Mitigación del estrés por déficit hídrico en maíz forrajero mediante el uso de PGPB

dc.contributor.advisorUribe Vélez, Danielspa
dc.contributor.advisorEstrada Bonilla, Germán Andrésspa
dc.contributor.authorSerrato Gutiérrez, Mayling Gisettespa
dc.contributor.researchgroupMicrobiologia Agricolaspa
dc.date.accessioned2024-01-19T14:59:46Z
dc.date.available2024-01-19T14:59:46Z
dc.date.issued2023-07
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa escasez mundial de agua disponible para el riego representa una de las principales amenazas para la agricultura y la seguridad alimentaria. Se espera que la situación se agrave por períodos de sequía más recurrentes debido al cambio climático. Fortalecer la tolerancia de los cultivos a condiciones deficientes de agua y mejorar su eficiencia en el uso del recurso hídrico se convierte en uno de los mayores desafíos actuales. Las PGPB (Plant Growth-Promoting Bacteria) se presentan como una alternativa viable para reducir los efectos deletéreos de la sequía. Este estudio tuvo como objetivo evaluar el potencial de diez cepas de PGPB de los géneros Pseudomonas spp., Bacillus spp. y Lysinibacillus sp. pertenecientes a las colecciones del Instituto de Biotecnología de la Universidad Nacional (IBUN) y la Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), en la mitigación del déficit hídrico en plantas de maíz. Para ello, se realizaron ensayos en invernadero (Bogotá) y casa de malla (Cesar) utilizando inóculos individuales. Las plantas se cultivaron en condiciones de riego durante 20 días y luego se sometieron a 11 días de déficit hídrico. Después del período de estrés, se determinaron cambios en la biomasa seca (aérea y radical), contenido relativo hídrico (RWC), contenido de pigmentos fotosintéticos, acumulación de osmolitos y actividad enzimática antioxidante (GR y APX). La inoculación de las cepas XT14, MT1C8, PSL63 y MGC9 demostró atenuar los efectos perjudiciales de la sequía en el crecimiento del maíz, aumentando la biomasa seca aérea entre un 22% y 51% frente al control de estrés. Otras cepas como PSL80 y XT17 mejoraron el estado hídrico de la planta, manteniendo el RWC entre un 94% y 98%. Esto se logró principalmente mediante la modulación específica de cada cepa en la acumulación de osmolitos, la actividad antioxidante y el contenido de clorofila en las hojas. Posteriormente, las cepas PSL80, PSL63, XT14 y XT17 fueron seleccionadas para estudios adicionales a nivel de laboratorio, donde se determinaron características de promoción del crecimiento y tolerancia al estrés osmótico. Se observó que las cepas eran tolerantes al estrés osmótico inducido por la presencia de Polietilenglicol (PEG) 6000 en el medio de crecimiento y poseían múltiples rasgos de promoción, como la capacidad para sintetizar compuestos de tipo indol y exopolisacáridos (EPS), solubilizar y mineralizar fósforo, y establecerse en las raíces incluso en condiciones de estrés. Estos atributos podrían guardar relación con los beneficios observados en las plantas, al aumentar la biodisponibilidad de nutrientes, mantener la humedad en la rizósfera y estimular hormonalmente el crecimiento. Se concluyó que las cepas de Pseudomonas PSL80 y PSL63, y de Bacillus XT14, poseen potencial para mitigar el estrés por déficit hídrico en las plantas de maíz. (Texto tomado de la fuente).spa
dc.description.abstractGlobal water scarcity for irrigation represents one of the main threats to agriculture and food security. It is expected to worsen due to more frequent drought periods resulting from climate change. Strengthening crop tolerance to water-deficient conditions and improving water use efficiency have become some of the greatest challenges today. Plant Growth-Promoting Bacteria (PGPB) emerge as a viable alternative to reduce the deleterious effects of drought. This study aimed to evaluate the potential of ten PGPB strains from the genera Pseudomonas spp., Bacillus spp., and Lysinibacillus sp., collected from Instituto de Biotecnología de la Universidad Nacional (IBUN) and Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), in mitigating water deficit in maize plants. Greenhouse (Bogotá) and mesh house (Cesar) assays were conducted using individual inocula. The plants were subjected to 20 days of watering and then exposed to 11 days of water deficit. After the stress period, changes in dry biomass (aboveground and root), relative water content (RWC), photosynthetic pigment content, osmolyte accumulation, and antioxidant enzyme activity (GR and APX) were determined. The inoculation of XT14, MT1C8, PSL63, and MGC9 strains demonstrated attenuation of detrimental effects of drought on maize growth, increasing stem dry biomass by 22% to 51% compared to the stressed control. Other strains like PSL80 and XT17 improved the plant's water status, maintaining RWC between 94% and 98%. This was achieved mainly through specific modulation by each strain in osmolyte accumulation, antioxidant activity, and chlorophyll content in the leaves. Subsequently, strains PSL80, PSL63, XT14, and XT17 were selected for additional laboratory-level studies, where growth promotion characteristics and tolerance to osmotic stress were determined. These strains were found to be osmotolerant induced by Polyethylene glycol (PEG) 6000 in the growth medium and had multiple promotion traits, such as the ability to synthesize indole-type compounds and exopolysaccharides (EPS), solubilize and mineralize phosphorus, establish themselves in the roots even under stressful conditions. These attributes may be related to the observed benefits in plants by increasing nutrient availability, maintaining moisture in the rhizosphere, and hormonally stimulating growth. It was concluded that the Pseudomonas PSL80 and PSL63 strains, and the Bacillus XT14 strain, have the potential to mitigate water deficit stress in maize plants.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Microbiologíaspa
dc.description.researchareaMicrobiologia agricolaspa
dc.format.extentxvi, 140 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85381
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAbdelaal, K., Alkahtani, M., Attia, K., Hafez, Y., Király, L., & Künstler, A. (2021). The Role of Plant Growth-Promoting Bacteria in Alleviating the Adverse Effects of Drought on Plants. Biology, 10(6), 520. https://doi.org/10.3390/BIOLOGY10060520spa
dc.relation.referencesAbrahám, E., Hourton-Cabassa, C., Erdei, L., & Szabados, L. (2010). Methods for determination of proline in plants. Methods in Molecular Biology (Clifton, N.J.), 639, 317–331. https://doi.org/10.1007/978-1-60761-702-0_20/COVER/spa
dc.relation.referencesAhmad Ansari, F., Ahmad, I., & Pichtel, J. (2023). Synergistic effects of biofilm-producing PGPR strains on wheat plant colonization, growth and soil resilience under drought stress. Saudi Journal of Biological Sciences, 30(6), 103664. https://doi.org/10.1016/J.SJBS.2023.103664spa
dc.relation.referencesAkhtar, S. S., Amby, D. B., Hegelund, J. N., Fimognari, L., Großkinsky, D. K., Westergaard, J. C., Müller, R., Moelbak, L., Liu, F., & Roitsch, T. (2020). Bacillus licheniformis FMCH001 Increases Water Use Efficiency via Growth Stimulation in Both Normal and Drought Conditions. Frontiers in Plant Science, 11, 297. https://doi.org/10.3389/fpls.2020.00297spa
dc.relation.referencesAli, S., & Khan, N. (2021). Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiological Research, 249, 126771. https://doi.org/10.1016/j.micres.2021.126771spa
dc.relation.referencesAli, S. Z., Sandhya, V., & Rao, L. V. (2014). Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Annals of Microbiology, 64(2), 493–502. https://doi.org/10.1007/S13213-013-0680-3/FIGURES/6spa
dc.relation.referencesAllard-Massicotte, R., Tessier, L., Lécuyer, F., Lakshmanan, V., Lucier, J. F., Garneau, D., Caudwell, L., Vlamakis, H., Bais, H. P., & Beauregard, P. B. (2016). Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. MBio, 7(6). https://doi.org/10.1128/mBio.01664-16spa
dc.relation.referencesAlmansouri, M., Kinet, J.-M., & Lutts, S. (2001). Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and Soil, 231, 243–254.spa
dc.relation.referencesAmaya-Gómez, C. V, Porcel, M., Mesa-Garriga, L., Gómez-Álvarez, M. I., Zhou, N.-Y., & Tong, S. J. (2020). A Framework for the Selection of Plant Growth-Promoting Rhizobacteria Based on Bacterial Competence Mechanisms. Applied and Environmental Microbiology, 86(14).spa
dc.relation.referencesAnjum, S. A., Tanveer, M., Ashraf, U., Hussain, S., Shahzad, B., Khan, I., & Wang, L. (2016). Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Environmental Science and Pollution Research 2016 23:17, 23(17), 17132–17141. https://doi.org/10.1007/S11356-016-6894-8spa
dc.relation.referencesAnjum, S. A., Ashraf, U., Tanveer, M., Khan, I., Hussain, S., Shahzad, B., Zohaib, A., Abbas, F., Saleem, M. F., Ali, I., & Wang, L. C. (2017). Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Frontiers in Plant Science, 8(FEBRUARY), 69. https://doi.org/10.3389/FPLS.2017.00069/BIBTEXspa
dc.relation.referencesAnjum, S. A., Ashraf, U., Zohaib, A., Tanveer, M., Naeem, M., Ali, I., Tabassum, T., & Nazir, U. (2017). Growth and developmental responses of crop plants under drought stress: a review. Zemdirbyste-Agriculture, 104(3), 267–276. https://doi.org/10.13080/z-a.2017.104.034spa
dc.relation.referencesAnjum, S. A., Xie, X.-Y., Wang, L.-C., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026–2032. https://doi.org/10.5897/AJAR10.027spa
dc.relation.referencesAnsari, F. A., Jabeen, M., & Ahmad, I. (2021). Pseudomonas azotoformans FAP5, a novel biofilm-forming PGPR strain, alleviates drought stress in wheat plant. International Journal of Environmental Science and Technology, 1–16. https://doi.org/10.1007/s13762-020-03045-9spa
dc.relation.referencesArmada, E., Roldán, A., & Azcon, R. (2014). Differential Activity of Autochthonous Bacteria in Controlling Drought Stress in Native Lavandula and Salvia Plants Species Under Drought Conditions in Natural Arid Soil. Microbial Ecology, 67(2), 410–420. https://doi.org/10.1007/S00248-013-0326-9/FIGURES/4spa
dc.relation.referencesAroca, R. (2012). Plant Responses to Drought Stress. In R. Aroca (Ed.), Plant Responses to Drought Stress: From Morphological to Molecular Features (Issue October 2012). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32653-0spa
dc.relation.referencesArzanesh, M. H., Alikhani, H. A., Khavazi, K., Rahimian, H. A., & Miransari, M. (2011). Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World Journal of Microbiology and Biotechnology, 27(2), 197–205. https://doi.org/10.1007/S11274-010-0444-1/TABLES/7spa
dc.relation.referencesAsghari, B., Khademian, R., & Sedaghati, B. (2020). Plant growth promoting rhizobacteria (PGPR) confer drought resistance and stimulate biosynthesis of secondary metabolites in pennyroyal (Mentha pulegium L.) under water shortage condition. Scientia Horticulturae, 263(July 2019), 109132. https://doi.org/10.1016/j.scienta.2019.109132spa
dc.relation.referencesAshry, N. M., Alaidaroos, B. A., Mohamed, S. A., Badr, O. A. M., El-Saadony, M. T., & Esmael, A. (2022). Utilization of drought-tolerant bacterial strains isolated from harsh soils as a plant growth-promoting rhizobacteria (PGPR). Saudi Journal of Biological Sciences, 29(3), 1760–1769. https://doi.org/10.1016/J.SJBS.2021.10.054spa
dc.relation.referencesAslam, M., Maqpool, M., & Cengiz, R. (2015). Drought stress in maize (Zea Mays L.): effects, resistance mechanisms, global achievements, and biological strategies. In Springer Briefs in Agriculture (Vol. 8, Issue December). https://doi.org/10.1007/978-3-319-25442-5spa
dc.relation.referencesAvramova, V., Abdelgawad, H., Zhang, Z., Fotschki, B., Casadevall, R., Vergauwen, L., Knapen, D., Taleisnik, E., Guisez, Y., Asard, H., & Beemster, G. T. S. (2015). Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiology, 169(2), 1382–1396. https://doi.org/10.1104/pp.15.00276spa
dc.relation.referencesAvramova, V., Nagel, K. A., Abdelgawad, H., Bustos, D., Duplessis, M., Fiorani, F., & Beemster, G. T. S. (2016). Screening for drought tolerance of maize hybrids by multi-scale analysis of root and shoot traits at the seedling stage. Journal of Experimental Botany, 67(8), 2453–2466. https://doi.org/10.1093/JXB/ERW055spa
dc.relation.referencesAzeem, M., Haider, M. Z., Javed, S., Saleem, M. H., & Alatawi, A. (2022). Drought Stress Amelioration in Maize (Zea mays L.) by Inoculation of Bacillus spp. Strains under Sterile Soil Conditions. Agriculture, 12(1), 50. https://doi.org/10.3390/AGRICULTURE12010050spa
dc.relation.referencesBakhshandeh, E., Gholamhosseini, M., Yaghoubian, Y., & Pirdashti, H. (2020). Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salt stress. Plant Growth Regulation, 90(1), 123–136. https://doi.org/10.1007/S10725-019-00556-5/FIGURES/3spa
dc.relation.referencesBarnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell & Environment, 31(1), 11–38. https://doi.org/10.1111/J.1365-3040.2007.01727.Xspa
dc.relation.referencesBashan, Y., Holguin, G., & De-Bashan, L. E. (2004). Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Https://Doi.Org/10.1139/W04-035, 50(8), 521–577. https://doi.org/10.1139/W04-035spa
dc.relation.referencesBashan, Y., Kamnev, A. A., & de-Bashan, L. E. (2012). Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biology and Fertility of Soils 2012 49:4, 49(4), 465–479. https://doi.org/10.1007/S00374-012-0737-7spa
dc.relation.referencesBasu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S., & El Enshasy, H. (2021). Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability, 13(3), 1140. https://doi.org/10.3390/su13031140spa
dc.relation.referencesBates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207. https://doi.org/10.1007/BF00018060spa
dc.relation.referencesBatool, T., Ali, S., Seleiman, M. F., Naveed, N. H., Ali, A., Ahmed, K., Abid, M., Rizwan, M., Shahid, M. R., Alotaibi, M., Al-Ashkar, I., & Mubushar, M. (2020). Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Reports 2020 10:1, 10(1), 1–19. https://doi.org/10.1038/s41598-020-73489-zspa
dc.relation.referencesBeauregard, P. B., Chai, Y., Vlamakis, H., Losick, R., & Kolter, R. (2013). Bacillus subtilis biofilm induction by plant polysaccharides. Proceedings of the National Academy of Sciences of the United States of America, 110(17), E1621–E1630. https://doi.org/10.1073/PNAS.1218984110/SUPPL_FILE/PNAS.201218984SI.PDFspa
dc.relation.referencesBewleyl, J. D. (1997). Seed Germination and Dormancy. The Plant Cell, 9, 1055–1056.spa
dc.relation.referencesBhatt, R. M., Selvakumar, G., Upreti, K. K., & Boregowda, P. C. (2015). Effect of Biopriming with Enterobacter Strains on Seed Germination and Seedling Growth of Tomato (Solanum lycopersicum L.) Under Osmotic Stress. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 85(1), 63–69. https://doi.org/10.1007/s40011-014-0333-8spa
dc.relation.referencesBianco, C., Imperlini, E., Calogero, R., Senatore, B., Amoresano, A., Carpentieri, A., Pucci, P., & Defez, R. (2006). Indole-3-acetic acid improves Escherichia coli’s defences to stress. Archives of Microbiology, 185(5), 373–382. https://doi.org/10.1007/S00203-006-0103-Y/TABLES/5spa
dc.relation.referencesBorrell, A. K., Hammer, G. L., & Douglas, A. C. L. (2000). Does maintaining green leaf area in sorghum improve yield under drought? I. Leaf growth and senescence. Crop Science, 40(4), 1026–1037. https://doi.org/10.2135/cropsci2000.4041026xspa
dc.relation.referencesBouremani, N., Cherif-Silini, H., Silini, A., Bouket, A. C., Luptakova, L., Alenezi, F. N., Baranov, O., & Belbahri, L. (2023). Plant Growth-Promoting Rhizobacteria (PGPR): A Rampart against the Adverse Effects of Drought Stress. Water, 15(3), 418. https://doi.org/10.3390/w15030418spa
dc.relation.referencesCarlson, R., Tugizimana, F., Steenkamp, P. A., Dubery, I. A., Hassen, A. I., & Labuschagne, N. (2020). Rhizobacteria-induced systemic tolerance against drought stress in Sorghum bicolor (L.) Moench. Microbiological Research, 232, 126388. https://doi.org/10.1016/j.micres.2019.126388spa
dc.relation.referencesCassel, D. K., & Nielsen, D. R. (1986). Field Capacity and Available Water Capacity. In A. Klute (Ed.), Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods (2nd ed., Vol. 9, Issue 9, pp. 901–926). American Society of Agronomy. https://doi.org/10.2136/sssabookser5.1.2ed.c36spa
dc.relation.referencesCaverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C. W., Lazzarotto, F., & Margis-Pinheiro, M. (2012). Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 35(4 Suppl), 1011. https://doi.org/10.1590/S1415-47572012000600016spa
dc.relation.referencesCesari, A., Paulucci, N., López-Gómez, M., Hidalgo-Castellanos, J., Plá, C. L., & Dardanelli, M. S. (2019). Restrictive water condition modifies the root exudates composition during peanut-PGPR interaction and conditions early events, reversing the negative effects on plant growth. Plant Physiology and Biochemistry, 142, 519–527. https://doi.org/10.1016/j.plaphy.2019.08.015spa
dc.relation.referencesChaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. In Annals of Botany (Vol. 103, Issue 4, pp. 551–560). Oxford Academic. https://doi.org/10.1093/aob/mcn125spa
dc.relation.referencesChen, X. H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., Morgenstern, B., Voss, B., Hess, W. R., Reva, O., Junge, H., Voigt, B., Jungblut, P. R., Vater, J., Süssmuth, R., Liesegang, H., Strittmatter, A., Gottschalk, G., & Borriss, R. (2007). Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechnology, 25(9), 1007–1014. https://doi.org/10.1038/nbt1325spa
dc.relation.referencesComas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F., & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4(NOV), 442. https://doi.org/10.3389/FPLS.2013.00442/BIBTEXspa
dc.relation.referencesCortés-Patiño, S., Vargas, C., Álvarez-Flórez, F., Bonilla, R., & Estrada-Bonilla, G. (2021). Potential of herbaspirillum and azospirillum consortium to promote growth of perennial ryegrass under water deficit. Microorganisms, 9(1), 1–16. https://doi.org/10.3390/microorganisms9010091spa
dc.relation.referencesCreus, C. M., Sueldo, R. J., & Barassi, C. A. (2004). Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Canadian Journal of Botany, 82(2), 273–281. https://doi.org/10.1139/b03-119spa
dc.relation.referencesCruz, C., Gomez, L., & Uribe, D. (2017). Bio-based management of rice straw under different C:N ratios using microbial co-inocula and plant growth promoters. Revista Colombiana de Biotecnol, 19, 47–62. https://doi.org/10.5446/rev.colomb.biote.v19n2.70168spa
dc.relation.referencesCruz de Carvalho, M. H. (2008). Drought stress and reactive oxygen species. Plant Signaling & Behavior, 3(3), 156–165. https://doi.org/10.4161/psb.3.3.5536spa
dc.relation.referencesDANE. (2019). Encuesta Nacional Agropecuaria (ENA): Serie histórica por departamento cultivos transitorios (2012 - II semestre 2019). https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-nacional-agropecuaria-enaspa
dc.relation.referencesDanish, S., Zafar-Ul-Hye, M., Mohsin, F., & Hussain, M. (2020). ACC-deaminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. PLoS ONE, 15(4). https://doi.org/10.1371/journal.pone.0230615spa
dc.relation.referencesDaryanto, S., Wang, L., & Jacinthe, P.-A. (2016). Global Synthesis of Drought Effects on Maize and Wheat Production. PLOS ONE, 11(5), e0156362. https://doi.org/10.1371/journal.pone.0156362spa
dc.relation.referencesDasgupta, D., Paul, A., Acharya, K., Minkina, T., Mandzhieva, S., Gorovtsov, A. V., Chakraborty, N., & Keswani, C. (2023). Bioinoculant mediated regulation of signalling cascades in various stress responses in plants. Heliyon, 9(1), e12953. https://doi.org/10.1016/J.HELIYON.2023.E12953spa
dc.relation.referencesde Carvalho, R. C., Cunha, A., & da Silva, J. M. (2011). Photosynthesis by six Portuguese maize cultivars during drought stress and recovery. Acta Physiologiae Plantarum, 33(2), 359–374. https://doi.org/10.1007/S11738-010-0555-1/FIGURES/10spa
dc.relation.referencesDe Micco, V., & Aronne, G. (2012). Morpho-Anatomical Traits for Plant Adaptation to Drought. In R. Aroca (Ed.), Plant Responses to Drought Stress: From Morphological to Molecular Features (Issue June 2015, pp. 1–466). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32653-0spa
dc.relation.referencesDevarajan, A. K., Muthukrishanan, G., Truu, J., Truu, M., Ostonen, I., Subramanian Kizhaeral, S., Panneerselvam, P., & Gopalasubramanian, S. K. (2021). The Foliar Application of Rice Phyllosphere Bacteria induces Drought-Stress Tolerance in Oryza sativa (L.). Plants 2021, Vol. 10, Page 387, 10(2), 387. https://doi.org/10.3390/PLANTS10020387spa
dc.relation.referencesDimkpa, C., Weinand, T., & Asch, F. (2009). Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell and Environment, 32(12), 1682–1694. https://doi.org/10.1111/J.1365-3040.2009.02028.Xspa
dc.relation.referencesDonot, F., Fontana, A., Baccou, J. C., & Schorr-Galindo, S. (2012). Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydrate Polymers, 87(2), 951–962. https://doi.org/10.1016/J.CARBPOL.2011.08.083spa
dc.relation.referencesDrobot, R., Draghia, A. F., Sîrbu, N., & Dinu, C. (2022). Synthetic Drought Hydrograph. Hydrology 2023, Vol. 10, Page 10, 10(1), 10. https://doi.org/10.3390/HYDROLOGY10010010spa
dc.relation.referencesDubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017spa
dc.relation.referencesEdmeades, G. O. (2008). Drought Tolerance in Maize: an Emerging Reality. In James Clive. Global Status of Commercialized Biotech/GM Crops (Vol. 39, p. 12). ISAAA. http://www.isaaa.orgspa
dc.relation.referencesEmbiale, A., Hussein, M., Husen, A., Sahile, S., & Mohammed, K. (2016). Differential Sensitivity of Pisum sativum L. Cultivars to Water-deficit Stress: Changes in Growth, Water Status, Chlorophyll Fluorescence and Gas Exchange Attributes. Journal of Agronomy, 15(2), 45–57. https://doi.org/10.3923/ja.2016.45.57spa
dc.relation.referencesEstrada, G. A., Baldani, V. L. D., de Oliveira, D. M., Urquiaga, S., & Baldani, J. I. (2013). Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant and Soil, 369(1–2), 115–129. https://doi.org/10.1007/s11104-012-1550-7spa
dc.relation.referencesFadiji, A. E., Santoyo, G., Yadav, A. N., & Babalola, O. O. (2022). Efforts towards overcoming drought stress in crops: Revisiting the mechanisms employed by plant growth-promoting bacteria. Frontiers in Microbiology, 13, 2943. https://doi.org/10.3389/fmicb.2022.962427spa
dc.relation.referencesFang, Y., & Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 72(4), 673–689. https://doi.org/10.1007/S00018-014-1767-0/METRICSspa
dc.relation.referencesFang, Yan, Du, Y., Wang, J., Wu, A., Qiao, S., Xu, B., Zhang, S., Siddique, K. H. M., & Chen, Y. (2017). Moderate Drought Stress Affected Root Growth and Grain Yield in Old, Modern and Newly Released Cultivars of Winter Wheat. Frontiers in Plant Science, 8. https://doi.org/10.3389/FPLS.2017.00672spa
dc.relation.referencesFAO. (2023a). FAOSTAT: Crops and livestock products, Production Quantity + Crops primary. https://www.fao.org/faostat/en/#data/QCLspa
dc.relation.referencesFAO. (2023b). FAOSTAT: Food Balances. https://www.fao.org/faostat/en/#data/FBSspa
dc.relation.referencesFAO, F. and A. O. of the U. N. (2017). The impact of disasters and crises on agriculture and food security. www.fao.org/publicationsspa
dc.relation.referencesFarooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. In Agronomy for Sustainable Development (Vol. 29, Issue 1, pp. 185–212). EDP Sciences. https://doi.org/10.1051/agro:2008021spa
dc.relation.referencesFENALCE. (2011). ASPECTOS TÉCNICOS DE LA PRODUCCIÓN DE MAÍZ EN COLOMBIA. Federación Nacional de Cultivadores de Cereales, Leguminosas y Soya. https://repository.agrosavia.co/bitstream/handle/20.500.12324/19418/45021_60774.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesFENALCE. (2021). Indicadores Cerealistas 2021B.spa
dc.relation.referencesFENALCE. (2023a). Histórico de área, producción y rendimiento Cereales y leguminosas. https://app.powerbi.com/view?r=eyJrIjoiM2FiYzM5ZTAtNjFmNi00MGQyLWFiYzYtNGI0YTJiZTcwZWQwIiwidCI6IjU2MmQ1YjJlLTBmMzEtNDdmOC1iZTk4LThmMjI4Nzc4MDBhOCJ9spa
dc.relation.referencesFENALCE. (2023b). Importaciones de cereales y leguminosas. https://app.powerbi.com/view?r=eyJrIjoiZjBjODljNTktZTdiMy00OWNlLTk5OGEtMWY2ZDM3NTczZWZhIiwidCI6IjU2MmQ1YjJlLTBmMzEtNDdmOC1iZTk4LThmMjI4Nzc4MDBhOCJ9&pageName=ReportSection639662e3be90024da888spa
dc.relation.referencesFlexas, J., & Medrano, H. (2002). Drought‐inhibition of Photosynthesis in C3 Plants: Stomatal and Non‐stomatal Limitations Revisited. Annals of Botany, 89(2), 183–189. https://doi.org/10.1093/AOB/MCF027spa
dc.relation.referencesForni, C., Duca, D., & Glick, B. R. (2017). Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant and Soil, 410(1–2), 335–356. https://doi.org/10.1007/s11104-016-3007-xspa
dc.relation.referencesGarcía, J. E., Maroniche, G., Creus, C., Suárez-Rodríguez, R., Ramirez-Trujillo, J. A., & Groppa, M. D. (2017). In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiological Research, 202, 21–29. https://doi.org/10.1016/j.micres.2017.04.007spa
dc.relation.referencesGarrard, A. (1954). THE EFFECTS OF β -INDOLYLACETIC ACID ON THE GERMINATION AND ROOT GROWTH OF CERTAIN MEMBERS OF THE CRUCIFERAE. New Phytologist, 53(2), 165–176. https://doi.org/10.1111/J.1469-8137.1954.TB05234.Xspa
dc.relation.referencesGe, T., Sui, F., Bai, L., Tong, C., & Sun, N. (2012). Effects of water stress on growth, biomass partitioning, and water-use efficiency in summer maize (Zea mays L.) throughout the growth cycle. Acta Physiologiae Plantarum, 34(3), 1043–1053. https://doi.org/10.1007/S11738-011-0901-Y/TABLES/3spa
dc.relation.referencesGhannoum, O. (2009). C4 Photosynthesis and water stress. Ann Bot, 103(4), 635–644. https://doi.org/10.1093/aob/mcn093spa
dc.relation.referencesGhosh, A., Biswas, D. R., Das, S., Das, T. K., Bhattacharyya, R., Alam, K., & Rahman, M. M. (2023). Rice straw incorporation mobilizes inorganic soil phosphorus by reorienting hysteresis effect under varying hydrothermal regimes in a humid tropical Inceptisol. Soil and Tillage Research, 225, 105531. https://doi.org/10.1016/J.STILL.2022.105531spa
dc.relation.referencesGhosh, D., Gupta, A., & Mohapatra, S. (2019). A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana. World Journal of Microbiology and Biotechnology, 35(6), 1–15. https://doi.org/10.1007/S11274-019-2659-0/FIGURES/7spa
dc.relation.referencesGhosh, D., Sen, S., & Mohapatra, S. (2018). Drought-mitigating Pseudomonas putida GAP-P45 modulates proline turnover and oxidative status in Arabidopsis thaliana under water stress. Annals of Microbiology, 68(9), 579–594. https://doi.org/10.1007/S13213-018-1366-7/FIGURES/5spa
dc.relation.referencesGhosh, D., Sen, S., & Mohapatra, S. (2017). Modulation of proline metabolic gene expression in Arabidopsis thaliana under water-stressed conditions by a drought-mitigating Pseudomonas putida strain. Annals of Microbiology, 67(10), 655–668. https://doi.org/10.1007/s13213-017-1294-yspa
dc.relation.referencesGill, S. S., Anjum, N. A., Hasanuzzaman, M., Gill, R., Trivedi, D. K., Ahmad, I., Pereira, E., & Tuteja, N. (2013). Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations. In Plant Physiology and Biochemistry (Vol. 70, pp. 204–212). Elsevier Masson. https://doi.org/10.1016/j.plaphy.2013.05.032spa
dc.relation.referencesGlick, B. R. (2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 2012, 1–15. https://doi.org/10.6064/2012/963401spa
dc.relation.referencesGlick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169(1), 30–39. https://doi.org/10.1016/j.micres.2013.09.009spa
dc.relation.referencesGlick, B. R. (2020). Beneficial plant-bacterial interactions. In Beneficial Plant-Bacterial Interactions. https://doi.org/10.1007/978-3-030-44368-9spa
dc.relation.referencesGomez-Ramirez, L. F., & Uribe-Velez, D. (2021). Phosphorus Solubilizing and Mineralizing Bacillus spp. Contribute to Rice Growth Promotion Using Soil Amended with Rice Straw. Current Microbiology, 78(3), 932–943. https://doi.org/10.1007/S00284-021-02354-7/TABLES/3spa
dc.relation.referencesGoswami, D., Vaghela, H., Parmar, S., Dhandhukia, P., & Thakker, J. N. (2013). Plant growth promoting potentials of Pseudomonas spp. strain OG isolated from marine water. Journal of Plant Interactions, 8(4), 281–290. https://doi.org/10.1080/17429145.2013.768360spa
dc.relation.referencesGovaerts, B., Vega, D., Chávez, X., Narro, L., San Vicente, F., Palacios, N., González, G., Ortega, P., Carvajar, A., Arcos, A., Bolaños, J., Romero, N., Bolaños, J., & Vanegas, Y. (2019). Maíz para Colombia: Visión 2030. In CYMMIT CIAT. CYMMIT - CIAT. https://www.fenalce.org/archivos/maiz2030.pdfspa
dc.relation.referencesGrote, U., Fasse, A., Nguyen, T. T., & Erenstein, O. (2021). Food Security and the Dynamics of Wheat and Maize Value Chains in Africa and Asia. Frontiers in Sustainable Food Systems, 4, 317. https://doi.org/10.3389/FSUFS.2020.617009/BIBTEXspa
dc.relation.referencesGupta, A., Rico, A., & Caño, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266–269. https://doi.org/10.1126/science.aaz7614spa
dc.relation.referencesGururani, M. A., Upadhyaya, C. P., Baskar, V., Venkatesh, J., Nookaraju, A., & Park, S. W. (2013). Plant Growth-Promoting Rhizobacteria Enhance Abiotic Stress Tolerance in Solanum tuberosum Through Inducing Changes in the Expression of ROS-Scavenging Enzymes and Improved Photosynthetic Performance. Journal of Plant Growth Regulation, 32(2), 245–258. https://doi.org/10.1007/s00344-012-9292-6spa
dc.relation.referencesHagaggi, N. S. A., & Abdul-Raouf, U. M. (2022). Drought-tolerant Sphingobacterium changzhouense Alv associated with Aloe vera mediates drought tolerance in maize (Zea mays). World Journal of Microbiology and Biotechnology 2022 38:12, 38(12), 1–11. https://doi.org/10.1007/S11274-022-03441-Yspa
dc.relation.referencesHasanuzzaman, M., Bhuyan, M. H. M., Zulfiqar, F., Raza, A., Mohsin, S., Mahmud, J., Fujita, M., & Fotopoulos, V. (2020). Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants, 9(8), 681. https://doi.org/10.3390/antiox9080681spa
dc.relation.referencesHenry, A., Doucette, W., Norton, J., & Bugbee, B. (2007). Changes in Crested Wheatgrass Root Exudation Caused by Flood, Drought, and Nutrient Stress. Journal of Environmental Quality, 36(3), 904–912. https://doi.org/10.2134/JEQ2006.0425SCspa
dc.relation.referencesHiscox, J. D., & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57(12), 1332–1334. https://doi.org/10.1139/b79-163spa
dc.relation.referencesHoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347(2nd edit). https://www.cabdirect.org/cabdirect/abstract/19500302257spa
dc.relation.referencesHoben, H. J., & Somasegaran, P. (1982). Comparison of the pour, spread, and drop plate methods for enumeration of Rhizobium spp. in inoculants made from presterilized peat. Applied and Environmental Microbiology, 44(5), 1246–1247. https://doi.org/10.1128/AEM.44.5.1246-1247.1982spa
dc.relation.referencesHossain, M. M., Lam, H. M., & Zhang, J. (2015). Responses in gas exchange and water status between drought-tolerant and -susceptible soybean genotypes with ABA application. The Crop Journal, 3(6), 500–506. https://doi.org/10.1016/J.CJ.2015.09.001spa
dc.relation.referencesHsiao, T. C. (1973). Plant Responses to Water Stress. Annual Review of Plant Physiology, 24(1), 519–570. https://doi.org/10.1146/annurev.pp.24.060173.002511spa
dc.relation.referencesHsiao, T. C., & Xu, L. K. (2000). Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. Journal of Experimental Botany, 51(350), 1595–1616. https://doi.org/10.1093/JEXBOT/51.350.1595spa
dc.relation.referencesHussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S., & Wang, L. (2018). Chilling and Drought Stresses in Crop Plants: Implications, Cross Talk, and Potential Management Opportunities. Frontiers in Plant Science, 9, 393. https://doi.org/10.3389/fpls.2018.00393spa
dc.relation.referencesIdris, E. E., Iglesias, D. J., Talon, M., & Borriss, R. (2007). Tryptophan-Dependent Production of Indole-3-Acetic Acid (IAA) Affects Level of Plant Growth Promotion by Bacillus amyloliquefaciens FZB42. Https://Doi.Org/10.1094/MPMI-20-6-0619, 20(6), 619–626. https://doi.org/10.1094/MPMI-20-6-0619spa
dc.relation.referencesIlyas, M., Nisar, M., Khan, N., Hazrat, A., Khan, A. H., Hayat, K., Fahad, S., Khan, A., & Ullah, A. (2021). Drought Tolerance Strategies in Plants: A Mechanistic Approach. Journal of Plant Growth Regulation, 40(3), 926–944. https://doi.org/10.1007/s00344-020-10174-5spa
dc.relation.referencesIlyas, N., Mumtaz, K., Akhtar, N., Yasmin, H., Sayyed, R. Z., Khan, W., Enshasy, H. A. El, Dailin, D. J., Elsayed, E. A., & Ali, Z. (2020). Exopolysaccharides Producing Bacteria for the Amelioration of Drought Stress in Wheat. Sustainability, 12(21), 8876. https://doi.org/10.3390/su12218876spa
dc.relation.referencesImran, M., Mpovo, C. L., Aaqil Khan, M., Shaffique, S., Ninson, D., Bilal, S., Khan, M., Kwon, E. H., Kang, S. M., Yun, B. W., & Lee, I. J. (2023). Synergistic Effect of Melatonin and Lysinibacillus fusiformis L. (PLT16) to Mitigate Drought Stress via Regulation of Hormonal, Antioxidants System, and Physio-Molecular Responses in Soybean Plants. International Journal of Molecular Sciences, 24(10), 8489. https://doi.org/10.3390/IJMS24108489/S1spa
dc.relation.referencesIntegrated Taxonomic Information System (ITIS). (2023). ITIS - Report: Zea mays. https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=42269#nullspa
dc.relation.referencesKamara, A. Y., Menkir, A., Badu-Apraku, B., & Ibikunle, O. (2003). The influence of drought stress on growth, yield and yield components of selected maize genotypes. The Journal of Agricultural Science, 141(1), 43–50. https://doi.org/10.1017/S0021859603003423spa
dc.relation.referencesKarimzadeh, J., Alikhani, H. A., Etesami, H., & Pourbabaei, A. A. (2021). Improved Phosphorus Uptake by Wheat Plant (Triticum aestivum L.) with Rhizosphere Fluorescent Pseudomonads Strains Under Water-Deficit Stress. Journal of Plant Growth Regulation, 40(1), 162–178. https://doi.org/10.1007/S00344-020-10087-3/FIGURES/7spa
dc.relation.referencesKarlowsky, S., Augusti, A., Ingrisch, J., Akanda, M. K. U., Bahn, M., & Gleixner, G. (2018). Drought-Induced Accumulation of Root Exudates Supports Post-drought Recovery of Microbes in Mountain Grassland. Frontiers in Plant Science, 9, 402696. https://doi.org/10.3389/fpls.2018.01593spa
dc.relation.referencesKasim, W. A., Gaafar, R. M., Abou-Ali, R. M., Omar, M. N., & Hewait, H. M. (2016). Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Annals of Agricultural Sciences, 61(2), 217–227. https://doi.org/10.1016/J.AOAS.2016.07.003spa
dc.relation.referencesKaushal, M., & Wani, S. P. (2016a). Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Annals of Microbiology, 66(1), 35–42. https://doi.org/10.1007/S13213-015-1112-3/METRICSspa
dc.relation.referencesKaushal, M., & Wani, S. P. (2016b). Rhizobacterial-plant interactions: Strategies ensuring plant growth promotion under drought and salinity stress. In Agriculture, Ecosystems and Environment (Vol. 231, pp. 68–78). Elsevier B.V. https://doi.org/10.1016/j.agee.2016.06.031spa
dc.relation.referencesKeskin, A., Tumer, E. I., & Birinci, A. (2010). Analysis of the factors affecting the instrument and machinery assets in enterprises that deal with agricultural production: The case of erzurum province. African Journal of Agricultural Research, 5(8), 600–605. https://doi.org/10.5897/AJAR10.027spa
dc.relation.referencesKhabbaz, S. E., Ladhalakshmi, D., Babu, M., Kandan, A., Ramamoorthy, V., Saravanakumar, D., Al-Mughrabi, T., & Kandasamy, S. (2019). Plant Growth Promoting Bacteria (PGPB) - A Versatile Tool for Plant Health Management. Canadian Journal of Pesticides & Pest Management, 1(1), 1. https://doi.org/10.34195/can.j.ppm.2019.05.001spa
dc.relation.referencesKhan, A., & Singh, A. V. (2021). Multifarious effect of ACC deaminase and EPS producing Pseudomonas sp. and Serratia marcescens to augment drought stress tolerance and nutrient status of wheat. World Journal of Microbiology and Biotechnology, 37(12), 1–17. https://doi.org/10.1007/S11274-021-03166-4/FIGURES/4spa
dc.relation.referencesKhoshru, B., Mitra, D., Khoshmanzar, E., Myo, E. M., Uniyal, N., Mahakur, B., Mohapatra, P. K. Das, Panneerselvam, P., Boutaj, H., Alizadeh, M., Cely, M. V. T., Senapati, A., & Rani, A. (2020). Current scenario and future prospects of plant growth-promoting rhizobacteria: an economic valuable resource for the agriculture revival under stressful conditions. Journal of Plant Nutrition, 43(20), 3062–3092. https://doi.org/10.1080/01904167.2020.1799004spa
dc.relation.referencesKloepper, J. W., Leong, J., Teintze, M., & Schroth, M. N. (1980). Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. In Nature (Vol. 286, Issue 5776, pp. 885–886). https://doi.org/10.1038/286885a0spa
dc.relation.referencesKnights, H. E., Jorrin, B., Haskett, T. L., & Poole, P. S. (2021). Deciphering bacterial mechanisms of root colonization. Environmental Microbiology Reports, 13(4), 428–444. https://doi.org/10.1111/1758-2229.12934spa
dc.relation.referencesKour, D., Rana, K. L., Sheikh, I., Kumar, V., Yadav, A. N., Dhaliwal, H. S., & Saxena, A. K. (2020). Alleviation of Drought Stress and Plant Growth Promotion by Pseudomonas libanensis EU-LWNA-33, a Drought-Adaptive Phosphorus-Solubilizing Bacterium. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 90(4), 785–795. https://doi.org/10.1007/S40011-019-01151-4/FIGURES/4spa
dc.relation.referencesKour, D., Rana, K. L., Yadav, A. N., Yadav, N., Kumar, M., Kumar, V., Vyas, P., Dhaliwal, H. S., & Saxena, A. K. (2020). Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology, 23(December 2019), 101487. https://doi.org/10.1016/j.bcab.2019.101487spa
dc.relation.referencesKour, D., Rana, K. L., Yadav, A. N., Yadav, N., Kumar, V., Kumar, A., Sayyed, R. Z., Hesham, A. E.-L., Dhaliwal, H. S., & Saxena, A. K. (2019). Drought-Tolerant Phosphorus-Solubilizing Microbes: Biodiversity and Biotechnological Applications for Alleviation of Drought Stress in Plants. In N. K. Arora (Ed.), Plant Growth Promoting Rhizobacteria for Sustainable Stress Management (pp. 255–308). Springer. https://doi.org/10.1007/978-981-13-6536-2_13spa
dc.relation.referencesKränzlein, M., Geilfus, C. M., Franzisky, B. L., Zhang, X., Wimmer, M. A., & Zörb, C. (2021). Physiological Responses of Contrasting Maize (Zea mays L.) Hybrids to Repeated Drought. Journal of Plant Growth Regulation, 41(7), 2708–2718. https://doi.org/10.1007/S00344-021-10468-2/FIGURES/5spa
dc.relation.referencesKravchenko, L. V., Azarova, T. S., Makarova, N. M., & Tikhonovich, I. A. (2004). The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology, 73(2), 156–158. https://doi.org/10.1023/B:MICI.0000023982.76684.9D/METRICSspa
dc.relation.referencesKumar, V., & Narula, N. (1999). Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biology and Fertility of Soils, 28(3), 301–305. https://doi.org/10.1007/S003740050497/METRICSspa
dc.relation.referencesLara-Bosso, L. S. (2007). Determinación del potencial agronómico de aislamientos nativos de Pseudomonas fluorescens en términos de su capacidad solubilizadora de fosfatos y antagonista contra Rhizoctonia solani. Universidad Nacional de Colombia.spa
dc.relation.referencesLatif, M., Bukhari, S. A. H., Alrajhi, A. A., Alotaibi, F. S., Ahmad, M., Shahzad, A. N., Dewidar, A. Z., & Mattar, M. A. (2022). Inducing Drought Tolerance in Wheat through Exopolysaccharide-Producing Rhizobacteria. Agronomy 2022, Vol. 12, Page 1140, 12(5), 1140. https://doi.org/10.3390/AGRONOMY12051140spa
dc.relation.referencesLaverde-Robayo, P. (2016). CARACTERIZACIÓN FENOTÍPICA DE AISLAMIENTOS NATIVOS DE Pseudomonas spp. CON POTENCIAL BIOCONTROLADOR DE AGENTES FITOPATÓGENOS ASOCIADOS AL CULTIVO DE PAPA. Pontificia Universidad Javeriana.spa
dc.relation.referencesLaxa, M., Liebthal, M., Telman, W., Chibani, K., & Dietz, K. J. (2019). The Role of the Plant Antioxidant System in Drought Tolerance. Antioxidants 2019, Vol. 8, Page 94, 8(4), 94. https://doi.org/10.3390/ANTIOX8040094spa
dc.relation.referencesLeal-Medina, G. I. (2018). Selección de bacterias aerobias formadoras de Endospora (BAFEs) con capacidad de promoción de crecimiento vegetal, provenientes de cultivos de caña panelera con manejos agronómicos contrastantes [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/63901spa
dc.relation.referencesLephatsi, M., Nephali, L., Meyer, V., Piater, L. A., Buthelezi, N., Dubery, I. A., Opperman, H., Brand, M., Huyser, J., & Tugizimana, F. (2022). Molecular mechanisms associated with microbial biostimulant-mediated growth enhancement, priming and drought stress tolerance in maize plants. Scientific Reports 2022 12:1, 12(1), 1–18. https://doi.org/10.1038/s41598-022-14570-7spa
dc.relation.referencesLi, L., Gu, W., Li, J., Li, C., Xie, T., Qu, D., Meng, Y., Li, C., & Wei, S. (2018). Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones. Plant Physiology and Biochemistry, 129, 35–55. https://doi.org/10.1016/J.PLAPHY.2018.05.017spa
dc.relation.referencesLichtenthaler, H. K. (1996). Vegetation Stress: an Introduction to the Stress Concept in Plants. Journal of Plant Physiology, 148(1–2), 4–14. https://doi.org/10.1016/S0176-1617(96)80287-2spa
dc.relation.referencesLiu, C., Liu, Y., Guo, K., Fan, D., Li, G., Zheng, Y., Yu, L., & Yang, R. (2010). Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environmental and Experimental Botany, 71, 174–183. https://doi.org/10.1016/j.envexpbot.2010.11.012spa
dc.relation.referencesLopes, M. S., Araus, J. L., van Heerden, P. D. R., & Foyer, C. H. (2011). Enhancing drought tolerance in C4 crops. Journal of Experimental Botany, 62(9), 3135–3153. https://doi.org/10.1093/jxb/err105spa
dc.relation.referencesLoscos-Aranda, D. J. (2007). Metabolismo de Ascorbato y Tioles en Leguminosas [Consejo Superior de Investigaciones Científicas CSIC]. https://digital.csic.es/bitstream/10261/3020/1/2007-TesisJorgeLoscos.pdfspa
dc.relation.referencesLu, Y., Li, Y., Zhang, J., Xiao, Y., Yue, Y., Duan, L., Zhang, M., & Li, Z. (2013). Overexpression of Arabidopsis Molybdenum Cofactor Sulfurase Gene Confers Drought Tolerance in Maize (Zea mays L.). PLoS ONE, 8(1), e52126. https://doi.org/10.1371/journal.pone.0052126spa
dc.relation.referencesLugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918spa
dc.relation.referencesMa, X., Sukiran, N. L., Ma, H., & Su, Z. (2014). Moderate drought causes dramatic floral transcriptomic reprogramming to ensure successful reproductive development in Arabidopsis. BMC Plant Biology, 14(1), 1–16. https://doi.org/10.1186/1471-2229-14-164/FIGURES/6spa
dc.relation.referencesMaazou, A.-R. S., Tu, J., Qiu, J., Liu, Z., Maazou, A.-R. S., Tu, J., Qiu, J., & Liu, Z. (2016). Breeding for Drought Tolerance in Maize (Zea mays L.). American Journal of Plant Sciences, 7(14), 1858–1870. https://doi.org/10.4236/AJPS.2016.714172spa
dc.relation.referencesMacAlister, D., Muasya, A. M., Crespo, O., Ogola, J. B. O., Maseko, S., Valentine, A. J., Ottosen, C. O., Rosenqvist, E., & Chimphango, S. B. M. (2020). Stress tolerant traits and root proliferation of Aspalathus linearis (Burm.f.) R. Dahlgren grown under differing moisture regimes and exposed to drought. South African Journal of Botany, 131, 342–350. https://doi.org/10.1016/J.SAJB.2020.03.003spa
dc.relation.referencesMancosu, N., Snyder, R. L., Kyriakakis, G., & Spano, D. (2015). Water Scarcity and Future Challenges for Food Production. Water, 7(3), 975–992. https://doi.org/10.3390/W7030975spa
dc.relation.referencesMarasco, R., Rolli, E., Vigani, G., Borin, S., Sorlini, C., Ouzari, H., Zocchi, G., & Daffonchio, D. (2013). Are drought-resistance promoting bacteria cross-compatible with different plant models? Https://Doi.Org/10.4161/Psb.26741, 8(10). https://doi.org/10.4161/PSB.26741spa
dc.relation.referencesMarulanda, A., Barea, J. M., & Azcón, R. (2009). Stimulation of plant growth and drought tolerance by native microorganisms (AM Fungi and bacteria) from dry environments: Mechanisms related to bacterial effectiveness. Journal of Plant Growth Regulation, 28(2), 115–124. https://doi.org/10.1007/S00344-009-9079-6/TABLES/3spa
dc.relation.referencesMayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Science, 166(2), 525–530. https://doi.org/10.1016/j.plantsci.2003.10.025spa
dc.relation.referencesMcAdam, S. A. M., & Brodribb, T. J. (2016). Linking Turgor with ABA Biosynthesis: Implications for Stomatal Responses to Vapor Pressure Deficit across Land Plants. Plant Physiology, 171(3), 2008–2016. https://doi.org/10.1104/PP.16.00380spa
dc.relation.referencesMejía, D. (2003). Maize: Post-harvest Operations. Food and Agriculture Organization of the United Nations (FAO).spa
dc.relation.referencesMejri, M., Siddique, K. H. M., Saif, T., Abdelly, C., & Hessini, K. (2016). Comparative effect of drought duration on growth, photosynthesis, water relations, and solute accumulation in wild and cultivated barley species. Journal of Plant Nutrition and Soil Science, 179(3), 327–335. https://doi.org/10.1002/jpln.201500547spa
dc.relation.referencesMelgarejo, L., Romero, M., Hernandez, S., Barrera, J., Solarte, E., Suaréz, D., Pérez, V., Rojas, A., Cruz, M., Moreno, L., Crespo, S., & Pérez, W. (2010). Laboratorio de fisiología y bioquímica vegetal. Departamento de biología. Universidad Nacional de Colombia.spa
dc.relation.referencesMendoza-Labrador, J., Romero-Perdomo, F., Abril, J., Hernández, J.-P., Uribe-Vélez, D., & Buitrago, R. B. (2021). Bacillus strains immobilized in alginate macrobeads enhance drought stress adaptation of Guinea grass. Rhizosphere, 19, 100385. https://doi.org/10.1016/j.rhisph.2021.100385spa
dc.relation.referencesMichel, B. E., & Kaufmann, M. R. (1973). The Osmotic Potential of Polyethylene Glycol 6000. Plant Physiology, 51(5), 914–916. https://doi.org/10.1104/pp.51.5.914spa
dc.relation.referencesMiller, G., Suzuki, N., Ciftci-Yilmaz, S., & Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell and Environment, 33(4), 453–467. https://doi.org/10.1111/J.1365-3040.2009.02041.Xspa
dc.relation.referencesMinAmbiente, M. de A. y D. S. (2015). PLAN INTEGRAL DE GESTIÓN DEL CAMBIO CLIMÁTICO TERRITORIAL DEL DEPARTAMENTO DEL CESAR. https://www.minambiente.gov.co/images/cambioclimatico/pdf/aproximacion__al_territorio/Cesar_pag_ind.pdfspa
dc.relation.referencesMishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391, 202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012spa
dc.relation.referencesMorcillo, R. J. L., & Manzanera, M. (2021). The Effects of Plant-Associated Bacterial Exopolysaccharides on Plant Abiotic Stress Tolerance. 11, 1–19. https://doi.org/10.3390/metabo11060337spa
dc.relation.referencesMoreno-Galván, A., Cortés-Patiño, S., Romero-Perdomo, F., Uribe-Vélez, D., Bashan, Y., & Bonilla, R. (2020). Proline accumulation and glutathione reductase activity induced by drought-tolerant rhizobacteria as potential mechanisms to alleviate drought stress in Guinea grass. Applied Soil Ecology, 147(September), 103367. https://doi.org/10.1016/j.apsoil.2019.103367spa
dc.relation.referencesMoreno-Galván, A., Romero-Perdomo, F. A., Estrada-Bonilla, G., Meneses, C. H. S. G., & Bonilla, R. R. (2020). Dry-Caribbean Bacillus spp. Strains Ameliorate Drought Stress in Maize by a Strain-Specific Antioxidant Response Modulation. Microorganisms 2020, Vol. 8, Page 823, 8(6), 823. https://doi.org/10.3390/MICROORGANISMS8060823spa
dc.relation.referencesMoreno, L. P. (2009). Respuesta de las plantas al estrés por déficit hídrico. Una revisión. Agronomia Colombiana, 27(2), 179–191.spa
dc.relation.referencesMurshed, R., Lopez-Lauri, F., & Sallanon, H. (2008). Microplate quantification of enzymes of the plant ascorbate-glutathione cycle. Analytical Biochemistry, 383(2), 320–322. https://doi.org/10.1016/j.ab.2008.07.020spa
dc.relation.referencesMusimwa, T. R., Molnar, T. L., Dutta, S., Dhliwayo, T., Trachsel, S., & Lee, M. (2023). Phenotypic assessment of genetic gain from selection for improved drought tolerance in semi-tropical maize populations. Journal of Agronomy and Crop Science, 209(1), 71–82. https://doi.org/10.1111/JAC.12592spa
dc.relation.referencesNadeem, S. M., Ahmad, M., Tufail, M. A., Asghar, H. N., Nazli, F., & Zahir, Z. A. (2021). Appraising the potential of EPS-producing rhizobacteria with ACC-deaminase activity to improve growth and physiology of maize under drought stress. Physiologia Plantarum, 172(2), 463–476. https://doi.org/10.1111/PPL.13212spa
dc.relation.referencesNakano, Y., & Asada, K. (1981). Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts. Plant and Cell Physiology, 22(5), 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232spa
dc.relation.referencesNaseem, H., Ahsan, M., Shahid, M. A., & Khan, N. (2018). Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. Journal of Basic Microbiology, 58(12), 1009–1022. https://doi.org/10.1002/jobm.201800309spa
dc.relation.referencesNaseem, H., & Bano, A. (2014). Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. Journal of Plant Interactions, 9(1), 689–701. https://doi.org/10.1080/17429145.2014.902125spa
dc.relation.referencesNautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170(1), 265–270. https://doi.org/10.1111/J.1574-6968.1999.TB13383.Xspa
dc.relation.referencesNaveed, M., Mitter, B., Reichenauer, T. G., Wieczorek, K., & Sessitsch, A. (2014). Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environmental and Experimental Botany, 97, 30–39. https://doi.org/10.1016/j.envexpbot.2013.09.014spa
dc.relation.referencesNaylor, D., & Coleman-Derr, D. (2018). Drought Stress and Root-Associated Bacterial Communities. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.02223spa
dc.relation.referencesNayyar, H., & Gupta, D. (2006). Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants. Environmental and Experimental Botany, 58(1–3), 106–113. https://doi.org/10.1016/j.envexpbot.2005.06.021spa
dc.relation.referencesNgumbi, E., & Kloepper, J. (2016). Bacterial-mediated drought tolerance: Current and future prospects. Applied Soil Ecology, 105, 109–125. https://doi.org/10.1016/j.apsoil.2016.04.009spa
dc.relation.referencesNieves-Cordones, M., García-Sánchez, F., Pérez-Pérez, J. G., Colmenero-Flores, J. M., Rubio, F., & Rosales, M. A. (2019). Coping With Water Shortage: An Update on the Role of K+, Cl-, and Water Membrane Transport Mechanisms on Drought Resistance. Frontiers in Plant Science, 10, 1619. https://doi.org/10.3389/FPLS.2019.01619/BIBTEXspa
dc.relation.referencesNio, S. A., Cawthray, G. R., Wade, L. J., & Colmer, T. D. (2011). Pattern of solutes accumulated during leaf osmotic adjustment as related to duration of water deficit for wheat at the reproductive stage. Plant Physiology and Biochemistry, 49(10), 1126–1137. https://doi.org/10.1016/j.plaphy.2011.05.011spa
dc.relation.referencesNiu, X., Song, L., Xiao, Y., & Ge, W. (2018). Drought-Tolerant Plant Growth-Promoting Rhizobacteria Associated with Foxtail Millet in a Semi-arid Agroecosystem and Their Potential in Alleviating Drought Stress. Frontiers in Microbiology, 8(JAN), 2580. https://doi.org/10.3389/fmicb.2017.02580spa
dc.relation.referencesNoctor, G., & Foyer, C. H. (1998). ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1), 249–279. https://doi.org/10.1146/annurev.arplant.49.1.249spa
dc.relation.referencesNoctor, G., Mhamdi, A., & Foyer, C. H. (2016). Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. Plant, Cell & Environment, 39(5), 1140–1160. https://doi.org/10.1111/pce.12726spa
dc.relation.referencesNoctor, G., Mhandi, A., Chaouch, S., Han, Y., Neukermans, J., Marquez-Garcia, B., Queval, G., & Foyer, C. H. (2012). Glutathione in plants: an integrated overview. Plant, Cell & Environment, 35(2), 454–484. https://doi.org/10.1111/j.1365-3040.2011.02400.xspa
dc.relation.referencesNunan, N., Leloup, J., Ruamps, L. S., Pouteau, V., & Chenu, C. (2017). Effects of habitat constraints on soil microbial community function. Scientific Reports 2017 7:1, 7(1), 1–10. https://doi.org/10.1038/s41598-017-04485-zspa
dc.relation.referencesOgbaga, C. C., Stepien, P., & Johnson, G. N. (2014). Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought. Physiologia Plantarum, 152(2), 389–401. https://doi.org/10.1111/PPL.12196spa
dc.relation.referencesOrdoñez, Y. M., Fernandez, B. R., Lara, L. S., Rodriguez, A., Uribe-Vélez, D., & Sanders, I. R. (2016). Bacteria with Phosphate Solubilizing Capacity Alter Mycorrhizal Fungal Growth Both Inside and Outside the Root and in the Presence of Native Microbial Communities. PLOS ONE, 11(6), e0154438. https://doi.org/10.1371/journal.pone.0154438spa
dc.relation.referencesOsmolovskaya, N., Shumilina, J., Kim, A., Didio, A., Grishina, T., Bilova, T., Keltsieva, O. A., Zhukov, V., Tikhonovich, I., Tarakhovskaya, E., Frolov, A., & Wessjohann, L. A. (2018). Methodology of Drought Stress Research: Experimental Setup and Physiological Characterization. International Journal of Molecular Sciences 2018, Vol. 19, Page 4089, 19(12), 4089. https://doi.org/10.3390/IJMS19124089spa
dc.relation.referencesPaliwal, R. L., Granados, G., Lafitte, H. R., & Violic, A. D. (2001). EL MAÍZ EN LOS TRÓPICOS: Mejoramiento y producción. Food and Agriculture Organization of the United Nations (FAO). https://www.fao.org/3/x7650s/x7650s00.htm#tocspa
dc.relation.referencesPalmer, W. C. (1965). Meteorological Drought (W. B. U.S. Department of Commerce (ed.); Vol. 30). https://books.google.com.co/books?id=kyYZgnEk-L8C&lr=&hl=es&source=gbs_navlinks_sspa
dc.relation.referencesPandey, V., & Shukla, A. (2015). Acclimation and Tolerance Strategies of Rice under Drought Stress. Rice Science, 22(4), 147–161. https://doi.org/10.1016/J.RSCI.2015.04.001spa
dc.relation.referencesPatiño-Torres, C., & Sanclemente, O. (2014). Los Microorganismos solubilizadores de Fosforo (MSF): Una Alternativa Biotecnológica Para Una Agricultura Sostenible. Entramado, 10(2), 288–297. http://www.scielo.org.co/pdf/entra/v10n2/v10n2a18.pdfspa
dc.relation.referencesPedraza-Herrera, L. A., Bautista, J. P., Cruz-Ramírez, C. A., & Uribe-Vélez, D. (2021). IBUN2755 Bacillus strain controls seedling root and bacterial panicle blight caused by Burkholderia glumae. Biological Control, 153, 104494. https://doi.org/10.1016/j.biocontrol.2020.104494spa
dc.relation.referencesPenrose, D. M., & Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 118(1), 10–15. https://doi.org/10.1034/j.1399-3054.2003.00086.xspa
dc.relation.referencesPerea-Molina, P. A., Pedraza-Herrera, L. A., Beauregard, P. B., & Uribe-Vélez, D. (2022). A biocontrol Bacillus velezensis strain decreases pathogen Burkholderia glumae population and occupies a similar niche in rice plants. Biological Control, 176, 105067. https://doi.org/10.1016/j.biocontrol.2022.105067spa
dc.relation.referencesPereira, S. I. A., & Castro, P. M. L. (2014). Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils. Ecological Engineering, 73, 526–535. https://doi.org/10.1016/J.ECOLENG.2014.09.060spa
dc.relation.referencesPIDARET. (2019). PLAN INTEGRAL DE DESARROLLO AGROPECUARIO Y RURAL CON ENFOQUE TERRITORIAL TOMO II DEPARTAMENTO DEL CESAR. https://www.adr.gov.co/servicios/pidaret/CESAR TOMO II.pdfspa
dc.relation.referencesPiña, R. G., & Cervantes, C. (1996). Microbial interactions with aluminium. BioMetals, 9(3), 311–316. https://doi.org/10.1007/BF00817932/METRICSspa
dc.relation.referencesPrasanna, B. M., Cairns, J. E., Zaidi, P. H., Beyene, Y., Makumbi, D., Gowda, M., Magorokosho, C., Zaman-Allah, M., Olsen, M., Das, A., Worku, M., Gethi, J., Vivek, B. S., Nair, S. K., Rashid, Z., Vinayan, M. T., Issa, A. R. B., San Vicente, F., Dhliwayo, T., & Zhang, X. (2021). Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 134(6), 1729–1752. https://doi.org/10.1007/S00122-021-03773-7spa
dc.relation.referencesPraveen Kumar, G., Mir Hassan Ahmed, S. K., Desai, S., Leo Daniel Amalraj, E., & Rasul, A. (2014). In Vitro Screening for Abiotic Stress Tolerance in Potent Biocontrol and Plant Growth Promoting Strains of Pseudomonas and Bacillus spp. . International Journal of Bacteriology, 2014, 1–6. https://doi.org/10.1155/2014/195946spa
dc.relation.referencesQurashi, A. W., & Sabri, A. N. (2012). Biofilm formation in moderately halophilic bacteria is influenced by varying salinity levels. Journal of Basic Microbiology, 52(5), 566–572. https://doi.org/10.1002/JOBM.201100253spa
dc.relation.referencesRiva, V., Mapelli, F., Dragonetti, G., Elfahl, M., Vergani, L., Crepaldi, P., La Maddalena, N., & Borin, S. (2021). Bacterial Inoculants Mitigating Water Scarcity in Tomato: The Importance of Long-Term in vivo Experiments. Frontiers in Microbiology, 12, 1328. https://doi.org/10.3389/fmicb.2021.675552spa
dc.relation.referencesRolando, J. L., Ramírez, D. A., Yactayo, W., Monneveux, P., & Quiroz, R. (2015). Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.). Environmental and Experimental Botany, 110, 27–35. https://doi.org/10.1016/j.envexpbot.2014.09.006spa
dc.relation.referencesRolli, E., Marasco, R., Vigani, G., Ettoumi, B., Mapelli, F., Deangelis, M. L., Gandolfi, C., Casati, E., Previtali, F., Gerbino, R., Pierotti Cei, F., Borin, S., Sorlini, C., Zocchi, G., & Daffonchio, D. (2015). Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environmental Microbiology, 17(2), 316–331. https://doi.org/10.1111/1462-2920.12439spa
dc.relation.referencesRozo-Leguizamón, Y., Tofiño- Rivera, A. P., Gómez-Latorre, D. A., Gómez-Ramírez, L. F., & Tamayo-Molano, P. J. (2018). Modelo productivo del fríjol para el Caribe seco colombiano. In L. Gaona-García (Ed.), Modelo productivo para el cultivo de cacao (Theobroma cacao) para el departamento de Santander. Corporación Colombiana de Investigación Agropecuaria. http://editorial.agrosavia.co/index.php/publicaciones/catalog/download/29/20/361-1?inline=1spa
dc.relation.referencesSade, N., Galkin, E., & Moshelion, M. (2015). Measuring Arabidopsis, Tomato and Barley Leaf Relative Water Content (RWC). BIO-PROTOCOL, 5(8). https://doi.org/10.21769/bioprotoc.1451spa
dc.relation.referencesSaeid, A., Prochownik, E., & Dobrowolska-Iwanek, J. (2018). Phosphorus Solubilization by Bacillus Species. Molecules, 23(11). https://doi.org/10.3390/MOLECULES23112897spa
dc.relation.referencesSah, R. P., Chakraborty, M., Prasad, K., Pandit, M., Tudu, V. K., Chakravarty, M. K., Narayan, S. C., Rana, M., & Moharana, D. (2020). Impact of water deficit stress in maize: Phenology and yield components. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-59689-7spa
dc.relation.referencesSaikia, J., Sarma, R. K., Dhandia, R., Yadav, A., Bharali, R., Gupta, V. K., & Saikia, R. (2018). Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Scientific Reports, 8(1), 3560. https://doi.org/10.1038/s41598-018-21921-wspa
dc.relation.referencesSaleem, M., Nawaz, F., Hussain, M. B., & Ikram, R. M. (2021). Comparative Effects of Individual and Consortia Plant Growth Promoting Bacteria on Physiological and Enzymatic Mechanisms to Confer Drought Tolerance in Maize (Zea mays L.). Journal of Soil Science and Plant Nutrition, 21(4), 3461–3476. https://doi.org/10.1007/S42729-021-00620-Y/TABLES/3spa
dc.relation.referencesSamarah, N., & Alqudah, A. (2009). Effects of late-terminal drought stress on seed germination and vigor of barley (Hordeum vulgare L.). Archives of Agronomy and Soil Science, 57(1), 27–32. https://doi.org/10.1080/03650340903191663spa
dc.relation.referencesSamarah, N. (2005). Effects of drought stress on growth and yield of barley. Agronomy for Sustainable Development, 25(1), 145–149. https://doi.org/10.1051/AGRO:2004064spa
dc.relation.referencesSánchez-Rodríguez, E., del Mar Rubio-Wilhelmi, M., Cervilla, L. M., Blasco, B., Rios, J. J., Leyva, R., Romero, L., & Ruiz, J. M. (2010). Study of the ionome and uptake fluxes in cherry tomato plants under moderate water stress conditions. Plant and Soil, 335(1), 339–347. https://doi.org/10.1007/S11104-010-0422-2/METRICSspa
dc.relation.referencesSandhya, V., & Ali, S. Z. (2015). The production of exopolysaccharide by Pseudomonas putida GAP-P45 under various abiotic stress conditions and its role in soil aggregation. Microbiology (Russian Federation), 84(4), 512–519. https://doi.org/10.1134/S0026261715040153/METRICSspa
dc.relation.referencesSandhya, V., Ali, S. Z., Grover, M., Reddy, G., & Venkateswarlu, B. (2010). Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulation 2010 62:1, 62(1), 21–30. https://doi.org/10.1007/S10725-010-9479-4spa
dc.relation.referencesSandhya, V., Shrivastava, M., Ali, S. Z., & Sai Shiva Krishna Prasad, V. (2017). Endophytes from maize with plant growth promotion and biocontrol activity under drought stress. Russian Agricultural Sciences, 43(1), 22–34. https://doi.org/10.3103/s1068367417010165spa
dc.relation.referencesSandhya, V., Z., A. S., Grover, M., Reddy, G., & Venkateswarlu, B. (2009). Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biology and Fertility of Soils, 46(1), 17–26. https://doi.org/10.1007/S00374-009-0401-Zspa
dc.relation.referencesSati, D., Pande, V., Pandey, S. C., & Samant, M. (2022). Recent Advances in PGPR and Molecular Mechanisms Involved in Drought Stress Resistance. Journal of Soil Science and Plant Nutrition 2021 23:1, 23(1), 106–124. https://doi.org/10.1007/S42729-021-00724-5spa
dc.relation.referencesScarpellini, M., Franzetti, L., & Galli, A. (2004). Development of PCR assay to identify Pseudomonas fluorescens and its biotype. FEMS Microbiology Letters, 236(2), 257–260. https://doi.org/10.1111/J.1574-6968.2004.TB09655.Xspa
dc.relation.referencesScharwies, J. D., & Dinneny, J. R. (2019). Water transport, perception, and response in plants. Journal of Plant Research 2019 132:3, 132(3), 311–324. https://doi.org/10.1007/S10265-019-01089-8spa
dc.relation.referencesSecretaría Distrital de Ambiente. (2021a). Informe Mensual de Calidad del Aire de Bogotá - Junio 2021 (Issue 00716). http://rmcab.ambientebogota.gov.co/Pagesfiles/Informe mensual Junio 2021.pdfspa
dc.relation.referencesSecretaría Distrital de Ambiente. (2021b). Informe Mensual de Calidad del Aire de Bogotá - Noviembre 2021. http://rmcab.ambientebogota.gov.co/Pagesfiles/Informe mensual Noviembre 2021 vf.pdfspa
dc.relation.referencesSelvakumar, G., Bindu, G. H., Panneerselvam, P., & Ganeshamurthy, A. N. (2017). Potential and prospects of aerobic endospore-forming bacteria (AEFB) in crop production. In Bacilli and Agrobiotechnology (pp. 213–236). Springer International Publishing. https://doi.org/10.1007/978-3-319-44409-3_10spa
dc.relation.referencesSharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 2012, 1–26. https://doi.org/10.1155/2012/217037spa
dc.relation.referencesShi, J., Gao, H., Wang, H., Lafitte, H. R., Archibald, R. L., Yang, M., Hakimi, S. M., Mo, H., & Habben, J. E. (2017). ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 15(2), 207–216. https://doi.org/10.1111/pbi.12603spa
dc.relation.referencesShiferaw, B., Prasanna, B. M., Hellin, J., & Bänziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3(3), 307–327. https://doi.org/10.1007/S12571-011-0140-5/TABLES/3spa
dc.relation.referencesShirinbayan, S., Khosravi, H., & Malakouti, M. J. (2019). Alleviation of drought stress in maize (Zea mays) by inoculation with Azotobacter strains isolated from semi-arid regions. Applied Soil Ecology, 133, 138–145. https://doi.org/10.1016/j.apsoil.2018.09.015spa
dc.relation.referencesShulse, C. N., Chovatia, M., Agosto, C., Yoshikuni, G. Y., Hamilton, M., Deutsch, S., Yoshikuni, Y., & Blow, M. J. (2019). Engineered root bacteria release plant-available phosphate from phytate. Applied and Environmental Microbiology, 85(18). https://doi.org/10.1128/AEM.01210-19spa
dc.relation.referencesSingh, D. P., Singh, V., Gupta, V. K., Shukla, R., Prabha, R., Sarma, B. K., & Patel, J. S. (2020). Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Scientific Reports, 10(1), 4818. https://doi.org/10.1038/s41598-020-61140-wspa
dc.relation.referencesSingh, H. B., Vaishnav, A., & Sayyed, R. Z. (2021). Antioxidants in Plant-Microbe Interaction. In Harikesh Bahadur Singh, A. Vaishnav, & R. Z. Sayyed (Eds.), Antioxidants in Plant-Microbe Interaction. Springer Singapore. https://doi.org/10.1007/978-981-16-1350-0spa
dc.relation.referencesSmirnoff, N. (2005). Antioxidants and Reactive Oxygen Species in Plants. In Nicholas Smirnoff (Ed.), Antioxidants and Reactive Oxygen Species in Plants. Blackwell Publishing Ltd. https://doi.org/10.1002/9780470988565spa
dc.relation.referencesSmith, I. K., Vierheller, T. L., & Thorne, C. A. (1988). Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis(2-nitrobenzoic acid). Analytical Biochemistry, 175(2), 408–413. https://doi.org/10.1016/0003-2697(88)90564-7spa
dc.relation.referencesSmith, R. H., Bhaskaran, S., & Miller, F. R. (1985). Screening for drought tolerance in Sorghum using cell culture. In Vitro Cellular Amp; Developmental Biology 1985 21:10, 21(10), 541–545. https://doi.org/10.1007/BF02620883spa
dc.relation.referencesSpaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 31(4), 425–448. https://doi.org/10.1111/j.1574-6976.2007.00072.xspa
dc.relation.referencesSuárez, J. C., Anzola, J. A., Contreras, A. T., Salas, D. L., Vanegas, J. I., Urban, M. O., Beebe, S. E., & Rao, I. M. (2022). Photosynthetic and grain yield responses to intercropping of two common bean lines with maize under two types of fertilizer applications in the colombian amazon region. Scientia Horticulturae, 301, 111108. https://doi.org/10.1016/j.scienta.2022.111108spa
dc.relation.referencesSun, C., Gao, X., Chen, X., Fu, J., & Zhang, Y. (2016). Metabolic and growth responses of maize to successive drought and re-watering cycles. Agricultural Water Management, 172, 62–73. https://doi.org/10.1016/j.agwat.2016.04.016spa
dc.relation.referencesTaiz, L., & Zeiger, E. (2003). Plant physiology. In Annals of Botany (3 edition, Vol. 91, Issue 6). https://doi.org/10.1093/aob/mcg079spa
dc.relation.referencesTakahashi, F., Kuromori, T., Urano, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2020). Drought Stress Responses and Resistance in Plants: From Cellular Responses to Long-Distance Intercellular Communication. Frontiers in Plant Science, 11, 1407. https://doi.org/10.3389/fpls.2020.556972spa
dc.relation.referencesTanumihardjo, S. A., McCulley, L., Roh, R., Lopez-Ridaura, S., Palacios-Rojas, N., & Gunaratna, N. S. (2020). Maize agro-food systems to ensure food and nutrition security in reference to the Sustainable Development Goals. Global Food Security, 25, 100327. https://doi.org/10.1016/J.GFS.2019.100327spa
dc.relation.referencesTiwari, G., Duraivadivel, P., Sharma, S., & Hariprasad, P. (2018). 1-Aminocyclopropane-1-carboxylic acid deaminase producing beneficial rhizobacteria ameliorate the biomass characters of Panicum maximum Jacq. by mitigating drought and salt stress. Scientific Reports 2018 8:1, 8(1), 1–12. https://doi.org/10.1038/s41598-018-35565-3spa
dc.relation.referencesTiwari, S., Lata, C., Chauhan, P. S., & Nautiyal, C. S. (2016). Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiology and Biochemistry, 99, 108–117. https://doi.org/10.1016/j.plaphy.2015.11.001spa
dc.relation.referencesTiwari, S., Prasad, V., Chauhan, P. S., & Lata, C. (2017). Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Frontiers in Plant Science, 8, 283109. https://doi.org/10.3389/FPLS.2017.01510/BIBTEXspa
dc.relation.referencesUllah, A., Sun, H., Yang, X., & Zhang, X. (2017). Drought coping strategies in cotton: increased crop per drop. Plant Biotechnology Journal, 15(3), 271–284. https://doi.org/10.1111/pbi.12688spa
dc.relation.referencesUN, U. N. D. of E. and S. A. (2019). World Population Prospects 2019 Highlights. https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdfspa
dc.relation.referencesVaishnav, A., & Choudhary, D. K. (2019). Regulation of Drought-Responsive Gene Expression in Glycine max L. Merrill is Mediated Through Pseudomonas simiae Strain AU. Journal of Plant Growth Regulation, 38(1), 333–342. https://doi.org/10.1007/s00344-018-9846-3spa
dc.relation.referencesVardharajula, S., Zulfikar, S., Grover, M., Reddy, G., & Bandi, V. (2011). Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact, 6(1), 1–14.spa
dc.relation.referencesVelázquez-Márquez, S., Conde-Martínez, V., Trejo, C., Delgado-Alvarado, A., Carballo, A., Suárez, R., Mascorro, J. O., & Trujillo, A. R. (2015). Effects of water deficit on radicle apex elongation and solute accumulation in Zea mays L. Plant Physiology and Biochemistry, 96, 29–37. https://doi.org/10.1016/j.plaphy.2015.07.006spa
dc.relation.referencesVieira, V. L., Araújo, P., Gomes, G., Fracetto, M., Marcos, A., Silva, M., Prudencio, A., Pereira, A., Gomes Freitas, C. C., Martins, F., Barros, R., Santana, C., Feiler, H. P., Pereira Matteoli, F., Cury Fracetto, F. J., Bran, E. J., & Cardoso, N. (2023). Potential of growth-promoting bacteria in maize (Zea mays L.) varies according to soil moisture. Microbiological Research, 271, 127352. https://doi.org/10.1016/j.micres.2023.127352spa
dc.relation.referencesVieira, V. L., Lira, M. A., Severino de Souza, V., Coelho de Araújo, J., Cury, F., Dini, F., Arthur, P. de A., Mendes, J., do Rêgo, F., & Monteiro, G. (2020). Bacteria from tropical semiarid temporary ponds promote maize growth under hydric stress. Microbiological Research, 240, 126564. https://doi.org/10.1016/j.micres.2020.126564spa
dc.relation.referencesVílchez, J. I., García-Fontana, C., Román-Naranjo, D., González-López, J., & Manzanera, M. (2016). Plant drought tolerance enhancement by trehalose production of desiccation-tolerant microorganisms. Frontiers in Microbiology, 7(SEP), 1577. https://doi.org/10.3389/FMICB.2016.01577/BIBTEXspa
dc.relation.referencesVinocur, B., & Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. In Current Opinion in Biotechnology (Vol. 16, Issue 2, pp. 123–132). Elsevier Ltd. https://doi.org/10.1016/j.copbio.2005.02.001spa
dc.relation.referencesVishnupradeep, R., Bruno, L. B., Taj, Z., Karthik, C., Challabathula, D., Tripti, Kumar, A., Freitas, H., & Rajkumar, M. (2022). Plant growth promoting bacteria improve growth and phytostabilization potential of Zea mays under chromium and drought stress by altering photosynthetic and antioxidant responses. Environmental Technology & Innovation, 25, 102154. https://doi.org/10.1016/J.ETI.2021.102154spa
dc.relation.referencesVurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., & SkZ, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13–24. https://doi.org/10.1016/j.micres.2015.12.003spa
dc.relation.referencesWahid, A., Gelani, S., Ashraf, M., & Foolad, M. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011spa
dc.relation.referencesWang, C. J., Yang, W., Wang, C., Gu, C., Niu, D. D., Liu, H. X., Wang, Y. P., & Guo, J. H. (2012). Induction of Drought Tolerance in Cucumber Plants by a Consortium of Three Plant Growth-Promoting Rhizobacterium Strains. PLoS ONE, 7(12), 1–10. https://doi.org/10.1371/journal.pone.0052565spa
dc.relation.referencesWasaya, A., Manzoor, S., Yasir, T. A., Sarwar, N., Mubeen, K., Ismail, I. A., Raza, A., Rehman, A., Hossain, A., & Sabagh, A. E. L. (2021). Evaluation of Fourteen Bread Wheat (Triticum aestivum L.) Genotypes by Observing Gas Exchange Parameters, Relative Water and Chlorophyll Content, and Yield Attributes under Drought Stress. Sustainability 2021, Vol. 13, Page 4799, 13(9), 4799. https://doi.org/10.3390/SU13094799spa
dc.relation.referencesWellburn, A. R. (1994). The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. Journal of Plant Physiology, 144(3), 307–313. https://doi.org/10.1016/S0176-1617(11)81192-2spa
dc.relation.referencesWilhite, D. A., Glantz, M. H., & And Glantz, M. H. (1985). Understanding the Drought Phenomenon:The Role of Definitions. http://digitalcommons.unl.edu/droughtfacpubhttp://digitalcommons.unl.edu/droughtfacpub/20spa
dc.relation.referencesWilley, J. M., Sherwood, L. M., & Woolverton, C. J. (2008). Prescott,Harley, and Klein’s Microbiology (7th ed.). Colin Wheatley/Janice Roerig-Blong.spa
dc.relation.referencesXiao, B., Chen, X., Xiang, C., Tang, N., & Zhang, Q. (2009). Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant, 2.spa
dc.relation.referencesXin, L., Zheng, H., Yang, Z., Guo, J., Liu, T., Sun, L., Xiao, Y., Yang, J., Yang, Q., & Guo, L. (2018). Physiological and proteomic analysis of maize seedling response to water deficiency stress. Journal of Plant Physiology, 228, 29–38. https://doi.org/10.1016/j.jplph.2018.05.005spa
dc.relation.referencesYan, M. (2015). Seed priming stimulate germination and early seedling growth of Chinese cabbage under drought stress. South African Journal of Botany, 99, 88–92. https://doi.org/10.1016/J.SAJB.2015.03.195spa
dc.relation.referencesYarzábal, L. A. (2010). Agricultural Development in Tropical Acidic Soils: Potential and Limits of Phosphate-Solubilizing Bacteria. 209–233. https://doi.org/10.1007/978-3-642-05076-3_10spa
dc.relation.referencesYevjevich, V. (1967). AN OBJECTI VE APPROACH TO DEFINITIONS AND INVESTIGATIONS OF CONTINENTAL HYDROLOG IC DROUGHT S AN OBJECTIVE APPROACH TO DEFINITIONS AND INVESTIGATIONS OF CONTINENTAL HYDROLOGIC DROUGHTS.spa
dc.relation.referencesYou, J., & Chan, Z. (2015). Ros regulation during abiotic stress responses in crop plants. Frontiers in Plant Science, 6(DEC), 1–15. https://doi.org/10.3389/fpls.2015.01092spa
dc.relation.referencesZaman-Allah, M., Zaidi, P. H., Trachsel, S., Cairns, J. E., Vinayan, M. T., & Seetharam, K. (2016). PHENOTYPING FOR ABIOTIC STRESS TOLERANCE IN MAIZE: DROUGHT STRESS. CIMMYT. https://repository.cimmyt.org/handle/10883/17716?show=fullspa
dc.relation.referencesZambrano-Moreno, D. C., Avellaneda-Franco, L., Zambrano, G., & Bonilla-Buitrago, R. R. (2016). Scientometric analysis of Colombian research on bio-inoculants for agricultural production. Universitas Scientiarum, 21(1), 63–81. https://doi.org/10.11144/JAVERIANA.SC21-1.SAOCspa
dc.relation.referencesZarei, T. (2022). Balancing water deficit stress with plant growth-promoting rhizobacteria: A case study in maize. Rhizosphere, 24, 100621. https://doi.org/10.1016/j.rhisph.2022.100621spa
dc.relation.referencesZarei, T., Moradi, A., Kazemeini, S. A., Akhgar, A., & Rahi, A. A. (2020). The role of ACC deaminase producing bacteria in improving sweet corn (Zea mays L. var saccharata) productivity under limited availability of irrigation water. Scientific Reports 2020 10:1, 10(1), 1–12. https://doi.org/10.1038/S41598-020-77305-6spa
dc.relation.referencesZeiger, E., & Taiz, L. (2007). Fisiología vegetal. Volumen 2. Universitat Jaume I.spa
dc.relation.referencesZhang, N., Yang, D., Wang, D., Miao, Y., Shao, J., Zhou, X., Xu, Z., Li, Q., Feng, H., Li, S., Shen, Q., & Zhang, R. (2015). Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates. BMC Genomics, 16(1), 685. https://doi.org/10.1186/s12864-015-1825-5spa
dc.relation.referencesZhang, Q., Acuña, J. J., Inostroza, N. G., Mora, M. L., Radic, S., Sadowsky, M. J., & Jorquera, M. A. (2019). Endophytic Bacterial Communities Associated with Roots and Leaves of Plants Growing in Chilean Extreme Environments. Scientific Reports 2019 9:1, 9(1), 1–12. https://doi.org/10.1038/S41598-019-41160-Xspa
dc.relation.referencesZhao, T., Deng, X., Xiao, Q., Han, Y., Zhu, S., & Chen, J. (2020). IAA priming improves the germination and seedling growth in cotton (Gossypium hirsutum L.) via regulating the endogenous phytohormones and enhancing the sucrose metabolism. Industrial Crops and Products, 155, 112788. https://doi.org/10.1016/j.indcrop.2020.112788spa
dc.relation.referencesZhao, X., Jiang, Y., Liu, Q., Yang, H., Wang, Z., & Zhang, M. (2020). Effects of Drought-Tolerant Ea-DREB2B Transgenic Sugarcane on Bacterial Communities in Soil. Frontiers in Microbiology, 11, 704. https://doi.org/10.3389/fmicb.2020.00704spa
dc.relation.referencesZia, A., Walker, B. J., Oung, H. M. O., Charuvi, D., Jahns, P., Cousins, A. B., Farrant, J. M., Reich, Z., & Kirchhoff, H. (2016). Protection of the photosynthetic apparatus against dehydration stress in the resurrection plant Craterostigma pumilum. The Plant Journal, 87(6), 664–680. https://doi.org/10.1111/tpj.13227spa
dc.relation.referencesSaravanakumar, D., Kavino, M., Raguchander, T., Subbian, P., & Samiyappan, R. (2011). Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiologiae Plantarum, 33(1), 203–209. https://doi.org/10.1007/s11738-010-0539-1spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocEstrés de sequiaspa
dc.subject.agrovocdrought stresseng
dc.subject.agrovocZea maysspa
dc.subject.agrovocZea mayseng
dc.subject.agrovocBiotecnologíaspa
dc.subject.agrovocbiotechnologyeng
dc.subject.ddc570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantasspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.proposalSequíaspa
dc.subject.proposalPolietilenglicolspa
dc.subject.proposalAjuste osmóticospa
dc.subject.proposalZea maysother
dc.subject.proposalAntioxidantesspa
dc.subject.proposalCaribe secospa
dc.subject.proposalDroughteng
dc.subject.proposalPolyethylene glycoleng
dc.subject.proposalAntioxidantseng
dc.subject.proposalOsmotic adjustmenteng
dc.subject.proposalDry caribbeaneng
dc.titleMitigación del estrés por déficit hídrico en maíz forrajero mediante el uso de PGPBspa
dc.title.translatedMitigating water deficit stress in forage maize through the use of PGPBeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1144051124.2023.pdf
Tamaño:
4.11 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: