Avances en el establecimiento de una plataforma para la producción del factor de crecimiento epidérmico humano recombinante (rhEGF) utilizando cultivos in vitro de papa

dc.contributor.advisorArango Isaza, Rafael Eduardo
dc.contributor.advisorTorres Bonilla, Javier Mauricio
dc.contributor.authorNova López, Carlos Julio
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001583298spa
dc.contributor.orcid0000-0003-3128-4539spa
dc.contributor.researchgroupBiotecnología Vegetal UNALMED-CIBspa
dc.date.accessioned2024-01-25T15:53:34Z
dc.date.available2024-01-25T15:53:34Z
dc.date.issued2023-05-02
dc.descriptionIlustracionesspa
dc.description.abstractLas proteínas recombinantes terapéuticas constituyen la base para el tratamiento de muchas de las enfermedades complejas que aquejan a la humanidad, por lo que se han posicionado como el sector de mayor crecimiento dentro de la industria farmacéutica. Tradicionalmente los cultivos bacterianos, de levaduras y de células de mamífero se han utilizado como plataformas de producción de estos medicamentos, pero en los últimos años los cultivos de plantas y de células vegetales han emergido como una nueva alternativa de expresión, con incluso casos de medicamentos que han alcanzado fases avanzadas de desarrollo o de mercado. El objetivo de este trabajo fue avanzar en el proceso de desarrollo de una plataforma basada en el uso de cultivos in vitro de papa (Solanum tuberosum subsp. andígena var. pastusa suprema) que permita en un futuro la producción heteróloga del factor de crecimiento epidérmico humano (hEGF), una proteína con importantes aplicaciones terapéuticas y cosméticas. Para esto, se presentan aportes en aspectos relacionados con: i) el establecimiento de cultivos de plantas de papa no transformadas, ii) el diseño in silico y la síntesis de casetes genéticos para la expresión del hEGF, iii) la obtención de cepas de Agrobacterium tumefaciens transformadas con los vectores de expresión y iv) la ejecución de ensayos preliminares de transformación genética para la obtención de líneas de plantas transformadas con el gen hEGF. De manera particular, se propone la inducción de la brotación de tubérculos de papa con el uso de GA3 y la incubación de las semillas a 26 0C bajo fotoperiodo natural como estrategia para la obtención del material de partida requerido para el desarrollo de los cultivos no transformados. No se encontraron diferencias significativas en los porcentajes de desinfección de los brotes cuando se usaron hipoclorito de sodio o bicloruro de mercurio como agentes de desinfección, aunque el porcentaje de supervivencia de los explantes se vio favorecido con el uso de hipoclorito. Se diseñaron dos casetes de expresión que, además de contener la secuencia hEGF con el uso codónico optimizado para la expresión en papa, incluyen también secuencias promotoras (CaMV 35S 2x), terminadoras (Pin II) y otros elementos regulatorios (secuencia 5’ UTR, secuencia de señalización, secuencia de retención, colas Hisx6 y sitios de unión a la matriz extracelular) seleccionados estratégicamente con el fin de garantizar elevados niveles de expresión, producción y purificación de la proteína. Los casetes se clonaron en el vector pCAMBIA 2300 y se introdujeron, previa confirmación por secuenciación, en cepas de Agrobacterium tumfaciens EHA 105 y LBA4400, lo que permitió la obtención de colonias transformantes que se confirmaron por PCR y que fueron empleadas en ensayos preliminares de infección de hojas y entrenudos con el fin de evaluar la formación de callo y la eventual regeneración de plantas transformadas. Aunque el porcentaje de formación de callo en los explantes de hoja sometidos a infección fue bajo y aunque se observó una pobre capacidad regenerativa en dos tipos de explante utilizados, los avances obtenidos sirven de insumo para el desarrollo de investigaciones futuras que tengan por objetivo principal el desarrollo de cultivos transgénicos de papa y la evaluación de la producción del rhEGF en esta plataforma vegetal. (texto tomado de la fuente)spa
dc.description.abstractTherapeutic recombinant proteins are the basis for the treatment of many complex diseases that afflict humanity, making them the fastest-growing sector in the pharmaceutical industry. Bacterial, yeast, and mammalian cell cultures have traditionally been used as production platforms for these medicines, but in recent years, plant and plant cell cultures have emerged as a new expression alternative, with even cases of drugs that have reached advanced stages of development or market. The objective of this work was to advance the development process of a platform based on the use of in vitro potato cultures (Solanum tuberosum subsp. andígena var. pastusa suprema) that will allow for future heterologous production of human epidermal growth factor (hEGF), a protein with important therapeutic and cosmetic applications. Contributions are presented in aspects related to: i) the establishment of non-transformed potato plant cultures, ii) in silico design and genetic cassette synthesis for hEGF expression, iii) the generation of transformed Agrobacterium tumefaciens strains with expression vectors, and iv) preliminary genetic transformation assays to obtain transformed plant lines with the hEGF gene. Particularly, the induction of potato tuber sprouting using GA3 and seed incubation at 26 0C under natural photoperiod is proposed as a strategy to obtain the required starting material for non-transformed culture development. There were no significant differences in disinfection percentages of the shoots when sodium hypochlorite or mercuric bichloride were used as disinfection agents, although the explants' survival rate was favored with the use of hypochlorite. Two expression cassettes were designed that, in addition to containing the hEGF sequence with optimized codon usage for expression in potato, also include promoter (CaMV 35S 2x), terminator (Pin II), and other regulatory elements (5’ UTR sequence, signaling sequence, retention sequence, Hisx6 tails, and extracellular matrix binding sites) strategically selected to guarantee high expression levels, production, and purification of the protein. The cassettes were cloned into the pCAMBIA 2300 vector and introduced, after confirmation by sequencing, into Agrobacterium tumfaciens EHA 105 and LBA4400 strains, allowing the obtaining of transforming colonies confirmed by PCR and used in preliminary infection assays of leaves and internodes to evaluate callus formation and eventual regeneration of transformed plants. Although the percentage of callus formation in infected leaf explants was low, and poor regenerative capacity was observed in two types of explants used, the advances obtained serve as input for future research aimed at developing transgenic potato cultures and evaluating rhEGF production on this plant platformeng
dc.description.curricularareaÁrea Curricular en Producción Agraria Sosteniblespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.format.extent121 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85444
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbrahamian, P., Hammond, R. W., & Hammond, J. (2020). Plant Virus–Derived Vectors: Applications in Agricultural and Medical Biotechnology. Annual Review of Virology, 7(1), 513-535. https://doi.org/10.1146/annurev-virology-010720-054958spa
dc.relation.referencesAgrenvec. (2023). Agrenvec. https://www.agrenvec.es/producto/recombinant-human-egf/spa
dc.relation.referencesAlewood, D., Nielsen, K., Alewood, P. F., Craik, D. J., Andrews, P., Nerrie, M., White, S., Domagala, T., Walker, F., Rothacker, J., Burgess, A. W., & Nice, E. C. (2005). The role of disulfide bonds in the structure and function of murine epidermal growth factor (mEGF). Growth Factors, 23(2), 97-110. https://doi.org/10.1080/08977190500096061spa
dc.relation.referencesAllen, G. C., Spiker, S., & Thompson, W. F. (2000). Use of matrix attachment regions (MARs) to minimize transgene silencing. Plant Molecular Biology, 43(2), 361-376. https://doi.org/10.1023/A:1006424621037spa
dc.relation.referencesAlqazlan, N., Diao, H., Jevnikar, A. M., & Ma, S. (2019). Production of functional human interleukin 37 using plants. Plant Cell Reports, 38(3), 391-401. https://doi.org/10.1007/s00299-019-02377-2spa
dc.relation.referencesArya, A., & Kumar, A. (2018). Agrobacterium Pathology and Ti Plasmid based Vector Design. https://doi.org/10.13140/RG.2.2.18345.49769/1spa
dc.relation.referencesAvesani, L., Merlin, M., Gecchele, E., Capaldi, S., Brozzetti, A., Falorni, A., & Pezzotti, M. (2014). Comparative analysis of different biofactories for the production of a major diabetes autoantigen. Transgenic Research, 23(2), 281-291. https://doi.org/10.1007/s11248-013- 9749-9spa
dc.relation.referencesBai, J.-Y., Zeng, L., Hu, Y.-L., Li, Y.-F., Lin, Z.-P., Shang, S.-C., & Shi, Y.-S. (2007). Expression and characteristic of synthetic human epidermal growth factor (hEGF) in transgenic tobacco plants. Biotechnology Letters, 29(12), 2007-2012. https://doi.org/10.1007/s10529-007-9438-yspa
dc.relation.referencesBakhsh, A. (2020). Development of Efficient, Reproducible and Stable Agrobacterium- Mediated Genetic Transformation of Five Potato Cultivars. Food Technology and Biotechnology, 58(1), 57. https://doi.org/10.17113/ftb.58.01.20.6187spa
dc.relation.referencesBanerjee, A. K., Prat, S., & Hannapel, D. J. (2006). Efficient production of transgenic potato (S. tuberosum L. ssp. Andigena) plants via Agrobacterium tumefaciens-mediated transformation. Plant Science, 170(4), 732-738. https://doi.org/10.1016/j.plantsci.2005.11.007spa
dc.relation.referencesBennett, L. D., Yang, Q., Berquist, B. R., Giddens, J. P., Ren, Z., Kommineni, V., Murray, R. P., White, E. L., Holtz, B. R., Wang, L.-X., & Marcel, S. (2018). Implementation of Glycan Remodeling to Plant-Made Therapeutic Antibodies. International Journal of Molecular Sciences, 19(2), 421. https://doi.org/10.3390/ijms19020421spa
dc.relation.referencesBerlanga-Acosta, J., Gavilondo-Cowley, J., López-Saura, P., González-López, T., Castro- Santana, M. D., López-Mola, E., Guillén-Nieto, G., & Herrera-Martinez, L. (2009). Epidermal growth factor in clinical practice – a review of its biological actions, clinical indications and safety implications. International Wound Journal, 6(5), 331-346. https://doi.org/10.1111/j.1742-481X.2009.00622.xspa
dc.relation.referencesBioeffect. (2019). BIOEFFECT. https://www.thebioeffect.ca/our-egfspa
dc.relation.referencesBiswas, G., Abdullah-Al-Shoeb, M., Miah, M., & Laboney, U. (2013). Callus induction and regeneration of potato from shoot tip culture. International Journal of Agricultural Sciences ISSN: 2167-0447, 03, 040-045.spa
dc.relation.referencesBuyel, J. F. (2019). Plant Molecular Farming – Integration and Exploitation of Side Streams to Achieve Sustainable Biomanufacturing. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.01893spa
dc.relation.referencesBuyel, J. F., Twyman, R. M., & Fischer, R. (2017). Very-large-scale production of antibodies in plants: The biologization of manufacturing. Biotechnology Advances, 35(4), 458-465. https://doi.org/10.1016/j.biotechadv.2017.03.011spa
dc.relation.referencesCabal, A. B. S., & Wu, T.-Y. (2022). Recombinant Protein Technology in the Challenging Era of Coronaviruses. Processes, 10(5), Art. 5. https://doi.org/10.3390/pr10050946spa
dc.relation.referencesCarpenter, G., & Cohen, S. (1979). Epidermal Growth Factor. Annual Review of Biochemistry, 48(1), 193-216. https://doi.org/10.1146/annurev.bi.48.070179.001205spa
dc.relation.referencesCarter, J. E., Odumosu, O., & Langridge, W. H. R. (2010). Expression of a Ricin Toxin B Subunit: Insulin Fusion Protein in Edible Plant Tissues. Molecular biotechnology, 44(2), 90- 100. https://doi.org/10.1007/s12033-009-9217-1spa
dc.relation.referencesCarton, J. M., & Strohl, W. R. (2013). Chapter 4—Protein therapeutics (introduction to biopharmaceuticals). En R. Ganellin, S. Roberts, & R. Jefferis (Eds.), Introduction to Biological and Small Molecule Drug Research and Development (pp. 127-159). Elsevier. https://doi.org/10.1016/B978-0-12-397176-0.00004-2spa
dc.relation.referencesCell Signaling Technology. (2016). Cell Signaling Technology. https://www.cellsignal.com/products/cytokines/human-epidermal-growth-factor-hegf/8916spa
dc.relation.referencesChen, T.-L., Lin, Y.-L., Lee, Y.-L., Yang, N.-S., & Chan, M.-T. (2004). Expression of bioactive human interferon-gamma in transgenic rice cell suspension cultures. Transgenic Research, 13(5), 499-510. https://doi.org/10.1007/s11248-004-2376-8spa
dc.relation.referencesChetty, V. J., Narváez-Vásquez, J., & Orozco-Cárdenas, M. L. (2015). Potato (Solanum tuberosum L.). En K. Wang (Ed.), Agrobacterium Protocols: Volume 2 (pp. 85-96). Springer. https://doi.org/10.1007/978-1-4939-1658-0_8spa
dc.relation.referencesChung, Y. H., Church, D., Koellhoffer, E. C., Osota, E., Shukla, S., Rybicki, E. P., Pokorski, J. K., & Steinmetz, N. F. (2022). Integrating plant molecular farming and materials research for next-generation vaccines. Nature Reviews Materials, 7(5), Art. 5. https://doi.org/10.1038/s41578-021-00399-5spa
dc.relation.referencesClark, D. P., & Pazdernik, N. J. (2016). Chapter 10—Recombinant Proteins. En D. P. Clark & N. J. Pazdernik (Eds.), Biotechnology (Second Edition) (pp. 335-363). Academic Cell. https://doi.org/10.1016/B978-0-12-385015-7.00010-7spa
dc.relation.referencesCraze, M., Bates, R., Bowden, S., & Wallington, E. J. (2018). Highly Efficient Agrobacterium-Mediated Transformation of Potato (Solanum tuberosum) and Production of Transgenic Microtubers. Current Protocols in Plant Biology, 3(1), 33-41. https://doi.org/10.1002/cppb.20065spa
dc.relation.referencesda Cunha, N. B., Vianna, G. R., da Almeida Lima, T., & Rech, E. (2014). Molecular farming of human cytokines and blood products from plants: Challenges in biosynthesis and detection of plant-produced recombinant proteins. Biotechnology Journal, 9(1), 39-50. https://doi.org/10.1002/biot.201300062spa
dc.relation.referencesDarabi, P., Galehdari, H., Khatami, S. R., Shahbazian, N., Shafeei, M., Jalali, A., & Khodadadi, A. (2013). Codon Optimization, Cloning and Expression of the Human Leukemia Inhibitory Factor (hLIF) in E. coli. Iranian Journal of Biotechnology, 11(1), 47-53. https://doi.org/10.5812/ijb.9229spa
dc.relation.referencesDaskalova, S. M., Radder, J. E., Cichacz, Z. A., Olsen, S. H., Tsaprailis, G., Mason, H., & Lopez, L. C. (2010). Engineering of N. benthamianaL. plants for production of N- acetylgalactosamine-glycosylated proteins—Towards development of a plant-based platform for production of protein therapeutics with mucin type O-glycosylation. BMC Biotechnology, 10(1), 62. https://doi.org/10.1186/1472-6750-10-62spa
dc.relation.referencesDay, C. D., Lee, E., Kobayashi, J., Holappa, L. D., Albert, H., & Ow, D. W. (2000). Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes & Development, 14(22), 2869-2880.spa
dc.relation.referencesde la Riva, G. A., González-Cabrera, J., Vázquez-Padrón, R., & Ayra-Pardo, C. (1998). Agrobacterium tumefaciens: A natural tool for plant transformation. Electronic Journal of Biotechnology, 1(3), 24-25. https://doi.org/10.4067/S0717-34581998000300002spa
dc.relation.referencesDeligios, P. A., Rapposelli, E., Mameli, M. G., Baghino, L., Mallica, G. M., & Ledda, L. (2020). Effects of Physical, Mechanical and Hormonal Treatments of Seed-Tubers on Bud Dormancy and Plant Productivity. Agronomy, 10(1), Art. 1. https://doi.org/10.3390/agronomy10010033spa
dc.relation.referencesDiamos, A. G., & Mason, H. S. (2018). Chimeric 3’ flanking regions strongly enhance gene expression in plants. Plant Biotechnology Journal, 16(12), 1971-1982. https://doi.org/10.1111/pbi.12931spa
dc.relation.referencesDiamos, A. G., Pardhe, M. D., Sun, H., Hunter, J. G. L., Mor, T., Meador, L., Kilbourne, J., Chen, Q., & Mason, H. S. (2020). Codelivery of improved immune complex and virus-like particle vaccines containing Zika virus envelope domain III synergistically enhances immunogenicity. Vaccine, 38(18), 3455-3463. https://doi.org/10.1016/j.vaccine.2020.02.089spa
dc.relation.referencesDiamos, A. G., Rosenthal, S. H., & Mason, H. S. (2016). 5′ and 3′ Untranslated Regions Strongly Enhance Performance of Geminiviral Replicons in Nicotiana benthamiana Leaves. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00200spa
dc.relation.referencesDönmez, B. A., Dangol, S. D., & Bakhsh, A. (2019). Transformation Efficiency of Five Agrobacterium Strains in Diploid and Tetraploid Potatoes. Sarhad Journal of Agriculture. https://doi.org/10.17582/journal.sja/2019/35.4.1344.1350spa
dc.relation.referencesEidenberger, L., Kogelmann, B., & Steinkellner, H. (2023). Plant-based biopharmaceutical engineering. Nature Reviews Bioengineering, 1-14. https://doi.org/10.1038/s44222-023- 00044-6spa
dc.relation.referencesEissazadeh, S., Moeini, H., Dezfouli, M. G., Heidary, S., Nelofer, R., & Abdullah, M. P. (2017). Production of recombinant human epidermal growth factor in Pichia pastoris. Brazilian Journal of Microbiology, 48(2), 286-293. https://doi.org/10.1016/j.bjm.2016.10.017spa
dc.relation.referencesEpitensive. (2019). Lipotrue. https://lipotrue.com/es/productos/epitensive/spa
dc.relation.referencesEsquirol Caussa, J., & Herrero Vila, E. (2015). Factor de crecimiento epidérmico, innovación y seguridad. Medicina Clínica, 145(7), 305-312. https://doi.org/10.1016/j.medcli.2014.09.012spa
dc.relation.referencesEuropean Union’s Horizon 2020 Programme. (2022). Microbial protein cell factories fight back? Trends in Biotechnology, 40(5), 576-590. https://doi.org/10.1016/j.tibtech.2021.10.003spa
dc.relation.referencesFaizal, A., Razis, A., Ismail, E. N., Hambali, Z., Nazrul, M., Abdullah, H., Ali, A. M., Azmi, M., & Lila, M. (2006). The Periplasmic Expression of Recombinant Human Epidermal Growth Factor (hEGF) in Escherichia coli. http://citeseerx.ist.psu.edu/viewdoc/similar;jsessionid=1F801B3121FE5FC3AA5105FCC7 C4C5DE?doi=10.1.1.549.9478&type=abspa
dc.relation.referencesFeng, Z., Li, X., Fan, B., Zhu, C., & Chen, Z. (2022). Maximizing the Production of Recombinant Proteins in Plants: From Transcription to Protein Stability. International Journal of Molecular Sciences, 23(21), 13516. https://doi.org/10.3390/ijms232113516spa
dc.relation.referencesFernández-Montequín, J. I., Infante-Cristiá, E., Valenzuela-Silva, C., Franco-Pérez, N., Savigne-Gutierrez, W., Artaza-Sanz, H., Morejón-Vega, L., González-Benavides, C., Eliseo-Musenden, O., García-Iglesias, E., Berlanga-Acosta, J., Silva-Rodríguez, R., Betancourt, B. Y., López-Saura, P. A., & Cuban Citoprot-P Study Group. (2007). Intralesional injections of Citoprot-P (recombinant human epidermal growth factor) in advanced diabetic foot ulcers with risk of amputation. International Wound Journal, 4(4), 333-343. https://doi.org/10.1111/j.1742-481X.2007.00344.xspa
dc.relation.referencesFischer, R., Schillberg, S., Hellwig, S., Twyman, R. M., & Drossard, J. (2012). GMP issues for recombinant plant-derived pharmaceutical proteins. Biotechnology Advances, 30(2), 434-439. https://doi.org/10.1016/j.biotechadv.2011.08.007spa
dc.relation.referencesFu, H., Liang, Y., Zhong, X., Pan, Z., Huang, L., Zhang, H., Xu, Y., Zhou, W., & Liu, Z. (2020). Codon optimization with deep learning to enhance protein expression. Scientific Reports, 10(1), Art. 1. https://doi.org/10.1038/s41598-020-74091-zspa
dc.relation.referencesGanapathy, M. (2016). Plants as Bioreactors- A Review. advanced techniques in biology and medicine, 4. https://doi.org/10.4172/2379-1764.1000161spa
dc.relation.referencesGelvin, S. B. (2006). Agrobacterium Virulence Gene Induction. En K. Wang (Ed.), Agrobacterium Protocols (pp. 77-85). Humana Press. https://doi.org/10.1385/1-59745-130- 4:77spa
dc.relation.referencesGelvin, S. B. (2017). Integration of Agrobacterium T-DNA into the Plant Genome. Annual Review of Genetics, 51(1), 195-217. https://doi.org/10.1146/annurev-genet-120215- 035320spa
dc.relation.referencesGerszberg, A., & Hnatuszko-Konka, K. (2022). Compendium on Food Crop Plants as a Platform for Pharmaceutical Protein Production. International Journal of Molecular Sciences, 23(6), Art. 6. https://doi.org/10.3390/ijms23063236spa
dc.relation.referencesGerszberg, A., Wiktorek-Smagur, A., Hnatuszko-Konka, K., Łuchniak, P., & Kononowicz,A. K. (2012). Expression of recombinant staphylokinase, a fibrin-specific plasminogen activator of bacterial origin, in potato (Solanum tuberosum L.) plants. World Journal of Microbiology & Biotechnology, 28(3), 1115-1123. https://doi.org/10.1007/s11274-011- 0912-2spa
dc.relation.referencesGleba, Y. Y., Tusé, D., & Giritch, A. (2014). Plant viral vectors for delivery by Agrobacterium. Current Topics in Microbiology and Immunology, 375, 155-192. https://doi.org/10.1007/82_2013_352spa
dc.relation.referencesGold, M. H., Goldman, M. P., & Biron, J. (2007). Efficacy of novel skin cream containing mixture of human growth factors and cytokines for skin rejuvenation. Journal of Drugs in Dermatology: JDD, 6(2), 197-201.spa
dc.relation.referencesGómez, N., Wigdorovitz, A., Castañón, S., Gil, F., Ordá, R., Borca, M. V., & Escribano, J. M. (2000). Oral immunogenicity of the plant derived spike protein from swine-transmissible gastroenteritis coronavirus. Archives of Virology, 145(8), 1725-1732. https://doi.org/10.1007/s007050070087spa
dc.relation.referencesGomord, V., Sourrouille, C., Fitchette, A.-C., Bardor, M., Pagny, S., Lerouge, P., & Faye, L. (2004). Production and glycosylation of plant-made pharmaceuticals: The antibodies as a challenge. Plant Biotechnology Journal, 2(2), 83-100. https://doi.org/10.1111/j.1467- 7652.2004.00062.xspa
dc.relation.referencesGranger, L. F. (2016). Evaluación del potencial del cultivo de células en suspensión de papa (Solanum tuberosum subsp. Andígena) como plataforma de producción de proteínas recombinantes [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional -Biblioteca Digital UN. https://repositorio.unal.edu.co/handle/unal/58848spa
dc.relation.referencesGreen, G. (2019, enero 29). Modernidade e sustentabilidade no Centro Tecnológico de Plataformas Vegetais. Going GREEN Brasil. https://goinggreen.com.br/modernidade-e- sustentabilidade-no-centro-tecnologico-de-plataformas-vegetais/spa
dc.relation.referencesHa, J.-H., Kim, H.-N., Moon, K.-B., Jeon, J.-H., Jung, D.-H., Kim, S.-J., Mason, H. S., Shin, S.-Y., Kim, H.-S., & Park, K.-M. (2017). Recombinant Human Acidic Fibroblast Growth Factor (aFGF) Expressed in Nicotiana benthamiana Potentially Inhibits Skin Photoaging. Planta Medica, 83(10), 862-869. https://doi.org/10.1055/s-0043-103964spa
dc.relation.referencesHall, A. C. (2020). A comparison of DNA stains and staining methods for Agarose Gel Electrophoresis (p. 568253). bioRxiv. https://doi.org/10.1101/568253spa
dc.relation.referencesHanittinan, O., Oo, Y., Chaotham, C., Rattanapisit, K., Shanmugaraj, B., & Phoolcharoen, W. (2020a). Expression optimization, purification and in vitro characterization of human epidermal growth factor produced in Nicotiana benthamiana. Biotechnology Reports (Amsterdam, Netherlands), 28, e00524. https://doi.org/10.1016/j.btre.2020.e00524spa
dc.relation.referencesHanittinan, O., Oo, Y., Chaotham, C., Rattanapisit, K., Shanmugaraj, B., & Phoolcharoen, W. (2020b). Expression optimization, purification and in vitro characterization of human epidermal growth factor produced in Nicotiana benthamiana. Biotechnology Reports, 28, e00524. https://doi.org/10.1016/j.btre.2020.e00524spa
dc.relation.referencesHanittinan, O., Rattanapisit, K., Malla, A., Tharakhet, K., Ketloy, C., Prompetchara, E., & Phoolcharoen, W. (2022). Feasibility of plant-expression system for production of recombinant anti-human IgE: An alternative production platform for therapeutic monoclonal antibodies. Frontiers in Plant Science, 13, 1012583. https://doi.org/10.3389/fpls.2022.1012583spa
dc.relation.referencesHe, Y., Schmidt, M. A., Erwin, C., Guo, J., Sun, R., Pendarvis, K., Warner, B. W., & Herman, E. M. (2016). Transgenic Soybean Production of Bioactive Human Epidermal Growth Factor (EGF). PLoS ONE, 11(6). https://doi.org/10.1371/journal.pone.0157034spa
dc.relation.referencesHeberprot-p. (2010). https://heberprot.com/heberprot-p.html#Introduccionspa
dc.relation.referencesHesselink, T., Rouwendal, G. J. A., Henquet, M. G. L., Florack, D. E. A., Helsper, J. P. F. G., & Bosch, D. (2014). Expression of natural human β1,4-GalT1 variants and of non- mammalian homologues in plants leads to differences in galactosylation of N-glycans. Transgenic Research, 23(5), 717-728. https://doi.org/10.1007/s11248-014-9806-zspa
dc.relation.referencesHidalgo, D., Abdoli-Nasab, M., Jalali-Javaran, M., Bru-Martínez, R., Cusidó, R. M., Corchete, P., & Palazon, J. (2017). Biotechnological production of recombinant tissue plasminogen activator protein (reteplase) from transplastomic tobacco cell cultures. Plant Physiology and Biochemistry: PPB, 118, 130-137. https://doi.org/10.1016/j.plaphy.2017.06.013spa
dc.relation.referencesHigeta Shoyu. (2018). https://en.tokyofuturestyle.com/higetashoyuspa
dc.relation.referencesHigo, K., Saito, Y., & Higo, H. (1993). Expression of a chemically synthesized gene for human epidermal growth factor under the control of cauliflower mosaic virus 35S promoter in transgenic tobacco. Bioscience, Biotechnology, and Biochemistry, 57(9), 1477-1481. https://doi.org/10.1271/bbb.57.1477spa
dc.relation.referencesHofstetter, K., Raspe, H., Stumpf, S., & Framke, S. (2015). M. Gaucher und Imiglucerase 2009/2010: Was leitet eine plötzlich erzwungene Priorisierung? Das Gesundheitswesen, 77(2), 86-92. https://doi.org/10.1055/s-0034-1370997spa
dc.relation.referencesHu, L., Lao, G., Liu, R., Feng, J., Long, F., & Peng, T. (2023). The race toward a universal influenza vaccine: Front runners and the future directions. Antiviral Research, 210, 105505. https://doi.org/10.1016/j.antiviral.2022.105505spa
dc.relation.referencesHung, Y. W., Kun, H. L., Yi, C. W., Jing, F. W., Wan, L. C., Chao, Y. C., Shu, H. W., Jen, S., & Erh, M. L. (2014). AGROBEST: An efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods, 10, 19. https://doi.org/10.1186/1746-4811-10-19spa
dc.relation.referencesHuynh, E., & Li, J. (2015). Generation of Lactococcus lactis capable of coexpressing epidermal growth factor and trefoil factor to enhance in vitro wound healing. Applied Microbiology and Biotechnology, 99(11), 4667-4677. https://doi.org/10.1007/s00253-015- 6542-0spa
dc.relation.referencesHwang, H.-H., Yu, M., & Lai, E.-M. (2017). Agrobacterium-Mediated Plant Transformation: Biology and Applications. The Arabidopsis Book, 2017(15). https://doi.org/10.1199/tab.0186spa
dc.relation.referencesIshikawa, T., Terai, H., & Kitajima, T. (2001). Production of a biologically active epidermal growth factor fusion protein with high collagen affinity. Journal of Biochemistry, 129(4), 627- 633. https://doi.org/10.1093/oxfordjournals.jbchem.a002900spa
dc.relation.referencesIzadi, S., Jalali Javaran, M., Rashidi Monfared, S., & Castilho, A. (2021). Reteplase Fc- fusions produced in N. benthamiana are able to dissolve blood clots ex vivo. PloS One, 16(11), e0260796. https://doi.org/10.1371/journal.pone.0260796spa
dc.relation.referencesJackson, R. J., Hellen, C. U. T., & Pestova, T. V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Reviews Molecular Cell Biology, 11(2), Art. 2. https://doi.org/10.1038/nrm2838spa
dc.relation.referencesJansing, J., Sack, M., Augustine, S. M., Fischer, R., & Bortesi, L. (2019). CRISPR/Cas9‐ mediated knockout of six glycosyltransferase genes in Nicotiana benthamiana for the production of recombinant proteins lacking β‐1,2‐xylose and core α‐1,3‐fucose. Plant Biotechnology Journal, 17(2), 350-361. https://doi.org/10.1111/pbi.12981spa
dc.relation.referencesKaburu M’Ribu, H., & Veilleux, R. E. (1990). Effect of genotype, explant, subculture interval and environmental conditions on regeneration of shoots from in vitro monoploids of a diploid potato species, Solanum phureja Juz. & Buk. Plant Cell, Tissue and Organ Culture, 23(3), 171-179. https://doi.org/10.1007/BF00034428spa
dc.relation.referencesKarki, U., Wright, T., & Xu, J. (2022). High yield secretion of human erythropoietin from tobacco cells for ex vivo differentiation of hematopoietic stem cells towards red blood cells. Journal of Biotechnology, 355, 10-20. https://doi.org/10.1016/j.jbiotec.2022.06.010spa
dc.relation.referencesKaur, A., Guleria, S., Reddy, M. S., & Kumar, A. (2020). A robust genetic transformation protocol to obtain transgenic shoots of Solanum tuberosum L. cultivar ‘Kufri Chipsona 1’. Physiology and Molecular Biology of Plants, 26(2), 367-377. https://doi.org/10.1007/s12298-019-00747-4spa
dc.relation.referencesKay, R., Chan, A., Daly, M., & McPherson, J. (1987). Duplication of CaMV 35S Promoter Sequences Creates a Strong Enhancer for Plant Genes. Science, 236(4806), 1299-1302. https://doi.org/10.1126/science.236.4806.1299spa
dc.relation.referencesKhan, M. S., Joyia, F. A., & Mustafa, G. (2020). Seeds as Economical Production Platform for Recombinant Proteins. Protein & Peptide Letters, 27(2), 89-104.spa
dc.relation.referencesKittur, F. S., Hung, C.-Y., Zhu, C., Shajahan, A., Azadi, P., Thomas, M. D., Pearce, J. L., Gruber, C., Kallolimath, S., & Xie, J. (2020). Glycoengineering tobacco plants to stably express recombinant human erythropoietin with different N-glycan profiles. International Journal of Biological Macromolecules, 157, 158-169. https://doi.org/10.1016/j.ijbiomac.2020.04.199spa
dc.relation.referencesKlimyuk, V., Pogue, G., Herz, S., Butler, J., & Haydon, H. (2014). Production of recombinant antigens and antibodies in Nicotiana benthamiana using «magnifection» technology: GMP- compliant facilities for small- and large-scale manufacturing. Current Topics in Microbiology and Immunology, 375, 127-154. https://doi.org/10.1007/82_2012_212spa
dc.relation.referencesKlocko, A. L. (2022). Genetic Containment for Molecular Farming. Plants (Basel, Switzerland), 11(18), 2436. https://doi.org/10.3390/plants11182436spa
dc.relation.referencesKolotilin, I. (2022). Plant-produced recombinant cytokines IL-37b and IL-38 modulate inflammatory response from stimulated human PBMCs. Scientific Reports, 12(1), Art. 1. https://doi.org/10.1038/s41598-022-23828-zspa
dc.relation.referencesKooter, null, Matzke, null, & Meyer, null. (1999). Listening to the silent genes: Transgene silencing, gene regulation and pathogen control. Trends in Plant Science, 4(9), 340-347. https://doi.org/10.1016/s1360-1385(99)01467-3spa
dc.relation.referencesKumari, S., & Tennakoon, I. (2022). Molecular Farming: Implication for Future Pharmaceutical Products. Sri Lankan Journal of Health Sciences, 1(1), Art. 1. https://doi.org/10.4038/sljhs.v1i1.30spa
dc.relation.referencesKumlay, A. M., & Ercisli, S. (2015). Callus induction, shoot proliferation and root regeneration of potato (Solanum tuberosum L.) stem node and leaf explants under long- day conditions. Biotechnology & Biotechnological Equipment, 29(6), 1075-1084. https://doi.org/10.1080/13102818.2015.1077685spa
dc.relation.referencesLamprecht, R. L., Kennedy, P., Huddy, S. M., Bethke, S., Hendrikse, M., Hitzeroth, I. I., & Rybicki, E. P. (2016). Production of Human papillomavirus pseudovirions in plants and their use in pseudovirion-based neutralisation assays in mammalian cells. Scientific Reports, 6(1), Art. 1. https://doi.org/10.1038/srep20431spa
dc.relation.referencesLi, J., Stoddard, T. J., Demorest, Z. L., Lavoie, P.-O., Luo, S., Clasen, B. M., Cedrone, F., Ray, E. E., Coffman, A. P., Daulhac, A., Yabandith, A., Retterath, A. J., Mathis, L., Voytas, D. F., D’Aoust, M.-A., & Zhang, F. (2016). Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco-engineering and monoclonal antibody production. Plant Biotechnology Journal, 14(2), 533-542. https://doi.org/10.1111/pbi.12403spa
dc.relation.referencesLiaño, F., & Teruel, J. L. (2001). Tratamiento de la necrosis tubular aguda. Revista Clínica Española, 201(3), 145-147.spa
dc.relation.referencesLu, H.-S., Chai, J.-J., Li, M., Huang, B.-R., He, C.-H., & Bi, R.-C. (2001). Crystal Structure of Human Epidermal Growth Factor and Its Dimerization. Journal of Biological Chemistry, 276(37), 34913-34917. https://doi.org/10.1074/jbc.M102874200spa
dc.relation.referencesMakarkov, A. I., Chierzi, S., Pillet, S., Murai, K. K., Landry, N., & Ward, B. J. (2017). Plant- made virus-like particles bearing influenza hemagglutinin (HA) recapitulate early interactions of native influenza virions with human monocytes/macrophages. Vaccine, 35(35, Part B), 4629-4636. https://doi.org/10.1016/j.vaccine.2017.07.012spa
dc.relation.referencesMaksum, I. P., Yosua, Y., Nabiel, A., Pratiwi, R. D., Sriwidodo, S., & Soedjanaatmadja, U. M. S. (2022). Refolding of bioactive human epidermal growth factor from E. coli BL21(DE3) inclusion bodies & evaluations on its in vitro & in vivo bioactivity. Heliyon, 8(4), e09306. https://doi.org/10.1016/j.heliyon.2022.e09306spa
dc.relation.referencesMalaquias, A. D. M., Marques, L. E. C., Pereira, S. S., de Freitas Fernandes, C., Maranhão, A. Q., Stabeli, R. G., Florean, E. O. P. T., Guedes, M. I. F., & Fernandes, C. F. C. (2021). A review of plant-based expression systems as a platform for single-domain recombinant antibody production. International Journal of Biological Macromolecules, 193, 1130-1137. https://doi.org/10.1016/j.ijbiomac.2021.10.126spa
dc.relation.referencesMalik, S., Kishore, S., Nag, S., Dhasmana, A., Preetam, S., Mitra, O., León-Figueroa, D. A., Mohanty, A., Chattu, V. K., Assefi, M., Padhi, B. K., & Sah, R. (2023). Ebola Virus Disease Vaccines: Development, Current Perspectives & Challenges. Vaccines, 11(2), Art. 2. https://doi.org/10.3390/vaccines11020268spa
dc.relation.referencesMargolin, E., Verbeek, M., de Moor, W., Chapman, R., Meyers, A., Schäfer, G., Williamson, A.-L., & Rybicki, E. (2022). Investigating Constraints Along the Plant Secretory Pathway to Improve Production of a SARS-CoV-2 Spike Vaccine Candidate. Frontiers in Plant Science, 12. https://www.frontiersin.org/articles/10.3389/fpls.2021.798822spa
dc.relation.referencesMartínez Gálvez, I., Rodríguez Rodríguez, Y., Martínez Gálvez, I., & Rodríguez Rodríguez, Y. (2020). Úlcera del pie diabético tratado con Heberprot-p®. Revista Cubana de Angiología y Cirugía Vascular, 21(1). http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1682- 00372020000100002&lng=es&nrm=iso&tlng=esspa
dc.relation.referencesMcCamish, M., & Woollett, G. (2012). The state of the art in the development of biosimilars. Clinical Pharmacology and Therapeutics, 91(3), 405-417. https://doi.org/10.1038/clpt.2011.343spa
dc.relation.referencesMonreal-Escalante, E., Ramos-Vega, A., Angulo, C., & Bañuelos-Hernández, B. (2022). Plant-Based Vaccines: Antigen Design, Diversity, and Strategies for High Level Production. Vaccines, 10(1), 100. https://doi.org/10.3390/vaccines10010100spa
dc.relation.referencesMorgenfeld, M. M., Vater, C. F., Alfano, E. F., Boccardo, N. A., & Bravo-Almonacid, F. F. (2020). Translocation from the chloroplast stroma into the thylakoid lumen allows expression of recombinant epidermal growth factor in transplastomic tobacco plants. Transgenic Research, 29(3), 295-305. https://doi.org/10.1007/s11248-020-00199-7spa
dc.relation.referencesMurad, S., Fuller, S., Menary, J., Moore, C., Pinneh, E., Szeto, T., Hitzeroth, I., Freire, M., Taychakhoonavudh, S., Phoolcharoen, W., & Ma, J. K.-C. (2020). Molecular Pharming for low and middle income countries. Current Opinion in Biotechnology, 61, 53-59. https://doi.org/10.1016/j.copbio.2019.10.005spa
dc.relation.referencesMuthoni, J. W., Kabira, J. N., Shimelis, H. A., & Melis, R. (2014). Regulation of potato tuber dormancy: A review.spa
dc.relation.referencesNahirñak, V., Almasia, N. I., González, M. N., Massa, G. A., Décima Oneto, C. A., Feingold, S. E., Hopp, H. E., & Vazquez Rovere, C. (2022). State of the Art of Genetic Engineering in Potato: From the First Report to Its Future Potential. Frontiers in Plant Science, 12, 768233. https://doi.org/10.3389/fpls.2021.768233spa
dc.relation.referencesNap, J. P., Bijvoet, J., & Stiekema, W. J. (1992). Biosafety of kanamycin-resistant transgenic plants. Transgenic Research, 1(6), 239-249. https://doi.org/10.1007/BF02525165spa
dc.relation.referencesNaseri, Z., Khezri, G., Davarpanah, S. J., & Ofoghi, H. (2019). Virus-Based Vectors: A New Approach for Production of Recombinant Proteins. Journal of Applied Biotechnology Reports, 6(1), 6-14. https://doi.org/10.29252/JABR.06.01.02spa
dc.relation.referencesNova-López, C. J., Muñoz-Pérez, J. M., Granger-Serrano, L. F., Arias-Zabala, M. E., & Arango-Isaza, R. E. (2017). Expresión de la proteína recombinante Cry 1Ac en cultivos de células de papa en suspensión: Establecimiento del cultivo y optimización de la producción de la biomasa y la proteína mediante la adición de nitrógeno. DYNA, 84(201), 34-41. https://doi.org/10.15446/dyna.v84n201.59829spa
dc.relation.referencesNugent, J. M., & Joyce, S. M. (2005). Producing human therapeutic proteins in plastids. Current Pharmaceutical Design, 11(19), 2459-2470. https://doi.org/10.2174/1381612054367562spa
dc.relation.referencesOgiso, H., Ishitani, R., Nureki, O., Fukai, S., Yamanaka, M., Kim, J.-H., Saito, K., Sakamoto, A., Inoue, M., Shirouzu, M., & Yokoyama, S. (2002). Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell, 110(6), 775-787. https://doi.org/10.1016/s0092-8674(02)00963-7spa
dc.relation.referencesOhya, K., Matsumura, T., Ohashi, K., Onuma, M., & Sugimoto, C. (2001). Expression of two subtypes of human IFN-alpha in transgenic potato plants. Journal of Interferon & Cytokine Research: The Official Journal of the International Society for Interferon and Cytokine Research, 21(8), 595-602. https://doi.org/10.1089/10799900152547858spa
dc.relation.referencesOyelakin, O. O., Opabode, J. T., Raji, A. A., & Ingelbrecht, I. L. (2015). A Cassava vein mosaic virus promoter cassette induces high and stable gene expression in clonally propagated transgenic cassava (Manihot esculenta Crantz). South African Journal of Botany, 97, 184-190. https://doi.org/10.1016/j.sajb.2014.11.011spa
dc.relation.referencesPalaci, J., Virdi, V., & Depicker, A. (2019). Transformation strategies for stable expression of complex hetero-multimeric proteins like secretory immunoglobulin A in plants. Plant Biotechnology Journal, 17(9), 1760-1769. https://doi.org/10.1111/pbi.13098spa
dc.relation.referencesPastores, G. M., Petakov, M., Giraldo, P., Rosenbaum, H., Szer, J., Deegan, P. B., Amato, D. J., Mengel, E., Tan, E. S., Chertkoff, R., Brill-Almon, E., & Zimran, A. (2014). A Phase 3, multicenter, open-label, switchover trial to assess the safety and efficacy of taliglucerase alfa, a plant cell-expressed recombinant human glucocerebrosidase, in adult and pediatric patients with Gaucher disease previously treated with imiglucerase. Blood Cells, Molecules & Diseases, 53(4), 253-260. https://doi.org/10.1016/j.bcmd.2014.05.004spa
dc.relation.referencesPeng, L.-H., Gu, T.-W., Xu, Y., Dad, H. A., Liu, J.-X., Lian, J.-Z., & Huang, L.-Q. (2022). Gene delivery strategies for therapeutic proteins production in plants: Emerging opportunities and challenges. Biotechnology Advances, 54, 107845. https://doi.org/10.1016/j.biotechadv.2021.107845spa
dc.relation.referencesPham, P. V. (2018). Chapter 19 - Medical Biotechnology: Techniques and Applications. En D. Barh & V. Azevedo (Eds.), Omics Technologies and Bio-Engineering (pp. 449-469). Academic Press. https://doi.org/10.1016/B978-0-12-804659-3.00019-1spa
dc.relation.referencesPonndorf, D., Meshcheriakova, Y., Thuenemann, E. C., Dobon Alonso, A., Overman, R., Holton, N., Dowall, S., Kennedy, E., Stocks, M., Lomonossoff, G. P., & Peyret, H. (2021). Plant-made dengue virus-like particles produced by co-expression of structural and non- structural proteins induce a humoral immune response in mice. Plant Biotechnology Journal, 19(4), 745-756. https://doi.org/10.1111/pbi.13501spa
dc.relation.referencesProtalix. (2022). An Open Label Study of the Safety and Efficacy of PRX-102 in Patients With Fabry Disease Currently Treated With REPLAGAL® (Agalsidase Alfa) (Clinical trial registration N.o NCT03018730). clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT03018730spa
dc.relation.referencesPyrski, M., Mieloch, A. A., Plewiński, A., Basińska-Barczak, A., Gryciuk, A., Bociąg, P., Murias, M., Rybka, J. D., & Pniewski, T. (2019). Parenteral–Oral Immunization with Plant- Derived HBcAg as a Potential Therapeutic Vaccine against Chronic Hepatitis B. Vaccines, 7(4), 211. https://doi.org/10.3390/vaccines7040211spa
dc.relation.referencesRamírez-Alanis, I. A., Renaud, J. B., García-Lara, S., Menassa, R., & Cardineau, G. A. (2018). Transient co-expression with three O-glycosylation enzymes allows production of GalNAc-O-glycosylated Granulocyte-Colony Stimulating Factor in N. benthamiana. Plant Methods, 14(1), 98. https://doi.org/10.1186/s13007-018-0363-yspa
dc.relation.referencesRattanapisit, K., Phakham, T., Buranapraditkun, S., Siriwattananon, K., Boonkrai, C., Pisitkun, T., Hirankarn, N., Strasser, R., Abe, Y., & Phoolcharoen, W. (2019). Structural and In Vitro Functional Analyses of Novel Plant-Produced Anti-Human PD1 Antibody. Scientific Reports, 9(1), Art. 1. https://doi.org/10.1038/s41598-019-51656-1spa
dc.relation.referencesRedkiewicz, P., Więsyk, A., Góra-Sochacka, A., & Sirko, A. (2012). Transgenic tobacco plants as production platform for biologically active human interleukin 2 and its fusion with proteinase inhibitors. Plant Biotechnology Journal, 10(7), 806-814. https://doi.org/10.1111/j.1467-7652.2012.00698.xspa
dc.relation.referencesRodríguez, E., Trujillo, C., Orduz, S., Jaramillo, S., Hoyos, R., & Arango, R. (2000). Estandarización de un medio de cultivo adecuado para la regeneración de tallos a partir de hojas, utilizando dos variedades colombianas de papa (Solanum tuberosum L.). Revista Facultad Nacional de Agronomía Medellín, 53(1), 887-899.spa
dc.relation.referencesRuocco, V., & Strasser, R. (2022). Transient Expression of Glycosylated SARS-CoV-2 Antigens in Nicotiana benthamiana. Plants, 11(8), 1093. https://doi.org/10.3390/plants11081093spa
dc.relation.referencesSánchez Pérez, I., & Navarro Fernández, R. (2007). Efecto protector del factor de crecimiento epidérmico ante la nefritis tóxica causada por kanamicina. Revista Cubana de Investigaciones Biomédicas, 26(2), 0-0.spa
dc.relation.referencesSchillberg, S., Raven, N., Spiegel, H., Rasche, S., & Buntru, M. (2019). Critical Analysis of the Commercial Potential of Plants for the Production of Recombinant Proteins. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00720spa
dc.relation.referencesSchneider, J. D., Castilho, A., Neumann, L., Altmann, F., Loos, A., Kannan, L., Mor, T. S., & Steinkellner, H. (2014). Expression of human butyrylcholinesterase with an engineered glycosylation profile resembling the plasma-derived orthologue. Biotechnology Journal, 9(4), 501-510. https://doi.org/10.1002/biot.201300229spa
dc.relation.referencesSchoberer, J., & Strasser, R. (2018). Plant glyco-biotechnology. Seminars in Cell & Developmental Biology, 80, 133-141. https://doi.org/10.1016/j.semcdb.2017.07.005spa
dc.relation.referencesSchouest, J. M., Luu, T. K., & Moy, R. L. (2012). Improved texture and appearance of human facial skin after daily topical application of barley produced, synthetic, human-like epidermal growth factor (EGF) serum. Journal of Drugs in Dermatology: JDD, 11(5), 613- 620.spa
dc.relation.referencesShin, Koh, Y. G., Lee, W. G., Seok, J., & Park, K. Y. (2022). The use of epidermal growth factor in dermatological practice. International Wound Journal, 1-10. https://doi.org/10.1111/iwj.14075spa
dc.relation.referencesShulga, N. Y., Rukavtsova, E. B., Krymsky, M. A., Borisova, V. N., Melnikov, V. A., Bykov, V. A., & Buryanov, Y. I. (2004). Expression and characterization of hepatitis B surface antigen in transgenic potato plants. Biochemistry. Biokhimiia, 69(10), 1158-1164. https://doi.org/10.1023/b:biry.0000046891.46282.c8spa
dc.relation.referencesSilva, A. C., & Lobo, J. M. S. (2020). Cytokines and Growth Factors. En A. C. Silva, J. N. Moreira, J. M. S. Lobo, & H. Almeida (Eds.), Current Applications of Pharmaceutical Biotechnology (pp. 87-113). Springer International Publishing. https://doi.org/10.1007/10_2019_105spa
dc.relation.referencesSingh, A. A., Pooe, O., Kwezi, L., Lotter-Stark, T., Stoychev, S. H., Alexandra, K., Gerber, I., Bhiman, J. N., Vorster, J., Pauly, M., Zeitlin, L., Whaley, K., Mach, L., Steinkellner, H., Morris, L., Tsekoa, T. L., & Chikwamba, R. (2020). Plant-based production of highly potent anti-HIV antibodies with engineered posttranslational modifications. Scientific Reports, 10(1), Art. 1. https://doi.org/10.1038/s41598-020-63052-1spa
dc.relation.referencesSoni, A. P., Lee, J., Shin, K., Koiwa, H., & Hwang, I. (2022). Production of Recombinant Active Human TGFβ1 in Nicotiana benthamiana. Frontiers in Plant Science, 13. https://www.frontiersin.org/articles/10.3389/fpls.2022.922694spa
dc.relation.referencesStander, J., Mbewana, S., & Meyers, A. E. (2022). Plant-Derived Human Vaccines: Recent Developments. BioDrugs, 36(5), 573-589. https://doi.org/10.1007/s40259-022-00544-8spa
dc.relation.referencesStruik, P. C. (2007). Chapter 18—Responses of the Potato Plant to Temperature. En D. Vreugdenhil, J. Bradshaw, C. Gebhardt, F. Govers, D. K. L. Mackerron, M. A. Taylor, & H.spa
dc.relation.referencesA. Ross (Eds.), Potato Biology and Biotechnology (pp. 367-393). Elsevier Science B.V. https://doi.org/10.1016/B978-044451018-1/50060-9spa
dc.relation.referencesSu, Z., Huang, Y., Zhou, Q., Wu, Z., Wu, X., Zheng, Q., Ding, C., & Li, X. (2006). High- Level Expression and Purification of Human Epidermal Growth Factor with SUMO Fusion in Escherichia coli. Protein and peptide letters, 13, 785-792. https://doi.org/10.2174/092986606777841280spa
dc.relation.referencesSurini, S., Leonyza, A., & Suh, C. W. (2020). Formulation and In Vitro Penetration Study of Recombinant Human Epidermal Growth Factor-Loaded Transfersomal Emulgel. Advanced Pharmaceutical Bulletin, 10(4), 586-594. https://doi.org/10.34172/apb.2020.070spa
dc.relation.referencesSuttle, J. C. (2004). Physiological regulation of potato tuber dormancy. American Journal of Potato Research, 81(4), 253. https://doi.org/10.1007/BF02871767spa
dc.relation.referencesTekoah, Y., Shulman, A., Kizhner, T., Ruderfer, I., Fux, L., Nataf, Y., Bartfeld, D., Ariel, T., Gingis-Velitski, S., Hanania, U., & Shaaltiel, Y. (2015). Large-scale production of pharmaceutical proteins in plant cell culture-the Protalix experience. Plant Biotechnology Journal, 13(8), 1199-1208. https://doi.org/10.1111/pbi.12428spa
dc.relation.referencesTepap, C. Z., Anissi, J., & Bounou, S. (2023). Recent strategies to achieve high production yield of recombinant protein: A review. Journal of Cellular Biotechnology, 1-13. https://doi.org/10.3233/JCB-220084spa
dc.relation.referencesThomas, B. R. (2002). Production of Therapeutic Proteins in Plants. https://doi.org/10.3733/ucanr.8078spa
dc.relation.referencesThomas, D., & Maree, A. (2014). Improved expression of recombinant plant-made hEGF. Plant Cell Reports, 33(11), 1801-1814. https://doi.org/10.1007/s00299-014-1658-8spa
dc.relation.referencesThomas, & Wurr. (1976). Gibberellin and growth inhibitor changes in potato tuber buds in response to cold treatment. Annals of Applied Biology, 83(2), 317-320. https://doi.org/10.1111/j.1744-7348.1976.tb00614.xspa
dc.relation.referencesTong, W.-Y., Yao, S.-J., Zhu, Z.-Q., & Yu, J. (2001). An improved procedure for production of human epidermal growth factor from recombinant E. coli. Applied Microbiology and Biotechnology, 57(5-6), 674-679. https://doi.org/10.1007/s002530100793spa
dc.relation.referencesTorres, E. S., Torres, J., Moreno, C., & Arango, R. (2012a). Development of transgenic lines from a male-sterile potato variety, with potential resistance to Tecia solanivora Povolny. Agronomía Colombiana, 30(2), 163-171.spa
dc.relation.referencesTorres, E. S., Torres, J., Moreno, C., & Arango, R. (2012b). Development of transgenic lines from a male-sterile potato variety, with potential resistance to Tecia solanivora Povolny. Agronomía Colombiana, 30(2), 163-171.spa
dc.relation.referencesTorres, J., Alvarado, G., & Hernández, A. (2016). Regeneración in vitro de cuatro cultivares de papa (Solanum tuberosum l.) A partir de secciones de hoja y en presencia de diferentes reguladores de crecimiento. Boletín del Centro de Investigaciones Biológicas, 50(2), Art. 2.spa
dc.relation.referencesTrujillo, C., Rodríguez-Arango, E., Jaramillo, S., Hoyos, R., Orduz, S., & Arango, R. (2001). One-step transformation of two Andean potato cultivars (Solanum tuberosum L. subsp. Andigena). Plant Cell Reports, 20(7), 637-641. https://doi.org/10.1007/s002990100381spa
dc.relation.referencesTschofen, M., Knopp, D., Hood, E., & Stöger, E. (2016). Plant Molecular Farming: Much More than Medicines. Annual Review of Analytical Chemistry, 9(1), 271-294. https://doi.org/10.1146/annurev-anchem-071015-041706spa
dc.relation.referencesUsmani, S. S., Bedi, G., Samuel, J. S., Singh, S., Kalra, S., Kumar, P., Ahuja, A. A., Sharma, M., Gautam, A., & Raghava, G. P. S. (2017). THPdb: Database of FDA-approved peptide and protein therapeutics. PLoS ONE, 12(7). https://doi.org/10.1371/journal.pone.0181748spa
dc.relation.referencesValderrama, A. M., Velásquez, N., Rodríguez, E., Zapata, A., Zaidi, M. A., Altosaar, I., & Arango, R. (2007). Resistance to Tecia solanivora (Lepidoptera: Gelechiidae) in Three Transgenic Andean Varieties of Potato Expressing Bacillus thuringiensis Cry1Ac Protein. Journal of Economic Entomology, 100(1), 172-179. https://doi.org/10.1093/jee/100.1.172spa
dc.relation.referencesValdés, J., Mantilla, E., Márquez, G., Bonilla, R. M., Lugo, V. M., Pérez, M., García, Y., & Narciandi, E. (2009). Incremento de la expresión del Factor de Crecimiento Epidérmico en Saccharomyces cerevisiae mediante la manipulación de las condiciones de cultivo. Biotecnología Aplicada, 26(1), 34-38.spa
dc.relation.referencesWalsh, G. (2018). Biopharmaceutical benchmarks 2018. Nature Biotechnology, 36(12), 1136-1145. https://doi.org/10.1038/nbt.4305spa
dc.relation.referencesWang, Y., Fan, J., Wei, Z., & Xing, S. (2023). Efficient expression of fusion human epidermal growth factor in tobacco chloroplasts. BMC Biotechnology, 23(1), 1. https://doi.org/10.1186/s12896-022-00771-5spa
dc.relation.referencesWilken, L. R., & Nikolov, Z. L. (2012). Recovery and purification of plant-made recombinant proteins. Biotechnology Advances, 30(2), 419-433. https://doi.org/10.1016/j.biotechadv.2011.07.020spa
dc.relation.referencesWirth, S., Calamante, G., Mentaberry, A., Bussmann, L., Lattanzi, M., Barañao, L., & Bravo- Almonacid, F. (2004). Expression of active human epidermal growth factor (hEGF) in tobacco plants by integrative and non-integrative systems. Molecular Breeding, 13(1), 23- 35. https://doi.org/10.1023/B:MOLB.0000012329.74067.caspa
dc.relation.referencesWirth, S., Segretin, M. E., Mentaberry, A., & Bravo-Almonacid, F. (2006). Accumulation of hEGF and hEGF-fusion proteins in chloroplast-transformed tobacco plants is higher in the dark than in the light. Journal of Biotechnology, 125(2), 159-172. https://doi.org/10.1016/j.jbiotec.2006.02.012spa
dc.relation.referencesWise, A. A., Liu, Z., & Binns, A. N. (2006). Three methods for the introduction of foreign DNA into Agrobacterium. Methods in Molecular Biology (Clifton, N.J.), 343, 43-53. https://doi.org/10.1385/1-59745-130-4:43spa
dc.relation.referencesWu, C.-S., Kuo, W.-T., Chang, C.-Y., Kuo, J.-Y., Tsai, Y.-T., Yu, S.-M., Wu, H.-T., & Chen, P.-W. (2014). The modified rice αAmy8 promoter confers high-level foreign gene expression in a novel hypoxia-inducible expression system in transgenic rice seedlings. Plant Molecular Biology, 85(1-2), 147-161. https://doi.org/10.1007/s11103-014-0174-0spa
dc.relation.referencesXu, J., Towler, M., & Weathers, P. J. (2016). Platforms for Plant-Based Protein Production. En A. Pavlov & T. Bley (Eds.), Bioprocessing of Plant In Vitro Systems (pp. 1-40). Springer International Publishing. https://doi.org/10.1007/978-3-319-32004-5_14-1spa
dc.relation.referencesYao, J., Weng, Y., Dickey, A., & Wang, K. Y. (2015). Plants as Factories for Human Pharmaceuticals: Applications and Challenges. International Journal of Molecular Sciences, 16(12), 28549-28565. https://doi.org/10.3390/ijms161226122spa
dc.relation.referencesYao, Q., Yu, Z., Liu, P., Zheng, H., Xu, Y., Sai, S., Wu, Y., & Zheng, C. (2019). High Efficient Expression and Purification of Human Epidermal Growth Factor in Arachis Hypogaea L. International Journal of Molecular Sciences, 20(8). https://doi.org/10.3390/ijms20082045spa
dc.relation.referencesYasmin, S., K.M, N., Begum, R., & S.K, T. (2003). Regeneration and Establishment of Potato Plantlets Through Callus Formation with BAP and NAA. Asian Journal of Plant Sciences. https://doi.org/10.3923/ajps.2003.936.940spa
dc.relation.referencesYi, S., Yang, J., Huang, J., Guan, L., Du, L., Guo, Y., Zhai, F., Wang, Y., Lu, Z., Wang, L., Li, H., Li, X., & Jiang, C. (2015). Expression of bioactive recombinant human fibroblast growth factor 9 in oil bodies of Arabidopsis thaliana. Protein Expression and Purification, 116, 127-132. https://doi.org/10.1016/j.pep.2015.08.006spa
dc.relation.referencesYousif, S. (2015). Original Research Article Effect of Different Medium on Callus Induction and Regeneration in Potato Cultivars. 4, 856-865.spa
dc.relation.referencesZagouras, P., & Rose, J. K. (1989). Carboxy-terminal SEKDEL sequences retard but do not retain two secretory proteins in the endoplasmic reticulum. The Journal of Cell Biology, 109(6 Pt 1), 2633-2640. https://doi.org/10.1083/jcb.109.6.2633spa
dc.relation.referencesZahmanova, G., Mazalovska, M., Takova, K., Toneva, V., Minkov, I., Peyret, H., & Lomonossoff, G. (2021). Efficient Production of Chimeric Hepatitis B Virus-Like Particles Bearing an Epitope of Hepatitis E Virus Capsid by Transient Expression in Nicotiana benthamiana. Life, 11(1), 64. https://doi.org/10.3390/life11010064spa
dc.relation.referencesZheng, J., Huang, X.-Y., & Wei, X. (2003). [The effects of epidermal growth factor on the wound healing of deep partial thickness burn in rats]. Zhonghua Shao Shang Za Zhi = Zhonghua Shaoshang Zazhi = Chinese Journal of Burns, 19(5), 289-292.spa
dc.relation.referencesZhi, Q.-W., Zhang, F.-Y., Chai, M., Yu, X.-H., & Sun, M.-J. (2007). Success expression of human epidermal growth factor in transgenic tomato. Chinese Pharmacological Bulletin, 23, 692+693-695.spa
dc.relation.referencesZhou, Y., Maharaj, P. D., Mallajosyula, J. K., McCormick, A. A., & Kearney, C. M. (2015). In planta Production of Flock House Virus Transencapsidated RNA and Its Potential Use as a Vaccine. Molecular Biotechnology, 57(4), 325-336. https://doi.org/10.1007/s12033- 014-9826-1spa
dc.relation.referencesZvirin, T., Magrisso, L., Yaari, A., & Shoseyov, O. (2018). Stable Expression of Adalimumab in Nicotiana tabacum. Molecular Biotechnology, 60(6), 387-395. https://doi.org/10.1007/s12033-018-0075-6spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocPapa (Solanum tuberosum subsp. andígena var. pastusa suprema)
dc.subject.ddc570 - Biologíaspa
dc.subject.ddc580 - Plantasspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.lembCultivo in vitro
dc.subject.lembADN recombinante
dc.subject.proposalProteínas recombinantesspa
dc.subject.proposalfactor de crecimiento epidérmico humano recombinante (rhEGF)spa
dc.subject.proposalCultivo in vitrospa
dc.subject.proposalSolanum tuberosumspa
dc.subject.proposalAgrobacterium tumefaciensspa
dc.subject.proposalRecombinant proteinseng
dc.subject.proposalin vitro cultureeng
dc.subject.proposalSolanum tuberosumeng
dc.subject.proposalAgrobacterium tumefacienseng
dc.subject.proposalRecombinant human epidermal growth factor (rhEGF)eng
dc.titleAvances en el establecimiento de una plataforma para la producción del factor de crecimiento epidérmico humano recombinante (rhEGF) utilizando cultivos in vitro de papaspa
dc.title.translatedAdvances in the establishment of a platform for the production of recombinant human epidermal growth factor (rhEGF) using in vitro potato cultureseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152189450.2023.pdf
Tamaño:
2.73 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: