Descripción del panorama mutacional de 50 genes en algunos tipos de cáncer presentes en población antioqueña a través de Secuenciación de Próxima Generación
dc.contributor.advisor | Hernández Ortiz, Juan Pablo | |
dc.contributor.author | Moreno López, Isabel | |
dc.contributor.cvlac | Isabel Moreno López | |
dc.contributor.orcid | Moreno López, Isabel [0000-0003-2258-4724] | |
dc.contributor.orcid | Hernández Ortiz. Juan Pablo [0000-0003-0404-9947] | |
dc.contributor.researchgate | https://www.researchgate.net/profile/Isabel-Moreno-Lopez-2?ev=hdr_xprf | |
dc.contributor.researchgroup | Crs-Tid Center for Research and Surveillance of Tropical and Infectious Diseases | |
dc.coverage.region | Antioquia (Colombia) | |
dc.date.accessioned | 2025-08-26T21:58:21Z | |
dc.date.available | 2025-08-26T21:58:21Z | |
dc.date.issued | 2025 | |
dc.description | Ilustraciones | spa |
dc.description.abstract | El análisis mutacional de tumores se ha convertido en una herramienta fundamental para el diagnóstico, tratamiento y seguimiento del cáncer. Las tecnologías de Secuenciación de Próxima Generación (NGS) han permitido obtener información detallada sobre las mutaciones y variantes presentes en los tumores, impulsando el desarrollo de la medicina de precisión. Sin embargo, en países con limitaciones de recursos, como Colombia, la adopción de estas tecnologías ha sido limitada, lo que ha generado una falta de información sobre la variabilidad genética del cáncer en su población. Este estudio tiene como objetivo describir el panorama mutacional de once muestras de tumor de pacientes con diferentes tipos de cáncer (gástrico, recto, pleura, colon y periampular) en el departamento de Antioquia, Colombia. Para desarrollar esta investigación se utilizó un panel comercial de secuenciación dirigida que está diseñado para identificar variantes en puntos de alta mutación de 50 genes asociados al cáncer, los cuales presentan relevancia clínica. Los datos obtenidos se analizaron con el fin de describir el perfil mutacional de cada tumor. De esta forma, se identificaron y detallaron variantes genéticas de interés en las muestras tumorales analizadas. La información obtenida permitió describir el perfil mutacional de cada tumor, proporcionando información de alta relevancia sobre la variabilidad genética del cáncer en once pacientes del departamento de Antioquia. Dichos resultados contribuyeron al desarrollo de estrategias de diagnóstico, tratamiento y seguimiento más precisas para el cáncer en la región, lo cual se distingue como un aporte al desarrollo de la medicina personalizada en Colombia. (Tomado de la fuente) | spa |
dc.description.abstract | Mutational analysis of tumors has become a fundamental tool for the diagnosis, treatment, and monitoring of cancer. Next-Generation Sequencing (NGS) technologies have enabled the detailed acquisition of information about the mutations and variants present in tumors, driving the development of precision medicine. However, in resource-limited countries such as Colombia, the adoption of these technologies has been limited, resulting in a lack of information on the genetic variability of cancer in their population. This study aims to describe the mutational landscape of eleven tumor samples from patients with different types of cancer (gastric, rectal, pleural, colon, and periampullary) in the department of Antioquia, Colombia. A commercial targeted sequencing panel designed to identify variants in highly mutated regions of 50 clinically relevant cancer-associated genes was used for this research. The data obtained were analyzed to describe the mutational profile of each tumor. Thus, genetic variants of interest were identified and detailed in the analyzed tumor samples. The obtained information allowed for the description of the mutational profile of each tumor, providing highly relevant data on the genetic variability of cancer in eleven patients from the department of Antioquia. These results contributed to the development of more precise strategies for the diagnosis, treatment, and monitoring of cancer in the region, which is distinguished as a contribution to the development of personalized medicine in Colombia. | eng |
dc.description.curriculararea | Biotecnología.Sede Medellín | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ciencias - Biotecnología | |
dc.format.extent | 173 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88479 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
dc.publisher.faculty | Facultad de Ciencias | |
dc.publisher.place | Medellín, Colombia | |
dc.publisher.program | Medellín - Ciencias - Maestría en Ciencias - Biotecnología | |
dc.relation.indexed | LaReferencia | |
dc.relation.references | Afanador, C. H., Palacio, K. A., Isaza, L. F., Ahumada, E., Ocampo, C. M., & Muñetón, C. M. (2022). Caracterización molecular de pacientes con cáncer colorrectal. Biomédica, 42(Suppl 1), 154. https://doi.org/10.7705/BIOMEDICA.5957 | |
dc.relation.references | Alarcón, M.-L., Brugés, R., Carvajal, C., Vallejo, C., & Beltrán, R. (2021). Características de los pacientes con cáncer de pulmón de célula no pequeña en el Instituto Nacional de Cancerología de Bogotá. Revista Colombiana de Cancerología, 25(2), 103–109. https://doi.org/10.35509/01239015.706 | |
dc.relation.references | Alvarez-Gomez, R. M., De la Fuente-Hernandez, M. A., Herrera-Montalvo, L., & Hidalgo-Miranda, A. (2021). Challenges of diagnostic genomics in Latin America. Current Opinion in Genetics & Development, 66, 101–109. https://doi.org/10.1016/J.GDE.2020.12.010 | |
dc.relation.references | Andersen, S. D., Liberti, S. E., Lützen, A., Drost, M., Bernstein, I., Nilbert, M., Dominguez, M., Nyström, M., Hansen, T. V. O., Christoffersen, J. W., Jäger, A. C., de Wind, N., Nielsen, F. C., Tørring, P. M., & Rasmussen, L. J. (2012). Functional characterization of MLH1 missense variants identified in lynch syndrome patients. Human Mutation, 33(12), 1647–1655. https://doi.org/10.1002/HUMU.22153 | |
dc.relation.references | Anderson, M. W., Reynolds, S. H., You, M., & Maronpot, R. M. (1992). Role of proto-oncogene activation in carcinogenesis. Environmental Health Perspectives, 98, 13. https://doi.org/10.1289/EHP.929813 | |
dc.relation.references | Andrabi, S., Bekheirnia, M. R., Robbins-Furman, P., Lewis, R. A., Prior, T. W., & Potocki, L. (2011). SMAD4 mutation segregating in a family with juvenile polyposis, aortopathy, and mitral valve dysfunction. American Journal of Medical Genetics, Part A, 155(5), 1165–1169. https://doi.org/10.1002/AJMG.A.33968 | |
dc.relation.references | Arai, R. J., Santa, R., Guindalini, C., Llera, A. S., Manoel O’connor, J., Muller, B., Lema, M., Freitas, H. C., Soria, T., Delgado, L., Landaverde, D., Montenegro, P., & Riechelmann, R. P. (2019). Personalizing Precision Oncology Clinical Trials in Latin America: An Expert Panel on Challenges and Opportunities. The Oncologist, 24(8), e709–e719. | |
dc.relation.references | Aretz, S., Stienen, D., Uhlhaas, S., Stolte, M., Entius, M. M., Loff, S., Back, W., Kaufmann, A., Keller, K. M., Blaas, S. H., Siebert, R., Vogt, S., Spranger, S., Holinski-Feder, E., Sunde, L., Propping, P., & Friedl, W. (2007). High proportion of large genomic deletions and a genotype-phenotype update in 80 unrelated families with juvenile polyposis syndrome. Journal of Medical Genetics, 44(11), 702–709. https://doi.org/10.1136/JMG.2007.052506 | |
dc.relation.references | Aristizábal-Pachón, A. F., González-Giraldo, Y., García, A. Y., Suarez, D. X., Rodríguez, A., & Gonzalez-Santos, J. (2022). Association between VDR Gene Polymorphisms and Melanoma Susceptibility in a Colombian Population. Asian Pacific Journal of Cancer Prevention : APJCP, 23(1), 79. https://doi.org/10.31557/APJCP.2022.23.1.79 | |
dc.relation.references | Arruga, F., Gizdic, B., Serra, S., Vaisitti, T., Ciardullo, C., Coscia, M., Laurenti, L., D’Arena, G., Jaksic, O., Inghirami, G., Rossi, D., Gaidano, G., & Deaglio, S. (2014). Functional impact of NOTCH1 mutations in chronic lymphocytic leukemia. Leukemia, 28(5), 1060–1070. https://doi.org/10.1038/LEU.2013.319 | |
dc.relation.references | Aryal, B., Bizhanova, Z., Joseph, E. A., Yin, Y., Wagner, P. L., Dalton, E., LaFramboise, W. A., Bartlett, D. L., & Allen, C. J. (2024). Navigating Precision Oncology: Insights from an Integrated Clinical Data and Biobank Repository Initiative across a Network Cancer Program. Cancers, 16(4), 760. https://doi.org/10.3390/CANCERS16040760 | |
dc.relation.references | Atwood, S. X., Sarin, K. Y., Whitson, R. J., Li, J. R., Kim, G., Rezaee, M., Ally, M. S., Kim, J., Yao, C., Chang, A. L. S., Oro, A. E., & Tang, J. Y. (2015). Smoothened Variants Explain the Majority of Drug Resistance in Basal Cell Carcinoma. Cancer Cell, 27(3), 342–353. https://doi.org/10.1016/j.ccell.2015.02.002 | |
dc.relation.references | Author, P., & Fisher, R. A. (1922). On the Interpretation of χ 2 from Contingency Tables, and the Calculation of. Source: Journal of the Royal Statistical Society, 85(1), 87–94. | |
dc.relation.references | Bailey, M. H., Tokheim, C., Porta-Pardo, E., Sengupta, S., Bertrand, D., Weerasinghe, A., Colaprico, A., Wendl, M. C., Kim, J., Reardon, B., Ng, P. K. S., Jeong, K. J., Cao, S., Wang, Z., Gao, J., Gao, Q., Wang, F., Liu, E. M., Mularoni, L., ... Karchin, R. (2018). Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell, 173(2), 371. https://doi.org/10.1016/J.CELL.2018.02.060 | |
dc.relation.references | Bainbridge, M. N., Wang, M., Wu, Y., Newsham, I., Muzny, D. M., Jefferies, J. L., Albert, T. J., Burgess, D. L., & Gibbs, R. A. (2011). Targeted enrichment beyond the consensus coding DNA sequence exome reveals exons with higher variant densities. Genome Biology, 12(7), R68. https://doi.org/10.1186/GB-2011-12-7-R68 | |
dc.relation.references | Bandipalliam, P. (2005). Syndrome of early onset colon cancers, hematologic malignancies & features of neurofibromatosis in HNPCC families with homozygous mismatch repair gene mutations. Familial Cancer, 4(4), 323– 333. https://doi.org/10.1007/S10689-005-8351-6 | |
dc.relation.references | Barbosa, T., Rojas-Rodríguez, F., Gonzalez, J., & Aristizabal-Pachón, A. F. (2021). Clinical data integration with cancer genomics: Insights into computational and quantitative methods. Bioinformatics and Human Genomics Research, 335–341. https://doi.org/10.1201/9781003005926-16/CLINICAL-DATA-INTEGRATION-CANCER-GENOMICS-INSIGHTS- COMPUTATIONAL-QUANTITATIVE-METHODS-T | |
dc.relation.references | Barnetson, R. A., Cartwright, N., Van Vliet, A., Haq, N., Drew, K., Farrington, S., Williams, N., Warner, J., Campbell, H., Porteous, M. E., & Dunlop, M. G. (2008). Classification of ambiguous mutations in DNA mismatch repair genes identified in a population-based study of colorectal cancer. Human Mutation, 29(3), 367–374. https://doi.org/10.1002/humu.20635 | |
dc.relation.references | Barrett, J. C., Thomassen, D. G., & Hesterberg, T. W. (1983). Role of gene and chromosomal mutations in cell transformation. Annals of the New York Academy of Sciences, 407(1), 291–300. https://doi.org/10.1111/J.1749- 6632.1983.TB47834.X | |
dc.relation.references | Ben Lassoued, A., Nivaggioni, V., & Gabert, J. (2014). Minimal residual disease testing in hematologic malignancies and solid cancer. Expert Review of Molecular Diagnostics, 14(6), 699–712. https://doi.org/10.1586/14737159.2014.927311;SUBPAGE:STRING:ACCESS | |
dc.relation.references | Benavides, F. J., & Guénet, J.-L. (2003). Manual de genética de roedores de laboratorio: principios básicos y aplicaciones. | |
dc.relation.references | Benavides, J., Suárez, J., Estrada, A., Bohórquez, M., Ramírez, C., Olaya, J., Sánchez, Y., Mateus, G., Carvajal, L., & Echeverry, M. M. (2020). Cáncer de mama en seis familias del Tolima y el Huila: mutación BRCA1 3450del4. Biomédica, 40(1), 185–194. https://doi.org/10.7705/BIOMEDICA.4673 | |
dc.relation.references | Berger, M. F., & Mardis, E. R. (2018). The emerging clinical relevance of genomics in cancer medicine. Nature reviews. Clinical oncology, 15(6), 353. https://doi.org/10.1038/S41571-018-0002-6 | |
dc.relation.references | Bernardes, J. de O., & Toledo-Silva, G. (2023). O Uso do Sequenciamento Total do Exoma no Diagnóstico do Adenocarcinoma Ductal Pancreático. Revista Brasileira de Cancerologia, 69(1), e-053006. https://doi.org/10.32635/2176- 9745.RBC.2023v69n1.3006 | |
dc.relation.references | Bewicke-Copley, F., Arjun Kumar, E., Palladino, G., Korfi, K., & Wang, J. (2019). Applications and analysis of targeted genomic sequencing in cancer studies. Computational and Structural Biotechnology Journal, 17, 1348–1359. https://doi.org/10.1016/J.CSBJ.2019.10.004 | |
dc.relation.references | Bhai, P., Turowec, J., Santos, S., Kerkhof, J., Pickard, L. A., Foroutan, A., Breadner, D., Cecchini, M., Levy, M. A., Stuart, A., Welch, S., Howlett, C., Lin, H., & Sadikovic, B. (2023). Molecular profiling of solid tumors by next- generation sequencing: an experience from a clinical laboratory. Frontiers in Oncology, 13, 1208244. https://doi.org/10.3389/FONC.2023.1208244/BIBTEX | |
dc.relation.references | BioCancer. (2004). Proto-oncogenes y oncogenes. https://www.biocancer.com/journal/1321/21-proto-oncogenes-y-oncogenes | |
dc.relation.references | BiologyInsights Team. (2025, abril 29). KRAS G12V: Nuevos conocimientos sobre la biología del cáncer - BiologyInsights. https://biologyinsights.com/kras-g12v- new-insights-in-cancer-biology/ | |
dc.relation.references | BIOPAT. (s/f). Amplificación del oncogén ERBB2 (HER2). Recuperado el 17 de junio de 2023, de http://www.biopat.es/2010/10/01/amplificacion-de-her2neu/ | |
dc.relation.references | Bohórquez L, M. E., Criollo R, Á. A., Carvajal Carmona, L., & Echeverry de Polanco, M. M. (2019). Cáncer de colon en Colombia, fenotipo molecular: tamizaje para síndromes con agregación familiar. REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS, 1(31), 87–99. https://doi.org/10.47499/REVISTAACCB.V1I31.185 | |
dc.relation.references | Briceño-Balcázar, I., Gómez-Gutiérrez, A., Díaz-Dussán, N. A., Noguera- Santamaría, M. C., Díaz-Rincón, D., & Casas-Gómez, M. C. (2017). Mutational spectrum in breast cancer associated BRCA1 and BRCA2 genes in Colombia. Colombia Médica : CM, 48(2), 58. https://doi.org/10.25100/cm.v48i2.1867 | |
dc.relation.references | Buitenhuis, M., Verhagen, L. P., Cools, J., & Coffer, P. J. (2007). Molecular mechanisms underlying FIP1L1-PDGFRA-mediated myeloproliferation. Cancer Research, 67(8), 3759–3766. https://doi.org/10.1158/0008- 5472.CAN-06-4183 | |
dc.relation.references | Butler, K. S., Young, M. Y. L., Li, Z., Elespuru, R. K., & Wood, S. C. (2016). Performance characteristics of the AmpliSeq Cancer Hotspot panel v2 in combination with the Ion Torrent Next Generation Sequencing Personal Genome Machine. Regulatory Toxicology and Pharmacology, 74, 178–186. https://doi.org/10.1016/J.YRTPH.2015.09.011 | |
dc.relation.references | Cairns, R. A., & Mak, T. W. (2013). Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities. Cancer discovery, 3(7), 730–741. https://doi.org/10.1158/2159-8290.CD-13-0083 | |
dc.relation.references | Calasanz, M. J. (2006). Nueva era de investigación en cáncer. Anales del Sistema Sanitario de Navarra, 29(2), 173–176. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137- 66272006000300001&lng=es&nrm=iso&tlng=es | |
dc.relation.references | Camargo, E. S. C., & Robayo, L. M. J. (2005). Efecto de las anomalías cromosómicas sobre la fertilidad en bovinos. Orinoquia, 9(1), 56–63. https://doi.org/10.22579/20112629.158 | |
dc.relation.references | Caputo, V., Cianetti, L., Niceta, M., Carta, C., Ciolfi, A., Bocchinfuso, G., Carrani, E., Dentici, M. L., Biamino, E., Belligni, E., Garavelli, L., Boccone, L., Melis, D., Andria, G., Gelb, B. D., Stella, L., Silengo, M., Dallapiccola, B., & Tartaglia, M. (2012). A restricted spectrum of mutations in the SMAD4 tumor- suppressor gene underlies myhre syndrome. American Journal of Human Genetics, 90(1), 161–169. https://doi.org/10.1016/J.AJHG.2011.12.011 | |
dc.relation.references | Cavalcante, G. C., Schaan, A. P., Cabral, G. F., Santana-Da-Silva, M. N., Pinto, P., Vidal, A. F., & Ribeiro-Dos-Santos, Â. (2019). A Cell’s Fate: An Overview of the Molecular Biology and Genetics of Apoptosis. International Journal of Molecular Sciences 2019, Vol. 20, Page 4133, 20(17), 4133. https://doi.org/10.3390/IJMS20174133 | |
dc.relation.references | Cederquist, K., Emanuelsson, M., Göransson, I., Holinski-Feder, E., Müller-Koch, Y., Golovleva, I., & Grönberg, H. (2004). Mutation analysis of the MLH1, MSH2 and MSH6 genes in patients with double primary cancers of the colorectum and the endometrium: A population-based study in northern Sweden. International Journal of Cancer, 109(3), 370–376. https://doi.org/10.1002/ijc.11718 | |
dc.relation.references | Cerrato-Izaguirre, D., Chirino, Y. I., García-Cuellar, C. M., Santibáñez-Andrade, M., Prada, D., Hernández-Guerrero, A., Larraga, O. A., Camacho, J., & Sánchez-Pérez, Y. (2022). Mutational landscape of gastric adenocarcinoma in Latin America: A genetic approach for precision medicine. Genes & Diseases, 9(4), 928–940. https://doi.org/10.1016/J.GENDIS.2021.04.002 | |
dc.relation.references | Chaligné, R., Tonetti, C., Besancenot, R., Roy, L., Marty, C., Mossuz, P., Kiladjian, J. J., Socié, G., Bordessoule, D., Le Bousse-Kerdilès, M. C., Vainchenker, W., & Giraudier, S. (2008). New mutations of MPL in primitive myelofibrosis: Only the MPL W515 mutations promote a G1/S-phase transition. Leukemia, 22(8), 1557–1566. https://doi.org/10.1038/LEU.2008.137 | |
dc.relation.references | Cibulskis, K., Lawrence, M. S., Carter, S. L., Sivachenko, A., Jaffe, D., Sougnez, C., Gabriel, S., Meyerson, M., Lander, E. S., & Getz, G. (2013). Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nature Biotechnology 2013 31:3, 31(3), 213–219. https://doi.org/10.1038/nbt.2514 | |
dc.relation.references | Cifuentes-C, L., Rivera-Herrera, A. L., & Barreto, G. (2019). BRCA1 and BRCA2 mutations in a sample of breast and ovarian cancer families from the Colombian pacific. Colombia Médica : CM, 50(3), 163. https://doi.org/10.25100/CM.V50I3.2385 | |
dc.relation.references | Classon, M., & Harlow, E. (2002). The retinoblastoma tumour suppressor in development and cancer. Nature Reviews Cancer, 2(12), 910–917. https://doi.org/10.1038/NRC950 | |
dc.relation.references | Cock-Rada, A. M., Ossa, C. A., Garcia, H. I., & Gomez, L. R. (2018). A multi-gene panel study in hereditary breast and ovarian cancer in Colombia. Familial cancer, 17(1), 23–30. https://doi.org/10.1007/S10689-017-0004-Z | |
dc.relation.references | Cock-Rada, A. M., & Ossa Gomez, C. A. (2018). Leveraging International Collaborations to Advance Genomic Medicine in Colombia. Genomic Medicine in Emerging Economies: Genomics for Every Nation, 49–69. https://doi.org/10.1016/B978-0-12-811531-2.00009-6 | |
dc.relation.references | Collisson, E. A., Campbell, J. D., Brooks, A. N., Berger, A. H., Lee, W., Chmielecki, J., Beer, D. G., Cope, L., Creighton, C. J., Danilova, L., Ding, L., Getz, G., Hammerman, P. S., Hayes, D. N., Hernandez, B., Herman, J. G., Heymach, J. V., Jurisica, I., Kucherlapati, R., ... Cheney, R. (2014). Comprehensive molecular profiling of lung adenocarcinoma: The cancer genome atlas research network. Nature, 511(7511), 543–550. https://doi.org/10.1038/NATURE13385 | |
dc.relation.references | Cómo las células cancerosas se propagan por el cuerpo | Los Institutos Nacionales de Salud. (s/f). Recuperado el 25 de diciembre de 2023, de https://salud.nih.gov/recursos-de-salud/nih-noticias-de-salud/como-las- celulas-cancerosas-se-propagan-por-el-cuerpo | |
dc.relation.references | Cools, J., DeAngelo, D. J., Gotlib, J., Stover, E. H., Legare, R. D., Cortes, J., Kutok, J., Clark, J., Galinsky, I., Griffin, J. D., Cross, N. C. P., Tefferi, A.,Malone, J., Alam, R., Schrier, S. L., Schmid, J., Rose, M., Vandenberghe, P., Verhoef, G., ... Gilliland, D. G. (2003). A Tyrosine Kinase Created by Fusion of the PDGFRA and FIP1L1 Genes as a Therapeutic Target of Imatinib in Idiopathic Hypereosinophilic Syndrome . New England Journal of Medicine, 348(13), 1201–1214. https://doi.org/10.1056/NEJMOA025217 | |
dc.relation.references | Cristescu, R., Lee, J., Nebozhyn, M., Kim, K. M., Ting, J. C., Wong, S. S., Liu, J., Yue, Y. G., Wang, J., Yu, K., Ye, X. S., Do, I. G., Liu, S., Gong, L., Fu, J., Jin, J. G., Choi, M. G., Sohn, T. S., Lee, J. H., ... Aggarwal, A. (2015). Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nature Medicine, 21(5), 449–456. https://doi.org/10.1038/NM.3850, | |
dc.relation.references | Dale, B., Anderson, C., Park, K.-S., Kaniskan, H. Ü., Ma, A., Shen, Y., Zhang, C., Xie, L., Chen, X., Yu, X., & Jin, J. (2022). Targeting Triple-Negative Breast Cancer by a Novel Proteolysis Targeting Chimera Degrader of Enhancer of Zeste Homolog 2. ACS pharmacology & translational science, 5(7), 491–507. https://doi.org/10.1021/acsptsci.2c00100 | |
dc.relation.references | Damineni, S., Rao, V. R., Kumar, S., Ravuri, R. R., Kagitha, S., Dunna, N. R., Digumarthi, R., & Satti, V. (2014). Germline mutations of TP53 gene in breast cancer. Tumor Biology, 35(9), 9219–9227. https://doi.org/10.1007/S13277- 014-2176-6 | |
dc.relation.references | DANE. (2022). DANE - Defunciones no Fetales 2022. https://www.dane.gov.co/index.php/estadisticas-por-tema/salud/nacimientos- y-defunciones/defunciones-no-fetales/defunciones-no-fetales-2022 | |
dc.relation.references | Daza, D. (2012). Cáncer gástrico en Colombia entre 2000 y 2009 [Universidad del Rosario - Universidad CES]. https://repository.urosario.edu.co/items/378f2c60-6ae8-4d2e-9646- 6aef9bba6ea0 | |
dc.relation.references | Diagrama de ilustración vectorial de protooncogenes versus oncogenes | Vector Premium. (s/f). Recuperado el 13 de junio de 2023, de https://www.freepik.es/vector-premium/diagrama-ilustracion-vectorial- protooncogenes-versus-oncogenes_29612512.htm | |
dc.relation.references | Dirección Seccional de Salud y Protección Social de Antioquia (DSSA). (2023). Mortalidad por Cancer por subregion/municipio 2005-2022 (Mortalidad- Cancer_2005-2022(04-2023)). https://dssa.gov.co/index.php/estadisticas- mortalidad?start=4 | |
dc.relation.references | Dong, L., Wang, W., Li, A., Kansal, R., Chen, Y., Chen, H., & Li, X. (2015). Clinical Next Generation Sequencing for Precision Medicine in Cancer. Current Genomics, 16(4), 253. https://doi.org/10.2174/1389202915666150511205313 | |
dc.relation.references | Dos Santos Silva, I., & Organización Panamericana de la Salud. (1999). Epidemiología del Cáncer: Principios y métodos. En Epidemiología del cáncer: principios y métodos. Agencia Internacional de Investigación sobre el Cáncer. https://iris.paho.org/handle/10665.2/3145 | |
dc.relation.references | Dotto, G. P. (2008). Notch tumor suppressor function. Oncogene, 27(38), 5115– 5123. https://doi.org/10.1038/ONC.2008.225 | |
dc.relation.references | Dowty, J. G., Win, A. K., Buchanan, D. D., Lindor, N. M., Macrae, F. A., Clendenning, M., Antill, Y. C., Thibodeau, S. N., Casey, G., Gallinger, S., Marchand, L. Le, Newcomb, P. A., Haile, R. W., Young, G. P., James, P. A., Giles, G. G., Gunawardena, S. R., Leggett, B. A., Gattas, M., ... Jenkins, M. A. (2013). Cancer Risks for MLH1 and MSH2 Mutation Carriers. Human Mutation, 34(3), 490–497. https://doi.org/10.1002/HUMU.22262 | |
dc.relation.references | Eaton, K. W., Tooke, L. S., Wainwright, L. M., Judkins, A. R., & Biegel, J. A. (2011). Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatric Blood and Cancer, 56(1), 7–15. https://doi.org/10.1002/PBC.22831 | |
dc.relation.references | Elling, C., Erben, P., Walz, C., Frickenhaus, M., Schemionek, M., Stehling, M., Serve, H., Cross, N. C. P., Hochhaus, A., Hofmann, W. K., Berdel, W. E., Müller-Tidow, C., Reiter, A., & Koschmieder, S. (2011). Novel imatinib- sensitive PDGFRA-activating point mutations in hypereosinophilic syndrome induce growth factor independence and leukemia-like disease. Blood, 117(10), 2935–2943. https://doi.org/10.1182/BLOOD-2010-05-286757 | |
dc.relation.references | Faguet, G. B. (2015). A brief history of cancer: Age-old milestones underlying our current knowledge database. International Journal of Cancer, 136(9), 2022– 2036. https://doi.org/10.1002/IJC.29134 | |
dc.relation.references | Fondo Colombiano de Enfermedades de Alto Costo, C. de A. C. (CAC). (2021). Situación del cáncer en la población adulta atendida en el SGSSS de Colombia 2020. https://cuentadealtocosto.org/wp-content/plugins/pdfjs- viewer- shortcode/pdfjs/web/viewer.php?file=https%3A%2F%2Fcuentadealtocosto.or g%2Fsite%2Fwp- content%2Fuploads%2F2021%2F11%2FCAC.Co_2021_11_3_Libro_Sit_can cer2020_v5.pdf&download=false&print=true&openfile=false | |
dc.relation.references | Gagan, J., & Van Allen, E. M. (2015). Next-generation sequencing to guide cancer therapy. Genome Medicine, 7(1). https://doi.org/10.1186/S13073-015-0203-X | |
dc.relation.references | Gan, H. K., Cvrljevic, A. N., & Johns, T. G. (2013). The epidermal growth factor receptor variant III (EGFRvIII): Where wild things are altered. FEBS Journal, 280(21), 5350–5370. https://doi.org/10.1111/febs.12393 | |
dc.relation.references | García-Pardo, M., García de Herreros, M., Laguna, J. C., Gorría, T., Lage, Y., Gómez, A., Olmedo, M. E., Garrido, P., Albarran-Artahona, V. M., Arcocha, A., Teixido, C., Reguart, N., Navarro, A., Auclin, E., Nahorski, M. S., Howarth, K., Planchard, D., Besse, B., Leighl, N. B., & Mezquita, L. (2025). Brief Report: Real-World Clinical Utility of Next-Generation Sequencing of Circulating Tumor DNA for Patients With Advanced Lung Squamous Cell Carcinoma (SQUIN). Clinical Lung Cancer, 26(4), e300-e305.e2. https://doi.org/10.1016/j.cllc.2025.02.007 | |
dc.relation.references | Garraway, L. A. (2013). Genomics-driven oncology: Framework for an emerging paradigm. Journal of Clinical Oncology, 31(15), 1806–1814. https://doi.org/10.1200/JCO.2012.46.8934 | |
dc.relation.references | GATK Team. (2024, junio 25). Evaluating the quality of a germline short variant callset – GATK. https://gatk.broadinstitute.org/hc/en-us/articles/360035531572-Evaluating-the-quality-of-a-germline-short-variant- callset | |
dc.relation.references | GeneCards | The Human Database. (s/f). CDH1 Gene - GeneCards | CADH1 Protein | CADH1 Antibody. Recuperado el 15 de junio de 2023, de https://www.genecards.org/cgi-bin/carddisp.pl?gene=CDH1 | |
dc.relation.references | GeneCards | The Human Gene Database. (s/f-a). ABL1 Gene - GeneCards | ABL1 Protein | ABL1 Antibody. Recuperado el 14 de junio de 2023, de https://www.genecards.org/cgi-bin/carddisp.pl?gene=ABL1 | |
dc.relation.references | GeneCards | The Human Gene Database. (s/f-b). AKT1 Gene - GeneCards | AKT1 Protein | AKT1 Antibody. Recuperado el 14 de junio de 2023, de https://www.genecards.org/cgi-bin/carddisp.pl?gene=AKT1 | |
dc.relation.references | GeneCards | The Human Gene Database. (s/f-c). ALK Gene - GeneCards | ALK Protein | ALK Antibody. Recuperado el 14 de junio de 2023, de https://www.genecards.org/cgi-bin/carddisp.pl?gene=ALK | |
dc.relation.references | GeneCards | The Human Gene Database. (s/f-d). APC Gene - GeneCards | APC Protein | APC Antibody. Recuperado el 15 de junio de 2023, de https://www.genecards.org/cgi-bin/carddisp.pl?gene=APC | |
dc.relation.references | GeneCards | The Human Gene Database. (s/f-e). ATM Gene - GeneCards | ATM Protein | ATM Antibody. Recuperado el 15 de junio de 2023, de https://www.genecards.org/cgi-bin/carddisp.pl?gene=ATM | |
dc.relation.references | GeneCards | The Human Gene Database. (s/f-f). CSF1R Gene - GeneCards | CSF1R Protein | CSF1R Antibody. Recuperado el 15 de junio de 2023, de https://www.genecards.org/cgi-bin/carddisp.pl?gene=CSF1R | |
dc.relation.references | GeneCards | The Human Gene Database. (2023a, mayo 21). CTNNB1 Gene - GeneCards | CTNB1 Protein | CTNB1 Antibody. https://www.genecards.org/cgi-bin/carddisp.pl?gene=CTNNB1 | |
dc.relation.references | GeneCards | The Human Gene Database. (2023b, mayo 22). FGFR1 Gene - GeneCards | FGFR1 Protein | FGFR1 Antibody. https://www.genecards.org/cgi-bin/carddisp.pl?gene=FGFR1 | |
dc.relation.references | GeneCards | The Human Gene Database. (2023c, mayo 23). GNA11 Gene - GeneCards | GNA11 Protein | GNA11 Antibody. https://www.genecards.org/cgi-bin/carddisp.pl?gene=GNA11 | |
dc.relation.references | GeneCards | The Human Gene Database. (2023d, mayo 23). GNAQ Gene - GeneCards | GNAQ Protein | GNAQ Antibody. https://www.genecards.org/cgi-bin/carddisp.pl?gene=GNAQ | |
dc.relation.references | Gerlinger, M., Rowan, A. J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., Varela, I., Phillimore, B., Begum, S., McDonald, N. Q., Butler, A., Jones, D., Raine, K., Latimer, C., Santos, C. R., ... Swanton, C. (2012). Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing. New England Journal of Medicine, 366(10), 883–892. https://doi.org/10.1056/NEJMOA1113205/SUPPL_FILE/NEJMOA1113205_DI SCLOSURES.PDF | |
dc.relation.references | Germeshausen, M., Ballmaier, M., & Welte, K. (2006). MPL mutations in 23 patients suffering from congenital amegakaryocytic thrombocytopenia: the type of mutation predicts the course of the disease. Human mutation, 27(3), 296. https://doi.org/10.1002/HUMU.9415 | |
dc.relation.references | Giraldo, A., Gómez, A., Salguero, G., García, H., Aristizábal, F., Gutiérrez, Ó., Ángel, L. A., Padrón, J., Martínez, C., Martínez, H., Malaver, O., Flórez, L., & Barvo, R. (2005). MLH1 and MSH2 mutations in Colombian families with hereditary nonpolyposis colorectal cancer (Lynch syndrome)--description of four novel mutations. Familial cancer, 4(4), 285–290. https://doi.org/10.1007/S10689-005-4523-7 | |
dc.relation.references | Giraldo-Osorio, A., Ruano-Ravina, A., Rey-Brandariz, J., Arias-Ortiz, N., Candal- Pedreira, C., & Pérez-Ríos, M. (2022). Tendencias en la mortalidad por cáncer de pulmón en Colombia, 1985-2018. PAN AMERICAN JOURNAL OF PUBLIC HEALTH, 46. https://doi.org/10.26633/RPSP.2022.127 | |
dc.relation.references | Graña, A. (2015). Breve evolución histórica del cáncer RESUMEN ABSTRACT. Carcinos. | |
dc.relation.references | Gutiérrez-Castañeda, L. D., Gamboa, M., Nova, J. A., Pulido, L., & Tovar-Parra, J. D. (2020). Mutations in the BRAF, NRAS, and C-KIT Genes of Patients Diagnosed with Melanoma in Colombia Population. BioMed Research International, 2020. https://doi.org/10.1155/2020/2046947 | |
dc.relation.references | Hadfield, K. D., Newman, W. G., Bowers, N. L., Wallace, A., Bolger, C., Colley, A., McCann, E., Trump, D., Prescott, T., & Evans, D. G. R. (2008). Molecular characterisation of SMARCB1 and NF2 in familial and sporadic schwannomatosis. Journal of Medical Genetics, 45(6), 332–339. https://doi.org/10.1136/JMG.2007.056499 | |
dc.relation.references | Hafner, C., López-Knowles, E., Luis, N. M., Toll, A., Baselga, E., Fernández- Casado, A., Hernández, S., Ribé, A., Mentzel, T., Stoehr, R., Hofstaedter, F., Landthaler, M., Vogt, T., Pujol, R. M., Hartmann, A., & Real, F. X. (2007). Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern. Proceedings of the National Academy of Sciences of the United States of America, 104(33), 13450– 13454. https://doi.org/10.1073/PNAS.0705218104 | |
dc.relation.references | Haralson, J. V., Groff, C. I., & Haralson, S. J. (1975). Classical conditioning in the sea anemone, Cribrina xanthogrammica. Physiology and Behavior, 15(4), 455–460. https://doi.org/10.1016/0031-9384(75)90259-0 | |
dc.relation.references | Hollink, I. H. I. M., Zwaan, C. M., Zimmermann, M., Arentsen-Peters, T. C. J. M., Pieters, R., Cloos, J., Kaspers, G. J. L., de Graaf, S. S. N., Harbott, J., Creutzig, U., Reinhardt, D., van den Heuvel-Eibrink, M. M., & Thiede, C. (2009). Favorable prognostic impact of NPM1 gene mutations in childhood acute myeloid leukemia, with emphasis on cytogenetically normal AML. Leukemia, 23(2), 262–270. https://doi.org/10.1038/leu.2008.313 | |
dc.relation.references | Horak, P., Fröhling, S., & Glimm, H. (2016). Integrating next-generation sequencing into clinical oncology: strategies, promises and pitfalls. ESMO Open, 1(5). https://doi.org/10.1136/ESMOOPEN-2016-000094 | |
dc.relation.references | Hulsebos, T. J. M., Kenter, S., Verhagen, W. I. M., Baas, F., Flucke, U., & Wesseling, P. (2014). Premature termination of SMARCB1 translation may be followed by reinitiation in schwannomatosis-associated schwannomas, but results in absence of SMARCB1 expression in rhabdoid tumors. Acta Neuropathologica, 128(3), 439–448. https://doi.org/10.1007/S00401-014- 1281-3 | |
dc.relation.references | Indicadores Básicos de Salud Y Consolidado por Subregión, Municipio y Año . (s/f). Recuperado el 7 de junio de 2023, de https://www.dssa.gov.co/indicadores | |
dc.relation.references | Instituto Nacional del Cáncer. (2021, marzo 5). Factores de riesgo: Edad. https://www.cancer.gov/espanol/cancer/causas-prevencion/riesgo/edad | |
dc.relation.references | Instituto Nacional del Cáncer (NIH). (s/f-a). Definición de EGFR - Diccionario de cáncer del NCI - NCI. Recuperado el 17 de junio de 2023, de https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionario- cancer/def/egfr | |
dc.relation.references | Instituto Nacional del Cáncer (NIH). (s/f-b). Definición de gen EZH2 - Diccionario de cáncer del NCI - NCI. Recuperado el 17 de junio de 2023, de https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionario- cancer/def/gen-ezh2 | |
dc.relation.references | Instituto Nacional del Cáncer (NIH). (s/f-c). Definición de gen FGFR1 - Diccionario de cáncer del NCI. Recuperado el 17 de junio de 2023, de https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionario- cancer/def/gen-fgfr1 | |
dc.relation.references | Instituto Nacional del Cáncer (NIH). (s/f-d). Definición de gen IDH1 - Diccionario de cáncer del NCI - NCI. Recuperado el 17 de junio de 2023, de https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionario- cancer/def/gen-idh1 | |
dc.relation.references | Instituto Nacional del Cáncer (NIH). (s/f-e). Definición de gen MET - Diccionario de cáncer del NCI - NCI. Recuperado el 17 de junio de 2023, de https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionario- cancer/def/gen-met | |
dc.relation.references | Instituto Nacional del Cáncer (NIH). (s/f-f). Definition of MPL gene - NCI Dictionary of Cancer Terms - NCI. Recuperado el 18 de junio de 2023, de https://www.cancer.gov/publications/dictionaries/cancer-terms/def/mpl-gene | |
dc.relation.references | Jayawickrama, S. M., Ranaweera, P. M., Pradeep, R. G. G. R., Jayasinghe, Y. A., Senevirathna, K., Hilmi, A. J., Rajapakse, R. M. G., Kanmodi, K. K., & Jayasinghe, R. D. (2024). Developments and future prospects of personalized medicine in head and neck squamous cell carcinoma diagnoses and treatments. Cancer Reports, 7(3). https://doi.org/10.1002/CNR2.2045 | |
dc.relation.references | Jeng, K. S., Sheen, I. S., Leu, C. M., Tseng, P. H., & Chang, C. F. (2020). The Role of Smoothened in Cancer. International Journal of Molecular Sciences, 21(18), 1–20. https://doi.org/10.3390/IJMS21186863 | |
dc.relation.references | Jennings, L. J., Arcila, M. E., Corless, C., Kamel-Reid, S., Lubin, I. M., Pfeifer, J., Temple-Smolkin, R. L., Voelkerding, K. V., & Nikiforova, M. N. (2017). Guidelines for Validation of Next-Generation Sequencing–Based Oncology Panels: A Joint Consensus Recommendation of the Association for Molecular Pathology and College of American Pathologists. The Journal of molecular diagnostics : JMD, 19(3), 341. https://doi.org/10.1016/J.JMOLDX.2017.01.011 | |
dc.relation.references | Jessica, N. M., Gianmarco, C. P., Tarazona, C. E., Juan Carlos, C. U., Ortiz, B., & Mauricio, V. B. (2022). Complicaciones post-pancreatoduodenectomía de tumores periampulares en una unidad de cirugía hepatopancreatobiliar. Revista de Cirugía, 74(4), 339–344. https://doi.org/10.35687/S2452- 454920220041437 | |
dc.relation.references | Jones, S., Anagnostou, V., Lytle, K., Parpart-Li, S., Nesselbush, M., Riley, D. R., Shukla, M., Chesnick, B., Kadan, M., Papp, E., Galens, K. G., Murphy, D., Zhang, T., Kann, L., Sausen, M., Angiuoli, S. V., Diaz, L. A., & Velculescu, V. E. (2015). Personalized genomic analyses for cancer mutation discovery and interpretation. Science translational medicine, 7(283), 283ra53. https://doi.org/10.1126/SCITRANSLMED.AAA7161 | |
dc.relation.references | Josué Sánchez Madriz, L., Rica Dra Jeniffer Fabiola Shion Pérez, C., Diego Palma González, L., Nikol Paola Camacho Arias, D., Latina de Costa Rica Costa Rica Dra Katherine Vanessa Campos Duarte, U., & Hispanoamericana Costa Rica, U. (2024). El análisis genómico en el diseño de tratamientos personalizados: una revisión actual. Revista Científica de Salud y Desarrollo Humano, 5(2), 289–305. https://doi.org/10.61368/R.S.D.H.V5I2.184 | |
dc.relation.references | Kaminker, J. S., Zhang, Y., Watanabe, C., & Zhang, Z. (2007). CanPredict: a computational tool for predicting cancer-associated missense mutations. Nucleic Acids Research, 35(Web Server issue), W595. https://doi.org/10.1093/NAR/GKM405 | |
dc.relation.references | Kiyoi, H., & Naoe, T. (2006). Biology, clinical relevance, and molecularly targeted therapy in acute leukemia with FLT3 mutation. International journal of hematology, 83(4), 301–308. https://doi.org/10.1532/IJH97.06071 | |
dc.relation.references | Kofanova, O., Bellora, C., Garcia Frasquilho, S., Antunes, L., Hamot, G., Mathay, C., Mommaerts, K., Muller, A., DeWitt, B., & Betsou, F. (2020). Standardization of the preanalytical phase of DNA extraction from fixed tissue for next-generation sequencing analyses. New Biotechnology, 54, 52–61. https://doi.org/10.1016/J.NBT.2019.07.005 | |
dc.relation.references | Kontomanolis, E. N., Koutras, A., Syllaios, A., Schizas, D., Mastoraki, A., Garmpis, N., Diakosavvas, M., Angelou, K., Tsatsaris, G., Pagkalos, A., Ntounis, T., & Fasoulakis, Z. (2020). Role of Oncogenes and Tumor-suppressor Genes in Carcinogenesis: A Review. Anticancer Research, 40(11), 6009–6015. https://doi.org/10.21873/ANTICANRES.14622 | |
dc.relation.references | Kopanos, C., Tsiolkas, V., Kouris, A., Chapple, C. E., Albarca Aguilera, M., Meyer, R., & Massouras, A. (2019). VarSome: the human genomic variant search engine. Bioinformatics, 35(11), 1978–1980. https://doi.org/10.1093/BIOINFORMATICS/BTY897 | |
dc.relation.references | Kopetz, S., Mills Shaw, K. R., Lee, J. J., Zhang, J., Litzenburger, B., Holla, V., Kinyua, W., Broaddus, E., Daniels, M. S., Meric-Bernstam, F., & Broaddus, R. R. (2019). Use of a Targeted Exome Next-Generation Sequencing Panel Offers Therapeutic Opportunity and Clinical Benefit in a Subset of Patients With Advanced Cancers. JCO Precision Oncology, 3, 1–14. https://doi.org/10.1200/PO.18.00213/ASSET/IMAGES/LARGE/PO.18.00213A PP3.JPEG | |
dc.relation.references | Kurek, K. C., Luks, V. L., Ayturk, U. M., Alomari, A. I., Fishman, S. J., Spencer, S. A., Mulliken, J. B., Bowen, M. E., Yamamoto, G. L., Kozakewich, H. P. W., & Warman, M. L. (2012). Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. American Journal of Human Genetics, 90(6), 1108– 1115. https://doi.org/10.1016/J.AJHG.2012.05.006 | |
dc.relation.references | Kwon, S., Park, S., Lee, B., & Yoon, S. (2013). In-depth analysis of interrelation between quality scores and real errors in illumina reads. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 635–638. https://doi.org/10.1109/EMBC.2013.6609580 | |
dc.relation.references | Le, T. L., Sribudiani, Y., Dong, X., Huber, C., Kois, C., Baujat, G., Gordon, C. T., Mayne, V., Galmiche, L., Serre, V., Goudin, N., Zarhrate, M., Bole-Feysot, C., Masson, C., Nitschké, P., Verheijen, F. W., Pais, L., Pelet, A., Sadedin, S., ... Thomas, S. (2020). Bi-allelic Variations of SMO in Humans Cause a Broad Spectrum of Developmental Anomalies Due to Abnormal Hedgehog Signaling. American Journal of Human Genetics, 106(6), 779–792. https://doi.org/10.1016/j.ajhg.2020.04.010 | |
dc.relation.references | Lee, A., Lee, S. H., Jung, C. K., Park, G., Lee, K. Y., Choi, H. J., Min, K. O., Kim, T. J., Lee, E. J., & Lee, Y. S. (2018). Use of the Ion AmpliSeq Cancer Hotspot Panel in clinical molecular pathology laboratories for analysis of solid tumours: With emphasis on validation with relevant single molecular pathology tests and the Oncomine Focus Assay. Pathology - Research and Practice, 214(5), 713–719. https://doi.org/10.1016/J.PRP.2018.03.009 | |
dc.relation.references | Lemmon, M. A., & Schlessinger, J. (2010). Cell signaling by receptor tyrosine kinases. Cell, 141(7), 1117–1134. https://doi.org/10.1016/J.CELL.2010.06.011/ATTACHMENT/B383EB98-F844- 43F4-878F-A14D3681EED4/MMC1.PDF | |
dc.relation.references | Li, M. M., Datto, M., Duncavage, E. J., Kulkarni, S., Lindeman, N. I., Roy, S., Tsimberidou, A. M., Vnencak-Jones, C. L., Wolff, D. J., Younes, A., & Nikiforova, M. N. (2017). Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. The Journal of Molecular Diagnostics : JMD, 19(1), 4. https://doi.org/10.1016/J.JMOLDX.2016.10.002 | |
dc.relation.references | Li, W., She, H., Tian, X., Neja, M., Harris, A., & Li, Y. (2019). Abstract 3007: Validation of an NGS panel assay for detection of hotspot cancer somatic mutations. Cancer Research, 79(13_Supplement), 3007–3007. https://doi.org/10.1158/1538-7445.AM2019-3007 | |
dc.relation.references | Liehr, T., Weise, A., Mrasek, K., Ziegler, M., Padutsch, N., Wilhelm, K., & Al- Rikabi, A. (2019). Recombinant Chromosomes Resulting From Parental Pericentric Inversions—Two New Cases and a Review of the Literature. Frontiers in Genetics, 10, 491354. https://doi.org/10.3389/FGENE.2019.01165/BIBTEX | |
dc.relation.references | Lim, T. K. H., Skoulidis, F., Kerr, K. M., Ahn, M. J., Kapp, J. R., Soares, F. A., & Yatabe, Y. (2023). KRAS G12C in advanced NSCLC: Prevalence, co- mutations, and testing. Lung Cancer, 184, 107293. https://doi.org/10.1016/J.LUNGCAN.2023.107293/ATTACHMENT/21EC0143- 3DF6-4BB3-8DFF-47EFBF3B90B6/MMC1.PDF | |
dc.relation.references | Lionel, A. C., Costain, G., Monfared, N., Walker, S., Reuter, M. S., Hosseini, S. M., Thiruvahindrapuram, B., Merico, D., Jobling, R., Nalpathamkalam, T., Pellecchia, G., Sung, W. W. L., Wang, Z., Bikangaga, P., Boelman, C., Carter, M. T., Cordeiro, D., Cytrynbaum, C., Dell, S. D., ... Marshall, C. R. (2017). Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genetics in Medicine, 20(4), 435. https://doi.org/10.1038/GIM.2017.119 | |
dc.relation.references | Liu, H., Dibling, B., Spike, B., Dirlam, A., & Macleod, K. (2004). New roles for the RB tumor suppressor protein. Current Opinion in Genetics and Development, 14(1), 55–64. https://doi.org/10.1016/J.GDE.2003.11.005 | |
dc.relation.references | Lobry, C., Oh, P., & Aifantis, I. (2011). Oncogenic and tumor suppressor functions of Notch in cancer: It’s NOTCH what you think. Journal of Experimental Medicine, 208(10), 1931–1935. https://doi.org/10.1084/JEM.20111855 | |
dc.relation.references | Loewe, L., & Hill, W. G. (2010). The population genetics of mutations: good, bad and indifferent. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1544), 1153. https://doi.org/10.1098/RSTB.2009.0317 | |
dc.relation.references | López, M. M., & Cardona, A. F. (2020). Historia del cáncer y el cáncer en la historia. Medicina, 42(4), 528–562. https://doi.org/10.56050/01205498.1559 | |
dc.relation.references | Lortet-Tieulent, J., Soerjomataram, I., Ferlay, J., Rutherford, M., Weiderpass, E., & Bray, F. (2014). International trends in lung cancer incidence by histological subtype: Adenocarcinoma stabilizing in men but still increasing in women. Lung Cancer, 84(1), 13–22. https://doi.org/10.1016/j.lungcan.2014.01.009 | |
dc.relation.references | Lou, H., Li, H., Huehn, A. R., Tarasova, N. I., Saleh, B., Anderson, S. K., & Dean, M. (2020). Genetic and Epigenetic Regulation of the Smoothened Gene (SMO) in Cancer Cells. Cancers, 12(8), 1–19. https://doi.org/10.3390/CANCERS12082219 | |
dc.relation.references | Loyo, M., Li, R. J., Bettegowda, C., Pickering, C. R., Frederick, M. J., Myers, J. N., & Agrawal, N. (2013). Lessons learned from next-generation sequencing in head and neck cancer. Head and Neck, 35(3), 454–463. https://doi.org/10.1002/HED.23100 | |
dc.relation.references | Lu, C., Ward, P. S., Kapoor, G. S., Rohle, D., Turcan, S., Abdel-Wahab, O., Edwards, C. R., Khanin, R., Figueroa, M. E., Melnick, A., Wellen, K. E., Oĝrourke, D. M., Berger, S. L., Chan, T. A., Levine, R. L., Mellinghoff, I. K., & Thompson, C. B. (2012). IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature, 483(7390), 474. https://doi.org/10.1038/NATURE10860 | |
dc.relation.references | Luo, J., Qi, C., Xu, W., Kamel-Reid, S., Brandwein, J., & Chang, H. (2010). Cytoplasmic expression of nucleophosmin accurately predicts mutation in the nucleophosmin gene in patients with acute myeloid leukemia and normal karyotype. American Journal of Clinical Pathology, 133(1), 34–40. https://doi.org/10.1309/AJCPCI1FFE2DRXIV | |
dc.relation.references | Luthra, R., Patel, K. P., Routbort, M. J., Broaddus, R. R., Yau, J., Simien, C., Chen, W., Hatfield, D. Z., Medeiros, L. J., & Singh, R. R. (2017). A Targeted High-Throughput Next-Generation Sequencing Panel for Clinical Screening of Mutations, Gene Amplifications, and Fusions in Solid Tumors. The Journal of Molecular Diagnostics, 19(2), 255–264. https://doi.org/10.1016/J.JMOLDX.2016.09.011 | |
dc.relation.references | Maeda, D., Shibahara, J., Sakuma, T., Isobe, M., Teshima, S., Mori, M., Oda, K., Nakagawa, S., Taketani, Y., Ishikawa, S., & Fukayama, M. (2011). β-catenin (CTNNB1) S33C mutation in ovarian microcystic stromal tumors. American Journal of Surgical Pathology, 35(10), 1429–1440. https://doi.org/10.1097/PAS.0B013E31822D6C71, | |
dc.relation.references | Martincorena, I., Raine, K. M., Gerstung, M., Dawson, K. J., Haase, K., Van Loo, P., Davies, H., Stratton, M. R., & Campbell, P. J. (2017). Universal Patterns of Selection in Cancer and Somatic Tissues. Cell, 171(5), 1029-1041.e21. https://doi.org/10.1016/j.cell.2017.09.042 | |
dc.relation.references | Martínez-Castillo, M. A., Medrano-Ortiz de Zárate, M. E., Valenzuela-Pérez, A., Ruiz-Romero, J. A., Quijano-Castro, F. O., Salcedo, M., Martínez-Castillo, M. A., Medrano-Ortiz de Zárate, M. E., Valenzuela-Pérez, A., Ruiz-Romero, J. A., Quijano-Castro, F. O., & Salcedo, M. (2022). Diagnóstico mutacional del gen RET y la medicina de precisión en México. Gaceta médica de México, 158(3), 160–166. https://doi.org/10.24875/GMM.22000052 | |
dc.relation.references | Martinez-Ledesma, E., Flores, D., & Trevino, V. (2020). Computational methods for detecting cancer hotspots. Computational and Structural Biotechnology Journal, 18, 3567. https://doi.org/10.1016/J.CSBJ.2020.11.020 | |
dc.relation.references | Medline Plus. (s/f-a). GNAS gene: MedlinePlus Genetics. Recuperado el 17 de junio de 2023, de https://medlineplus.gov/genetics/gene/gnas/ | |
dc.relation.references | Medline Plus. (s/f-b). HNF1A gene: MedlinePlus Genetics. Recuperado el 17 de junio de 2023, de https://medlineplus.gov/genetics/gene/hnf1a/ | |
dc.relation.references | MedlinePlus. (s/f-a). ABL1 gene: MedlinePlus Genetics. Recuperado el 14 de junio de 2023, de https://medlineplus.gov/genetics/gene/abl1/#conditions | |
dc.relation.references | MedlinePlus. (s/f-b). AKT1 gene: MedlinePlus Genetics. Recuperado el 14 de junio de 2023, de https://medlineplus.gov/genetics/gene/akt1/#references | |
dc.relation.references | MedlinePlus. (s/f-c). ALK gene: MedlinePlus Genetics. Recuperado el 14 de junio de 2023, de https://medlineplus.gov/genetics/gene/alk/#conditions | |
dc.relation.references | MedlinePlus. (s/f-d). ATM gene: MedlinePlus Genetics. Recuperado el 15 de junio de 2023, de https://medlineplus.gov/genetics/gene/atm/#conditions | |
dc.relation.references | MedlinePlus. (s/f-e). CDH1 gene: MedlinePlus Genetics. Recuperado el 15 de junio de 2023, de https://medlineplus.gov/genetics/gene/cdh1/#conditions | |
dc.relation.references | MedlinePlus. (s/f-f). CDKN2A gene: MedlinePlus Genetics. Recuperado el 15 de junio de 2023, de https://medlineplus.gov/genetics/gene/cdkn2a/#conditions | |
dc.relation.references | MedlinePlus. (s/f-g). HRAS gene: MedlinePlus Genetics. Recuperado el 17 de junio de 2023, de https://medlineplus.gov/genetics/gene/hras/ | |
dc.relation.references | MedlinePlus. (s/f-h). TP53 Genetic Test. Recuperado el 18 de junio de 2023, de https://medlineplus.gov/lab-tests/tp53-genetic-test/ | |
dc.relation.references | MedlinePlus. (2018). CTNNB1 gene: MedlinePlus Genetics. https://medlineplus.gov/genetics/gene/ctnnb1/#conditions | |
dc.relation.references | Meigs, T. E., Fedor-Chaiken, M., Kaplan, D. D., Brackenbury, R., & Casey, P. J. (2002). Gα12 and Gα13 Negatively Regulate the Adhesive Functions of Cadherin. Journal of Biological Chemistry, 277(27), 24594–24600. https://doi.org/10.1074/JBC.M201984200 | |
dc.relation.references | Memorial Sloan Kettering Cancer Center. (2021, julio 14). Información sobre las mutaciones en el gen SMAD4. https://www.mskcc.org/es/cancer-care/patient- education/about-mutations-smad4-gene | |
dc.relation.references | Meric-Bernstam, F., Brusco, L., Daniels, M., Wathoo, C., Bailey, A. M., Strong, L., Shaw, K., Lu, K., Qi, Y., Zhao, H., Lara-Guerra, H., Litton, J., Arun, B., Eterovic, A. K., Aytac, U., Routbort, M., Subbiah, V., Janku, F., Davies, M. A., ... Chen, K. (2016). Incidental germline variants in 1000 advanced cancers on a prospective somatic genomic profiling protocol. Annals of Oncology, 27(5), 795. https://doi.org/10.1093/ANNONC/MDW018 | |
dc.relation.references | Messaoudi, S. A., Al Sharhan, N. A., Alharthi, B., Babu, S. R., Alsaleh, A. B., Alasiri, A. M., Assidi, M., Buhmeida, A., & Almawi, W. Y. (2022). Detection of genetic mutations in patients with breast cancer from Saudi Arabia using Ion AmpliSeqTM Cancer Hotspot Panel v.2.0. Biomedical Reports, 16(4), 26. https://doi.org/10.3892/BR.2022.1509 | |
dc.relation.references | Meza-Junco, J., Montaño-Loza, A., Aguayo-González, Á., Rincón, S. Z., & Residente, D. (2006). Bases moleculares del cáncer. Revista de Investigación Clínica, 58(1), 56–70. www.imbiomed.com.mx | |
dc.relation.references | Ministerio de Salud y Protección Social. (s/f). Cáncer. Recuperado el 20 de junio de 2023, de https://www.minsalud.gov.co/salud/publica/PENT/Paginas/Prevenciondel- cancer.aspx | |
dc.relation.references | Ministerio de Salud y Protección Social. (2022). Indicadores básicos de salud 2022: situación de salud en Colombia. | |
dc.relation.references | Ministerio de Salud y Protección Social, & Instituto Nacional de Cancerología. (2012). Plan nacional para el control del cáncer en Colombia 2012-2020. | |
dc.relation.references | Montenegro, Y., Muñetón, C., Ramírez, J., Berrío, G. B., Ostos, H., Martínez, C., Sánchez, W., Escobar, J., Ramírez, A., Castaño, R., Isaza, L., Márquez, J., & Hoyos, O. (2001). Caracterización molecular de las mutaciones presentes en los genes responsables del síndrome de Lynch. Iatreia, 14(4-S), pág. 300. https://doi.org/10.17533/udea.iatreia.3907 | |
dc.relation.references | Moore, L., Cagan, A., Coorens, T. H. H., Neville, M. D. C., Sanghvi, R., Sanders, M. A., Oliver, T. R. W., Leongamornlert, D., Ellis, P., Noorani, A., Mitchell, T. J., Butler, T. M., Hooks, Y., Warren, A. Y., Jorgensen, M., Dawson, K. J., Menzies, A., O’Neill, L., Latimer, C., ... Rahbari, R. (2020). The mutational landscape of human somatic and germline cells. bioRxiv, 2020.11.25.398172. https://doi.org/10.1101/2020.11.25.398172 | |
dc.relation.references | Morán González, D., Cabrera, S. J., & Hurlé, A. D. G. (2008). Farmacogenética en oncología. Medicina Clínica, 131(5), 184–195. https://doi.org/10.1157/13124283 | |
dc.relation.references | Morjaria, S. (2021). Driver mutations in oncogenesis. International Journal of Molecular and Immuno Oncology, 6(2), 100–102. https://doi.org/10.25259/IJMIO_26_2020 | |
dc.relation.references | Morris, S. W., Kirstein, M. N., Valentine, M. B., Dittmer, K. G., Shapiro, D. N., Saltman, D. L., & Look, A. T. (1994). Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science, 263(5151), 1281–1284. https://doi.org/10.1126/science.8122112 | |
dc.relation.references | Nangalia, J., & Campbell, P. J. (2019). Genome Sequencing during a Patient’s Journey through Cancer. New England Journal of Medicine, 381(22), 2145– 2156. https://doi.org/10.1056/NEJMra1910138 | |
dc.relation.references | National Human Genome Research Institute. (2023, junio 7). Variabilidad genética. https://www.genome.gov/es/genetics-glossary/Variabilidad-genetica | |
dc.relation.references | National Library of Medicine. (2023, junio 15). Src SRC proto-oncogene, non- receptor tyrosine kinase [Rattus norvegicus (Norway rat)] - Gene - NCBI. https://www.ncbi.nlm.nih.gov/gene/83805 | |
dc.relation.references | National Library of Medicine (NIH). (s/f-a). ABL1 ABL proto-oncogene 1, non- receptor tyrosine kinase [Homo sapiens (human)] - Gene - NCBI. Recuperado el 14 de junio de 2023, de https://www.ncbi.nlm.nih.gov/gene/25 | |
dc.relation.references | National Library of Medicine (NIH). (s/f-b). BRAF B-Raf proto-oncogene, serine/threonine kinase [Homo sapiens (human)] - Gene - NCBI. Recuperado el 15 de junio de 2023, de https://www.ncbi.nlm.nih.gov/gene/673 | |
dc.relation.references | Neumann, H. P. H., Bausch, B., McWhinney, S. R., Bender, B. U., Gimm, O., Franke, G., Schipper, J., Klisch, J., Altehoefer, C., Zerres, K., Januszewicz, A., Smith, W. M., Munk, R., Manz, T., Glaesker, S., Apel, T. W., Treier, M., Reineke, M., Walz, M. K., ... Eng, C. (2002). Germ-Line Mutations in Nonsyndromic Pheochromocytoma. New England Journal of Medicine, 346(19), 1459–1466. https://doi.org/10.1056/nejmoa020152 | |
dc.relation.references | Oca, L. M. C. M. de, & Álvarez, P. I. C. (2022). Correlación clínico-hispatológica en tumores músculo-esquelético 2003-2020. Revista Científica CMDLT, 14(Suplemento). https://doi.org/10.55361/CMDLT.V14ISUPLEMENTO.74 | |
dc.relation.references | Oliveros, R., Pinilla, R. E., Navia, H. F., & Oliveros, R. (2019). Cáncer gástrico: una enfermedad prevenible. Estrategias para intervención en la historia natural. Revista colombiana de Gastroenterología, 34(2), 177–189. https://doi.org/10.22516/25007440.394 | |
dc.relation.references | Olivier, M., Hollstein, M., & Hainaut, P. (2010). TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harbor perspectives in biology, 2(1). https://doi.org/10.1101/CSHPERSPECT.A001008 | |
dc.relation.references | Organización Mundial de la Salud. (2022, febrero 2). Cáncer. https://www.who.int/es/news-room/fact-sheets/detail/cancer | |
dc.relation.references | Ortiz, M. A., Mikhailova, T., Li, X., Porter, B. A., Bah, A., & Kotula, L. (2021). Src family kinases, adaptor proteins and the actin cytoskeleton in epithelial-to-mesenchymal transition. Cell Communication and Signaling 2021 19:1, 19(1), 1–19. https://doi.org/10.1186/S12964-021-00750-X | |
dc.relation.references | O’Shea, J. J., Husa, M., Li, D., Hofmann, S. R., Watford, W., Roberts, J. L., Buckley, R. H., Changelian, P., & Candotti, F. (2004). Jak3 and the pathogenesis of severe combined immunodeficiency. Molecular Immunology, 41(6–7), 727–737. https://doi.org/10.1016/J.MOLIMM.2004.04.014 | |
dc.relation.references | Oury, M., & Collignon, P. (1976). UTILISATION DU LORAZEPAM INJECTABLE DANS LA PREPARATION AU CATHETERISME CARDIAQUE. Revue Medicale de Liege, 31(3), 88–90. | |
dc.relation.references | Palacio-Rúa, K. A., Isaza-Jiménez, L. F., Ahumada-Rodríguez, E., Ceballos- García, H., & Muñetón-Peña, C. M. (2014). Análisis genético en APC, KRAS y TP53 en pacientes con cáncer de estómago y colon. Revista de Gastroenterología de México, 79(2), 79–89. | |
dc.relation.references | Pardo, C., Murillo, R., Piñeros, M., & Castro, M. Á. (2003). CASOS NUEVOS DE CÁNCER EN EL INSTITUTO NACIONAL DE CANCEROLOGÍA, COLOMBIA, 2002. REVISTA COLOMBIANA DE CANCEROLOGÍA, 7, 4–19. www.incancerologia.gov.co | |
dc.relation.references | Parsons, D. W., Roy, A., Yang, Y., Wang, T., Scollon, S., Bergstrom, K., Kerstein, R. A., Gutierrez, S., Petersen, A. K., Bavle, A., Lin, F. Y., López-Terrada, D. H., Monzon, F. A., Hicks, M. J., Eldin, K. W., Quintanilla, N. M., Adesina, A. M., Mohila, C. A., Whitehead, W., ... Plon, S. E. (2016). Diagnostic Yield of Clinical Tumor and Germline Whole-Exome Sequencing for Children With Solid Tumors. JAMA oncology, 2(5), 616. https://doi.org/10.1001/JAMAONCOL.2015.5699 | |
dc.relation.references | Pastore, Y., Jedlickova, K., Guan, Y., Liu, E., Fahner, J., Hasle, H., Prchal, J. F., & Prchal, J. T. (2003). Mutations of von Hippel-Lindau tumor-suppressor gene and congenital polycythemia. American Journal of Human Genetics, 73(2), 412–419. https://doi.org/10.1086/377108 | |
dc.relation.references | Peláez, A., Ramírez, J., Arango, A. R., Matute, G., Montealegre, N., & Gaviria, M. (1998). CARACTERÍSTICAS Y PREVALENCIA DE NEOPLASIAS MALIGNAS DEL TRACTO GASTROINTESTINAL EN EL DEPARTAMENTO DE ANTIOQUIA, SEGUNDO SEMESTRE DE 1996. | |
dc.relation.references | Pellatt, A. J., Bhamidipati, D., & Subbiah, V. (2024). Ready, Set, Go: Setting Off on the Mission to Target KRAS in Colorectal Cancer . JCO Oncology Practice. https://doi.org/10.1200/OP.24.00295 | |
dc.relation.references | Perakis, S. O., Weber, S., Zhou, Q., Graf, R., Hojas, S., Riedl, J. M., Gerger, A., Dandachi, N., Balic, M., Hoefler, G., Schuuring, E., Groen, H. J. M., Geigl, J. B., Heitzer, E., & Speicher, M. R. (2020). Comparison of three commercial decision support platforms for matching of next-generation sequencing results with therapies in patients with cancer. ESMO Open, 5(5), e000872. https://doi.org/10.1136/esmoopen-2020-000872 | |
dc.relation.references | Perl, A. E. (2017). The role of targeted therapy in the management of patients with AML. Hematology: the American Society of Hematology Education Program, 2017(1), 54. https://doi.org/10.1182/ASHEDUCATION-2017.1.54 | |
dc.relation.references | Pesu, M., Candotti, F., Husa, M., Hofmann, S. R., Notarangelo, L. D., & O’Shea, J. J. (2005). Jak3, severe combined immunodeficiency, and a new class of immunosuppressive drugs. Immunological Reviews, 203, 127–142. https://doi.org/10.1111/J.0105-2896.2005.00220.X | |
dc.relation.references | Petrosino, M., Novak, L., Pasquo, A., Chiaraluce, R., Turina, P., Capriotti, E., & Consalvi, V. (2021). Analysis and interpretation of the impact of missense variants in cancer. International Journal of Molecular Sciences, 22(11), 5416. https://doi.org/10.3390/IJMS22115416/S1 | |
dc.relation.references | Pikman, Y., Lee, B. H., Mercher, T., McDowell, E., Ebert, B. L., Gozo, M., Cuker, A., Wernig, G., Moore, S., Galinsky, I., DeAngelo, D. J., Clark, J. J., Lee, S. J., Golub, T. R., Wadleigh, M., Gilliland, D. G., & Levine, R. L. (2006). MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Medicine, 3(7), 1140–1151. https://doi.org/10.1371/JOURNAL.PMED.0030270 | |
dc.relation.references | Pon, J. R., & Marra, M. A. (2015). Driver and Passenger Mutations in Cancer. Annu. Rev. Pathol. Mech. Dis, 10, 25–50. https://doi.org/10.1146/annurev- pathol-012414-040312 | |
dc.relation.references | Potapova, T., & Gorbsky, G. J. (2017). The Consequences of Chromosome Segregation Errors in Mitosis and Meiosis. Biology 2017, Vol. 6, Page 12, 6(1), 12. https://doi.org/10.3390/BIOLOGY6010012 | |
dc.relation.references | Poznak, C. Van, & Seidman, A. D. (2017). Breast Cancer Essentials for Clinicians Edited. Encyclopedia of Cancer (Second Edition), 287–299. http://www.sciencedirect.com:5070/referencework/9780122275555/encyclope dia-of-cancer | |
dc.relation.references | Ramarao-Milne, K. P., Patch, A.-M., Nones, K., Koufariotis, R., Newell, F., Addala, V. R., Kondrashova, O., Mukhopadhyay, P., Kazakoff, S. H., Lakis, V., Holmes, O., Leonard, C., Wood, S., Xu, C., Pearson, J. V., Hollway, G., & Waddell, N. (2019). Detection of actionable variants in various cancer types reveals value of whole-genome sequencing over in-silico whole-exome and hotspot panel sequencing. Annals of Oncology, 30, vii33. https://doi.org/10.1093/annonc/mdz413.119 | |
dc.relation.references | Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W. W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., & Rehm, H. L. (2015). Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine : official journal of the American College of Medical Genetics, 17(5), 405. https://doi.org/10.1038/GIM.2015.30 | |
dc.relation.references | Roa, I., Sánchez, T., Majlis, A., & Schalper, K. (2013). Mutación del gen KRAS en el cáncer de colon y recto. Revista médica de Chile, 141(9), 1166–1172. https://doi.org/10.4067/S0034-98872013000900009 | |
dc.relation.references | Robert Frost, H. (2021). Analyzing cancer gene expression data through the lens of normal tissue-specificity. PLOS Computational Biology, 17(6), e1009085. https://doi.org/10.1371/JOURNAL.PCBI.1009085 | |
dc.relation.references | Robles, L., Balmaña, J., Barrel, I., Grandes, S., Graña, B., Guillén, C., Marcos, H., Ramírez, D., Redondo, E., & Sá nchez, J. (2013). Consenso en cáncer hereditario entre la Sociedad Española de Oncología Médica y las sociedades de atención primaria. SEMERGEN - Medicina de Familia, 39(5), 259–266. https://doi.org/10.1016/J.SEMERG.2012.08.007 | |
dc.relation.references | Rodríguez, A. O., Llacuachaqui, M., Pardo, G. G., Royer, R., Larson, G., Weitzel, J. N., & Narod, S. A. (2012). BRCA1 and BRCA2 mutations among ovarian cancer patients from Colombia. Gynecologic oncology, 124(2), 236–243. https://doi.org/10.1016/J.YGYNO.2011.10.027 | |
dc.relation.references | Rodríguez-Santiago, B., & Armengol, L. (2012). Tecnologías de secuenciación de nueva generación en diagnóstico genético pre- y postnatal. Diagnóstico Prenatal, 23(2), 56–66. https://doi.org/10.1016/J.DIAPRE.2012.02.001 | |
dc.relation.references | Rubio, S., Pacheco-Orozco, R. A., Gómez, A. M., Perdomo, S., & García-Robles, R. (2020). Secuenciación de nueva generación (NGS) de ADN: presente y futuro en la práctica clínica. Universitas Médica, 61(2). https://doi.org/10.11144/JAVERIANA.UMED61-2.SNGS | |
dc.relation.references | Sabarinathan, R., Pich, O., Martincorena, I., Rubio-Perez, C., Juul, M., Wala, J., Schumacher, S., Shapira, O., Sidiropoulos, N., Waszak, S. M., Tamborero, D., Mularoni, L., Rheinbay, E., Hornshøj, H., Deu-Pons, J., Muiños, F., Bertl, J., Guo, Q., Creighton, C. J., ... Network, on behalf of the P. D. and F. I. G. and the I. P.-C. A. of W. G. (2017). The whole-genome panorama of cancer drivers. bioRxiv, 190330. https://doi.org/10.1101/190330 | |
dc.relation.references | Sanderson, C. J. (1976). The mechanism of T cell mediated cytotoxicity. II. Morphological studies of cell death by time lapse microcinematography. Proceedings of the Royal Society of London - Biological Sciences, 192(1107), 241–255. https://doi.org/10.1098/rspb.1976.0011 | |
dc.relation.references | Sandhu, V., Wedge, D. C., Lothe, I. M. B., Labori, K. J., Dentro, S. C. D., Buanes, T., Skrede, M. L., Dalsgaard, A. M., Munthe, E., Myklebost, O., Lingjærde, O. C., Børresen-Dale, A. L., Ikdahll, T., Van Loo, P., Nord, S., & Kure, E. H. (2016). The Genomic landscape of pancreatic and periampullary Adenocarcinoma. Cancer Research, 76(17), 5092–5102. https://doi.org/10.1158/0008-5472.CAN-16-0658/652470/AM/THE- GENOMIC-LANDSCAPE-OF-PANCREATIC-AND | |
dc.relation.references | Secretaría Seccional de Salud y Protección Social de Antioquia. (2018). SITUACIÓN DEL CÁNCER, DEPARTAMENTO DE ANTIOQUIA. AÑO 2018 GERENCIA DE SALUD PÚBLICA SECRETARÍA SECCIONAL DE SALUD Y PROTECCIÓN SOCIAL DE ANTIOQUIA. | |
dc.relation.references | Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1), 17–48. https://doi.org/10.3322/CAAC.21763;CTYPE:STRING:JOURNAL | |
dc.relation.references | Silva-Rodríguez, P., Fernández-Díaz, D., Bande, M., Pardo, M., Loidi, L., & Blanco-Teijeiro, M. J. (2022). GNAQ and GNA11 Genes: A Comprehensive Review on Oncogenesis, Prognosis and Therapeutic Opportunities in Uveal Melanoma. Cancers, 14(13). https://doi.org/10.3390/CANCERS14133066/S1 | |
dc.relation.references | Simon, R., & Roychowdhury, S. (2013). Implementing personalized cancer genomics in clinical trials. Nature reviews. Drug discovery, 12(5), 358–369. https://doi.org/10.1038/NRD3979 | |
dc.relation.references | Sims, D., Sudbery, I., Ilott, N. E., Heger, A., & Ponting, C. P. (2014). Sequencing depth and coverage: Key considerations in genomic analyses. Nature Reviews Genetics, 15(2), 121–132. https://doi.org/10.1038/NRG3642, | |
dc.relation.references | Staudt, D., Murray, H. C., McLachlan, T., Alvaro, F., Enjeti, A. K., Verrills, N. M., & Dun, M. D. (2018). Targeting Oncogenic Signaling in Mutant FLT3 Acute Myeloid Leukemia: The Path to Least Resistance. International Journal of Molecular Sciences, 19(10). https://doi.org/10.3390/IJMS19103198 | |
dc.relation.references | Strickler, J. H., Satake, H., George, T. J., Yaeger, R., Hollebecque, A., Garrido- Laguna, I., Schuler, M., Burns, T. F., Coveler, A. L., Falchook, G. S., Vincent, M., Sunakawa, Y., Dahan, L., Bajor, D., Rha, S.-Y., Lemech, C., Juric, D., Rehn, M., Ngarmchamnanrith, G., ... Hong, D. S. (2023). Sotorasib in KRAS p.G12C–Mutated Advanced Pancreatic Cancer . New England Journal of Medicine, 388(1), 33–43. https://doi.org/10.1056/NEJMOA2208470/SUPPL_FILE/NEJMOA2208470_D ATA-SHARING.PDF | |
dc.relation.references | Sukhai, M. A., Misyura, M., Thomas, M., Garg, S., Zhang, T., Stickle, N., Virtanen, C., Bedard, P. L., Siu, L. L., Smets, T., Thijs, G., Van Vooren, S., Kamel-Reid, S., & Stockley, T. L. (2019). Somatic Tumor Variant Filtration Strategies to Optimize Tumor-Only Molecular Profiling Using Targeted Next-Generation Sequencing Panels. Journal of Molecular Diagnostics, 21(2), 261–273. https://doi.org/10.1016/j.jmoldx.2018.09.008 | |
dc.relation.references | Sweeney, S. M., Cerami, E., Baras, A., Pugh, T. J., Schultz, N., Stricker, T., Lindsay, J., Del Vecchio Fitz, C., Kumari, P., Micheel, C., Shaw, K., Gao, J., Moore, N., Stricker, T., Kandoth, C., Reardon, B., Lepisto, E., Gardos, S., Dang, K., ... Shaw, K. (2017). AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer discovery, 7(8), 818– 831. https://doi.org/10.1158/2159-8290.CD-17-0151 | |
dc.relation.references | Taylor, C. F., Charlton, R. S., Burn, J., Sheridan, E., & Taylor, G. R. (2003). Genomic Deletions in MSH2 or MLH1 Are a Frequent Cause of Hereditary Non-Polyposis Colorectal Cancer: Identification of Novel and Recurrent Deletions by MLPA. Human Mutation, 22(6), 428–433. https://doi.org/10.1002/humu.10291 | |
dc.relation.references | Tian, R., Basu, M. K., & Capriotti, E. (2015). Computational methods and resources for the interpretation of genomic variants in cancer. BMC Genomics, 16(Suppl 8), S7. https://doi.org/10.1186/1471-2164-16-S8-S7 | |
dc.relation.references | Tipos de tratamiento | American Cancer Society. (s/f). Recuperado el 25 de diciembre de 2023, de https://www.cancer.org/es/cancer/como-sobrellevar-el- cancer/tipos-de-tratamiento.html | |
dc.relation.references | Torres, D., Lorenzo Bermejo, J., Rashid, M. U., Bricenõ, I., Gil, F., Beltran, A., Ariza, V., & Hamann, U. (2017). Prevalence and Penetrance of BRCA1 and BRCA2 Germline Mutations in Colombian Breast Cancer Patients. Scientific Reports, 7(1). https://doi.org/10.1038/S41598-017-05056-Y | |
dc.relation.references | Torres, D., Rashid, M. U., Gil, F., Umana, A., Ramelli, G., Robledo, J. F., Tawil, M., Torregrosa, L., Briceno, I., & Hamann, U. (2007). High proportion of BRCA1/2 founder mutations in Hispanic breast/ovarian cancer families from Colombia. Breast Cancer Research and Treatment, 103(2), 225–232. https://doi.org/10.1007/S10549-006-9370-1/METRICS | |
dc.relation.references | Torres, M. M., Acosta, C. P., Sicard, D. M., & Groot de Restrepo, H. (2004). Susceptibilidad genética y riesgo de cáncer gástrico en una población del Cauca. Biomédica, 24(2), 153–162. https://doi.org/10.7705/BIOMEDICA.V24I2.1261 | |
dc.relation.references | Tovar-Parra, J. D., Gutiérrez-Castañeda, L. D., Gil-Quiñones, S. R., Nova, J. A., & Pulido, L. (2020). CDKN2A Polymorphism in Melanoma Patients in Colombian Population: A Case-Control Study. BioMed Research International, 2020. https://doi.org/10.1155/2020/7458917 | |
dc.relation.references | Trevino, V., Tadesse, M. G., Vannucci, M., Al-Shahrour, F., & Antczak, P. (2011). Analysis of Normal-Tumour Tissue Interaction in Tumours: Prediction of Prostate Cancer Features from the Molecular Profile of Adjacent Normal Cells. PLoS ONE, 6(3), 16492. https://doi.org/10.1371/journal.pone.0016492 | |
dc.relation.references | Tsongalis, G. J., Peterson, J. D., De Abreu, F. B., Tunkey, C. D., Gallagher, T. L., Strausbaugh, L. D., Wells, W. A., & Amos, C. I. (2014). Routine use of the Ion Torrent AmpliSeqTM Cancer Hotspot Panel for identification of clinically actionable somatic mutations. Clinical Chemistry and Laboratory Medicine, 52(5), 707–714. https://doi.org/10.1515/CCLM-2013- 0883/MACHINEREADABLECITATION/RIS | |
dc.relation.references | Tuzov, N. (2018). A framework for the estimation of the proportion of true discoveries in single nucleotide variant detection studies for human data. PLoS ONE, 13(4). https://doi.org/10.1371/JOURNAL.PONE.0196058 | |
dc.relation.references | Twigg, S. R. F., Hufnagel, R. B., Miller, K. A., Zhou, Y., McGowan, S. J., Taylor, J., Craft, J., Taylor, J. C., Santoro, S. L., Huang, T., Hopkin, R. J., Brady, A. F., Clayton-Smith, J., Clericuzio, C. L., Grange, D. K., Groesser, L., Hafner, C., Horn, D., Temple, I. K., ... Wilkie, A. O. M. (2016). A Recurrent Mosaic Mutation in SMO, Encoding the Hedgehog Signal Transducer Smoothened, Is the Major Cause of Curry-Jones Syndrome. American Journal of Human Genetics, 98(6), 1256–1265. https://doi.org/10.1016/j.ajhg.2016.04.007 | |
dc.relation.references | UT Southwestern Harold C. Simmons Comprehensive Cancer Center. (2020). Síndrome de Peutz-Jeghers (mutaciones en el gen STK11). | |
dc.relation.references | Vahidnezhad, H., Youssefian, L., & Uitto, J. (2016). Klippel-Trenaunay syndrome belongs to the PIK3CA-related overgrowth spectrum (PROS). Experimental Dermatology, 25(1), 17–19. https://doi.org/10.1111/EXD.12826 | |
dc.relation.references | Van Raamsdonk, C. D., Bezrookove, V., Green, G., Bauer, J., Gaugler, L., O’Brien, J. M., Simpson, E. M., Barsh, G. S., & Bastian, B. C. (2009). Frequent somatic mutations of GNAQ in uveal melanoma and blue nevi. Nature, 457(7229), 599. https://doi.org/10.1038/NATURE07586 | |
dc.relation.references | Vergara-Dagobeth, E., Suárez-Causado, A., & Gómez-Arias, R. D. (2017). Plan Control del cáncer en Colombia 2012-2021. Un análisis formal. Gerencia y Políticas de Salud, 16(33), 6–18. https://doi.org/10.11144/JAVERIANA.RGPS16-33.PCCC | |
dc.relation.references | Verma, S., & Gazara, R. K. (2021). Next-generation sequencing: an expedition from workstation to clinical applications. Translational Bioinformatics in Healthcare and Medicine, 13, 29–47. https://doi.org/10.1016/B978-0-323- 89824-9.00003-3 | |
dc.relation.references | Vihinen, M., Villa, A., Mella, P., Schumacher, R. F., Savoldi, G., O’Shea, J. J., Candotti, F., & Notarangelo, L. D. (2000). Molecular modeling of the Jak3 kinase domains and structural basis for severe combined immunodeficiency. Clinical Immunology, 96(2), 108–118. https://doi.org/10.1006/CLIM.2000.4880 | |
dc.relation.references | Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., ... Vázquez-Baeza, Y. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/S41592-019-0686- 2;SUBJMETA=114,45,559,56,631,703,706;KWRD=BIOPHYSICAL+CHEMIS TRY,COMPUTATIONAL+BIOLOGY+AND+BIOINFORMATICS,TECHNOLOG Y | |
dc.relation.references | Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz, L. A., & Kinzler, K. W. (2013). Cancer Genome Landscapes. Science (New York, N.Y.), 339(6127), 1546. https://doi.org/10.1126/SCIENCE.1235122 | |
dc.relation.references | Wang, J., Raskin, L., Samuels, D. C., Shyr, Y., & Guo, Y. (2015). Genome measures used for quality control are dependent on gene function and ancestry. Bioinformatics, 31(3), 318. https://doi.org/10.1093/BIOINFORMATICS/BTU668 | |
dc.relation.references | Ward, P. S., & Thompson, C. B. (2012). Metabolic Reprogramming: A Cancer Hallmark Even Warburg Did Not Anticipate. Cancer Cell, 21(3), 297. https://doi.org/10.1016/J.CCR.2012.02.014 | |
dc.relation.references | Willingham, A. T., Deveraux, Q. L., Hampton, G. M., & Aza-Blanc, P. (2004). RNAi and HTS: exploring cancer by systematic loss-of-function. Oncogene, 23(51), 8392–8400. https://doi.org/10.1038/SJ.ONC.1208217 | |
dc.relation.references | Yang, J., Hu, S., Wang, C., Song, J., Chen, C., Fan, Y., Ben-David, Y., & Pan, W. (2020). Fangchinoline derivatives induce cell cycle arrest and apoptosis in human leukemia cell lines via suppression of the PI3K/AKT and MAPK signaling pathway. European Journal of Medicinal Chemistry, 186, 111898. https://doi.org/10.1016/J.EJMECH.2019.111898 | |
dc.relation.references | Yeh, C. H., Bellon, M., & Nicot, C. (2018). FBXW7: a critical tumor suppressor of human cancers. Molecular Cancer 2018 17:1, 17(1), 1–19. https://doi.org/10.1186/S12943-018-0857-2 | |
dc.relation.references | Yesilöz, Ü., Kirches, E., Hartmann, C., Scholz, J., Kropf, S., Sahm, F., Nakamura, M., & Mawrin, C. (2017). Frequent AKT1E17K mutations in skull base meningiomas are associated with mTOR and ERK1/2 activation and reduced time to tumor recurrence. Neuro-Oncology, 19(8), 1088–1096. https://doi.org/10.1093/NEUONC/NOX018 | |
dc.relation.references | Yi, K. H., & Lauring, J. (2015). Recurrent AKT mutations in human cancers: functional consequences and effects on drug sensitivity. Oncotarget, 7(4), 4241. https://doi.org/10.18632/ONCOTARGET.6648 | |
dc.relation.references | Zhang, L., Chen, L., Sah, S., Latham, G. J., Patel, R., Song, Q., Koeppen, H., Tam, R., Schleifman, E., Mashhedi, H., Chalasani, S., Fu, L., Sumiyoshi, T., Raja, R., Forrest, W., Hampton, G. M., Lackner, M. R., Hegde, P., & Jia, S. (2014). Profiling Cancer Gene Mutations in Clinical Formalin-Fixed, Paraffin- Embedded Colorectal Tumor Specimens Using Targeted Next-Generation Sequencing. The Oncologist, 19(4), 336–343. https://doi.org/10.1634/THEONCOLOGIST.2013-0180 | |
dc.relation.references | Zhang, Y., Coillie, S. V, Fang, J.-Y., & Xu, J. (2016). Gain of function of mutant p53: R282W on the peak? Oncogenesis, 5, 196. https://doi.org/10.1038/oncsis.2016.8 | |
dc.relation.references | Zhu, W., Han, H., Ma, Z., Cao, H., Yan, Y., Zhao, Y., Deng, C., Xu, H., Fu, F., Fan, F., Zhang, Y., & Chen, H. (2024). Prognostic value of KRAS G12V mutation in lung adenocarcinoma stratified by stages and radiological features. Journal of Thoracic and Cardiovascular Surgery, 168(6), 1525- 1537.e6. https://doi.org/10.1016/j.jtcvs.2024.03.025 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.ddc | 570 - Biología::576 - Genética y evolución | |
dc.subject.ddc | 660 - Ingeniería química | |
dc.subject.lemb | Cáncer - Aspectos genéticos - Antioquia (Colombia) | |
dc.subject.lemb | Cáncer - Tratamiento genético - Antioquia (Colombia) | |
dc.subject.lemb | Cáncer - Tratamiento - Antioquia (Colombia) | |
dc.subject.lemb | Cáncer - Innovaciones tecnológicas - Antioquia (Colombia) | |
dc.subject.lemb | Biotecnología | |
dc.subject.proposal | Secuenciación | spa |
dc.subject.proposal | Sequencing | eng |
dc.subject.proposal | Cáncer | spa |
dc.subject.proposal | Cancer | eng |
dc.subject.proposal | Genes | spa |
dc.subject.proposal | Genes | eng |
dc.subject.proposal | Panel | spa |
dc.subject.proposal | Panel | eng |
dc.subject.proposal | Descripción | spa |
dc.subject.proposal | Description | |
dc.subject.proposal | Mutaciones | spa |
dc.subject.proposal | Mutations | eng |
dc.title | Descripción del panorama mutacional de 50 genes en algunos tipos de cáncer presentes en población antioqueña a través de Secuenciación de Próxima Generación | spa |
dc.title.translated | Mutational landscape analysis of 50 genes in selected cancer types using NextGeneration Sequencing in patients from Antioquia, Colombia | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |