Descripción del panorama mutacional de 50 genes en algunos tipos de cáncer presentes en población antioqueña a través de Secuenciación de Próxima Generación

dc.contributor.advisorHernández Ortiz, Juan Pablo
dc.contributor.authorMoreno López, Isabel
dc.contributor.cvlacIsabel Moreno López
dc.contributor.orcidMoreno López, Isabel [0000-0003-2258-4724]
dc.contributor.orcidHernández Ortiz. Juan Pablo [0000-0003-0404-9947]
dc.contributor.researchgatehttps://www.researchgate.net/profile/Isabel-Moreno-Lopez-2?ev=hdr_xprf
dc.contributor.researchgroupCrs-Tid Center for Research and Surveillance of Tropical and Infectious Diseases
dc.coverage.regionAntioquia (Colombia)
dc.date.accessioned2025-08-26T21:58:21Z
dc.date.available2025-08-26T21:58:21Z
dc.date.issued2025
dc.descriptionIlustracionesspa
dc.description.abstractEl análisis mutacional de tumores se ha convertido en una herramienta fundamental para el diagnóstico, tratamiento y seguimiento del cáncer. Las tecnologías de Secuenciación de Próxima Generación (NGS) han permitido obtener información detallada sobre las mutaciones y variantes presentes en los tumores, impulsando el desarrollo de la medicina de precisión. Sin embargo, en países con limitaciones de recursos, como Colombia, la adopción de estas tecnologías ha sido limitada, lo que ha generado una falta de información sobre la variabilidad genética del cáncer en su población. Este estudio tiene como objetivo describir el panorama mutacional de once muestras de tumor de pacientes con diferentes tipos de cáncer (gástrico, recto, pleura, colon y periampular) en el departamento de Antioquia, Colombia. Para desarrollar esta investigación se utilizó un panel comercial de secuenciación dirigida que está diseñado para identificar variantes en puntos de alta mutación de 50 genes asociados al cáncer, los cuales presentan relevancia clínica. Los datos obtenidos se analizaron con el fin de describir el perfil mutacional de cada tumor. De esta forma, se identificaron y detallaron variantes genéticas de interés en las muestras tumorales analizadas. La información obtenida permitió describir el perfil mutacional de cada tumor, proporcionando información de alta relevancia sobre la variabilidad genética del cáncer en once pacientes del departamento de Antioquia. Dichos resultados contribuyeron al desarrollo de estrategias de diagnóstico, tratamiento y seguimiento más precisas para el cáncer en la región, lo cual se distingue como un aporte al desarrollo de la medicina personalizada en Colombia. (Tomado de la fuente)spa
dc.description.abstractMutational analysis of tumors has become a fundamental tool for the diagnosis, treatment, and monitoring of cancer. Next-Generation Sequencing (NGS) technologies have enabled the detailed acquisition of information about the mutations and variants present in tumors, driving the development of precision medicine. However, in resource-limited countries such as Colombia, the adoption of these technologies has been limited, resulting in a lack of information on the genetic variability of cancer in their population. This study aims to describe the mutational landscape of eleven tumor samples from patients with different types of cancer (gastric, rectal, pleural, colon, and periampullary) in the department of Antioquia, Colombia. A commercial targeted sequencing panel designed to identify variants in highly mutated regions of 50 clinically relevant cancer-associated genes was used for this research. The data obtained were analyzed to describe the mutational profile of each tumor. Thus, genetic variants of interest were identified and detailed in the analyzed tumor samples. The obtained information allowed for the description of the mutational profile of each tumor, providing highly relevant data on the genetic variability of cancer in eleven patients from the department of Antioquia. These results contributed to the development of more precise strategies for the diagnosis, treatment, and monitoring of cancer in the region, which is distinguished as a contribution to the development of personalized medicine in Colombia.eng
dc.description.curricularareaBiotecnología.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Biotecnología
dc.format.extent173 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88479
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.relation.indexedLaReferencia
dc.relation.referencesAfanador, C. H., Palacio, K. A., Isaza, L. F., Ahumada, E., Ocampo, C. M., & Muñetón, C. M. (2022). Caracterización molecular de pacientes con cáncer colorrectal. Biomédica, 42(Suppl 1), 154. https://doi.org/10.7705/BIOMEDICA.5957
dc.relation.referencesAlarcón, M.-L., Brugés, R., Carvajal, C., Vallejo, C., & Beltrán, R. (2021). Características de los pacientes con cáncer de pulmón de célula no pequeña en el Instituto Nacional de Cancerología de Bogotá. Revista Colombiana de Cancerología, 25(2), 103–109. https://doi.org/10.35509/01239015.706
dc.relation.referencesAlvarez-Gomez, R. M., De la Fuente-Hernandez, M. A., Herrera-Montalvo, L., & Hidalgo-Miranda, A. (2021). Challenges of diagnostic genomics in Latin America. Current Opinion in Genetics & Development, 66, 101–109. https://doi.org/10.1016/J.GDE.2020.12.010
dc.relation.referencesAndersen, S. D., Liberti, S. E., Lützen, A., Drost, M., Bernstein, I., Nilbert, M., Dominguez, M., Nyström, M., Hansen, T. V. O., Christoffersen, J. W., Jäger, A. C., de Wind, N., Nielsen, F. C., Tørring, P. M., & Rasmussen, L. J. (2012). Functional characterization of MLH1 missense variants identified in lynch syndrome patients. Human Mutation, 33(12), 1647–1655. https://doi.org/10.1002/HUMU.22153
dc.relation.referencesAnderson, M. W., Reynolds, S. H., You, M., & Maronpot, R. M. (1992). Role of proto-oncogene activation in carcinogenesis. Environmental Health Perspectives, 98, 13. https://doi.org/10.1289/EHP.929813
dc.relation.referencesAndrabi, S., Bekheirnia, M. R., Robbins-Furman, P., Lewis, R. A., Prior, T. W., & Potocki, L. (2011). SMAD4 mutation segregating in a family with juvenile polyposis, aortopathy, and mitral valve dysfunction. American Journal of Medical Genetics, Part A, 155(5), 1165–1169. https://doi.org/10.1002/AJMG.A.33968
dc.relation.referencesArai, R. J., Santa, R., Guindalini, C., Llera, A. S., Manoel O’connor, J., Muller, B., Lema, M., Freitas, H. C., Soria, T., Delgado, L., Landaverde, D., Montenegro, P., & Riechelmann, R. P. (2019). Personalizing Precision Oncology Clinical Trials in Latin America: An Expert Panel on Challenges and Opportunities. The Oncologist, 24(8), e709–e719.
dc.relation.referencesAretz, S., Stienen, D., Uhlhaas, S., Stolte, M., Entius, M. M., Loff, S., Back, W., Kaufmann, A., Keller, K. M., Blaas, S. H., Siebert, R., Vogt, S., Spranger, S., Holinski-Feder, E., Sunde, L., Propping, P., & Friedl, W. (2007). High proportion of large genomic deletions and a genotype-phenotype update in 80 unrelated families with juvenile polyposis syndrome. Journal of Medical Genetics, 44(11), 702–709. https://doi.org/10.1136/JMG.2007.052506
dc.relation.referencesAristizábal-Pachón, A. F., González-Giraldo, Y., García, A. Y., Suarez, D. X., Rodríguez, A., & Gonzalez-Santos, J. (2022). Association between VDR Gene Polymorphisms and Melanoma Susceptibility in a Colombian Population. Asian Pacific Journal of Cancer Prevention : APJCP, 23(1), 79. https://doi.org/10.31557/APJCP.2022.23.1.79
dc.relation.referencesArruga, F., Gizdic, B., Serra, S., Vaisitti, T., Ciardullo, C., Coscia, M., Laurenti, L., D’Arena, G., Jaksic, O., Inghirami, G., Rossi, D., Gaidano, G., & Deaglio, S. (2014). Functional impact of NOTCH1 mutations in chronic lymphocytic leukemia. Leukemia, 28(5), 1060–1070. https://doi.org/10.1038/LEU.2013.319
dc.relation.referencesAryal, B., Bizhanova, Z., Joseph, E. A., Yin, Y., Wagner, P. L., Dalton, E., LaFramboise, W. A., Bartlett, D. L., & Allen, C. J. (2024). Navigating Precision Oncology: Insights from an Integrated Clinical Data and Biobank Repository Initiative across a Network Cancer Program. Cancers, 16(4), 760. https://doi.org/10.3390/CANCERS16040760
dc.relation.referencesAtwood, S. X., Sarin, K. Y., Whitson, R. J., Li, J. R., Kim, G., Rezaee, M., Ally, M. S., Kim, J., Yao, C., Chang, A. L. S., Oro, A. E., & Tang, J. Y. (2015). Smoothened Variants Explain the Majority of Drug Resistance in Basal Cell Carcinoma. Cancer Cell, 27(3), 342–353. https://doi.org/10.1016/j.ccell.2015.02.002
dc.relation.referencesAuthor, P., & Fisher, R. A. (1922). On the Interpretation of χ 2 from Contingency Tables, and the Calculation of. Source: Journal of the Royal Statistical Society, 85(1), 87–94.
dc.relation.referencesBailey, M. H., Tokheim, C., Porta-Pardo, E., Sengupta, S., Bertrand, D., Weerasinghe, A., Colaprico, A., Wendl, M. C., Kim, J., Reardon, B., Ng, P. K. S., Jeong, K. J., Cao, S., Wang, Z., Gao, J., Gao, Q., Wang, F., Liu, E. M., Mularoni, L., ... Karchin, R. (2018). Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell, 173(2), 371. https://doi.org/10.1016/J.CELL.2018.02.060
dc.relation.referencesBainbridge, M. N., Wang, M., Wu, Y., Newsham, I., Muzny, D. M., Jefferies, J. L., Albert, T. J., Burgess, D. L., & Gibbs, R. A. (2011). Targeted enrichment beyond the consensus coding DNA sequence exome reveals exons with higher variant densities. Genome Biology, 12(7), R68. https://doi.org/10.1186/GB-2011-12-7-R68
dc.relation.referencesBandipalliam, P. (2005). Syndrome of early onset colon cancers, hematologic malignancies & features of neurofibromatosis in HNPCC families with homozygous mismatch repair gene mutations. Familial Cancer, 4(4), 323– 333. https://doi.org/10.1007/S10689-005-8351-6
dc.relation.referencesBarbosa, T., Rojas-Rodríguez, F., Gonzalez, J., & Aristizabal-Pachón, A. F. (2021). Clinical data integration with cancer genomics: Insights into computational and quantitative methods. Bioinformatics and Human Genomics Research, 335–341. https://doi.org/10.1201/9781003005926-16/CLINICAL-DATA-INTEGRATION-CANCER-GENOMICS-INSIGHTS- COMPUTATIONAL-QUANTITATIVE-METHODS-T
dc.relation.referencesBarnetson, R. A., Cartwright, N., Van Vliet, A., Haq, N., Drew, K., Farrington, S., Williams, N., Warner, J., Campbell, H., Porteous, M. E., & Dunlop, M. G. (2008). Classification of ambiguous mutations in DNA mismatch repair genes identified in a population-based study of colorectal cancer. Human Mutation, 29(3), 367–374. https://doi.org/10.1002/humu.20635
dc.relation.referencesBarrett, J. C., Thomassen, D. G., & Hesterberg, T. W. (1983). Role of gene and chromosomal mutations in cell transformation. Annals of the New York Academy of Sciences, 407(1), 291–300. https://doi.org/10.1111/J.1749- 6632.1983.TB47834.X
dc.relation.referencesBen Lassoued, A., Nivaggioni, V., & Gabert, J. (2014). Minimal residual disease testing in hematologic malignancies and solid cancer. Expert Review of Molecular Diagnostics, 14(6), 699–712. https://doi.org/10.1586/14737159.2014.927311;SUBPAGE:STRING:ACCESS
dc.relation.referencesBenavides, F. J., & Guénet, J.-L. (2003). Manual de genética de roedores de laboratorio: principios básicos y aplicaciones.
dc.relation.referencesBenavides, J., Suárez, J., Estrada, A., Bohórquez, M., Ramírez, C., Olaya, J., Sánchez, Y., Mateus, G., Carvajal, L., & Echeverry, M. M. (2020). Cáncer de mama en seis familias del Tolima y el Huila: mutación BRCA1 3450del4. Biomédica, 40(1), 185–194. https://doi.org/10.7705/BIOMEDICA.4673
dc.relation.referencesBerger, M. F., & Mardis, E. R. (2018). The emerging clinical relevance of genomics in cancer medicine. Nature reviews. Clinical oncology, 15(6), 353. https://doi.org/10.1038/S41571-018-0002-6
dc.relation.referencesBernardes, J. de O., & Toledo-Silva, G. (2023). O Uso do Sequenciamento Total do Exoma no Diagnóstico do Adenocarcinoma Ductal Pancreático. Revista Brasileira de Cancerologia, 69(1), e-053006. https://doi.org/10.32635/2176- 9745.RBC.2023v69n1.3006
dc.relation.referencesBewicke-Copley, F., Arjun Kumar, E., Palladino, G., Korfi, K., & Wang, J. (2019). Applications and analysis of targeted genomic sequencing in cancer studies. Computational and Structural Biotechnology Journal, 17, 1348–1359. https://doi.org/10.1016/J.CSBJ.2019.10.004
dc.relation.referencesBhai, P., Turowec, J., Santos, S., Kerkhof, J., Pickard, L. A., Foroutan, A., Breadner, D., Cecchini, M., Levy, M. A., Stuart, A., Welch, S., Howlett, C., Lin, H., & Sadikovic, B. (2023). Molecular profiling of solid tumors by next- generation sequencing: an experience from a clinical laboratory. Frontiers in Oncology, 13, 1208244. https://doi.org/10.3389/FONC.2023.1208244/BIBTEX
dc.relation.referencesBioCancer. (2004). Proto-oncogenes y oncogenes. https://www.biocancer.com/journal/1321/21-proto-oncogenes-y-oncogenes
dc.relation.referencesBiologyInsights Team. (2025, abril 29). KRAS G12V: Nuevos conocimientos sobre la biología del cáncer - BiologyInsights. https://biologyinsights.com/kras-g12v- new-insights-in-cancer-biology/
dc.relation.referencesBIOPAT. (s/f). Amplificación del oncogén ERBB2 (HER2). Recuperado el 17 de junio de 2023, de http://www.biopat.es/2010/10/01/amplificacion-de-her2neu/
dc.relation.referencesBohórquez L, M. E., Criollo R, Á. A., Carvajal Carmona, L., & Echeverry de Polanco, M. M. (2019). Cáncer de colon en Colombia, fenotipo molecular: tamizaje para síndromes con agregación familiar. REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS, 1(31), 87–99. https://doi.org/10.47499/REVISTAACCB.V1I31.185
dc.relation.referencesBriceño-Balcázar, I., Gómez-Gutiérrez, A., Díaz-Dussán, N. A., Noguera- Santamaría, M. C., Díaz-Rincón, D., & Casas-Gómez, M. C. (2017). Mutational spectrum in breast cancer associated BRCA1 and BRCA2 genes in Colombia. Colombia Médica : CM, 48(2), 58. https://doi.org/10.25100/cm.v48i2.1867
dc.relation.referencesBuitenhuis, M., Verhagen, L. P., Cools, J., & Coffer, P. J. (2007). Molecular mechanisms underlying FIP1L1-PDGFRA-mediated myeloproliferation. Cancer Research, 67(8), 3759–3766. https://doi.org/10.1158/0008- 5472.CAN-06-4183
dc.relation.referencesButler, K. S., Young, M. Y. L., Li, Z., Elespuru, R. K., & Wood, S. C. (2016). Performance characteristics of the AmpliSeq Cancer Hotspot panel v2 in combination with the Ion Torrent Next Generation Sequencing Personal Genome Machine. Regulatory Toxicology and Pharmacology, 74, 178–186. https://doi.org/10.1016/J.YRTPH.2015.09.011
dc.relation.referencesCairns, R. A., & Mak, T. W. (2013). Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities. Cancer discovery, 3(7), 730–741. https://doi.org/10.1158/2159-8290.CD-13-0083
dc.relation.referencesCalasanz, M. J. (2006). Nueva era de investigación en cáncer. Anales del Sistema Sanitario de Navarra, 29(2), 173–176. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137- 66272006000300001&lng=es&nrm=iso&tlng=es
dc.relation.referencesCamargo, E. S. C., & Robayo, L. M. J. (2005). Efecto de las anomalías cromosómicas sobre la fertilidad en bovinos. Orinoquia, 9(1), 56–63. https://doi.org/10.22579/20112629.158
dc.relation.referencesCaputo, V., Cianetti, L., Niceta, M., Carta, C., Ciolfi, A., Bocchinfuso, G., Carrani, E., Dentici, M. L., Biamino, E., Belligni, E., Garavelli, L., Boccone, L., Melis, D., Andria, G., Gelb, B. D., Stella, L., Silengo, M., Dallapiccola, B., & Tartaglia, M. (2012). A restricted spectrum of mutations in the SMAD4 tumor- suppressor gene underlies myhre syndrome. American Journal of Human Genetics, 90(1), 161–169. https://doi.org/10.1016/J.AJHG.2011.12.011
dc.relation.referencesCavalcante, G. C., Schaan, A. P., Cabral, G. F., Santana-Da-Silva, M. N., Pinto, P., Vidal, A. F., & Ribeiro-Dos-Santos, Â. (2019). A Cell’s Fate: An Overview of the Molecular Biology and Genetics of Apoptosis. International Journal of Molecular Sciences 2019, Vol. 20, Page 4133, 20(17), 4133. https://doi.org/10.3390/IJMS20174133
dc.relation.referencesCederquist, K., Emanuelsson, M., Göransson, I., Holinski-Feder, E., Müller-Koch, Y., Golovleva, I., & Grönberg, H. (2004). Mutation analysis of the MLH1, MSH2 and MSH6 genes in patients with double primary cancers of the colorectum and the endometrium: A population-based study in northern Sweden. International Journal of Cancer, 109(3), 370–376. https://doi.org/10.1002/ijc.11718
dc.relation.referencesCerrato-Izaguirre, D., Chirino, Y. I., García-Cuellar, C. M., Santibáñez-Andrade, M., Prada, D., Hernández-Guerrero, A., Larraga, O. A., Camacho, J., & Sánchez-Pérez, Y. (2022). Mutational landscape of gastric adenocarcinoma in Latin America: A genetic approach for precision medicine. Genes & Diseases, 9(4), 928–940. https://doi.org/10.1016/J.GENDIS.2021.04.002
dc.relation.referencesChaligné, R., Tonetti, C., Besancenot, R., Roy, L., Marty, C., Mossuz, P., Kiladjian, J. J., Socié, G., Bordessoule, D., Le Bousse-Kerdilès, M. C., Vainchenker, W., & Giraudier, S. (2008). New mutations of MPL in primitive myelofibrosis: Only the MPL W515 mutations promote a G1/S-phase transition. Leukemia, 22(8), 1557–1566. https://doi.org/10.1038/LEU.2008.137
dc.relation.referencesCibulskis, K., Lawrence, M. S., Carter, S. L., Sivachenko, A., Jaffe, D., Sougnez, C., Gabriel, S., Meyerson, M., Lander, E. S., & Getz, G. (2013). Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nature Biotechnology 2013 31:3, 31(3), 213–219. https://doi.org/10.1038/nbt.2514
dc.relation.referencesCifuentes-C, L., Rivera-Herrera, A. L., & Barreto, G. (2019). BRCA1 and BRCA2 mutations in a sample of breast and ovarian cancer families from the Colombian pacific. Colombia Médica : CM, 50(3), 163. https://doi.org/10.25100/CM.V50I3.2385
dc.relation.referencesClasson, M., & Harlow, E. (2002). The retinoblastoma tumour suppressor in development and cancer. Nature Reviews Cancer, 2(12), 910–917. https://doi.org/10.1038/NRC950
dc.relation.referencesCock-Rada, A. M., Ossa, C. A., Garcia, H. I., & Gomez, L. R. (2018). A multi-gene panel study in hereditary breast and ovarian cancer in Colombia. Familial cancer, 17(1), 23–30. https://doi.org/10.1007/S10689-017-0004-Z
dc.relation.referencesCock-Rada, A. M., & Ossa Gomez, C. A. (2018). Leveraging International Collaborations to Advance Genomic Medicine in Colombia. Genomic Medicine in Emerging Economies: Genomics for Every Nation, 49–69. https://doi.org/10.1016/B978-0-12-811531-2.00009-6
dc.relation.referencesCollisson, E. A., Campbell, J. D., Brooks, A. N., Berger, A. H., Lee, W., Chmielecki, J., Beer, D. G., Cope, L., Creighton, C. J., Danilova, L., Ding, L., Getz, G., Hammerman, P. S., Hayes, D. N., Hernandez, B., Herman, J. G., Heymach, J. V., Jurisica, I., Kucherlapati, R., ... Cheney, R. (2014). Comprehensive molecular profiling of lung adenocarcinoma: The cancer genome atlas research network. Nature, 511(7511), 543–550. https://doi.org/10.1038/NATURE13385
dc.relation.referencesCómo las células cancerosas se propagan por el cuerpo | Los Institutos Nacionales de Salud. (s/f). Recuperado el 25 de diciembre de 2023, de https://salud.nih.gov/recursos-de-salud/nih-noticias-de-salud/como-las- celulas-cancerosas-se-propagan-por-el-cuerpo
dc.relation.referencesCools, J., DeAngelo, D. J., Gotlib, J., Stover, E. H., Legare, R. D., Cortes, J., Kutok, J., Clark, J., Galinsky, I., Griffin, J. D., Cross, N. C. P., Tefferi, A.,Malone, J., Alam, R., Schrier, S. L., Schmid, J., Rose, M., Vandenberghe, P., Verhoef, G., ... Gilliland, D. G. (2003). A Tyrosine Kinase Created by Fusion of the PDGFRA and FIP1L1 Genes as a Therapeutic Target of Imatinib in Idiopathic Hypereosinophilic Syndrome . New England Journal of Medicine, 348(13), 1201–1214. https://doi.org/10.1056/NEJMOA025217
dc.relation.referencesCristescu, R., Lee, J., Nebozhyn, M., Kim, K. M., Ting, J. C., Wong, S. S., Liu, J., Yue, Y. G., Wang, J., Yu, K., Ye, X. S., Do, I. G., Liu, S., Gong, L., Fu, J., Jin, J. G., Choi, M. G., Sohn, T. S., Lee, J. H., ... Aggarwal, A. (2015). Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nature Medicine, 21(5), 449–456. https://doi.org/10.1038/NM.3850,
dc.relation.referencesDale, B., Anderson, C., Park, K.-S., Kaniskan, H. Ü., Ma, A., Shen, Y., Zhang, C., Xie, L., Chen, X., Yu, X., & Jin, J. (2022). Targeting Triple-Negative Breast Cancer by a Novel Proteolysis Targeting Chimera Degrader of Enhancer of Zeste Homolog 2. ACS pharmacology & translational science, 5(7), 491–507. https://doi.org/10.1021/acsptsci.2c00100
dc.relation.referencesDamineni, S., Rao, V. R., Kumar, S., Ravuri, R. R., Kagitha, S., Dunna, N. R., Digumarthi, R., & Satti, V. (2014). Germline mutations of TP53 gene in breast cancer. Tumor Biology, 35(9), 9219–9227. https://doi.org/10.1007/S13277- 014-2176-6
dc.relation.referencesDANE. (2022). DANE - Defunciones no Fetales 2022. https://www.dane.gov.co/index.php/estadisticas-por-tema/salud/nacimientos- y-defunciones/defunciones-no-fetales/defunciones-no-fetales-2022
dc.relation.referencesDaza, D. (2012). Cáncer gástrico en Colombia entre 2000 y 2009 [Universidad del Rosario - Universidad CES]. https://repository.urosario.edu.co/items/378f2c60-6ae8-4d2e-9646- 6aef9bba6ea0
dc.relation.referencesDiagrama de ilustración vectorial de protooncogenes versus oncogenes | Vector Premium. (s/f). Recuperado el 13 de junio de 2023, de https://www.freepik.es/vector-premium/diagrama-ilustracion-vectorial- protooncogenes-versus-oncogenes_29612512.htm
dc.relation.referencesDirección Seccional de Salud y Protección Social de Antioquia (DSSA). (2023). Mortalidad por Cancer por subregion/municipio 2005-2022 (Mortalidad- Cancer_2005-2022(04-2023)). https://dssa.gov.co/index.php/estadisticas- mortalidad?start=4
dc.relation.referencesDong, L., Wang, W., Li, A., Kansal, R., Chen, Y., Chen, H., & Li, X. (2015). Clinical Next Generation Sequencing for Precision Medicine in Cancer. Current Genomics, 16(4), 253. https://doi.org/10.2174/1389202915666150511205313
dc.relation.referencesDos Santos Silva, I., & Organización Panamericana de la Salud. (1999). Epidemiología del Cáncer: Principios y métodos. En Epidemiología del cáncer: principios y métodos. Agencia Internacional de Investigación sobre el Cáncer. https://iris.paho.org/handle/10665.2/3145
dc.relation.referencesDotto, G. P. (2008). Notch tumor suppressor function. Oncogene, 27(38), 5115– 5123. https://doi.org/10.1038/ONC.2008.225
dc.relation.referencesDowty, J. G., Win, A. K., Buchanan, D. D., Lindor, N. M., Macrae, F. A., Clendenning, M., Antill, Y. C., Thibodeau, S. N., Casey, G., Gallinger, S., Marchand, L. Le, Newcomb, P. A., Haile, R. W., Young, G. P., James, P. A., Giles, G. G., Gunawardena, S. R., Leggett, B. A., Gattas, M., ... Jenkins, M. A. (2013). Cancer Risks for MLH1 and MSH2 Mutation Carriers. Human Mutation, 34(3), 490–497. https://doi.org/10.1002/HUMU.22262
dc.relation.referencesEaton, K. W., Tooke, L. S., Wainwright, L. M., Judkins, A. R., & Biegel, J. A. (2011). Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatric Blood and Cancer, 56(1), 7–15. https://doi.org/10.1002/PBC.22831
dc.relation.referencesElling, C., Erben, P., Walz, C., Frickenhaus, M., Schemionek, M., Stehling, M., Serve, H., Cross, N. C. P., Hochhaus, A., Hofmann, W. K., Berdel, W. E., Müller-Tidow, C., Reiter, A., & Koschmieder, S. (2011). Novel imatinib- sensitive PDGFRA-activating point mutations in hypereosinophilic syndrome induce growth factor independence and leukemia-like disease. Blood, 117(10), 2935–2943. https://doi.org/10.1182/BLOOD-2010-05-286757
dc.relation.referencesFaguet, G. B. (2015). A brief history of cancer: Age-old milestones underlying our current knowledge database. International Journal of Cancer, 136(9), 2022– 2036. https://doi.org/10.1002/IJC.29134
dc.relation.referencesFondo Colombiano de Enfermedades de Alto Costo, C. de A. C. (CAC). (2021). Situación del cáncer en la población adulta atendida en el SGSSS de Colombia 2020. https://cuentadealtocosto.org/wp-content/plugins/pdfjs- viewer- shortcode/pdfjs/web/viewer.php?file=https%3A%2F%2Fcuentadealtocosto.or g%2Fsite%2Fwp- content%2Fuploads%2F2021%2F11%2FCAC.Co_2021_11_3_Libro_Sit_can cer2020_v5.pdf&download=false&print=true&openfile=false
dc.relation.referencesGagan, J., & Van Allen, E. M. (2015). Next-generation sequencing to guide cancer therapy. Genome Medicine, 7(1). https://doi.org/10.1186/S13073-015-0203-X
dc.relation.referencesGan, H. K., Cvrljevic, A. N., & Johns, T. G. (2013). The epidermal growth factor receptor variant III (EGFRvIII): Where wild things are altered. FEBS Journal, 280(21), 5350–5370. https://doi.org/10.1111/febs.12393
dc.relation.referencesGarcía-Pardo, M., García de Herreros, M., Laguna, J. C., Gorría, T., Lage, Y., Gómez, A., Olmedo, M. E., Garrido, P., Albarran-Artahona, V. M., Arcocha, A., Teixido, C., Reguart, N., Navarro, A., Auclin, E., Nahorski, M. S., Howarth, K., Planchard, D., Besse, B., Leighl, N. B., & Mezquita, L. (2025). Brief Report: Real-World Clinical Utility of Next-Generation Sequencing of Circulating Tumor DNA for Patients With Advanced Lung Squamous Cell Carcinoma (SQUIN). Clinical Lung Cancer, 26(4), e300-e305.e2. https://doi.org/10.1016/j.cllc.2025.02.007
dc.relation.referencesGarraway, L. A. (2013). Genomics-driven oncology: Framework for an emerging paradigm. Journal of Clinical Oncology, 31(15), 1806–1814. https://doi.org/10.1200/JCO.2012.46.8934
dc.relation.referencesGATK Team. (2024, junio 25). Evaluating the quality of a germline short variant callset – GATK. https://gatk.broadinstitute.org/hc/en-us/articles/360035531572-Evaluating-the-quality-of-a-germline-short-variant- callset
dc.relation.referencesGeneCards | The Human Database. (s/f). CDH1 Gene - GeneCards | CADH1 Protein | CADH1 Antibody. Recuperado el 15 de junio de 2023, de https://www.genecards.org/cgi-bin/carddisp.pl?gene=CDH1
dc.relation.referencesGeneCards | The Human Gene Database. (s/f-a). ABL1 Gene - GeneCards | ABL1 Protein | ABL1 Antibody. Recuperado el 14 de junio de 2023, de https://www.genecards.org/cgi-bin/carddisp.pl?gene=ABL1
dc.relation.referencesGeneCards | The Human Gene Database. (s/f-b). AKT1 Gene - GeneCards | AKT1 Protein | AKT1 Antibody. Recuperado el 14 de junio de 2023, de https://www.genecards.org/cgi-bin/carddisp.pl?gene=AKT1
dc.relation.referencesGeneCards | The Human Gene Database. (s/f-c). ALK Gene - GeneCards | ALK Protein | ALK Antibody. Recuperado el 14 de junio de 2023, de https://www.genecards.org/cgi-bin/carddisp.pl?gene=ALK
dc.relation.referencesGeneCards | The Human Gene Database. (s/f-d). APC Gene - GeneCards | APC Protein | APC Antibody. Recuperado el 15 de junio de 2023, de https://www.genecards.org/cgi-bin/carddisp.pl?gene=APC
dc.relation.referencesGeneCards | The Human Gene Database. (s/f-e). ATM Gene - GeneCards | ATM Protein | ATM Antibody. Recuperado el 15 de junio de 2023, de https://www.genecards.org/cgi-bin/carddisp.pl?gene=ATM
dc.relation.referencesGeneCards | The Human Gene Database. (s/f-f). CSF1R Gene - GeneCards | CSF1R Protein | CSF1R Antibody. Recuperado el 15 de junio de 2023, de https://www.genecards.org/cgi-bin/carddisp.pl?gene=CSF1R
dc.relation.referencesGeneCards | The Human Gene Database. (2023a, mayo 21). CTNNB1 Gene - GeneCards | CTNB1 Protein | CTNB1 Antibody. https://www.genecards.org/cgi-bin/carddisp.pl?gene=CTNNB1
dc.relation.referencesGeneCards | The Human Gene Database. (2023b, mayo 22). FGFR1 Gene - GeneCards | FGFR1 Protein | FGFR1 Antibody. https://www.genecards.org/cgi-bin/carddisp.pl?gene=FGFR1
dc.relation.referencesGeneCards | The Human Gene Database. (2023c, mayo 23). GNA11 Gene - GeneCards | GNA11 Protein | GNA11 Antibody. https://www.genecards.org/cgi-bin/carddisp.pl?gene=GNA11
dc.relation.referencesGeneCards | The Human Gene Database. (2023d, mayo 23). GNAQ Gene - GeneCards | GNAQ Protein | GNAQ Antibody. https://www.genecards.org/cgi-bin/carddisp.pl?gene=GNAQ
dc.relation.referencesGerlinger, M., Rowan, A. J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., Varela, I., Phillimore, B., Begum, S., McDonald, N. Q., Butler, A., Jones, D., Raine, K., Latimer, C., Santos, C. R., ... Swanton, C. (2012). Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing. New England Journal of Medicine, 366(10), 883–892. https://doi.org/10.1056/NEJMOA1113205/SUPPL_FILE/NEJMOA1113205_DI SCLOSURES.PDF
dc.relation.referencesGermeshausen, M., Ballmaier, M., & Welte, K. (2006). MPL mutations in 23 patients suffering from congenital amegakaryocytic thrombocytopenia: the type of mutation predicts the course of the disease. Human mutation, 27(3), 296. https://doi.org/10.1002/HUMU.9415
dc.relation.referencesGiraldo, A., Gómez, A., Salguero, G., García, H., Aristizábal, F., Gutiérrez, Ó., Ángel, L. A., Padrón, J., Martínez, C., Martínez, H., Malaver, O., Flórez, L., & Barvo, R. (2005). MLH1 and MSH2 mutations in Colombian families with hereditary nonpolyposis colorectal cancer (Lynch syndrome)--description of four novel mutations. Familial cancer, 4(4), 285–290. https://doi.org/10.1007/S10689-005-4523-7
dc.relation.referencesGiraldo-Osorio, A., Ruano-Ravina, A., Rey-Brandariz, J., Arias-Ortiz, N., Candal- Pedreira, C., & Pérez-Ríos, M. (2022). Tendencias en la mortalidad por cáncer de pulmón en Colombia, 1985-2018. PAN AMERICAN JOURNAL OF PUBLIC HEALTH, 46. https://doi.org/10.26633/RPSP.2022.127
dc.relation.referencesGraña, A. (2015). Breve evolución histórica del cáncer RESUMEN ABSTRACT. Carcinos.
dc.relation.referencesGutiérrez-Castañeda, L. D., Gamboa, M., Nova, J. A., Pulido, L., & Tovar-Parra, J. D. (2020). Mutations in the BRAF, NRAS, and C-KIT Genes of Patients Diagnosed with Melanoma in Colombia Population. BioMed Research International, 2020. https://doi.org/10.1155/2020/2046947
dc.relation.referencesHadfield, K. D., Newman, W. G., Bowers, N. L., Wallace, A., Bolger, C., Colley, A., McCann, E., Trump, D., Prescott, T., & Evans, D. G. R. (2008). Molecular characterisation of SMARCB1 and NF2 in familial and sporadic schwannomatosis. Journal of Medical Genetics, 45(6), 332–339. https://doi.org/10.1136/JMG.2007.056499
dc.relation.referencesHafner, C., López-Knowles, E., Luis, N. M., Toll, A., Baselga, E., Fernández- Casado, A., Hernández, S., Ribé, A., Mentzel, T., Stoehr, R., Hofstaedter, F., Landthaler, M., Vogt, T., Pujol, R. M., Hartmann, A., & Real, F. X. (2007). Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern. Proceedings of the National Academy of Sciences of the United States of America, 104(33), 13450– 13454. https://doi.org/10.1073/PNAS.0705218104
dc.relation.referencesHaralson, J. V., Groff, C. I., & Haralson, S. J. (1975). Classical conditioning in the sea anemone, Cribrina xanthogrammica. Physiology and Behavior, 15(4), 455–460. https://doi.org/10.1016/0031-9384(75)90259-0
dc.relation.referencesHollink, I. H. I. M., Zwaan, C. M., Zimmermann, M., Arentsen-Peters, T. C. J. M., Pieters, R., Cloos, J., Kaspers, G. J. L., de Graaf, S. S. N., Harbott, J., Creutzig, U., Reinhardt, D., van den Heuvel-Eibrink, M. M., & Thiede, C. (2009). Favorable prognostic impact of NPM1 gene mutations in childhood acute myeloid leukemia, with emphasis on cytogenetically normal AML. Leukemia, 23(2), 262–270. https://doi.org/10.1038/leu.2008.313
dc.relation.referencesHorak, P., Fröhling, S., & Glimm, H. (2016). Integrating next-generation sequencing into clinical oncology: strategies, promises and pitfalls. ESMO Open, 1(5). https://doi.org/10.1136/ESMOOPEN-2016-000094
dc.relation.referencesHulsebos, T. J. M., Kenter, S., Verhagen, W. I. M., Baas, F., Flucke, U., & Wesseling, P. (2014). Premature termination of SMARCB1 translation may be followed by reinitiation in schwannomatosis-associated schwannomas, but results in absence of SMARCB1 expression in rhabdoid tumors. Acta Neuropathologica, 128(3), 439–448. https://doi.org/10.1007/S00401-014- 1281-3
dc.relation.referencesIndicadores Básicos de Salud Y Consolidado por Subregión, Municipio y Año . (s/f). Recuperado el 7 de junio de 2023, de https://www.dssa.gov.co/indicadores
dc.relation.referencesInstituto Nacional del Cáncer. (2021, marzo 5). Factores de riesgo: Edad. https://www.cancer.gov/espanol/cancer/causas-prevencion/riesgo/edad
dc.relation.referencesInstituto Nacional del Cáncer (NIH). (s/f-a). Definición de EGFR - Diccionario de cáncer del NCI - NCI. Recuperado el 17 de junio de 2023, de https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionario- cancer/def/egfr
dc.relation.referencesInstituto Nacional del Cáncer (NIH). (s/f-b). Definición de gen EZH2 - Diccionario de cáncer del NCI - NCI. Recuperado el 17 de junio de 2023, de https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionario- cancer/def/gen-ezh2
dc.relation.referencesInstituto Nacional del Cáncer (NIH). (s/f-c). Definición de gen FGFR1 - Diccionario de cáncer del NCI. Recuperado el 17 de junio de 2023, de https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionario- cancer/def/gen-fgfr1
dc.relation.referencesInstituto Nacional del Cáncer (NIH). (s/f-d). Definición de gen IDH1 - Diccionario de cáncer del NCI - NCI. Recuperado el 17 de junio de 2023, de https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionario- cancer/def/gen-idh1
dc.relation.referencesInstituto Nacional del Cáncer (NIH). (s/f-e). Definición de gen MET - Diccionario de cáncer del NCI - NCI. Recuperado el 17 de junio de 2023, de https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionario- cancer/def/gen-met
dc.relation.referencesInstituto Nacional del Cáncer (NIH). (s/f-f). Definition of MPL gene - NCI Dictionary of Cancer Terms - NCI. Recuperado el 18 de junio de 2023, de https://www.cancer.gov/publications/dictionaries/cancer-terms/def/mpl-gene
dc.relation.referencesJayawickrama, S. M., Ranaweera, P. M., Pradeep, R. G. G. R., Jayasinghe, Y. A., Senevirathna, K., Hilmi, A. J., Rajapakse, R. M. G., Kanmodi, K. K., & Jayasinghe, R. D. (2024). Developments and future prospects of personalized medicine in head and neck squamous cell carcinoma diagnoses and treatments. Cancer Reports, 7(3). https://doi.org/10.1002/CNR2.2045
dc.relation.referencesJeng, K. S., Sheen, I. S., Leu, C. M., Tseng, P. H., & Chang, C. F. (2020). The Role of Smoothened in Cancer. International Journal of Molecular Sciences, 21(18), 1–20. https://doi.org/10.3390/IJMS21186863
dc.relation.referencesJennings, L. J., Arcila, M. E., Corless, C., Kamel-Reid, S., Lubin, I. M., Pfeifer, J., Temple-Smolkin, R. L., Voelkerding, K. V., & Nikiforova, M. N. (2017). Guidelines for Validation of Next-Generation Sequencing–Based Oncology Panels: A Joint Consensus Recommendation of the Association for Molecular Pathology and College of American Pathologists. The Journal of molecular diagnostics : JMD, 19(3), 341. https://doi.org/10.1016/J.JMOLDX.2017.01.011
dc.relation.referencesJessica, N. M., Gianmarco, C. P., Tarazona, C. E., Juan Carlos, C. U., Ortiz, B., & Mauricio, V. B. (2022). Complicaciones post-pancreatoduodenectomía de tumores periampulares en una unidad de cirugía hepatopancreatobiliar. Revista de Cirugía, 74(4), 339–344. https://doi.org/10.35687/S2452- 454920220041437
dc.relation.referencesJones, S., Anagnostou, V., Lytle, K., Parpart-Li, S., Nesselbush, M., Riley, D. R., Shukla, M., Chesnick, B., Kadan, M., Papp, E., Galens, K. G., Murphy, D., Zhang, T., Kann, L., Sausen, M., Angiuoli, S. V., Diaz, L. A., & Velculescu, V. E. (2015). Personalized genomic analyses for cancer mutation discovery and interpretation. Science translational medicine, 7(283), 283ra53. https://doi.org/10.1126/SCITRANSLMED.AAA7161
dc.relation.referencesJosué Sánchez Madriz, L., Rica Dra Jeniffer Fabiola Shion Pérez, C., Diego Palma González, L., Nikol Paola Camacho Arias, D., Latina de Costa Rica Costa Rica Dra Katherine Vanessa Campos Duarte, U., & Hispanoamericana Costa Rica, U. (2024). El análisis genómico en el diseño de tratamientos personalizados: una revisión actual. Revista Científica de Salud y Desarrollo Humano, 5(2), 289–305. https://doi.org/10.61368/R.S.D.H.V5I2.184
dc.relation.referencesKaminker, J. S., Zhang, Y., Watanabe, C., & Zhang, Z. (2007). CanPredict: a computational tool for predicting cancer-associated missense mutations. Nucleic Acids Research, 35(Web Server issue), W595. https://doi.org/10.1093/NAR/GKM405
dc.relation.referencesKiyoi, H., & Naoe, T. (2006). Biology, clinical relevance, and molecularly targeted therapy in acute leukemia with FLT3 mutation. International journal of hematology, 83(4), 301–308. https://doi.org/10.1532/IJH97.06071
dc.relation.referencesKofanova, O., Bellora, C., Garcia Frasquilho, S., Antunes, L., Hamot, G., Mathay, C., Mommaerts, K., Muller, A., DeWitt, B., & Betsou, F. (2020). Standardization of the preanalytical phase of DNA extraction from fixed tissue for next-generation sequencing analyses. New Biotechnology, 54, 52–61. https://doi.org/10.1016/J.NBT.2019.07.005
dc.relation.referencesKontomanolis, E. N., Koutras, A., Syllaios, A., Schizas, D., Mastoraki, A., Garmpis, N., Diakosavvas, M., Angelou, K., Tsatsaris, G., Pagkalos, A., Ntounis, T., & Fasoulakis, Z. (2020). Role of Oncogenes and Tumor-suppressor Genes in Carcinogenesis: A Review. Anticancer Research, 40(11), 6009–6015. https://doi.org/10.21873/ANTICANRES.14622
dc.relation.referencesKopanos, C., Tsiolkas, V., Kouris, A., Chapple, C. E., Albarca Aguilera, M., Meyer, R., & Massouras, A. (2019). VarSome: the human genomic variant search engine. Bioinformatics, 35(11), 1978–1980. https://doi.org/10.1093/BIOINFORMATICS/BTY897
dc.relation.referencesKopetz, S., Mills Shaw, K. R., Lee, J. J., Zhang, J., Litzenburger, B., Holla, V., Kinyua, W., Broaddus, E., Daniels, M. S., Meric-Bernstam, F., & Broaddus, R. R. (2019). Use of a Targeted Exome Next-Generation Sequencing Panel Offers Therapeutic Opportunity and Clinical Benefit in a Subset of Patients With Advanced Cancers. JCO Precision Oncology, 3, 1–14. https://doi.org/10.1200/PO.18.00213/ASSET/IMAGES/LARGE/PO.18.00213A PP3.JPEG
dc.relation.referencesKurek, K. C., Luks, V. L., Ayturk, U. M., Alomari, A. I., Fishman, S. J., Spencer, S. A., Mulliken, J. B., Bowen, M. E., Yamamoto, G. L., Kozakewich, H. P. W., & Warman, M. L. (2012). Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. American Journal of Human Genetics, 90(6), 1108– 1115. https://doi.org/10.1016/J.AJHG.2012.05.006
dc.relation.referencesKwon, S., Park, S., Lee, B., & Yoon, S. (2013). In-depth analysis of interrelation between quality scores and real errors in illumina reads. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 635–638. https://doi.org/10.1109/EMBC.2013.6609580
dc.relation.referencesLe, T. L., Sribudiani, Y., Dong, X., Huber, C., Kois, C., Baujat, G., Gordon, C. T., Mayne, V., Galmiche, L., Serre, V., Goudin, N., Zarhrate, M., Bole-Feysot, C., Masson, C., Nitschké, P., Verheijen, F. W., Pais, L., Pelet, A., Sadedin, S., ... Thomas, S. (2020). Bi-allelic Variations of SMO in Humans Cause a Broad Spectrum of Developmental Anomalies Due to Abnormal Hedgehog Signaling. American Journal of Human Genetics, 106(6), 779–792. https://doi.org/10.1016/j.ajhg.2020.04.010
dc.relation.referencesLee, A., Lee, S. H., Jung, C. K., Park, G., Lee, K. Y., Choi, H. J., Min, K. O., Kim, T. J., Lee, E. J., & Lee, Y. S. (2018). Use of the Ion AmpliSeq Cancer Hotspot Panel in clinical molecular pathology laboratories for analysis of solid tumours: With emphasis on validation with relevant single molecular pathology tests and the Oncomine Focus Assay. Pathology - Research and Practice, 214(5), 713–719. https://doi.org/10.1016/J.PRP.2018.03.009
dc.relation.referencesLemmon, M. A., & Schlessinger, J. (2010). Cell signaling by receptor tyrosine kinases. Cell, 141(7), 1117–1134. https://doi.org/10.1016/J.CELL.2010.06.011/ATTACHMENT/B383EB98-F844- 43F4-878F-A14D3681EED4/MMC1.PDF
dc.relation.referencesLi, M. M., Datto, M., Duncavage, E. J., Kulkarni, S., Lindeman, N. I., Roy, S., Tsimberidou, A. M., Vnencak-Jones, C. L., Wolff, D. J., Younes, A., & Nikiforova, M. N. (2017). Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. The Journal of Molecular Diagnostics : JMD, 19(1), 4. https://doi.org/10.1016/J.JMOLDX.2016.10.002
dc.relation.referencesLi, W., She, H., Tian, X., Neja, M., Harris, A., & Li, Y. (2019). Abstract 3007: Validation of an NGS panel assay for detection of hotspot cancer somatic mutations. Cancer Research, 79(13_Supplement), 3007–3007. https://doi.org/10.1158/1538-7445.AM2019-3007
dc.relation.referencesLiehr, T., Weise, A., Mrasek, K., Ziegler, M., Padutsch, N., Wilhelm, K., & Al- Rikabi, A. (2019). Recombinant Chromosomes Resulting From Parental Pericentric Inversions—Two New Cases and a Review of the Literature. Frontiers in Genetics, 10, 491354. https://doi.org/10.3389/FGENE.2019.01165/BIBTEX
dc.relation.referencesLim, T. K. H., Skoulidis, F., Kerr, K. M., Ahn, M. J., Kapp, J. R., Soares, F. A., & Yatabe, Y. (2023). KRAS G12C in advanced NSCLC: Prevalence, co- mutations, and testing. Lung Cancer, 184, 107293. https://doi.org/10.1016/J.LUNGCAN.2023.107293/ATTACHMENT/21EC0143- 3DF6-4BB3-8DFF-47EFBF3B90B6/MMC1.PDF
dc.relation.referencesLionel, A. C., Costain, G., Monfared, N., Walker, S., Reuter, M. S., Hosseini, S. M., Thiruvahindrapuram, B., Merico, D., Jobling, R., Nalpathamkalam, T., Pellecchia, G., Sung, W. W. L., Wang, Z., Bikangaga, P., Boelman, C., Carter, M. T., Cordeiro, D., Cytrynbaum, C., Dell, S. D., ... Marshall, C. R. (2017). Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genetics in Medicine, 20(4), 435. https://doi.org/10.1038/GIM.2017.119
dc.relation.referencesLiu, H., Dibling, B., Spike, B., Dirlam, A., & Macleod, K. (2004). New roles for the RB tumor suppressor protein. Current Opinion in Genetics and Development, 14(1), 55–64. https://doi.org/10.1016/J.GDE.2003.11.005
dc.relation.referencesLobry, C., Oh, P., & Aifantis, I. (2011). Oncogenic and tumor suppressor functions of Notch in cancer: It’s NOTCH what you think. Journal of Experimental Medicine, 208(10), 1931–1935. https://doi.org/10.1084/JEM.20111855
dc.relation.referencesLoewe, L., & Hill, W. G. (2010). The population genetics of mutations: good, bad and indifferent. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1544), 1153. https://doi.org/10.1098/RSTB.2009.0317
dc.relation.referencesLópez, M. M., & Cardona, A. F. (2020). Historia del cáncer y el cáncer en la historia. Medicina, 42(4), 528–562. https://doi.org/10.56050/01205498.1559
dc.relation.referencesLortet-Tieulent, J., Soerjomataram, I., Ferlay, J., Rutherford, M., Weiderpass, E., & Bray, F. (2014). International trends in lung cancer incidence by histological subtype: Adenocarcinoma stabilizing in men but still increasing in women. Lung Cancer, 84(1), 13–22. https://doi.org/10.1016/j.lungcan.2014.01.009
dc.relation.referencesLou, H., Li, H., Huehn, A. R., Tarasova, N. I., Saleh, B., Anderson, S. K., & Dean, M. (2020). Genetic and Epigenetic Regulation of the Smoothened Gene (SMO) in Cancer Cells. Cancers, 12(8), 1–19. https://doi.org/10.3390/CANCERS12082219
dc.relation.referencesLoyo, M., Li, R. J., Bettegowda, C., Pickering, C. R., Frederick, M. J., Myers, J. N., & Agrawal, N. (2013). Lessons learned from next-generation sequencing in head and neck cancer. Head and Neck, 35(3), 454–463. https://doi.org/10.1002/HED.23100
dc.relation.referencesLu, C., Ward, P. S., Kapoor, G. S., Rohle, D., Turcan, S., Abdel-Wahab, O., Edwards, C. R., Khanin, R., Figueroa, M. E., Melnick, A., Wellen, K. E., Oĝrourke, D. M., Berger, S. L., Chan, T. A., Levine, R. L., Mellinghoff, I. K., & Thompson, C. B. (2012). IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature, 483(7390), 474. https://doi.org/10.1038/NATURE10860
dc.relation.referencesLuo, J., Qi, C., Xu, W., Kamel-Reid, S., Brandwein, J., & Chang, H. (2010). Cytoplasmic expression of nucleophosmin accurately predicts mutation in the nucleophosmin gene in patients with acute myeloid leukemia and normal karyotype. American Journal of Clinical Pathology, 133(1), 34–40. https://doi.org/10.1309/AJCPCI1FFE2DRXIV
dc.relation.referencesLuthra, R., Patel, K. P., Routbort, M. J., Broaddus, R. R., Yau, J., Simien, C., Chen, W., Hatfield, D. Z., Medeiros, L. J., & Singh, R. R. (2017). A Targeted High-Throughput Next-Generation Sequencing Panel for Clinical Screening of Mutations, Gene Amplifications, and Fusions in Solid Tumors. The Journal of Molecular Diagnostics, 19(2), 255–264. https://doi.org/10.1016/J.JMOLDX.2016.09.011
dc.relation.referencesMaeda, D., Shibahara, J., Sakuma, T., Isobe, M., Teshima, S., Mori, M., Oda, K., Nakagawa, S., Taketani, Y., Ishikawa, S., & Fukayama, M. (2011). β-catenin (CTNNB1) S33C mutation in ovarian microcystic stromal tumors. American Journal of Surgical Pathology, 35(10), 1429–1440. https://doi.org/10.1097/PAS.0B013E31822D6C71,
dc.relation.referencesMartincorena, I., Raine, K. M., Gerstung, M., Dawson, K. J., Haase, K., Van Loo, P., Davies, H., Stratton, M. R., & Campbell, P. J. (2017). Universal Patterns of Selection in Cancer and Somatic Tissues. Cell, 171(5), 1029-1041.e21. https://doi.org/10.1016/j.cell.2017.09.042
dc.relation.referencesMartínez-Castillo, M. A., Medrano-Ortiz de Zárate, M. E., Valenzuela-Pérez, A., Ruiz-Romero, J. A., Quijano-Castro, F. O., Salcedo, M., Martínez-Castillo, M. A., Medrano-Ortiz de Zárate, M. E., Valenzuela-Pérez, A., Ruiz-Romero, J. A., Quijano-Castro, F. O., & Salcedo, M. (2022). Diagnóstico mutacional del gen RET y la medicina de precisión en México. Gaceta médica de México, 158(3), 160–166. https://doi.org/10.24875/GMM.22000052
dc.relation.referencesMartinez-Ledesma, E., Flores, D., & Trevino, V. (2020). Computational methods for detecting cancer hotspots. Computational and Structural Biotechnology Journal, 18, 3567. https://doi.org/10.1016/J.CSBJ.2020.11.020
dc.relation.referencesMedline Plus. (s/f-a). GNAS gene: MedlinePlus Genetics. Recuperado el 17 de junio de 2023, de https://medlineplus.gov/genetics/gene/gnas/
dc.relation.referencesMedline Plus. (s/f-b). HNF1A gene: MedlinePlus Genetics. Recuperado el 17 de junio de 2023, de https://medlineplus.gov/genetics/gene/hnf1a/
dc.relation.referencesMedlinePlus. (s/f-a). ABL1 gene: MedlinePlus Genetics. Recuperado el 14 de junio de 2023, de https://medlineplus.gov/genetics/gene/abl1/#conditions
dc.relation.referencesMedlinePlus. (s/f-b). AKT1 gene: MedlinePlus Genetics. Recuperado el 14 de junio de 2023, de https://medlineplus.gov/genetics/gene/akt1/#references
dc.relation.referencesMedlinePlus. (s/f-c). ALK gene: MedlinePlus Genetics. Recuperado el 14 de junio de 2023, de https://medlineplus.gov/genetics/gene/alk/#conditions
dc.relation.referencesMedlinePlus. (s/f-d). ATM gene: MedlinePlus Genetics. Recuperado el 15 de junio de 2023, de https://medlineplus.gov/genetics/gene/atm/#conditions
dc.relation.referencesMedlinePlus. (s/f-e). CDH1 gene: MedlinePlus Genetics. Recuperado el 15 de junio de 2023, de https://medlineplus.gov/genetics/gene/cdh1/#conditions
dc.relation.referencesMedlinePlus. (s/f-f). CDKN2A gene: MedlinePlus Genetics. Recuperado el 15 de junio de 2023, de https://medlineplus.gov/genetics/gene/cdkn2a/#conditions
dc.relation.referencesMedlinePlus. (s/f-g). HRAS gene: MedlinePlus Genetics. Recuperado el 17 de junio de 2023, de https://medlineplus.gov/genetics/gene/hras/
dc.relation.referencesMedlinePlus. (s/f-h). TP53 Genetic Test. Recuperado el 18 de junio de 2023, de https://medlineplus.gov/lab-tests/tp53-genetic-test/
dc.relation.referencesMedlinePlus. (2018). CTNNB1 gene: MedlinePlus Genetics. https://medlineplus.gov/genetics/gene/ctnnb1/#conditions
dc.relation.referencesMeigs, T. E., Fedor-Chaiken, M., Kaplan, D. D., Brackenbury, R., & Casey, P. J. (2002). Gα12 and Gα13 Negatively Regulate the Adhesive Functions of Cadherin. Journal of Biological Chemistry, 277(27), 24594–24600. https://doi.org/10.1074/JBC.M201984200
dc.relation.referencesMemorial Sloan Kettering Cancer Center. (2021, julio 14). Información sobre las mutaciones en el gen SMAD4. https://www.mskcc.org/es/cancer-care/patient- education/about-mutations-smad4-gene
dc.relation.referencesMeric-Bernstam, F., Brusco, L., Daniels, M., Wathoo, C., Bailey, A. M., Strong, L., Shaw, K., Lu, K., Qi, Y., Zhao, H., Lara-Guerra, H., Litton, J., Arun, B., Eterovic, A. K., Aytac, U., Routbort, M., Subbiah, V., Janku, F., Davies, M. A., ... Chen, K. (2016). Incidental germline variants in 1000 advanced cancers on a prospective somatic genomic profiling protocol. Annals of Oncology, 27(5), 795. https://doi.org/10.1093/ANNONC/MDW018
dc.relation.referencesMessaoudi, S. A., Al Sharhan, N. A., Alharthi, B., Babu, S. R., Alsaleh, A. B., Alasiri, A. M., Assidi, M., Buhmeida, A., & Almawi, W. Y. (2022). Detection of genetic mutations in patients with breast cancer from Saudi Arabia using Ion AmpliSeqTM Cancer Hotspot Panel v.2.0. Biomedical Reports, 16(4), 26. https://doi.org/10.3892/BR.2022.1509
dc.relation.referencesMeza-Junco, J., Montaño-Loza, A., Aguayo-González, Á., Rincón, S. Z., & Residente, D. (2006). Bases moleculares del cáncer. Revista de Investigación Clínica, 58(1), 56–70. www.imbiomed.com.mx
dc.relation.referencesMinisterio de Salud y Protección Social. (s/f). Cáncer. Recuperado el 20 de junio de 2023, de https://www.minsalud.gov.co/salud/publica/PENT/Paginas/Prevenciondel- cancer.aspx
dc.relation.referencesMinisterio de Salud y Protección Social. (2022). Indicadores básicos de salud 2022: situación de salud en Colombia.
dc.relation.referencesMinisterio de Salud y Protección Social, & Instituto Nacional de Cancerología. (2012). Plan nacional para el control del cáncer en Colombia 2012-2020.
dc.relation.referencesMontenegro, Y., Muñetón, C., Ramírez, J., Berrío, G. B., Ostos, H., Martínez, C., Sánchez, W., Escobar, J., Ramírez, A., Castaño, R., Isaza, L., Márquez, J., & Hoyos, O. (2001). Caracterización molecular de las mutaciones presentes en los genes responsables del síndrome de Lynch. Iatreia, 14(4-S), pág. 300. https://doi.org/10.17533/udea.iatreia.3907
dc.relation.referencesMoore, L., Cagan, A., Coorens, T. H. H., Neville, M. D. C., Sanghvi, R., Sanders, M. A., Oliver, T. R. W., Leongamornlert, D., Ellis, P., Noorani, A., Mitchell, T. J., Butler, T. M., Hooks, Y., Warren, A. Y., Jorgensen, M., Dawson, K. J., Menzies, A., O’Neill, L., Latimer, C., ... Rahbari, R. (2020). The mutational landscape of human somatic and germline cells. bioRxiv, 2020.11.25.398172. https://doi.org/10.1101/2020.11.25.398172
dc.relation.referencesMorán González, D., Cabrera, S. J., & Hurlé, A. D. G. (2008). Farmacogenética en oncología. Medicina Clínica, 131(5), 184–195. https://doi.org/10.1157/13124283
dc.relation.referencesMorjaria, S. (2021). Driver mutations in oncogenesis. International Journal of Molecular and Immuno Oncology, 6(2), 100–102. https://doi.org/10.25259/IJMIO_26_2020
dc.relation.referencesMorris, S. W., Kirstein, M. N., Valentine, M. B., Dittmer, K. G., Shapiro, D. N., Saltman, D. L., & Look, A. T. (1994). Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science, 263(5151), 1281–1284. https://doi.org/10.1126/science.8122112
dc.relation.referencesNangalia, J., & Campbell, P. J. (2019). Genome Sequencing during a Patient’s Journey through Cancer. New England Journal of Medicine, 381(22), 2145– 2156. https://doi.org/10.1056/NEJMra1910138
dc.relation.referencesNational Human Genome Research Institute. (2023, junio 7). Variabilidad genética. https://www.genome.gov/es/genetics-glossary/Variabilidad-genetica
dc.relation.referencesNational Library of Medicine. (2023, junio 15). Src SRC proto-oncogene, non- receptor tyrosine kinase [Rattus norvegicus (Norway rat)] - Gene - NCBI. https://www.ncbi.nlm.nih.gov/gene/83805
dc.relation.referencesNational Library of Medicine (NIH). (s/f-a). ABL1 ABL proto-oncogene 1, non- receptor tyrosine kinase [Homo sapiens (human)] - Gene - NCBI. Recuperado el 14 de junio de 2023, de https://www.ncbi.nlm.nih.gov/gene/25
dc.relation.referencesNational Library of Medicine (NIH). (s/f-b). BRAF B-Raf proto-oncogene, serine/threonine kinase [Homo sapiens (human)] - Gene - NCBI. Recuperado el 15 de junio de 2023, de https://www.ncbi.nlm.nih.gov/gene/673
dc.relation.referencesNeumann, H. P. H., Bausch, B., McWhinney, S. R., Bender, B. U., Gimm, O., Franke, G., Schipper, J., Klisch, J., Altehoefer, C., Zerres, K., Januszewicz, A., Smith, W. M., Munk, R., Manz, T., Glaesker, S., Apel, T. W., Treier, M., Reineke, M., Walz, M. K., ... Eng, C. (2002). Germ-Line Mutations in Nonsyndromic Pheochromocytoma. New England Journal of Medicine, 346(19), 1459–1466. https://doi.org/10.1056/nejmoa020152
dc.relation.referencesOca, L. M. C. M. de, & Álvarez, P. I. C. (2022). Correlación clínico-hispatológica en tumores músculo-esquelético 2003-2020. Revista Científica CMDLT, 14(Suplemento). https://doi.org/10.55361/CMDLT.V14ISUPLEMENTO.74
dc.relation.referencesOliveros, R., Pinilla, R. E., Navia, H. F., & Oliveros, R. (2019). Cáncer gástrico: una enfermedad prevenible. Estrategias para intervención en la historia natural. Revista colombiana de Gastroenterología, 34(2), 177–189. https://doi.org/10.22516/25007440.394
dc.relation.referencesOlivier, M., Hollstein, M., & Hainaut, P. (2010). TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harbor perspectives in biology, 2(1). https://doi.org/10.1101/CSHPERSPECT.A001008
dc.relation.referencesOrganización Mundial de la Salud. (2022, febrero 2). Cáncer. https://www.who.int/es/news-room/fact-sheets/detail/cancer
dc.relation.referencesOrtiz, M. A., Mikhailova, T., Li, X., Porter, B. A., Bah, A., & Kotula, L. (2021). Src family kinases, adaptor proteins and the actin cytoskeleton in epithelial-to-mesenchymal transition. Cell Communication and Signaling 2021 19:1, 19(1), 1–19. https://doi.org/10.1186/S12964-021-00750-X
dc.relation.referencesO’Shea, J. J., Husa, M., Li, D., Hofmann, S. R., Watford, W., Roberts, J. L., Buckley, R. H., Changelian, P., & Candotti, F. (2004). Jak3 and the pathogenesis of severe combined immunodeficiency. Molecular Immunology, 41(6–7), 727–737. https://doi.org/10.1016/J.MOLIMM.2004.04.014
dc.relation.referencesOury, M., & Collignon, P. (1976). UTILISATION DU LORAZEPAM INJECTABLE DANS LA PREPARATION AU CATHETERISME CARDIAQUE. Revue Medicale de Liege, 31(3), 88–90.
dc.relation.referencesPalacio-Rúa, K. A., Isaza-Jiménez, L. F., Ahumada-Rodríguez, E., Ceballos- García, H., & Muñetón-Peña, C. M. (2014). Análisis genético en APC, KRAS y TP53 en pacientes con cáncer de estómago y colon. Revista de Gastroenterología de México, 79(2), 79–89.
dc.relation.referencesPardo, C., Murillo, R., Piñeros, M., & Castro, M. Á. (2003). CASOS NUEVOS DE CÁNCER EN EL INSTITUTO NACIONAL DE CANCEROLOGÍA, COLOMBIA, 2002. REVISTA COLOMBIANA DE CANCEROLOGÍA, 7, 4–19. www.incancerologia.gov.co
dc.relation.referencesParsons, D. W., Roy, A., Yang, Y., Wang, T., Scollon, S., Bergstrom, K., Kerstein, R. A., Gutierrez, S., Petersen, A. K., Bavle, A., Lin, F. Y., López-Terrada, D. H., Monzon, F. A., Hicks, M. J., Eldin, K. W., Quintanilla, N. M., Adesina, A. M., Mohila, C. A., Whitehead, W., ... Plon, S. E. (2016). Diagnostic Yield of Clinical Tumor and Germline Whole-Exome Sequencing for Children With Solid Tumors. JAMA oncology, 2(5), 616. https://doi.org/10.1001/JAMAONCOL.2015.5699
dc.relation.referencesPastore, Y., Jedlickova, K., Guan, Y., Liu, E., Fahner, J., Hasle, H., Prchal, J. F., & Prchal, J. T. (2003). Mutations of von Hippel-Lindau tumor-suppressor gene and congenital polycythemia. American Journal of Human Genetics, 73(2), 412–419. https://doi.org/10.1086/377108
dc.relation.referencesPeláez, A., Ramírez, J., Arango, A. R., Matute, G., Montealegre, N., & Gaviria, M. (1998). CARACTERÍSTICAS Y PREVALENCIA DE NEOPLASIAS MALIGNAS DEL TRACTO GASTROINTESTINAL EN EL DEPARTAMENTO DE ANTIOQUIA, SEGUNDO SEMESTRE DE 1996.
dc.relation.referencesPellatt, A. J., Bhamidipati, D., & Subbiah, V. (2024). Ready, Set, Go: Setting Off on the Mission to Target KRAS in Colorectal Cancer . JCO Oncology Practice. https://doi.org/10.1200/OP.24.00295
dc.relation.referencesPerakis, S. O., Weber, S., Zhou, Q., Graf, R., Hojas, S., Riedl, J. M., Gerger, A., Dandachi, N., Balic, M., Hoefler, G., Schuuring, E., Groen, H. J. M., Geigl, J. B., Heitzer, E., & Speicher, M. R. (2020). Comparison of three commercial decision support platforms for matching of next-generation sequencing results with therapies in patients with cancer. ESMO Open, 5(5), e000872. https://doi.org/10.1136/esmoopen-2020-000872
dc.relation.referencesPerl, A. E. (2017). The role of targeted therapy in the management of patients with AML. Hematology: the American Society of Hematology Education Program, 2017(1), 54. https://doi.org/10.1182/ASHEDUCATION-2017.1.54
dc.relation.referencesPesu, M., Candotti, F., Husa, M., Hofmann, S. R., Notarangelo, L. D., & O’Shea, J. J. (2005). Jak3, severe combined immunodeficiency, and a new class of immunosuppressive drugs. Immunological Reviews, 203, 127–142. https://doi.org/10.1111/J.0105-2896.2005.00220.X
dc.relation.referencesPetrosino, M., Novak, L., Pasquo, A., Chiaraluce, R., Turina, P., Capriotti, E., & Consalvi, V. (2021). Analysis and interpretation of the impact of missense variants in cancer. International Journal of Molecular Sciences, 22(11), 5416. https://doi.org/10.3390/IJMS22115416/S1
dc.relation.referencesPikman, Y., Lee, B. H., Mercher, T., McDowell, E., Ebert, B. L., Gozo, M., Cuker, A., Wernig, G., Moore, S., Galinsky, I., DeAngelo, D. J., Clark, J. J., Lee, S. J., Golub, T. R., Wadleigh, M., Gilliland, D. G., & Levine, R. L. (2006). MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Medicine, 3(7), 1140–1151. https://doi.org/10.1371/JOURNAL.PMED.0030270
dc.relation.referencesPon, J. R., & Marra, M. A. (2015). Driver and Passenger Mutations in Cancer. Annu. Rev. Pathol. Mech. Dis, 10, 25–50. https://doi.org/10.1146/annurev- pathol-012414-040312
dc.relation.referencesPotapova, T., & Gorbsky, G. J. (2017). The Consequences of Chromosome Segregation Errors in Mitosis and Meiosis. Biology 2017, Vol. 6, Page 12, 6(1), 12. https://doi.org/10.3390/BIOLOGY6010012
dc.relation.referencesPoznak, C. Van, & Seidman, A. D. (2017). Breast Cancer Essentials for Clinicians Edited. Encyclopedia of Cancer (Second Edition), 287–299. http://www.sciencedirect.com:5070/referencework/9780122275555/encyclope dia-of-cancer
dc.relation.referencesRamarao-Milne, K. P., Patch, A.-M., Nones, K., Koufariotis, R., Newell, F., Addala, V. R., Kondrashova, O., Mukhopadhyay, P., Kazakoff, S. H., Lakis, V., Holmes, O., Leonard, C., Wood, S., Xu, C., Pearson, J. V., Hollway, G., & Waddell, N. (2019). Detection of actionable variants in various cancer types reveals value of whole-genome sequencing over in-silico whole-exome and hotspot panel sequencing. Annals of Oncology, 30, vii33. https://doi.org/10.1093/annonc/mdz413.119
dc.relation.referencesRichards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W. W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., & Rehm, H. L. (2015). Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine : official journal of the American College of Medical Genetics, 17(5), 405. https://doi.org/10.1038/GIM.2015.30
dc.relation.referencesRoa, I., Sánchez, T., Majlis, A., & Schalper, K. (2013). Mutación del gen KRAS en el cáncer de colon y recto. Revista médica de Chile, 141(9), 1166–1172. https://doi.org/10.4067/S0034-98872013000900009
dc.relation.referencesRobert Frost, H. (2021). Analyzing cancer gene expression data through the lens of normal tissue-specificity. PLOS Computational Biology, 17(6), e1009085. https://doi.org/10.1371/JOURNAL.PCBI.1009085
dc.relation.referencesRobles, L., Balmaña, J., Barrel, I., Grandes, S., Graña, B., Guillén, C., Marcos, H., Ramírez, D., Redondo, E., & Sá nchez, J. (2013). Consenso en cáncer hereditario entre la Sociedad Española de Oncología Médica y las sociedades de atención primaria. SEMERGEN - Medicina de Familia, 39(5), 259–266. https://doi.org/10.1016/J.SEMERG.2012.08.007
dc.relation.referencesRodríguez, A. O., Llacuachaqui, M., Pardo, G. G., Royer, R., Larson, G., Weitzel, J. N., & Narod, S. A. (2012). BRCA1 and BRCA2 mutations among ovarian cancer patients from Colombia. Gynecologic oncology, 124(2), 236–243. https://doi.org/10.1016/J.YGYNO.2011.10.027
dc.relation.referencesRodríguez-Santiago, B., & Armengol, L. (2012). Tecnologías de secuenciación de nueva generación en diagnóstico genético pre- y postnatal. Diagnóstico Prenatal, 23(2), 56–66. https://doi.org/10.1016/J.DIAPRE.2012.02.001
dc.relation.referencesRubio, S., Pacheco-Orozco, R. A., Gómez, A. M., Perdomo, S., & García-Robles, R. (2020). Secuenciación de nueva generación (NGS) de ADN: presente y futuro en la práctica clínica. Universitas Médica, 61(2). https://doi.org/10.11144/JAVERIANA.UMED61-2.SNGS
dc.relation.referencesSabarinathan, R., Pich, O., Martincorena, I., Rubio-Perez, C., Juul, M., Wala, J., Schumacher, S., Shapira, O., Sidiropoulos, N., Waszak, S. M., Tamborero, D., Mularoni, L., Rheinbay, E., Hornshøj, H., Deu-Pons, J., Muiños, F., Bertl, J., Guo, Q., Creighton, C. J., ... Network, on behalf of the P. D. and F. I. G. and the I. P.-C. A. of W. G. (2017). The whole-genome panorama of cancer drivers. bioRxiv, 190330. https://doi.org/10.1101/190330
dc.relation.referencesSanderson, C. J. (1976). The mechanism of T cell mediated cytotoxicity. II. Morphological studies of cell death by time lapse microcinematography. Proceedings of the Royal Society of London - Biological Sciences, 192(1107), 241–255. https://doi.org/10.1098/rspb.1976.0011
dc.relation.referencesSandhu, V., Wedge, D. C., Lothe, I. M. B., Labori, K. J., Dentro, S. C. D., Buanes, T., Skrede, M. L., Dalsgaard, A. M., Munthe, E., Myklebost, O., Lingjærde, O. C., Børresen-Dale, A. L., Ikdahll, T., Van Loo, P., Nord, S., & Kure, E. H. (2016). The Genomic landscape of pancreatic and periampullary Adenocarcinoma. Cancer Research, 76(17), 5092–5102. https://doi.org/10.1158/0008-5472.CAN-16-0658/652470/AM/THE- GENOMIC-LANDSCAPE-OF-PANCREATIC-AND
dc.relation.referencesSecretaría Seccional de Salud y Protección Social de Antioquia. (2018). SITUACIÓN DEL CÁNCER, DEPARTAMENTO DE ANTIOQUIA. AÑO 2018 GERENCIA DE SALUD PÚBLICA SECRETARÍA SECCIONAL DE SALUD Y PROTECCIÓN SOCIAL DE ANTIOQUIA.
dc.relation.referencesSiegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1), 17–48. https://doi.org/10.3322/CAAC.21763;CTYPE:STRING:JOURNAL
dc.relation.referencesSilva-Rodríguez, P., Fernández-Díaz, D., Bande, M., Pardo, M., Loidi, L., & Blanco-Teijeiro, M. J. (2022). GNAQ and GNA11 Genes: A Comprehensive Review on Oncogenesis, Prognosis and Therapeutic Opportunities in Uveal Melanoma. Cancers, 14(13). https://doi.org/10.3390/CANCERS14133066/S1
dc.relation.referencesSimon, R., & Roychowdhury, S. (2013). Implementing personalized cancer genomics in clinical trials. Nature reviews. Drug discovery, 12(5), 358–369. https://doi.org/10.1038/NRD3979
dc.relation.referencesSims, D., Sudbery, I., Ilott, N. E., Heger, A., & Ponting, C. P. (2014). Sequencing depth and coverage: Key considerations in genomic analyses. Nature Reviews Genetics, 15(2), 121–132. https://doi.org/10.1038/NRG3642,
dc.relation.referencesStaudt, D., Murray, H. C., McLachlan, T., Alvaro, F., Enjeti, A. K., Verrills, N. M., & Dun, M. D. (2018). Targeting Oncogenic Signaling in Mutant FLT3 Acute Myeloid Leukemia: The Path to Least Resistance. International Journal of Molecular Sciences, 19(10). https://doi.org/10.3390/IJMS19103198
dc.relation.referencesStrickler, J. H., Satake, H., George, T. J., Yaeger, R., Hollebecque, A., Garrido- Laguna, I., Schuler, M., Burns, T. F., Coveler, A. L., Falchook, G. S., Vincent, M., Sunakawa, Y., Dahan, L., Bajor, D., Rha, S.-Y., Lemech, C., Juric, D., Rehn, M., Ngarmchamnanrith, G., ... Hong, D. S. (2023). Sotorasib in KRAS p.G12C–Mutated Advanced Pancreatic Cancer . New England Journal of Medicine, 388(1), 33–43. https://doi.org/10.1056/NEJMOA2208470/SUPPL_FILE/NEJMOA2208470_D ATA-SHARING.PDF
dc.relation.referencesSukhai, M. A., Misyura, M., Thomas, M., Garg, S., Zhang, T., Stickle, N., Virtanen, C., Bedard, P. L., Siu, L. L., Smets, T., Thijs, G., Van Vooren, S., Kamel-Reid, S., & Stockley, T. L. (2019). Somatic Tumor Variant Filtration Strategies to Optimize Tumor-Only Molecular Profiling Using Targeted Next-Generation Sequencing Panels. Journal of Molecular Diagnostics, 21(2), 261–273. https://doi.org/10.1016/j.jmoldx.2018.09.008
dc.relation.referencesSweeney, S. M., Cerami, E., Baras, A., Pugh, T. J., Schultz, N., Stricker, T., Lindsay, J., Del Vecchio Fitz, C., Kumari, P., Micheel, C., Shaw, K., Gao, J., Moore, N., Stricker, T., Kandoth, C., Reardon, B., Lepisto, E., Gardos, S., Dang, K., ... Shaw, K. (2017). AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer discovery, 7(8), 818– 831. https://doi.org/10.1158/2159-8290.CD-17-0151
dc.relation.referencesTaylor, C. F., Charlton, R. S., Burn, J., Sheridan, E., & Taylor, G. R. (2003). Genomic Deletions in MSH2 or MLH1 Are a Frequent Cause of Hereditary Non-Polyposis Colorectal Cancer: Identification of Novel and Recurrent Deletions by MLPA. Human Mutation, 22(6), 428–433. https://doi.org/10.1002/humu.10291
dc.relation.referencesTian, R., Basu, M. K., & Capriotti, E. (2015). Computational methods and resources for the interpretation of genomic variants in cancer. BMC Genomics, 16(Suppl 8), S7. https://doi.org/10.1186/1471-2164-16-S8-S7
dc.relation.referencesTipos de tratamiento | American Cancer Society. (s/f). Recuperado el 25 de diciembre de 2023, de https://www.cancer.org/es/cancer/como-sobrellevar-el- cancer/tipos-de-tratamiento.html
dc.relation.referencesTorres, D., Lorenzo Bermejo, J., Rashid, M. U., Bricenõ, I., Gil, F., Beltran, A., Ariza, V., & Hamann, U. (2017). Prevalence and Penetrance of BRCA1 and BRCA2 Germline Mutations in Colombian Breast Cancer Patients. Scientific Reports, 7(1). https://doi.org/10.1038/S41598-017-05056-Y
dc.relation.referencesTorres, D., Rashid, M. U., Gil, F., Umana, A., Ramelli, G., Robledo, J. F., Tawil, M., Torregrosa, L., Briceno, I., & Hamann, U. (2007). High proportion of BRCA1/2 founder mutations in Hispanic breast/ovarian cancer families from Colombia. Breast Cancer Research and Treatment, 103(2), 225–232. https://doi.org/10.1007/S10549-006-9370-1/METRICS
dc.relation.referencesTorres, M. M., Acosta, C. P., Sicard, D. M., & Groot de Restrepo, H. (2004). Susceptibilidad genética y riesgo de cáncer gástrico en una población del Cauca. Biomédica, 24(2), 153–162. https://doi.org/10.7705/BIOMEDICA.V24I2.1261
dc.relation.referencesTovar-Parra, J. D., Gutiérrez-Castañeda, L. D., Gil-Quiñones, S. R., Nova, J. A., & Pulido, L. (2020). CDKN2A Polymorphism in Melanoma Patients in Colombian Population: A Case-Control Study. BioMed Research International, 2020. https://doi.org/10.1155/2020/7458917
dc.relation.referencesTrevino, V., Tadesse, M. G., Vannucci, M., Al-Shahrour, F., & Antczak, P. (2011). Analysis of Normal-Tumour Tissue Interaction in Tumours: Prediction of Prostate Cancer Features from the Molecular Profile of Adjacent Normal Cells. PLoS ONE, 6(3), 16492. https://doi.org/10.1371/journal.pone.0016492
dc.relation.referencesTsongalis, G. J., Peterson, J. D., De Abreu, F. B., Tunkey, C. D., Gallagher, T. L., Strausbaugh, L. D., Wells, W. A., & Amos, C. I. (2014). Routine use of the Ion Torrent AmpliSeqTM Cancer Hotspot Panel for identification of clinically actionable somatic mutations. Clinical Chemistry and Laboratory Medicine, 52(5), 707–714. https://doi.org/10.1515/CCLM-2013- 0883/MACHINEREADABLECITATION/RIS
dc.relation.referencesTuzov, N. (2018). A framework for the estimation of the proportion of true discoveries in single nucleotide variant detection studies for human data. PLoS ONE, 13(4). https://doi.org/10.1371/JOURNAL.PONE.0196058
dc.relation.referencesTwigg, S. R. F., Hufnagel, R. B., Miller, K. A., Zhou, Y., McGowan, S. J., Taylor, J., Craft, J., Taylor, J. C., Santoro, S. L., Huang, T., Hopkin, R. J., Brady, A. F., Clayton-Smith, J., Clericuzio, C. L., Grange, D. K., Groesser, L., Hafner, C., Horn, D., Temple, I. K., ... Wilkie, A. O. M. (2016). A Recurrent Mosaic Mutation in SMO, Encoding the Hedgehog Signal Transducer Smoothened, Is the Major Cause of Curry-Jones Syndrome. American Journal of Human Genetics, 98(6), 1256–1265. https://doi.org/10.1016/j.ajhg.2016.04.007
dc.relation.referencesUT Southwestern Harold C. Simmons Comprehensive Cancer Center. (2020). Síndrome de Peutz-Jeghers (mutaciones en el gen STK11).
dc.relation.referencesVahidnezhad, H., Youssefian, L., & Uitto, J. (2016). Klippel-Trenaunay syndrome belongs to the PIK3CA-related overgrowth spectrum (PROS). Experimental Dermatology, 25(1), 17–19. https://doi.org/10.1111/EXD.12826
dc.relation.referencesVan Raamsdonk, C. D., Bezrookove, V., Green, G., Bauer, J., Gaugler, L., O’Brien, J. M., Simpson, E. M., Barsh, G. S., & Bastian, B. C. (2009). Frequent somatic mutations of GNAQ in uveal melanoma and blue nevi. Nature, 457(7229), 599. https://doi.org/10.1038/NATURE07586
dc.relation.referencesVergara-Dagobeth, E., Suárez-Causado, A., & Gómez-Arias, R. D. (2017). Plan Control del cáncer en Colombia 2012-2021. Un análisis formal. Gerencia y Políticas de Salud, 16(33), 6–18. https://doi.org/10.11144/JAVERIANA.RGPS16-33.PCCC
dc.relation.referencesVerma, S., & Gazara, R. K. (2021). Next-generation sequencing: an expedition from workstation to clinical applications. Translational Bioinformatics in Healthcare and Medicine, 13, 29–47. https://doi.org/10.1016/B978-0-323- 89824-9.00003-3
dc.relation.referencesVihinen, M., Villa, A., Mella, P., Schumacher, R. F., Savoldi, G., O’Shea, J. J., Candotti, F., & Notarangelo, L. D. (2000). Molecular modeling of the Jak3 kinase domains and structural basis for severe combined immunodeficiency. Clinical Immunology, 96(2), 108–118. https://doi.org/10.1006/CLIM.2000.4880
dc.relation.referencesVirtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., ... Vázquez-Baeza, Y. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/S41592-019-0686- 2;SUBJMETA=114,45,559,56,631,703,706;KWRD=BIOPHYSICAL+CHEMIS TRY,COMPUTATIONAL+BIOLOGY+AND+BIOINFORMATICS,TECHNOLOG Y
dc.relation.referencesVogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz, L. A., & Kinzler, K. W. (2013). Cancer Genome Landscapes. Science (New York, N.Y.), 339(6127), 1546. https://doi.org/10.1126/SCIENCE.1235122
dc.relation.referencesWang, J., Raskin, L., Samuels, D. C., Shyr, Y., & Guo, Y. (2015). Genome measures used for quality control are dependent on gene function and ancestry. Bioinformatics, 31(3), 318. https://doi.org/10.1093/BIOINFORMATICS/BTU668
dc.relation.referencesWard, P. S., & Thompson, C. B. (2012). Metabolic Reprogramming: A Cancer Hallmark Even Warburg Did Not Anticipate. Cancer Cell, 21(3), 297. https://doi.org/10.1016/J.CCR.2012.02.014
dc.relation.referencesWillingham, A. T., Deveraux, Q. L., Hampton, G. M., & Aza-Blanc, P. (2004). RNAi and HTS: exploring cancer by systematic loss-of-function. Oncogene, 23(51), 8392–8400. https://doi.org/10.1038/SJ.ONC.1208217
dc.relation.referencesYang, J., Hu, S., Wang, C., Song, J., Chen, C., Fan, Y., Ben-David, Y., & Pan, W. (2020). Fangchinoline derivatives induce cell cycle arrest and apoptosis in human leukemia cell lines via suppression of the PI3K/AKT and MAPK signaling pathway. European Journal of Medicinal Chemistry, 186, 111898. https://doi.org/10.1016/J.EJMECH.2019.111898
dc.relation.referencesYeh, C. H., Bellon, M., & Nicot, C. (2018). FBXW7: a critical tumor suppressor of human cancers. Molecular Cancer 2018 17:1, 17(1), 1–19. https://doi.org/10.1186/S12943-018-0857-2
dc.relation.referencesYesilöz, Ü., Kirches, E., Hartmann, C., Scholz, J., Kropf, S., Sahm, F., Nakamura, M., & Mawrin, C. (2017). Frequent AKT1E17K mutations in skull base meningiomas are associated with mTOR and ERK1/2 activation and reduced time to tumor recurrence. Neuro-Oncology, 19(8), 1088–1096. https://doi.org/10.1093/NEUONC/NOX018
dc.relation.referencesYi, K. H., & Lauring, J. (2015). Recurrent AKT mutations in human cancers: functional consequences and effects on drug sensitivity. Oncotarget, 7(4), 4241. https://doi.org/10.18632/ONCOTARGET.6648
dc.relation.referencesZhang, L., Chen, L., Sah, S., Latham, G. J., Patel, R., Song, Q., Koeppen, H., Tam, R., Schleifman, E., Mashhedi, H., Chalasani, S., Fu, L., Sumiyoshi, T., Raja, R., Forrest, W., Hampton, G. M., Lackner, M. R., Hegde, P., & Jia, S. (2014). Profiling Cancer Gene Mutations in Clinical Formalin-Fixed, Paraffin- Embedded Colorectal Tumor Specimens Using Targeted Next-Generation Sequencing. The Oncologist, 19(4), 336–343. https://doi.org/10.1634/THEONCOLOGIST.2013-0180
dc.relation.referencesZhang, Y., Coillie, S. V, Fang, J.-Y., & Xu, J. (2016). Gain of function of mutant p53: R282W on the peak? Oncogenesis, 5, 196. https://doi.org/10.1038/oncsis.2016.8
dc.relation.referencesZhu, W., Han, H., Ma, Z., Cao, H., Yan, Y., Zhao, Y., Deng, C., Xu, H., Fu, F., Fan, F., Zhang, Y., & Chen, H. (2024). Prognostic value of KRAS G12V mutation in lung adenocarcinoma stratified by stages and radiological features. Journal of Thoracic and Cardiovascular Surgery, 168(6), 1525- 1537.e6. https://doi.org/10.1016/j.jtcvs.2024.03.025
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc570 - Biología::576 - Genética y evolución
dc.subject.ddc660 - Ingeniería química
dc.subject.lembCáncer - Aspectos genéticos - Antioquia (Colombia)
dc.subject.lembCáncer - Tratamiento genético - Antioquia (Colombia)
dc.subject.lembCáncer - Tratamiento - Antioquia (Colombia)
dc.subject.lembCáncer - Innovaciones tecnológicas - Antioquia (Colombia)
dc.subject.lembBiotecnología
dc.subject.proposalSecuenciaciónspa
dc.subject.proposalSequencingeng
dc.subject.proposalCáncerspa
dc.subject.proposalCancereng
dc.subject.proposalGenesspa
dc.subject.proposalGeneseng
dc.subject.proposalPanelspa
dc.subject.proposalPaneleng
dc.subject.proposalDescripciónspa
dc.subject.proposalDescription
dc.subject.proposalMutacionesspa
dc.subject.proposalMutationseng
dc.titleDescripción del panorama mutacional de 50 genes en algunos tipos de cáncer presentes en población antioqueña a través de Secuenciación de Próxima Generaciónspa
dc.title.translatedMutational landscape analysis of 50 genes in selected cancer types using NextGeneration Sequencing in patients from Antioquia, Colombiaeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ciencias - Biotecnología
Tamaño:
2.7 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: