Efecto del reemplazo de antibióticos promotores de crecimiento por una butirina esterificada en dietas de preiniciación en el rendimiento productivo y algunos parámetros de salud intestinal de lechones destetados a 21 días

dc.contributor.advisorCasas Bedoya, Gloria Amparospa
dc.contributor.advisorGalvis Mogollón, José Daríospa
dc.contributor.authorGonzález Castiblanco, Johana Katerinespa
dc.date.accessioned2024-02-09T20:10:44Z
dc.date.available2024-02-09T20:10:44Z
dc.date.issued2023
dc.descriptionilustraciones a color, diagramasspa
dc.description.abstractLos antibióticos promotores de crecimiento (APC) han sido usados por años para mejorar los parámetros productivos y la salud intestinal en los animales, sin embargo, su uso desmedido ha contribuido al aumento de la resistencia antimicrobiana tanto en animales como en humanos, siendo un problema relevante de salud pública. En consecuencia, se ha impulsado tendencia de buscar nuevas alternativas como las tributirinas o butirinas esterificadas que alcanzan a tener un mayor efecto en la parte distal del intestino, mejorando los parámetros productivos y la salud intestinal de lechones destetos. El objetivo del proyecto fue evaluar el efecto de la inclusión de una butirina esterificada como alternativa a los antibióticos promotores de crecimiento en lechones destetos, en algunos parámetros productivos y de salud intestinal. En este estudio se seleccionaron 96 lechones de 21 días de edad y fueron asignados a tres tratamientos: un control negativo (CN) sin APC, ácidos orgánicos u óxido de zinc, un control positivo (CP), en el que se incluyó un antibiótico promotor de crecimiento (avilamicina 0,3kg/Ton) y el tratamiento de evaluación que consistió en adicionar una butirina esterificada (2kg/Ton) (CN+B), al control negativo. Los lechones fueron alimentados por 14 días. No se observaron diferencias estadísticamente significativas entre los tratamientos en los parámetros productivos. Sin embargo, el score de consistencia de las heces en los lechones tratados con butirinas esterificadas fue menor que en CP o el CN (p<0.05). El uso de butirinas esterificadas incrementó (p<0.05) la altura de la vellosidad en yeyuno e íleon, así como la relación altura de la vellosidad: profundidad de la cripta en íleon. Así mismo, la expresión de TNF-α en yeyuno fue mayor, mientras que la expresión de IL-6 disminuyó en íleon (p<0.05) en lechones alimentados con dietas suplementadas con butirinas. Se concluyó que las butirinas esterificadas pueden mejorar la función intestinal por su efecto en la morfología intestinal y la consistencia fecal. (Texto tomado de la fuente)spa
dc.description.abstractAntibiotic growth promoters have been used for years to improve growth performance and gut health, however, their excessive use has contributed to the increase in antimicrobial resistance in animals and humans, being a problem relevant to health. Consequently, there has been a tendency to look for new alternatives such as tributyrin or esterified butyrin that have a greater effect on the distal part of the intestine, improving the growth performance and gut health of weaned piglets. The objective of the project was to evaluate the effect of the inclusion of esterified butyrate as an alternative to antibiotic growth promoters in weaned piglets on some growth performance and gut health parameters. In this study, 96 piglets of 21 days of age were selected and allowed three treatments: a negative control (NC) without APC, organic acid, or zinc oxide, a positive control (PC), in which an antibiotic growth promoter was included (avilamycin 0.3kg/Ton), and the evaluation treatment which consisted of adding an esterified butyrate (2kg/Ton) (NC+B), to the negative control. The piglets were fed for 14 days. No statistically significant differences were observed between treatments in growth performance. However, the fecal consistency score in piglets treated with esterified butyrates was lower than in PC or NC (p<0.05). The use of esterified butyrines increased (p<0.05) the height of the villus in the jejunum and ileum, as well as the ratio of villus height: to crypt depth of the ileum. Likewise, the expression of TNF-α in the jejunum was higher, while the expression of IL-6 decreased in the ileum. Overall, esterified butyrates can improve intestinal function due to their effect on intestinal morphology and fecal consistency.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Salud Animal o Magíster en Producción Animalspa
dc.description.researchareaNutrición Animalspa
dc.format.extent106 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85679
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicina Veterinaria y de Zootecniaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animalspa
dc.relation.referencesAarestrup, F. (2012). Get pigs off antibiotics. Nature, 486, 465–466. https://doi.org/10.1038/486465a.spa
dc.relation.referencesAdewole, D. I., Kim, I. H., & Nyachoti, C. M. (2016). Gut health of pigs: Challenge models and response criteria with a critical analysis of the effectiveness of selected feed additives - A review. Asian-Australasian Journal of Animal Sciences, 29(7), 909–924. https://doi.org/10.5713/ajas.15.0795spa
dc.relation.referencesAllaire, J. M., Crowley, S. M., Law, H. T., Chang, S. Y., Ko, H. J., & Vallance, B. A. (2018). The Intestinal Epithelium: Central Coordinator of Mucosal Immunity. Trends in Immunology, 39(9), 677–696. https://doi.org/10.1016/j.it.2018.04.002spa
dc.relation.referencesAnee, I. J., Alam, S., Begum, R. A., Shahjahan, R. M., & Khandaker, A. M. (2021). The role of probiotics on animal health and nutrition. The Journal of Basic and Applied Zoology, 82(1). https://doi.org/10.1186/s41936-021-00250-xspa
dc.relation.referencesAslam, B., Wang, W., Arshad, M. I., Mohsin, K., Muzammil, S., Rasool, M. H., Nisar, M. A., Alvi, R. F., Aslam, M. A., Qamar, M. U., Salamat, M. K., & Baloch, Z. (2018). Antibiotic resistance: a rundown of a global crisis. Infection and Drug Resistance, 11, 1645–1658. https://doi.org/10.2147/IDR.S173867spa
dc.relation.referencesAubry, P., Thompson, J. L., Pasma, T., Furness, M. C., & Tataryn, J. (2017). Weight of the evidence linking feed to an outbreak of porcine epidemic diarrhea in Canadian swine herds. Journal of Swine Health and Production, 25(2), 69–72.spa
dc.relation.referencesAzad, M. A. K., Gao, J., Ma, J., Li, T., Tan, B., Huang, X., & Yin, J. (2020). Opportunities of prebiotics for the intestinal health of monogastric animals. Animal Nutrition, 6(4), 379–388. https://doi.org/10.1016/j.aninu.2020.08.001spa
dc.relation.referencesBischoff, S. C. (2011). “Gut health”: A new objective in medicine? BMC Medicine, 9. https://doi.org/10.1186/1741-7015-9-24spa
dc.relation.referencesBonetti, A., Tugnoli, B., Piva, A., & Grilli, E. (2021). Towards zero zinc oxide: Feeding strategies to manage post-weaning diarrhea in piglets. Animals, 11(3), 1–24. https://doi.org/10.3390/ani11030642spa
dc.relation.referencesBoudry, G., Péron, V., Le Huërou-Luron, I., Lallès, J. P., & Sève, B. (2004). Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. Journal of Nutrition, 134(9), 2256–2262. https://doi.org/10.1093/jn/134.9.2256spa
dc.relation.referencesBroom, L. J., & Kogut, M. H. (2018). Gut immunity: Its development and reasons and opportunities for modulation in monogastric production animals. Animal Health Research Reviews, 19(1), 46–52. https://doi.org/10.1017/S1466252318000026spa
dc.relation.referencesCampbell, J. M., Crenshaw, J. D., & Polo, J. (2013). The biological stress of early weaned piglets. Journal of Animal Science and Biotechnology, 4(1), 2–5. https://doi.org/10.1186/2049-1891-4-19spa
dc.relation.referencesCardinal, K. M., Pires, P. G. da S., & Ribeiro, A. M. L. R. (2020). Promotor de crescimento na produção de frangos e suínos. Pubvet, 14(3), 1–6. https://doi.org/10.31533/pubvet.v14n3a532.1-11spa
dc.relation.referencesCeli, P., Verlhac, V., Pérez Calvo, E., Schmeisser, J., & Kluenter, A. (2019). Biomarkers of gastrointestinal functionality in animal nutrition and health. Animal Feed Science and Technology, 250(July 2018), 9–31. https://doi.org/10.1016/j.anifeedsci.2018.07.012spa
dc.relation.referencesCera, K. R., Mahan, D. C., Cross, R. F., Reinhart, G. A., & Whitmoyer, R. E. (1988). Effect of age, weaning and postweaning diet on small intestinal growth and jejunal morphology in young swine. Journal of Animal Science, 66(2), 574–584. https://doi.org/10.2527/jas1988.662574xspa
dc.relation.referencesCox, E., Loos, M., Coddens, A., Devriendt, B., Melkebeek, V., Vanrompay, D., & Goddeeris, B. M. (2012). Post-weaning E. coli infections in pigs and importance of the immune system. Association Française de Médecine Vétérinaire Porcine, December, 1–13.spa
dc.relation.referencesCromwell, G. L. (2002). Why and how antibiotics are used in swine production. Animal Biotechnology, 13(1), 7–27. https://doi.org/10.1081/ABIO-120005767spa
dc.relation.referencesde Groot, N., Fariñas, F., Cabrera-Gómez, C. G., Pallares, F. J., & Ramis, G. (2021). Weaning causes a prolonged but transient change in immune gene expression in the intestine of piglets. Journal of Animal Science, 99(4), 1–12. https://doi.org/10.1093/jas/skab065spa
dc.relation.referencesDesiree, K., Mosimann, S., & Ebner, P. (2021). Efficacy of phage therapy in pigs: Systematic review and meta-analysis. Journal of Animal Science, 99(7), 1–11. https://doi.org/10.1093/jas/skab157spa
dc.relation.referencesDibner, J. J., & Buttin, P. (2002). Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. Journal of Applied Poultry Research, 11(4), 453–463. https://doi.org/10.1093/japr/11.4.453spa
dc.relation.referencesDuarte, M. E., & Kim, S. W. (2022). Intestinal microbiota and its interaction to intestinal health in nursery pigs. Animal Nutrition, 8(1), 169–184. https://doi.org/10.1016/j.aninu.2021.05.001spa
dc.relation.referencesDucatelle, R., Goossens, E., De Meyer, F., Eeckhaut, V., Antonissen, G., Haesebrouck, F., & Van Immerseel, F. (2018). Biomarkers for monitoring intestinal health in poultry: Present status and future perspectives. Veterinary Research, 49(1), 1–9. https://doi.org/10.1186/s13567-018-0538-6spa
dc.relation.referencesEurell, J. A. C. (2004). VETERINARY HISTOLOGY. Teton NewMedia.spa
dc.relation.referencesEwing, W. N. (2008). The Living gut (L. A. Tucker, Ed.; 2nd ed.). Nottingham University Press.spa
dc.relation.referencesFairbrother, J. M., & Nadeau, É. (2019). Colibacillosis. In J. J. Zimmerman, L. A. Karriker, A. Ramirez, K. J. Schwartz, G. W. Stevenson, & J. Zhang (Eds.), Diseases of Swine (Eleventh). John Wiley and Sons.spa
dc.relation.referencesFairbrother, J. M., Nadeau, É., & Gyles, C. L. (2005). Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Animal Health Research Reviews, 6(1), 17–39. https://doi.org/10.1079/ahr2005105spa
dc.relation.referencesFan, M. Z., Adeola, O., Asem, E. K., & King, D. (2002). Postnatal ontogeny of kinetics of porcine jejunal brush border membrane-bound alkaline phosphatase, aminopeptidase N and sucrase activities. Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology, 132(3), 599–607. https://doi.org/10.1016/S1095-6433(02)00102-2spa
dc.relation.referencesFreitag, M. (2009). Organic Acids ansd Salts Promote Performance and Health in Animal Husbandry. In C. Lückstädt (Ed.), Acidifiers in Animal Nutrition (First, pp. 1–85). Nottingham University Press.spa
dc.relation.referencesGarcía, G. R., Dogi, C. A., Ashworth, G. E., Berardo, D., Godoy, G., Cavaglieri, L. R., de Moreno de LeBlanc, A., & Greco, C. R. (2016). Effect of breast feeding time on physiological, immunological and microbial parameters of weaned piglets in an intensive breeding farm. Veterinary Immunology and Immunopathology, 176, 44–49. https://doi.org/10.1016/j.vetimm.2016.02.009spa
dc.relation.referencesGaskins, H. R., Collier, C. T., & Anderson, D. B. (2002). Antibiotics as growth promotants: Mode of action. Animal Biotechnology, 13(1), 29–42. https://doi.org/10.1081/ABIO-120005768spa
dc.relation.referencesGilani, S., Howarth, G. S., Kitessa, S. M., Tran, C. D., Forder, R. E. A., & Hughes, R. J. (2017). New biomarkers for increased intestinal permeability induced by dextran sodium sulphate and fasting in chickens. Journal of Animal Physiology and Animal Nutrition, 101(5), e237–e245. https://doi.org/10.1111/jpn.12596spa
dc.relation.referencesGrand View Research. (2022). Animal Feed Additives Market Size, Share & Trends Analysis Report by Product (Antibiotic, Vitamin, Antioxidant), By Livestock (Poultry, Pork, Cattle, Aquaculture), By Region, And Segment Forecasts, 2022 – 2030. https://www.grandviewresearch.com/industry-analysis/animal-feed-additives-marketspa
dc.relation.referencesGrashorn, M. A. (2010). Use of phytobiotics in broiler nutrition - An alternative to infeed antibiotics? Journal of Animal and Feed Sciences, 19(3), 338–347. https://doi.org/10.22358/jafs/66297/2010spa
dc.relation.referencesGresse, R., Durand, F. C., Dunière, L., Blanquet-Diot, S., & Forano, E. (2019). Microbiota composition and functional profiling throughout the gastrointestinal tract of commercial weaning piglets. Microorganisms, 7(9). https://doi.org/10.3390/microorganisms7090343spa
dc.relation.referencesGuarino, M. P. L., Altomare, A., Emerenziani, S., Di Rosa, C., Ribolsi, M., Balestrieri, P., Iovino, P., Rocchi, G., & Cicala, M. (2020). Mechanisms of action of prebiotics and their effects on gastro-intestinal disorders in adults. Nutrients, 12(4), 1–24. https://doi.org/10.3390/nu12041037spa
dc.relation.referencesHampson, D. J. (1986). Alterations in piglet small intestinal structure at weaning. Research in Veterinary Science, 40(1), 32–40. https://doi.org/10.1016/s0034-5288(18)30482-xspa
dc.relation.referencesHan, Y., Zhan, T., Tang, C., Zhao, Q., Dansou, D. M., Yu, Y., Barbosa, F. F., & Zhang, J. (2021). Effect of Replacing in-Feed Antibiotic Growth Promoters with a Combination of Egg Immunoglobulins and Phytomolecules on the Performance, Serum Immunity, and Intestinal Health of Weaned Pigs Challenged with Escherichia coli K88. Animals, 11(1292), 1–13. https://doi.org/10.3390/ani11051292spa
dc.relation.referencesHedemann, B., Højsgaard, S., & Jensen, B. (2003). Small intestinal morphology and activity of intestinal peptidases in piglets around weaning. J. Anim. Physiol. a. Anim. Nutr., 87, 32–41. https://doi.org/10.1046/j.1439-0396.2003.00405.xspa
dc.relation.referencesHu, C. H., Xiao, K., Luan, Z. S., & Song, J. (2013). Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. Journal of Animal Science, 91(3), 1094–1101. https://doi.org/10.2527/jas.2012-5796spa
dc.relation.referencesHung, Y. T., Hu, Q., Faris, R. J., Guo, J., Urriola, P. E., Shurson, G. C., Chen, C., & Saqui‐salces, M. (2020). Analysis of gastrointestinal responses revealed both shared and specific targets of zinc oxide and carbadox in weaned pigs. Antibiotics, 9(8), 1–17. https://doi.org/10.3390/antibiotics9080463spa
dc.relation.referencesHuting, A. M. S., Middelkoop, A., Guan, X., & Molist, F. (2021). Using nutritional strategies to shape the gastro-intestinal tracts of suckling and weaned piglets. Animals, 11(2), 1–37. https://doi.org/10.3390/ani11020402spa
dc.relation.referencesHuting, A. M. S., Middelkoop, A., Guan, X., & Molist, F. (2021). Using nutritional strategies to shape the gastro-intestinal tracts of suckling and weaned piglets. Animals, 11(2), 1–37. https://doi.org/10.3390/ani11020402spa
dc.relation.referencesKahn, L. H., Bergeron, G., Bourassa, M. W., De Vegt, B., Gill, J., Gomes, F., Malouin, F., Opengart, K., Ritter, G. D., Singer, R. S., Storrs, C., & Topp, E. (2019). From farm management to bacteriophage therapy: strategies to reduce antibiotic use in animal agriculture. Annals of the New York Academy of Sciences, 1441(1), 31–39. https://doi.org/10.1111/nyas.14034spa
dc.relation.referencesKerrola, K. (1995). Literature review: Isolation of essential oils and flavor compounds by dense carbon dioxide. Food Reviews International, 11(4), 547–573. https://doi.org/10.1080/87559129509541061spa
dc.relation.referencesKim, B., Shin, J., Guevarra, R. B., Lee, J. H., Kim, D. W., Seol, K. H., Lee, J. H., Kim, H. B., & Isaacson, R. E. (2017). Deciphering diversity indices for a better understanding of microbial communities. Journal of Microbiology and Biotechnology, 27(12), 2089–2093. https://doi.org/10.4014/jmb.1709.09027spa
dc.relation.referencesKim, J., Hansen, C., Mullan, B., & Pluske, J. (2012). Nutrition and pathology of weaner pigs: Nutritional strategies to support barrier function in the gastrointestinal tract. Animal Feed Science and Technology, 173(1–2), 3–16. https://doi.org/10.1016/j.anifeedsci.2011.12.022spa
dc.relation.referencesKim, K., He, Y., Jinno, C., Kovanda, L., Li, X., Song, M., & Liu, Y. (2021). Trace amounts of antibiotic exacerbated diarrhea and systemic inflammation of weaned pigs infected with a pathogenic Escherichia coli. Journal of Animal Science, 99(3), 1–13. https://doi.org/10.1093/jas/skab073spa
dc.relation.referencesKim, K., Song, M., Liu, Y., & Ji, P. (2022). Enterotoxigenic Escherichia coli infection of weaned pigs: Intestinal challenges and nutritional intervention to enhance disease resistance. Frontiers in Immunology, 13(885253), 1–15. https://doi.org/10.3389/fimmu.2022.885253spa
dc.relation.referencesKim, Y., Kil, D., Oh, H. K., & Han, I. K. (2005). Acidifier as an alternative material to antibiotics in animal feed. Asian-Australasian Journal of Animal Sciences, 18(7), 1048–1060. https://doi.org/10.5713/ajas.2005.1048spa
dc.relation.referencesKogut, M. H., & Arsenault, R. J. (2016). Editorial: Gut health: The new paradigm in food animal production. Frontiers in Veterinary Science, 3(AUG), 10–13. https://doi.org/10.3389/fvets.2016.00071spa
dc.relation.referencesLærke, H. N., & Hedemann, M. S. (2012). The digestive system of the pig. In K. E. B. Knudsen, N. J. Kjeldsen, H. D. Poulsen, & B. B. Jensen (Eds.), Nutritional physiology of pigs - Online Publication. ed. Videncenter for Svineproduktion.spa
dc.relation.referencesLallès, J. P., Bosi, P., Smidt, H., & Stokes, C. R. (2007). Weaning - A challenge to gut physiologists. Livestock Science, 108(1–3), 82–93. https://doi.org/10.1016/j.livsci.2007.01.091spa
dc.relation.referencesLanders, T. F., Cohen, B., Wittum, T. E., & Larson, E. L. (2012). A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Reports, 127(1), 4–22. https://doi.org/10.1177/003335491212700103spa
dc.relation.referencesLei, X. J., & Kim, I. H. (2018). Low dose of coated zinc oxide is as effective as pharmacological zinc oxide in promoting growth performance, reducing fecal scores, and improving nutrient digestibility and intestinal morphology in weaned pigs. Animal Feed Science and Technology, 245, 117–125. https://doi.org/10.1016/j.anifeedsci.2018.06.011spa
dc.relation.referencesLei, X. J., Liu, Z. Z., Park, J. H., & Kim, I. H. (2022). Novel zinc sources as antimicrobial growth promoters for monogastric animals: a review. Journal of Animal Science and Technology, 64(2), 187–196. https://doi.org/10.5187/jast.2022.e1spa
dc.relation.referencesLekagul, A., Tangcharoensathien, V., & Yeung, S. (2019). Patterns of antibiotic use in global pig production: A systematic review. Veterinary and Animal Science, 7(April). https://doi.org/10.1016/j.vas.2019.100058spa
dc.relation.referencesLiao, S. F., & Nyachoti, M. (2017). Using probiotics to improve swine gut health and nutrient utilization. Animal Nutrition, 3(4), 331–343. https://doi.org/10.1016/j.aninu.2017.06.007spa
dc.relation.referencesLi, J. (2017). Current status and prospects for in-feed antibiotics in the different stages of pork production - A review. Asian-Australasian Journal of Animal Sciences, 30(12), 1667–1673. https://doi.org/10.5713/ajas.17.0418spa
dc.relation.referencesLiu, X., Liu, Q., Cheng, Y., Liu, R., Zhao, R., Wang, J., Wang, Y., Yang, S., & Chen, A. (2022). Effect of Bacterial Resistance of Escherichia coli From Swine in Large-Scale Pig Farms in Beijing. Frontiers in Microbiology, 13(March), 1–12. https://doi.org/10.3389/fmicb.2022.820833spa
dc.relation.referencesLiu, Y., Espinosa, C. D., Abelilla, J. J., Casas, G. A., Lagos, L. V, Lee, S. A., Kwon, W. B., Mathai, J. K., Navarro, D. M. D. L., Jaworski, N. W., & Stein, H. H. (2018). Non-antibiotic feed additives in diets for pigs: A review. Animal Nutrition, 4(2), 113–125. https://doi.org/10.1016/j.aninu.2018.01.007spa
dc.relation.referencesLiu, Y., Song, M., Che, T. M., Lee, J. J., Bravo, D., Maddox, C. W., & Pettigrew, J. E. (2014). Dietary plant extracts modulate gene expression profiles in ileal mucosa of weaned pigs after an Escherichia coli infection. Journal of Animal Science, 92(5), 2050–2062. https://doi.org/10.2527/jas.2013-6422spa
dc.relation.referencesLourenco, J. M., Hampton, R. S., Johnson, H. M., Callaway, T. R., Jr, M. J. R., & Azain, M. J. (2021). The Effects of Feeding Antibiotic on the Intestinal Microbiota of Weanling Pigs. Frontiers in Veterinary Science, 8(March), 1–12. https://doi.org/10.3389/fvets.2021.601394spa
dc.relation.referencesLuppi, A. (2017). Swine enteric colibacillosis: Diagnosis, therapy and antimicrobial resistance. Porcine Health Management, 3, 1–18. https://doi.org/10.1186/s40813-017-0063-4spa
dc.relation.referencesMain, R. G., Dritz, S. S., Tokach, M. D., Goodband, R. D., & Nelssen, J. L. (2005). Effects of weaning age on growing-pig costs and revenue in a multi-site production system. Journal of Swine Health and Production, 13(4), 189–197.spa
dc.relation.referencesMair, K. H., Sedlak, C., Käser, T., Pasternak, A., Levast, B., Gerner, W., Saalmüller, A., Summerfield, A., Gerdts, V., Wilson, H., & Meurens, F. (2014). The porcine innate immune system: An update. January. https://doi.org/10.1016/j.dci.2014.03.022spa
dc.relation.referencesMarkowiak, P., & Ślizewska, K. (2018). The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathogens, 10(1), 1–20. https://doi.org/10.1186/s13099-018-0250-0spa
dc.relation.referencesMaron, D. F., Smith, T. J. S., & Nachman, K. E. (2013). Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey. Globalization and Health, 9(1). https://doi.org/10.1186/1744-8603-9-48spa
dc.relation.referencesMa, X. K., Shang, Q. H., Wang, Q. Q., Hu, J. X., & Piao, X. S. (2019). Comparative effects of enzymolytic soybean meal and antibiotics in diets on growth performance, antioxidant capacity, immunity, and intestinal barrier function in weaned pigs. Animal Feed Science and Technology, 248(July 2018), 47–58. https://doi.org/10.1016/j.anifeedsci.2018.12.003spa
dc.relation.referencesMing, D., Wang, W., Huang, C., Wang, Z., Shi, C., Ding, J., Liu, H., & Wang, F. (2021). Effects of weaning age at 21 and 28 days on growth performance, intestinal morphology and redox status in piglets. Animals, 11(8), 1–12. https://doi.org/10.3390/ani11082169spa
dc.relation.referencesModina, S. C., Aidos, L., Rossi, R., Pocar, P., Corino, C., & Di Giancamillo, A. (2021). Stages of gut development as a useful tool to prevent gut alterations in piglets. Animals, 11(5), 1–11. https://doi.org/10.3390/ani11051412spa
dc.relation.referencesMoeser, A. J., Pohl, C. S., & Rajput, M. (2017). Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Animal Nutrition, 3(4), 313–321. https://doi.org/10.1016/j.aninu.2017.06.003spa
dc.relation.referencesMohammadi Gheisar, M., & Kim, I. H. (2018). Phytobiotics in poultry and swine nutrition–a review. Italian Journal of Animal Science, 17(1), 92–99. https://doi.org/10.1080/1828051X.2017.1350120spa
dc.relation.referencesMo, K., Li, J., Liu, F., Xu, Y., Huang, X., & Ni, H. (2022). Superiority of Microencapsulated Essential Oils Compared With Common Essential Oils and Antibiotics: Effects on the Intestinal Health and Gut Microbiota of Weaning Piglet. Frontiers in Nutrition, 8(January), 1–14. https://doi.org/10.3389/fnut.2021.808106spa
dc.relation.referencesMurugesan, G. R., Ledoux, D. R., Naehrer, K., Berthiller, F., Applegate, T. J., Grenier, B., Phillips, T. D., & Schatzmayr, G. (2015). Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poultry Science, 94(6), 1298–1315. https://doi.org/10.3382/ps/pev075spa
dc.relation.referencesNazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6(12), 1451–1474. https://doi.org/10.3390/ph6121451spa
dc.relation.referencesNguyen, D. H., Seok, W. J., & Kim, I. H. (2020). Organic acids mixture as a dietary additive for pigs—a review. Animals, 10(6). https://doi.org/10.3390/ani10060952spa
dc.relation.referencesO’Connor, A. M., Anderson, K. M., Goodell, C. K., & Sargeant, J. M. (2014). Conducting Systematic Reviews of Intervention Questions I: Writing the Review Protocol, Formulating the Question and Searching the Literature. Zoonoses and Public Health, 61(SUPPL1), 28–38. https://doi.org/10.1111/zph.12125spa
dc.relation.referencesOIE. (2021). Annual Report on Antimicrobia Agents Intender for Use in Animals. In OIE.spa
dc.relation.referencesOlsen, K. M., Gabler, N. K., Rademacher, C. J., Schwartz, K. J., Schweer, W. P., Gourley, G. G., & Patience, J. F. (2018). The effects of group size and subtherapeutic antibiotic alternatives on growth performance and morbidity of nursery pigs: a model for feed additive evaluation 1. Translational Animal Science, 2, 298–310. https://doi.org/10.1093/tas/txy068spa
dc.relation.referencesOrganización Mundial de la Salud (OMS). 2019.AntimicrobialResistance. (Consultado en Noviembre 15 de 2019). [En línea]. Disponible en: https://www.who.int/antimicrobial-resistance/en/spa
dc.relation.referencesOmonijo, F. A., Ni, L., Gong, J., Wang, Q., Lahaye, L., & Yang, C. (2018). Essential oils as alternatives to antibiotics in swine production. Animal Nutrition, 4(2), 126–136. https://doi.org/10.1016/j.aninu.2017.09.001spa
dc.relation.referencesPage, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ, 372. https://doi.org/10.1136/bmj.n71spa
dc.relation.referencesPasick, J., Berhane, Y., Ojkic, D., Maxie, G., Embury-Hyatt, C., Swekla, K., Handel, K., Fairles, J., & Alexandersen, S. (2014). Investigation into the role of potentially contaminated feed as a source of the first-detected outbreaks of porcine epidemic diarrhea in Canada. Transboundary and Emerging Diseases, 61(5), 397–410. https://doi.org/10.1111/tbed.12269spa
dc.relation.referencesPearlin, B. V., Muthuvel, S., Govidasamy, P., Villavan, M., Alagawany, M., Ragab Farag, M., Dhama, K., & Gopi, M. (2020). Role of acidifiers in livestock nutrition and health: A review. Journal of Animal Physiology and Animal Nutrition, 104(2), 558–569. https://doi.org/10.1111/jpn.13282spa
dc.relation.referencesPeng, J., Tang, Y., & Huang, Y. (2021). Gut health: The results of microbial and mucosal immune interactions in pigs. Animal Nutrition, 7(2), 282–294. https://doi.org/10.1016/j.aninu.2021.01.001spa
dc.relation.referencesPeterson, E., & Kaur, P. (2018). Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in Microbiology, 9(NOV), 1–21. https://doi.org/10.3389/fmicb.2018.02928spa
dc.relation.referencesPluske, J. (2016). Invited review: Aspects of gastrointestinal tract growth and maturation in the pre- and postweaning period of pigs. Journal of Animal Science, 94(7), 399–411. https://doi.org/10.2527/jas2015-9767spa
dc.relation.referencesPluske, J., Le Dividich, J., & Verstegen, M. (2003). Weaning the pig – concepts and consequences. Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-513-0spa
dc.relation.referencesPluske, J. R., Kim, J. C., & Black, J. L. (2018). Manipulating the immune system for pigs to optimise performance. Animal Production Science, 58(4), 666–680. https://doi.org/10.1071/AN17598spa
dc.relation.referencesPluske, J., Turpin, D., & Kim, J. (2018). Gastrointestinal tract (gut) health in the young pig. Animal Nutrition, 4(2), 187–196. https://doi.org/10.1016/j.aninu.2017.12.004spa
dc.relation.referencesRuckman, L. A., Petry, A. L., Gould, S. A., & Patience, J. F. (2020). The impact of porcine spray-dried plasma protein and dried egg protein harvested from hyper-immunized hens, provided in the presence or absence of subtherapeutic levels of antibiotics in the feed, on growth and indicators of intestinal function and phys. Translational Animal Science, 1–16. https://doi.org/10.1093/tas/txaa095spa
dc.relation.referencesSaito, Y., Sato, T., Nomoto, K., & Tsuji, H. (2018). Identification of phenol- and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. FEMS Microbiology Ecology, 94(9). https://doi.org/10.1093/femsec/fiy125spa
dc.relation.referencesSan Andres, J. V., Mastromano, G. A., Li, Y., Tran, H., Bundy, J. W., Miller, P. S., & Burkey, T. E. (2019). The effects of prebiotics on growth performance and in vitro immune biomarkers in weaned pigs. Translational Animal Science, 3(4), 1315–1325. https://doi.org/10.1093/tas/txz129spa
dc.relation.referencesScholz-Ahrens, K. E., Schaafsma, G., Van den Heuvel, E. G. H. M., & Schrezenmeir, J. (2001). Effects of prebiotics on mineral metabolism. American Journal of Clinical Nutrition, 73(2 SUPPL.). https://doi.org/10.1093/ajcn/73.2.459sspa
dc.relation.referencesSilveira, R. F., Roque-Borda, C. A., & Vicente, E. F. (2021). Antimicrobial peptides as a feed additive alternative to animal production, food safety and public health implications: An overview. Animal Nutrition, 7(3), 896–904. https://doi.org/10.1016/j.aninu.2021.01.004spa
dc.relation.referencesSpreeuwenberg, M. A. M., Verdonk, J. M. A. J., Gaskins, H. R., & Verstegen, M. W. A. (2001). Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning. Journal of Nutrition, 131(5), 1520–1527. https://doi.org/10.1093/jn/131.5.1520spa
dc.relation.referencesStrimbu, K., & Tavel, J. A. (2010). What are biomarkers? Current Opinion in HIV and AIDS, 5(6), 463–466. https://doi.org/10.1097/COH.0b013e32833ed177spa
dc.relation.referencesSuiryanrayna, M. V. A. N., & Ramana, J. V. (2015). A review of the effects of dietary organic acids fed to swine. Journal of Animal Science and Biotechnology, 6(1), 1–11. https://doi.org/10.1186/s40104-015-0042-zspa
dc.relation.referencesSun, Y., & Kim, S. W. (2017). Intestinal challenge with enterotoxigenic Escherichia coli in pigs, and nutritional intervention to prevent postweaning diarrhea. Animal Nutrition, 3(4), 322–330. https://doi.org/10.1016/j.aninu.2017.10.001spa
dc.relation.referencesSu, W., Gong, T., Jiang, Z., Lu, Z., & Wang, Y. (2022). The Role of Probiotics in Alleviating Postweaning Diarrhea in Piglets From the Perspective of Intestinal Barriers. Frontiers in Cellular and Infection Microbiology, 12(May), 1–12. https://doi.org/10.3389/fcimb.2022.883107spa
dc.relation.referencesTariq, H., Sharma, A., Sarkar, S., Ojha, L., Pal, R. P., & Mani, V. (2020). Perspectives for rare earth elements as feed additive in livestock - A review. Asian-Australasian Journal of Animal Sciences, 33(3), 373–381. https://doi.org/10.5713/ajas.19.0242spa
dc.relation.referencesTiseo, K., Huber, L., Gilbert, M., Robinson, T. P., & Van Boeckel, T. P. (2020). Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics, 9(12), 1–14. https://doi.org/10.3390/antibiotics9120918spa
dc.relation.referencesTiseo, K., Huber, L., Gilbert, M., Robinson, T. P., & Van Boeckel, T. P. (2020). Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics, 9(12), 1–14. https://doi.org/10.3390/antibiotics9120918spa
dc.relation.referencesTugnoli, B., Giovagnoni, G., Piva, A., & Grilli, E. (2020a). From acidifiers to intestinal health enhancers: How organic acids can improve growth efficiency of pigs. Animals, 10(1), 1–18. https://doi.org/10.3390/ani10010134spa
dc.relation.referencesTugnoli, B., Piva, A., Sarli, G., & Grilli, E. (2020b). Tributyrin differentially regulates inflammatory markers and modulates goblet cells number along the intestinal tract segments of weaning pigs. Livestock Science, 234(October 2018), 103996. https://doi.org/10.1016/j.livsci.2020.103996spa
dc.relation.referencesValenzuela-Grijalva, N. V., Pinelli-Saavedra, A., Muhlia-Almazan, A., Domínguez-Díaz, D., & González-Ríos, H. (2017). Dietary inclusion effects of phytochemicals as growth promoters in animal production. Journal of Animal Science and Technology, 59(1), 1–17. https://doi.org/10.1186/s40781-017-0133-9spa
dc.relation.referencesVan Saun, R. J. (2013). Feeds for Camelids. In Llama and Alpaca Care: Medicine, Surgery, Reproduction, Nutrition, and Herd Health: First Edition (Issue 1). Elsevier Inc. https://doi.org/10.1016/B978-1-4377-2352-6.00010-9spa
dc.relation.referencesVentola, Lee. (2015). The Antibiotics Resistance Crisis Part 1: Causes and Threats. P&T, 40(4), 277–283.spa
dc.relation.referencesVerdile, N., Mirmahmoudi, R., Brevini, T. A. L., & Gandolfi, F. (2019). Evolution of pig intestinal stem cells from birth to weaning. Animal, 13(12), 2830–2839. https://doi.org/10.1017/S1751731119001319spa
dc.relation.referencesVerdonk, J. M. A. J. (2006). Nutritional strategy affects gut wall integrity in weaned piglets. Wageningen Institute for Animal Sciences.spa
dc.relation.referencesWelcome, M. (2018). Gastrointestinal physiology. Development, Principles and Mechanisms of Regulation. Springer US. https://doi.org/10.1007/978-3-319-91056-7spa
dc.relation.referencesWijtten, P., Meulen, J., & Verstegen, M. (2011a). Intestinal barrier function and absorption in pigs after weaning: A review. British Journal of Nutrition, 105(7), 967–981. https://doi.org/10.1017/S0007114510005660spa
dc.relation.referencesWijtten, P., Verstijnen, J., Van Kempen, T., Perdok, H., Gort, G., & Verstegen, M. (2011b). Lactulose as a marker of intestinal barrier function in pigs after weaning. Journal of Animal Science, 89(5), 1347–1357. https://doi.org/10.2527/jas.2010-3571spa
dc.relation.referencesXiao, H., Shao, F., Wu, M., Ren, W., Xiong, X., Tan, B., & Yin, Y. (2015). The application of antimicrobial peptides as growth and health promoters for swine. Journal of Animal Science and Biotechnology, 6(1), 1–6. https://doi.org/10.1186/s40104-015-0018-zspa
dc.relation.referencesXiao, H., Shao, F., Wu, M., Ren, W., Xiong, X., Tan, B., & Yin, Y. (2015). The application of antimicrobial peptides as growth and health promoters for swine. Journal of Animal Science and Biotechnology, 6(1), 1–6. https://doi.org/10.1186/s40104-015-0018-zspa
dc.relation.referencesXiong, X., Yang, H. S., Wang, X. C., Hu, Q., Liu, C. X., Wu, X., Deng, D., Hou, Y. Q., Nyachoti, C. M., Xiao, D. F., & Yin, Y. L. (2015). Effect of low dosage of chito-oligosaccharide supplementation on intestinal morphology, immune response, antioxidant capacity, and barrier function in weaned piglets. Journal of Animal Science, 93(3), 1089–1097. https://doi.org/10.2527/jas.2014-7851spa
dc.relation.referencesXu, B. C., Fu, J., Zhu, L. Y., Li, Z., Wang, Y. Z., & Jin, M. L. (2020). Overall assessment of antimicrobial peptides in piglets: a set of meta-analyses. Animal, 14(12), 2463–2471. https://doi.org/10.1017/S1751731120001640spa
dc.relation.referencesYan, H., Yu, B., Degroote, J., Spranghers, T., Van Noten, N., Majdeddin, M., Van Poucke, M., Peelman, L., De Vrieze, J., Boon, N., Gielen, I., Smet, S. De, Chen, D., & Michiels, J. (2020). Antibiotic affects the gut microbiota composition and expression of genes related to lipid metabolism and myofiber types in skeletal muscle of piglets. BMC Veterinary Research, 16(1), 1–12. https://doi.org/10.1186/s12917-020-02592-0spa
dc.relation.referencesYin, J., Li, F., Kong, X., Wen, C., Guo, Q., Zhang, L., Wang, W., Duan, Y., Li, T., Tan, Z., & Yin, Y. (2019). Dietary xylo-oligosaccharide improves intestinal functions in weaned piglets. Food and Function, 10(5), 2701–2709. https://doi.org/10.1039/c8fo02485espa
dc.relation.referencesYoo, B. B., & Mazmanian, S. K. (2017). The Enteric Network: Interactions between the Immune and Nervous Systems of the Gut. Immunity, 46(6), 910–926. https://doi.org/10.1016/j.immuni.2017.05.011spa
dc.relation.referencesŻbikowska, K., Michalczuk, M., & Dolka, B. (2020). The use of bacteriophages in the poultry industry. Animals, 10(5). https://doi.org/10.3390/ani10050872spa
dc.relation.referencesZhang, Z. F., & Kim, I. H. (2014). Effects of levan supplementation on growth performance, nutrient digestibility and fecal dry matter content in comparison to apramycin (antibacterial growth promoter) in weanling pigs. Livestock Science, 159, 71–74. https://doi.org/10.1016/j.livsci.2013.10.027spa
dc.relation.referencesZheng, L., Duarte, M. E., Sevarolli Loftus, A., & Kim, S. W. (2021). Intestinal Health of Pigs Upon Weaning: Challenges and Nutritional Intervention. Frontiers in Veterinary Science, 8(February), 1–18. https://doi.org/10.3389/fvets.2021.628258spa
dc.relation.referencesAl-Sadi, M., & Ma, T. Y. (2007). IL-1β Causes an Increase in Intestinal Epithelial Tight Junction Permeability. J Immunol., 178(7), 4641–4649.spa
dc.relation.referencesAmerican Association Swine Veterinarian. (2016). On-Farm Euthanasia. In Pork Checkoff.spa
dc.relation.referencesAndrews, C., McLean, M. H., & Durum, S. K. (2018). Cytokine tuning of intestinal epithelial function. Frontiers in Immunology, 9(JUN). https://doi.org/10.3389/fimmu.2018.01270spa
dc.relation.referencesAOAC. (2006). Official Methods of Analysis of AOAC INTERNATIONAL. Aoac, February.spa
dc.relation.referencesBarba-Vidal, E., Roll, V. F. B., Castillejos, L., Guerra-Ordaz, A. A., Manteca, X., Mallo, J. J., & Martín-Orúe, S. M. (2017). Response to a Salmonella Typhimurium challenge in piglets supplemented with protected sodium butyrate or Bacillus licheniformis: Effects on performance, intestinal health and behavior. Translational Animal Science, 1(2), 186–200. https://doi.org/10.2527/tas2017.0021spa
dc.relation.referencesBedford, A., & Gong, J. (2018). Implications of butyrate and its derivatives for gut health and animal production. Animal Nutrition, 4(2), 151–159. https://doi.org/10.1016/j.aninu.2017.08.010spa
dc.relation.referencesBoudry, G., Péron, V., Le Huërou-Luron, I., Lallès, J. P., & Sève, B. (2004). Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. Journal of Nutrition, 134(9), 2256–2262. https://doi.org/10.1093/jn/134.9.2256spa
dc.relation.referencesCao, S. T., Wang, C. C., Wu, H., Zhang, Q. H., Jiao, L. F., & Hu, C. H. (2018). Weaning disrupts intestinal antioxidant status, impairs intestinal barrier and mitochondrial function, and triggers mitophagy in piglets. Journal of Animal Science, 96(3), 1073–1083. https://doi.org/10.1093/jas/skx062spa
dc.relation.referencesCasas, G. A., Blavi, L., Cross, T. W. L., Lee, A. H., Swanson, K. S., & Stein, H. H. (2020). Inclusion of the direct-fed microbial Clostridium butyricum in diets for weanling pigs increases growth performance and tends to increase villus height and crypt depth, but does not change intestinal microbial abundance. Journal of Animal Science, 98(1), 1–12. https://doi.org/10.1093/jas/skz372spa
dc.relation.referencesCuff, M. A., Lambert, D. W., & Shirazi-Beechey, S. P. (2002). Substrate-induced regulation of the human colonic monocarboxylate transporter, MCT1. Journal of Physiology, 539(2), 361–371. https://doi.org/10.1113/jphysiol.2001.014241spa
dc.relation.referencesde Groot, N., Fariñas, F., Cabrera-Gómez, C. G., Pallares, F. J., & Ramis, G. (2021). Weaning causes a prolonged but transient change in immune gene expression in the intestine of piglets. Journal of Animal Science, 99(4), 1–12. https://doi.org/10.1093/jas/skab065spa
dc.relation.referencesDell’anno, M., Reggi, S., Caprarulo, V., Hejna, M., Rossi, C. A. S., Callegari, M. L., Baldi, A., & Rossi, L. (2021). Evaluation of tannin extracts, leonardite and tributyrin supplementation on diarrhoea incidence and gut microbiota of weaned piglets. Animals, 11(6). https://doi.org/10.3390/ani11061693spa
dc.relation.referencesDonovan, J. D., Bauer, L., Fahey, G. C., & Lee, Y. (2017). In Vitro Digestion and Fermentation of Microencapsulated Tributyrin for the Delivery of Butyrate. Journal of Food Science, 82(6), 1491–1499. https://doi.org/10.1111/1750-3841.13725spa
dc.relation.referencesDroessler, L., Cornelius, V., Markov, A. G., & Amasheh, S. (2021). Tumor necrosis factor alpha effects on the porcine intestinal epithelial barrier include enhanced expression of TNF receptor 1. International Journal of Molecular Sciences, 22(16). https://doi.org/10.3390/ijms22168746spa
dc.relation.referencesDucatelle, R., Goossens, E., De Meyer, F., Eeckhaut, V., Antonissen, G., Haesebrouck, F., & Van Immerseel, F. (2018). Biomarkers for monitoring intestinal health in poultry: Present status and future perspectives. Veterinary Research, 49(1), 1–9. https://doi.org/10.1186/s13567-018-0538-6spa
dc.relation.referencesFairbrother, J. M., Nadeau, É., & Gyles, C. L. (2005). Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Animal Health Research Reviews, 6(1), 17–39. https://doi.org/10.1079/ahr2005105spa
dc.relation.referencesFang, C. L., Sun, H., Wu, J., Niu, H. H., & Feng, J. (2014). Effects of sodium butyrate on growth performance, haematological and immunological characteristics of weanling piglets. Journal of Animal Physiology and Animal Nutrition, 98(4), 680–685. https://doi.org/10.1111/jpn.12122spa
dc.relation.referencesFeng, W., Wu, Y., Chen, G., Fu, S., Li, B., Huang, B., Wang, D., Wang, W., & Liu, J. (2018). Sodium Butyrate Attenuates Diarrhea in Weaned Piglets and Promotes Tight Junction Protein Expression in Colon in a GPR109A-Dependent Manner. Cellular Physiology and Biochemistry, 47(4), 1617–1629. https://doi.org/10.1159/000490981spa
dc.relation.referencesGhosh, S., Whitley, C. S., Haribabu, B., & Jala, V. R. (2021). Regulation of Intestinal Barrier Function by Microbial Metabolites. Celullar and Molecular Gastroenterology and Hepatology, 11(5), 1463–1482. https://doi.org/10.1016/j.jcmgh.2021.02.007spa
dc.relation.referencesGitter, A. H., Bendfeldt, K., Schulzke, J.-D., & Fromm, M. (2000). Leaks in the epithelial barrier caused by spontaneous and TNF‐α‐induced single‐cell apoptosis. The FASEB Journal, 14(12), 1749–1753. https://doi.org/10.1096/fj.99-0898comspa
dc.relation.referencesGresse, R., Durand, F. C., Dunière, L., Blanquet-Diot, S., & Forano, E. (2019). Microbiota composition and functional profiling throughout the gastrointestinal tract of commercial weaning piglets. Microorganisms, 7(9). https://doi.org/10.3390/microorganisms7090343spa
dc.relation.referencesGrilli, E., Tugnoli, B., Foerster, C. J., & Piva, A. (2016). Butyrate modulates inflammatory cytokines and tight junctions components along the gut of weaned pigs. Journal of Animal Science, 94(7), 433–436. https://doi.org/10.2527/jas2015-9787spa
dc.relation.referencesGuilloteau, P., Martin, L., Eeckhaut, V., Ducatelle, R., Zabielski, R., & Van Immerseel, F. (2010). From the gut to the peripheral tissues: The multiple effects of butyrate. Nutrition Research Reviews, 23(2), 366–384. https://doi.org/10.1017/S0954422410000247spa
dc.relation.referencesGu, Y., Song, Y., Yin, H., Lin, S., Zhang, X., Che, L., Lin, Y., Xu, S., Feng, B., Wu, D., & Fang, Z. (2017). Dietary supplementation with tributyrin prevented weaned pigs from growth retardation and lethal infection via modulation of inflammatory cytokines production, ileal expression, and intestinal acetate fermentation. Journal of Animal Science, 95(1), 226. https://doi.org/10.2527/jas2016.0911spa
dc.relation.referencesHamer, H. M., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F. J., & Brummer, R. J. (2008). Review article: The role of butyrate on colonic function. Alimentary Pharmacology and Therapeutics, 27(2), 104–119. https://doi.org/10.1111/j.1365-2036.2007.03562.xspa
dc.relation.referencesHan, Y., Zhao, Q., Tang, C., Li, Y., Zhang, K., Li, F., & Zhang, J. (2020). Butyrate Mitigates Weanling Piglets From Lipopolysaccharide-Induced Colitis by Regulating Microbiota and Energy Metabolism of the Gut–Liver Axis. Frontiers in Microbiology, 11(December). https://doi.org/10.3389/fmicb.2020.588666spa
dc.relation.referencesHeo, J. M., Opapeju, F. O., Pluske, J. R., Kim, J. C., Hampson, D. J., & Nyachoti, C. M. (2013). Gastrointestinal health and function in weaned pigs: A review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. Journal of Animal Physiology and Animal Nutrition, 97(2), 207–237. https://doi.org/10.1111/j.1439-0396.2012.01284.xspa
dc.relation.referencesHuang, C., Song, P., Fan, P., Hou, C., Thacker, P., & Ma, X. (2015). Dietary sodium butyrate decreases postweaning diarrhea by modulating intestinal permeability and changing the bacterial communities in weaned piglets. Journal of Nutrition, 145(12), 2774–2780. https://doi.org/10.3945/jn.115.217406spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas y certificación. ICONTEC. (2005). Microbiología de alimentos para animales, Prepearación de muestars para ensayo, suspensión inicial y diluciones decimales para análisis microbiológico. Parte 1. Reglas generales para la preparación de la suspensión inicial y de diluciones decimales-NTC-4491-1.spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas y certificación. ICONTEC. (2018). Microbiología de alimentos para animales. Método horizontal para el recuento de coliformes o Escherichia coli o ambos. Técnicas de recuento de colonias utilizando medios fluorogénicos o cromogénicos.spa
dc.relation.referencesIji, P. A., Saki, A., & Tivey, D. R. (2001). Body and intestinal growth of broiler chicks on a commercial starter diet. 1. Intestinal weight and mucosal development. British Poultry Science, 42(4), 505–513. https://doi.org/10.1080/00071660120073151spa
dc.relation.referencesItza-Ortiz, M., Quezada-Casasola, A., Castillo-Castillo, Y., Rodríguez-Galindo, E., Carrera-Chávez, J. M., Martín-Orozco, U., Jaramillo-López, E., & Calzada-Nieves, A. (2018). Comparison of three sampling procedures for evaluating intestinal villi: A swine model. Revista Colombiana de Ciencias Pecuarias, 31(1), 3–9. https://doi.org/10.17533/udea.rccp.v31n1a01spa
dc.relation.referencesKim, B.G., & Lindemann, M.D. (2007). A spreadsheet method for experimental animal allotment.spa
dc.relation.referencesKruse, R., Essén-Gustavsson, B., Fossum, C., & Jensen-Waern, M. (2008). Blood concentrations of the cytokines IL-1beta, IL-6, IL-10, TNF-alpha and IFN-gamma during experimentally induced swine dysentery. Acta Veterinaria Scandinavica, 50(1). https://doi.org/10.1186/1751-0147-50-32spa
dc.relation.referencesKuhn, K. A., Manieri, N. A., Liu, T. C., & Stappenbeck, T. S. (2014). IL-6 stimulates intestinal epithelial proliferation and repair after injury. PLoS ONE, 9(12), 1–18. https://doi.org/10.1371/journal.pone.0114195spa
dc.relation.referencesKuhn, K. A., Schulz, H. M., Regner, E. H., Severs, E. L., Hendrickson, J. D., Gaurav, M., Whitney, A. K., Neha Ohri, D. I., Robertson, C. E., Frank, D. N., Campbell, E. L., & Colgan, S. P. (2018). Bacteroidales recruit IL-6 producing intraepithelial lymphocytes in the colon to promote barrierspa
dc.relation.referencesLallès, J. P., & Montoya, C. A. (2021). Dietary alternatives to in-feed antibiotics, gut barrier function and inflammation in piglets post-weaning: Where are we now? In Animal Feed Science and Technology (Vol. 274). Elsevier B.V. https://doi.org/10.1016/j.anifeedsci.2021.114836spa
dc.relation.referencesLe Gall, M., Gallois, M., Sève, B., Louveau, I., Holst, J. J., Oswald, I. P., Lallès, J. P., & Guilloteau, P. (2009). Comparative effect of orally administered sodium butyrate before or after weaning on growth and several indices of gastrointestinal biology of piglets. British Journal of Nutrition, 102(9), 1285–1296. https://doi.org/10.1017/S0007114509990213spa
dc.relation.referencesLei, X. J., & Kim, I. H. (2018). Low dose of coated zinc oxide is as effective as pharmacological zinc oxide in promoting growth performance, reducing fecal scores, and improving nutrient digestibility and intestinal morphology in weaned pigs. Animal Feed Science and Technology, 245, 117–125. https://doi.org/10.1016/j.anifeedsci.2018.06.011spa
dc.relation.referencesLeppkes, M., Roulis, M., Neurath, M. F., Kollias, G., & Becker, C. (2014). Pleiotropic functions of TNF-α in the regulation of the intestinal epithelial response to inflammation. International Immunology, 26(9), 509–515. https://doi.org/10.1093/intimm/dxu051spa
dc.relation.referencesLimbach, J. R. (2020). Reducing Crude Protein Levels in Diets Fed To Young Pigs To Optimize. 133. https://nutrition.ansci.illinois.edu/sites/nutrition.ansci.illinois.edu/files/LIMBACH-THESIS-2020.pdfspa
dc.relation.referencesLin, F., Li, X., Wen, J., Wang, C., Peng, Y., Feng, J., & Hu, C. (2020). Effects of coated sodium butyrate on performance, diarrhea, intestinal microflora and barrier function of pigs during the first 2-week post-weaning. Animal Feed Science and Technology, 263(866), 114464. https://doi.org/10.1016/j.anifeedsci.2020.114464spa
dc.relation.referencesLiu, D., Zong, E. Y., Huang, P. F., Yang, H. S., Yan, S. L., Li, J. Z., Li, Y. L., Ding, X. Q., He, S. P., Xiong, X., & Yin, Y. L. (2019). The effects of dietary sulfur amino acids on serum biochemical variables, mucosal amino acid profiles, and intestinal inflammation in weaning piglets. Livestock Science, 220, 32–36. https://doi.org/https://doi.org/10.1016/j.livsci.2018.12.013spa
dc.relation.referencesLiu, P., Piao, X. S., Thacker, P. A., Zeng, Z. K., Li, P. F., Wang, D., & Kim, S. W. (2010). Chito-oligosaccharide reduces diarrhea incidence and attenuates the immune response of weaned pigs challenged with Escherichia coli K88. Journal of Animal Science, 88(12), 3871–3879. https://doi.org/10.2527/jas.2009-2771spa
dc.relation.referencesLiu, W., Yuan, C., Meng, X., Du, Y., Gao, R., Tang, J., & Shi, D. (2014). Frequency of virulence factors in Escherichia coli isolated from suckling pigs with diarrhoea in China. Veterinary Journal, 199(2), 286–289. https://doi.org/10.1016/j.tvjl.2013.11.019spa
dc.relation.referencesLu, J. J., Zou, X. T., & Wang, Y. M. (2008). Effects of sodium butyrate on the growth performance, intestinal microflora and morphology of weanling pigs. Journal of Animal and Feed Sciences, 17(4), 568–578. https://doi.org/10.22358/jafs/66685/2008spa
dc.relation.referencesManeewan, C., Yamauchi, K. en, Mekbungwan, A., Nakano, T., Fukuta, K., Kashimura, J., Mizu, M., Kawai, T., & Nakagawa, J. (2012). Histological alterations of intestinal villi and epithelial cells after feeding dietary sugar cane extract in piglets. Italian Journal of Animal Science, 11(3), 236–241. https://doi.org/10.4081/ijas.2012.e43spa
dc.relation.referencesMa, X., Fan, P. X., Li, L. S., Qiao, S. Y., Zhang, G. L., & Li, D. F. (2012). Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions. Journal of Animal Science, 90(SUPPL4), 266–268. https://doi.org/10.2527/jas.50965spa
dc.relation.referencesMcCormack, U. M., Curião, T., Buzoianu, S. G., Prieto, M. L., Ryan, T., Varley, P., Crispie, F., Magowan, E., Metzler-Zebeli, B. U., Berry, D., O’Sullivan, O., Cotter, P. D., Gardiner, G. E., & Lawlor, P. G. (2017). Exploring a possible link between the intestinal microbiota and feed efficiency in pigs. Applied and Environmental Microbiology, 83(15). https://doi.org/10.1128/AEM.00380-17spa
dc.relation.referencesMelaku, M., Zhong, R., Han, H., Wan, F., Yi, B., & Zhang, H. (2021). Butyric and citric acids and their salts in poultry nutrition: Effects on gut health and intestinal microbiota. International Journal of Molecular Sciences, 22(19). https://doi.org/10.3390/ijms221910392spa
dc.relation.referencesMing, D., Wang, W., Huang, C., Wang, Z., Shi, C., Ding, J., Liu, H., & Wang, F. (2021). Effects of weaning age at 21 and 28 days on growth performance, intestinal morphology and redox status in piglets. Animals, 11(8), 1–12. https://doi.org/10.3390/ani11082169spa
dc.relation.referencesMontagne, L., Boundry, G., Favier, C., Le Huerou-Luron, I., Lallès, J. P., & Sève, B. (2007). Main intestinal markers associated with the changes in gut architecture and function in piglets after weaning. British Journal of Nutrition, 97(1), 45–57. https://doi.org/10.1017/S000711450720580Xspa
dc.relation.referencesMurray, R. L., Zhang, W., Iwaniuk, M., Grilli, E., & Stahl, C. H. (2018). Dietary tributyrin, an HDAC inhibitor, promotes muscle growth through enhanced terminal differentiation of satellite cells. Physiological Reports, 6(10), 1–11. https://doi.org/10.14814/phy2.13706spa
dc.relation.referencesNabuurs, M. J. A., Hoogendoorn, A., Van Der Molen, E. J., & Van Osta, A. L. M. (1993). Villus height and crypt depth in weaned and unweaned pigs, reared under various circumstances in the Netherlands. Research in Veterinary Science, 55(1), 78–84. https://doi.org/10.1016/0034-5288(93)90038-Hspa
dc.relation.referencesNamkung, H., Yu, H., Gong, J., & Leeson, S. (2011). Antimicrobial activity of butyrate glycerides toward salmonella typhimurium and clostridium perfringens. Poultry Science, 90(10), 2217–2222. https://doi.org/10.3382/ps.2011-01498spa
dc.relation.referencesO’Shea, C. J., McAlpine, P., Sweeney, T., Varley, P. F., & O’Doherty, J. V. (2014). Effect of the interaction of seaweed extracts containing laminarin and fucoidan with zinc oxide on the growth performance, digestibility and faecal characteristics of growing piglets. British Journal of Nutrition, 111(5), 798–807. https://doi.org/10.1017/S0007114513003280spa
dc.relation.referencesÖztürk, E., & Temiz, U. (2018). Encapsulation Methods and Use in Animal Nutrition. Selcuk Journal of Agricultural and Food Sciences, 32(3), 624–631. https://doi.org/10.15316/sjafs.2018.145spa
dc.relation.referencesPeng, L., Zhong-Rong, L., Green, R. S., Holzman, I. R., & Lin, J. (2009). Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers. The Journal of Nutrition, 139, 1619–1625. https://doi.org/10.3945/jn.109.104638spa
dc.relation.referencesPIC. (2022). PIC® Nutrition and Feeding Guidelines. MetricVersion 2022.10.20. In https:/ /www.pic.com/ resources/nutritionspa
dc.relation.referencesPié, S., Lallès, J. P., Blazy, F., Laffitte, J., Sève, B., & Oswald, I. P. (2004). Weaning Is Associated with an Upregulation of Expression of Inflamatory Cytokines in the Intestine of Piglets. Journal of Nutrition, 134(3), 641–647. https://doi.org/10.1093/jn/134.3.641spa
dc.relation.referencesPiva, A., Prandini, A., Fiorentini, L., Morlacchini, M., Galvano, F., & Luchansky, J. B. (2002). Tributyrin and lactitol synergistically enhanced the trophic status of the intestinal mucosa and reduced histamine levels in the gut of nursery pigs. Journal of Animal Science, 80(3), 670–680. https://doi.org/10.2527/2002.803670xspa
dc.relation.referencesPluske, J. R., Williams, I. H., & Aherne, F. X. (1996). Villous height and crypt depth in piglets in response to increases in the intake of cows’ milk after weaning. Animal Science, 62(1), 145–158. https://doi.org/10.1017/S1357729800014429spa
dc.relation.referencesRhouma, M., Fairbrother, J. M., Beaudry, F., & Letellier, A. (2017). Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies. Acta Veterinaria Scandinavica, 59(1), 1–19. https://doi.org/10.1186/s13028-017-0299-7spa
dc.relation.referencesRio, D. C., Ares, M., Hannon, G. J., & Nilsen, T. W. (2010). Purification of RNA using TRIzol (TRI Reagent). Cold Spring Harbor Protocols, 5(6), 2010–2013. https://doi.org/10.1101/pdb.prot5439spa
dc.relation.referencesSalvi, P. S., & Cowles, R. A. (2021). Butyrate and the intestinal epithelium: Modulation of proliferation and inflammation in homeostasis and disease. Cells, 10(7). https://doi.org/10.3390/cells10071775spa
dc.relation.referencesSegain, J. P., Galmiche, J. P., Raingeard De La Blétière, D., Bourreille, A., Leray, V., Gervois, N., Rosales, C., Ferrier, L., Bonnet, C., & Blottière, H. M. (2000). Butyrate inhibits inflammatory responses through NFκB inhibition: Implications for Crohn’s disease. Gut, 47(3), 397–403. https://doi.org/10.1136/gut.47.3.397spa
dc.relation.referencesShifflett, D. E., Bottone, F. G., Young, K. M., Moeser, A. J., Jones, S. L., & Blikslager, A. T. (2004). Neutrophils augment recovery of porcine ischemia-injured ileal mucosa by an IL-1-and COX-2-dependent mechanism. Am J Physiol Gastroi-Ntest Liver Physiol, 287, 50–57. https://doi.org/10.1152/ajpgi.00076.2003.-Polymorphonuclearspa
dc.relation.referencesSotira, S., Dell’Anno, M., Caprarulo, V., Hejna, M., Pirrone, F., Callegari, M. L., Tucci, T. V., & Rossi, L. (2020). Effects of tributyrin supplementation on growth performance, insulin, blood metabolites and gut microbiota in weaned piglets. Animals, 10(4). https://doi.org/10.3390/ani10040726spa
dc.relation.referencesSun, Y., & Kim, S. W. (2017). Intestinal challenge with enterotoxigenic Escherichia coli in pigs, and nutritional intervention to prevent postweaning diarrhea. Animal Nutrition, 3(4), 322–330. https://doi.org/10.1016/j.aninu.2017.10.001spa
dc.relation.referencesSuzuki, T. (2020). Regulation of the intestinal barrier by nutrients: The role of tight junctions. Animal Science Journal, 91(1), 1–12. https://doi.org/10.1111/asj.13357spa
dc.relation.referencesThermo Fisher Scientific. (2016). TRIzol Reagent User Guide - Pub. no. MAN0001271 - Rev. A.0. User Guide, 15596018(15596026), 1–6.spa
dc.relation.referencesTugnoli, B., Giovagnoni, G., Piva, A., & Grilli, E. (2020a). From acidifiers to intestinal health enhancers: How organic acids can improve growth efficiency of pigs. Animals, 10(1), 1–18. https://doi.org/10.3390/ani10010134spa
dc.relation.referencesTugnoli, B., Piva, A., Sarli, G., & Grilli, E. (2020b). Tributyrin differentially regulates inflammatory markers and modulates goblet cells number along the intestinal tract segments of weaning pigs. Livestock Science, 234(October 2018), 103996. https://doi.org/10.1016/j.livsci.2020.103996spa
dc.relation.referencesWang, C., Cao, S., Shen, Z., Hong, Q., Feng, J., Peng, Y., & Hu, C. (2019a). Effects of dietary tributyrin on intestinal mucosa development, mitochondrial function and AMPK-mTOR pathway in weaned pigs. Journal of Animal Science and Biotechnology, 10(1), 1–10. https://doi.org/10.1186/s40104-019-0394-xspa
dc.relation.referencesWang, C., Shen, Z., Cao, S., Zhang, Q., Peng, Y., Hong, Q., Feng, J., & Hu, C. (2019b). Effects of tributyrin on growth performance, intestinal microflora and barrier function of weaned pigs. Animal Feed Science and Technology, 258(866), 114311. https://doi.org/10.1016/j.anifeedsci.2019.114311spa
dc.relation.referencesWick, M. R. (2008). Diagnostic Histochemistry Pathology. Cambridge University Press.spa
dc.relation.referencesXiong, X., Tan, B., Song, M., Ji, P., Kim, K., Yin, Y., & Liu, Y. (2019). Nutritional intervention for the intestinal development and health of weaned pigs. Frontiers in Veterinary Science, 6(FEB), 1–14. https://doi.org/10.3389/fvets.2019.00046spa
dc.relation.referencesYang, Q., Huang, X., Wang, P., Yan, Z., Sun, W., Zhao, S., & Gun, S. (2019). Longitudinal development of the gut microbiota in healthy and diarrheic piglets induced by age-related dietary changes. MicrobiologyOpen, 8(12), 1–17. https://doi.org/10.1002/mbo3.923spa
dc.relation.referencesZhai, H., Ren, W., Wang, S., Wu, J., Guggenbuhl, P., & Kluenter, A. M. (2017). Growth performance of nursery and grower-finisher pigs fed diets supplemented with benzoic acid. Animal Nutrition, 3(3), 232–235. https://doi.org/10.1016/j.aninu.2017.05.001spa
dc.relation.referencesZhang, W., Zhao, M., Ruesch, L., Omot, A., & Francis, D. (2007). Prevalence of virulence genes in Escherichia coli strains recently isolated from young pigs with diarrhea in the US. Veterinary Microbiology, 123(1–3), 145–152. https://doi.org/10.1016/j.vetmic.2007.02.018spa
dc.relation.referencesZheng, L., Kelly, C. J., Battista, K. D., Schaefer, R., Lanis, J. M., Alexeev, E. E., Wang, R. X., Onyiah, J. C., Kominsky, D. J., & Colgan, S. P. (2017). Microbial-Derived Butyrate Promotes Epithelial Barrier Function through IL-10 Receptor–Dependent Repression of Claudin-2. The Journal of Immunology, 199(8), 2976–2984. https://doi.org/10.4049/jimmunol.1700105spa
dc.relation.referencesZhong, X., Zhang, Z., Wang, S., Cao, L., Zhou, L., Sun, A., Zhong, Z., & Nabben, M. (2019). Microbial-driven butyrate regulates jejunal homeostasis in piglets during the weaning stage. Frontiers in Microbiology, 10(JAN), 1–18. https://doi.org/10.3389/fmicb.2018.03335spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animalspa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decsSulfato de Butirosinaspa
dc.subject.decsButirosin Sulfateeng
dc.subject.decsAntibacterianosspa
dc.subject.decsAnti-Bacterial agentseng
dc.subject.decsBiomarcadores farmacológicosspa
dc.subject.decsBiomarkers, pharmacologicaleng
dc.subject.lembProducción animalspa
dc.subject.lembAnimal husbandryeng
dc.subject.lembLechones lactantes - Saludspa
dc.subject.lembBaby pigs - Healtheng
dc.subject.lembEtapas del desarrollo animalspa
dc.subject.lembAnimal developmental stageseng
dc.subject.proposalAntibióticos promotores de crecimientospa
dc.subject.proposalButirinasspa
dc.subject.proposalBiomarcadoresspa
dc.subject.proposalCitoquinasspa
dc.subject.proposalEscherichia colispa
dc.subject.proposalVellosidadspa
dc.subject.proposalLechones destetosspa
dc.subject.proposalGrowth promoting antibioticseng
dc.subject.proposalTributyrineng
dc.subject.proposalBiomarkerseng
dc.subject.proposalCytokineseng
dc.subject.proposalEscherichia colieng
dc.subject.proposalVilluseng
dc.subject.proposalWeaned pigseng
dc.titleEfecto del reemplazo de antibióticos promotores de crecimiento por una butirina esterificada en dietas de preiniciación en el rendimiento productivo y algunos parámetros de salud intestinal de lechones destetados a 21 díasspa
dc.title.translatedEffect of replacing antibiotic growth promoters with tributyrin in pre-starter diets on growth performance and some intestinal health parameters of weaned pigletseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEfecto del reemplazo de antibióticos promotores de crecimiento por una butirina esterificada en dietas de preiniciación en el rendimiento productivo y algunos parámetros de salud intestinal de lechones destetados a 21 díasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020783128.2023.pdf
Tamaño:
2.05 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Salud y Producción Animal

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: