referencesXia, Y. M., Zhang, W., Li, M. Y., Xia, M., Zou, L. J., & Gao, W. W. (2019). Effective electrochemical determination of chloramphenicol and florfenicol based on graphene/copper phthalocyanine nanocomposites modified glassy carbon electrode. Journal of The Electrochemical Society, 166(8), B654.spa
dc.relation.referencesZainudin, B. H., Salleh, S., Mohamed, R., Yap, K. C., & Muhamad, H. (2015). Development, validation and determination of multiclass pesticide residues in cocoa beans using gas chromatography and liquid chromatography tandem mass spectrometry. Food chemistry, 172, 585-595.spa
dc.relation.referencesZambrano-Intriago, L. A., Amorim, C. G., Rodríguez-Díaz, J. M., Araújo, A. N., & Montenegro, M. C. (2021). Challenges in the design of electrochemical sensor for glyphosate-based on new materials and biological recognition. Science of the Total Environment, 793, 148496.spa
dc.relation.referencesZhang, C., She, Y., Li, T., Zhao, F., Jin, M., Guo, Y., ... & Wang, J. (2017). A highly selective electrochemical sensor based on molecularly imprinted polypyrrole-modified gold electrode for the determination of glyphosate in cucumber and tap water. Analytical and bioanalytical chemistry, 409, 7133-7144.spa
dc.relation.referencesZhu, Y., Zhang, F., Tong, C., & Liu, W. (1999). Determination of glyphosate by ion chromatography. Journal of chromatography A, 850(1-2), 297-301.spa
dc.relation.referencesZittel, H. E., & Miller, F. J. (1965). A Glassy-Carbon Electrode for Voltammetry. Analytical Chemistry, 37(2), 200–203. doi:10.1021/ac60221a006spa
dc.rightsDerechos reservados al autor, 2024spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::543 - Química analíticaspa
dc.subject.ddc540 - Química y ciencias afines::541 - Química físicaspa
dc.subject.lembAnálisis electroquímicospa
dc.subject.lembElectrochemical analysiseng
dc.subject.proposalVoltamperometría de pulso diferencialspa
dc.subject.proposalPEDOTspa
dc.subject.proposalCobrespa
dc.subject.proposalGlifosatofra
dc.subject.proposalDifferential Pulse Voltammetryeng
dc.subject.proposalPEDOTeng
dc.subject.proposalCoppereng
dc.subject.proposalGlyphosateita
dc.subject.wikidataherbicidaspa
dc.subject.wikidataherbicideeng
dc.titleDeterminación electroquímica de glifosato con electrodos de carbono vítreo modificados con PEDOT/Cuspa
dc.title.translatedElectrochemical determination of glyphosate with PEDOT/Cu-modified glassy carbon electrodeseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleProyecto 53469 “Dispositivos Electroquímicos En Papel Para La Determinación De Glifosato”spa
oaire.fundernameFacultad de Ciencias de la Universidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032483533.2025.pdf
Tamaño:
4.89 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: