Potencial fitopatogénico de hongos asociados a arvenses en cultivos del Altiplano Oriente de Antioquia, Colombia

dc.contributor.advisorCastañeda Sánchez, Darío Antoniospa
dc.contributor.advisorMorales Osorio, Juan Gonzalospa
dc.contributor.advisorPatiño Hoyos, Luis Fernandospa
dc.contributor.authorMira Taborda, Yerly Dayanaspa
dc.contributor.researchgroupFITOTECNIA TROPICALspa
dc.date.accessioned2021-03-01T16:37:53Zspa
dc.date.available2021-03-01T16:37:53Zspa
dc.date.issued2020-11-03spa
dc.description.abstractThe first step in developing weed biological control programs is to determine the plants and natural enemies with the highest affinity and potential to achieve effective biocontrol. The objective of this research was to evaluate the pathogenic potential of fungi on four weeds of economic importance associated with crops from the East of Antioquia, Colombia. For the choice of plants, a field sampling was carried out on 35 farms, distributed in 10 crops, determining the ecological, phytosanitary status and perception of damage; which was integrated to score and classify them according to their aptitude for biological control studies. The plants chosen were: Rumex crispus, Digitaria horizontalis, Persicaria nepalensis and Thunbergia alata. The fungi were isolated in PDA medium from symptomatic foliar tissues obtained from the field and subjected to detached leaf pathogenicity tests on their respective hosts, using two inoculation methods (discs and suspension), and their respective controls, determining the incubation period, incidence, and AUDPC. The most virulent isolation of each weed was evaluated on young plants, by spraying the inoculum at 1 x 106 spores-mycelium/mL in a bioclimatic cabin. The fungi that showed pathogenicity were identified by morphological descriptions and phylogenetic studies, based on DNA amplification and sequencing of the ITS, β-Tub2 and TEF1-α region. The following pathogenicities were confirmed: Colletotrichum cigarro, Epicoccum draconis and Didymella rumicicola on R. crispus; Bipolaris sp., on D. horizontalis; Bipolaris zeicola, Phialemoniopsis curvata and Stemphylium beticola on P. nepalensis; Alternaria thunbergiae and Nigrospora sphaerica on T. alata. As far as we know, these are the first worldwide reports of such interactions, except for A. thunbergiae and Bipolaris sp. According to AUDPC, the most virulent interactions corresponded with: (R. crispus × D. rumicicola), (D. horizontalis × Bipolaris sp.), (P. nepalensis × S. beticola) and (T. alata × A. thunbergiae). These strains are proposed as potential biocontrol agents.spa
dc.description.abstractEl primer paso para el desarrollo de programas de control biológico de arvenses consiste en determinar las plantas y enemigos naturales con más afinidad y potencial para alcanzar un biocontrol efectivo. Se evaluó el potencial patogénico de hongos sobre cuatro arvenses de importancia económica asociadas a cultivos del Altiplano del Oriente de Antioquia, Colombia. Para la elección de las plantas se realizó un muestreo en campo sobre 35 predios agrícolas, distribuidos en 10 cultivos, determinando el estado ecológico, fitosanitario y percepción de daño de estas; lo cual se integró para asignar una puntuación numérica y clasificarlas según su aptitud para estudios de control biológico. Las plantas elegidas fueron: Rumex crispus, Digitaria horizontalis, Persicaria nepalensis y Thunbergia alata. Los hongos se aislaron en medio PDA a partir de tejidos foliares sintomáticos obtenidos de campo y se sometieron a pruebas de patogenicidad en hoja desprendida sobre sus respectivas hospederas, mediante dos métodos de inoculación (discos y suspensión), y sus respectivos controles, determinando el periodo de incubación, la incidencia y el ABCPE. El aislamiento más virulento de cada arvense, se evaluó sobre plántulas, mediante una aspersión de inóculo a 1 x 106 esporas-micelio/mL en cámara bioclimática. Los hongos que mostraron patogenicidad se identificaron mediante descripciones morfológicas y estudios filogenéticos, a partir de la amplificación del DNA y secuenciación de la región ITS, β-Tub2 y TEF1-α. Se confirmó la patogenicidad de Colletotrichum cigarro, Epicoccum draconis y Didymella rumicicola sobre R. crispus; Bipolaris sp., sobre D. horizontalis; Bipolaris zeicola, Phialemoniopsis curvata y Stemphylium beticola sobre P. nepalensis; Alternaria thunbergiae y Nigrospora sphaerica sobre T. alata. Estos son los primeros reportes mundiales de tales interacciones, a excepción de A. thunbergiae y Bipolaris sp. De acuerdo con el ABCPE, las interacciones más virulentas correspondieron con: (R. crispus × D. rumicicola), (D. horizontalis × Bipolaris sp.), (P. nepalensis × S. beticola) y (T. alata × A. thunbergiae). Estas cepas se proponen como potenciales agentes de biocontrol.spa
dc.description.additionalLínea de Investigación: Salud Pública Vegetalspa
dc.description.degreelevelMaestríaspa
dc.description.projectPotencial fitopatogénico de hongos asociados a arvenses en cultivos del Altiplano Oriente de Antioquia, Colombia.spa
dc.description.sponsorshipGrupo de Investigación Fitotecnia Tropicalspa
dc.format.extent171spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79327
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Agronómicasspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAbbas, T., Zahir, Z. A., Naveed, M., & Kremer, R. J. (2018). Limitations of Existing Weed Control Practices Necessitate Development of Alternative Techniques Based on Biological Approaches. Advances in Agronomy, 147, 239–280. https://doi.org/10.1016/BS.AGRON.2017.10.005spa
dc.relation.referencesAbdessemed, N., Kerroum, A., Bahet, Y. A., Talbi, N., & Zermane, N. (2019). First report of Alternaria leaf spot caused by Alternaria alternata (Fries.) Kiessler on Sonchus oleraceus L. and Convolvulus arvensis L. in Algeria. Journal of Phytopathology, 167(6), 321–325. https://doi.org/10.1111/jph.12800spa
dc.relation.referencesAbouziena, H. F., & Haggag, W. M. (2016). Weed Control in Clean Agriculture: A Review. Planta Daninha, 34(2), 377–392. https://doi.org/10.1590/S0100-83582016340200019spa
dc.relation.referencesAbu Dieyeh, M. H., & Watson, A. K. (2007). Population dynamics of broadleaf weeds in Turfgrass as influenced by chemical and biological control methods. Weed Science, 55, 371–380. https://doi.org/10.1614/WS-06-144spa
dc.relation.referencesAlemán, F. (2004). Manejo de arvenses en el trópico (2a ed.). Universidad Nacional Agraria.spa
dc.relation.referencesAlonso, A., & Castro, P. (2015). Las invasiones biológicas y su impacto en los ecosistemas. Ecosistemas, 24(1), 1–3. https://doi.org/10.7818/ECOS.2015.24-1.01spa
dc.relation.referencesAnzalone, A., Arizaleta, M., & González, M. (2012). La flora arvense en huertos de naranjo “Valencia” y su relación con las características del suelo en dos municipios del estado Yaracuy, Venezuela. Bioagro, 24(1), 23–32.spa
dc.relation.referencesAuld, B. A., Hetherington, S. D., & Smith, H. E. (2003). Advances in bioherbicide formulation. Weed Biology and Management, 3(2), 61–67. https://doi.org/10.1046/j.1445-6664.2003.00086.xspa
dc.relation.referencesBailey, K. L. (2014). The Bioherbicide Approach to Weed Control Using Plant Pathogens. In Integrated Pest Management (pp. 245–266). Elsevier. https://doi.org/10.1016/B978-0-12-398529-3.00014-2spa
dc.relation.referencesBaldwin, F. L., & Santelmann, P. W. (1980). Weed Science in Integrated Pest Management. BioScience, 30, 675–678. https://doi.org///doi.org/10.2307/1308464.spa
dc.relation.referencesBatianoff, G., & Butler, D. (2002). Assesment of invasive naturalized plants in south-east Queensland. Plant Protection Quarterly, 17, 27–34.spa
dc.relation.referencesBhadoria, P. (2011). Allelopathy: A Natural Way towards Weed Management. American Journal of Experimental Agriculture, 1(1), 7–20. https://doi.org/10.9734/AJEA/2011/002spa
dc.relation.referencesBlanco. (2016). The role of weeds as a component of biodiversity in agroecosystems. Cultivos Tropicales, 37(4), 34–56. https://doi.org/10.13140/RG.2.2.10964.19844spa
dc.relation.referencesBonacci, M., Formento, Á. N., Daita, F., Sartori, M., Etcheverry, M., Nesci, A., & Barros, G. (2018). Assessment of Fungal Pathogens Affecting the Weed Conyza bonariensis in Argentina. Journal of Agricultural Science, 10(3), 62. https://doi.org/10.5539/jas.v10n3p62spa
dc.relation.referencesBooth, B., Murphy, S., & Swanton, C. (2003). Weed Ecology in Natural and Agricultural Systems. CABI Publishing.spa
dc.relation.referencesBoyette, C., Hoaglan, R., & Stetina, K. (2015). Biological Control of Spreading Dayflower (Commelina diffusa) with the Fungal Pathogen Phoma commelinicola. Agronomy, 5, 519–533. https://doi.org/10.3390/agronomy5040519spa
dc.relation.referencesBracho Bravo, B., & Arnaude, O. (2012). Efecto de extractos acuosos de “Pteridium aquilinum” L. Kuhn var. Caudatum sobre el crecimiento de plántulas de “Solanum lycopersicum” L. Agronomía Tropical, 62(1), 39–49. scielo.org/scielo.php?script=sci_arttext&pid=S0002-192X2012000100004&lng=es&tlng=esspa
dc.relation.referencesBurdon, J. (1987). Diseases and plant population biology. Cambridge Studies In Ecology. Cambridge University Press.spa
dc.relation.referencesCárdenas, B., Baptiste, M., & Castaño, N. (2017). Plantas exóticas con alto potencial de invasión en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.spa
dc.relation.referencesCardenas, M. (1992). Evaluacion de hongos como agentes de control biologico de zacate johnson (Sorghum halepense).spa
dc.relation.referencesCastaño, J. (2005). Guia ilustrada de hongos promisorias para el control de malezas, insectos, nemátodos y hongos fitopatógenos.spa
dc.relation.referencesCastillo, J., Rodríguez, P., Molina, P., Cardozo, M., & Vega, C. (2015). Entomofauna en las principales malezas asociadas a los cultivos De maíz, cítricos y lúcumo y su población estimada por hectárea en la Molina, Lima. Perú. Anales Científicos, 76(2), 315. https://doi.org/10.21704/ac.v76i2.796spa
dc.relation.referencesCastillo, S., Martínez, Y., & Barajas, G. (2014). Establecimiento de tres especies arbóreas en la cuenca del río Magdalena, México. In Botanical Sciences (Vol. 92, Issue 2). https://doi.org/10.17129/botsci.100spa
dc.relation.referencesCharudattan, R. (1991). The Mycoherbicide Approach with Plant Pathogens. Microbial Control of Weeds, 24–57. https://doi.org/10.1007/978-1-4615-9680-6_2spa
dc.relation.referencesCharudattan, R. (2005). Use of plant pathogens as bioherbicides to manage weeds in horticultural crops. Florida State Horticultural Society, 118, 208–214. journals.fcla.edu/.../82918spa
dc.relation.referencesCharudattan, R., & Dinoor, A. (2000). Biological control of weeds using plant pathogens: Accomplishments and limitations. Crop Protection, 19(8–10), 691–695. https://doi.org/10.1016/S0261-2194(00)00092-2spa
dc.relation.referencesChauhan, B., Hafiz, H., & Florentine, S. (2019). Seed germination ecology of Bidens pilosa and its implications for weed management. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-52620-9spa
dc.relation.referencesChristoffoleti, P. J. (2002). Curvas de dose-resposta de biótipos resistente e suscetível de Bidens pilosa L. Aos herbicidas inibidores da als. Scientia Agricola, 59(3), 513–519. https://doi.org/10.1590/S0103-90162002000300016spa
dc.relation.referencesCordeau, S., Triolet, M., Wayman, S., Steinberg, C., & Guillemin, J. P. (2016). Bioherbicides: Dead in the water? A review of the existing products for integrated weed management. Crop Protection, 87, 44–49. https://doi.org/10.1016/j.cropro.2016.04.016spa
dc.relation.referencesCordoba, O. (2014). Arvenses. In Actualización Tecnológica y Buenas Prácticas Agrícolas (BPA) en el Cultivo de Aguacate. Antioquia, Colombia: CORPOICA (pp. 212-26.).spa
dc.relation.referencesDAP. (2017). Departamento Administrativo de Planeación. Anuario Estadístico de Antioquia. Gobernación de Antioquia, Secretaría de Medio Ambiente. www.antioquiadatos.gov.cospa
dc.relation.referencesDavid, P., Thebault, E., Anneville, O., Duyck, P., Chapuis, E., & Loeuille, N. (2017). Impacts of invasive species on food webs: A review of empirical data. Advances in Ecological Research, 56, 1–60. https://doi.org/https://doi.org/10.1016/bs.aecr.2016.10.001spa
dc.relation.referencesDe Almeida, H., Gomes, L., Leao, A., Silvério, R., & Mendes, A. (2011). Supressão imposta pelo atrazine a Digitaria horizontalis em função do estádio de desenvolvimento. Revista Caatinga, 24(1), 27–33. http://periodicos.ufersa.edu.br/index.php/sistemaspa
dc.relation.referencesDenchev, T. T., & Denchev, C. M. (2017). Contributions to the smut fungi of Africa. 3. First record of Microbotryum polygoni-alati. Mycobiota, 7, 19–24. https://doi.org/10.12664/mycobiota.2017.07.04spa
dc.relation.referencesDragomir, N., Horablaga, M., Camen, D., Dragomir, C., Rechițean, D., & Dragoș, M. (2017). Allelopathic aspects in Rumex crispus L. and Rumex obtusifolius L. and Allelopathic effect on grassland grasses. Romanian Journal of Grassland and Forage Crops, 5, 31–37 ref.1. http://www.ropaj.orgspa
dc.relation.referencesEvans, H. (2002). Biological control of weeds. In: Kempken, F. The Mycota XI, Agricultural Applications. Springer, Berlin, Germany., 135–152.spa
dc.relation.referencesEvans, H., Frolich, J., & Shamoun, S. (2001). Biological control of weeds. Fungal Diversity Research Series, 6, 349–401.spa
dc.relation.referencesFaccini, D., Puricelli, E., Vergara, E., & Tenaglia, M. (2005). Control de Plantago tomentosa, Rumex crispus y Urtica urens con distintas dosis de herbicidas preemergentes. Soja Siembra Directa, 76, 30–32. AAPRESIDspa
dc.relation.referencesFarrell, G., Simons, S., & Hillocks, J. (2002). Pests, diseases and weeds of Napier grass, Pennisetum purpureum: A review. International Journal of Pest Management, 48(1), 39–48. https://doi.org/10.1080/09670870110065578spa
dc.relation.referencesFlores, E., Rocha, P., & Rodrigues, G. (2018). Seeds of weeds as an alternative host of phytopathogens. Plant Pathology, 85, 1–7. https://doi.org/10.1590/1808‑1657000972017spa
dc.relation.referencesFontanet, M. B., Javier, G., Duverger, C., Rivera, L. P., Elías, A. C., Prades, M. P., & Pérez, O. B. (2019). Población de arvenses en suelos tratados con diferentes técnicas de manejo en caña de azúcar. Centro Agrícola, 46(3), 76–85. cagricola.uclv.edu.cuspa
dc.relation.referencesFried, G., Chauvel, B., Reynaud, P., & Sache, I. (2017). Decreases in crop production by non-native weeds, pests, and pathogens. In En Vilà & Hulme. Impact of Biological Invasions on Ecosystem Services (pp. 83–101). Springer International Publishing.spa
dc.relation.referencesFunk, V. A., Susanna, A., Stuessy, T. F., & Bayer, R. J. (2009). Systematics, Evolutions, and Biogeography of Compositae. International Association for PlantTaxonomy. University of Viena, Rennweg 14, 1030.spa
dc.relation.referencesGandon, S. (2004). Evolution of multihost parasites. Evolution, 58(3), 455–469. https://doi.org/10.1111/j.0014-3820.2004.tb01669.xspa
dc.relation.referencesGarcía, F. (2014). Classificação e mecanismos de sobrevivencia das plantas daninhas. In Aspectos da biología e manejo das plantas daninhas. Rima, Sao Carlos, Brasil. (pp. 33-60.).spa
dc.relation.referencesGerber, E., Schaffner, U., Gassmann, A., Hinz, H., Seier, M., & Müller-Schärer, H. (2011). Prospects for biological control of Ambrosia artemisiifolia in Europe: learning from the past. Weed Research, 51, 559-573.spa
dc.relation.referencesGhorbani, R., Leifert, C., & Seel, W. (2005). Biological Control of Weeds with Antagonistic Plant Pathogens. Advances in Agronomy, 86, 191–225. https://doi.org/https://doi.org/10.1016/S0065-2113(05)86004-3spa
dc.relation.referencesGiraldo, D. (2005). Las especies Colombianas del género Digitaria (Poaceae: Panicoideae: Paniceae). Caldasia, 27(1), 25–87. unal.edu.co/icn/publicaciones/caldasia.htmspa
dc.relation.referencesGuatimosim, E., Pinto, H., Pereira, O., Fuga, C., Vieira, B., & Barreto, R. (2015). Pathogenic mycobiota of the weeds Bidens pilosa and Bidens subalternans. Tropical Plant Pathology, 40, 298–317. https://doi.org/https://doi.org/10.1007/s40858-015-0040-xspa
dc.relation.referencesGuo, L., Qiu, J., Li, L. F., Lu, B., Olsen, K., & Fan, L. (2018). Genomic Clues for Crop–Weed Interactions and Evolution. Trends in Plant Science, 1–14. https://doi.org/10.1016/j.tplants.2018.09.009spa
dc.relation.referencesHeap, I. (2019). International Survey of Herbicide Resistant Weeds. Herbicide Resistance Action Committee, the North American Herbicide Resistance Action Committee, and the Weed Science Society of America. www.weedscience.orgspa
dc.relation.referencesHershenhorn, J., Casella, F., & Vurro, M. (2016). Weed biocontrol with fungi: past, present and future. Biocontrol Science and Technology, 26(10), 1313–1328. https://doi.org/10.1080/09583157.2016.1209161spa
dc.relation.referencesHirayama, Y., Asano, S., Okayama, K., Ohki, S. T., & Tojo, M. (2018). Weeds as the potential inoculum source of Colletotrichum fructicola responsible for strawberry anthracnose in Nara, Japan. Journal of General Plant Pathology, 84(1), 12–19. https://doi.org/10.1007/s10327-017-0753-4spa
dc.relation.referencesHoldridge, L. R. (1982). Ecología basada en zonas de vida. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesHoyos, V., Martínez, M., & Plaza, G. (2015). Malezas asociadas a los cultivos de cítricos, guayaba, maracuyá y piña en el departamento del Meta, Colombia. Revista Colombiana de Ciencias Hortícolas., 9(2), 247–258. https://doi.org/http://dx.doi.org/10.17584/rcch.2015v9i2.4181spa
dc.relation.referencesIDEAM. (2018). Información diaria de precipitación y temperatura. Instituto de Hidrología, Meteorología y Estudios Ambientales. www.ideam.gov.cospa
dc.relation.referencesIGAC. (2007). Estudio General de Suelos y Zonificación de Tierras en el Departamento de Antioquia. Instituto Genográfico Agustín Codazii. www.igac.gov.cospa
dc.relation.referencesJabran, K., Mahajan, G., Sardana, V., & Chauhan, B. S. (2015). Allelopathy for weed control in agricultural systems. Crop Protection, 72, 57–65. https://doi.org/10.1016/j.cropro.2015.03.004spa
dc.relation.referencesJalaludin, A., Widderick, M., Broster, J., & Walsh, M. (2018). Glyphosate and 2,4-D amine resistance in common sowthistle (Sonchus oleraceus) and fleabane (Conyza bonariensis) in the northern grain growing region of Australia. ScienceGraham Centre for Agricultural Innovation, 139.spa
dc.relation.referencesKaspary, T. E., García, M. A., Stewart, S., Casaroto, G., Ramos, R., & Bellé, C. (2019). First Report of Alternaria alternata Causing Leaf Spot on Rumex crispus in Uruguay. Plant Desease, 103, 21–39. https://doi.org/https://doi.org/10.1094/PDIS-03-19-0590-PDNspa
dc.relation.referencesKaur, S., Kaur, R., & Chauhan, B. S. (2018). Understanding crop weed fertilizer water interactions and their implications for weed management in agricultural systems. Crop Protection, 103, 65–72. https://doi.org/10.1016/j.cropro.2017.09.011spa
dc.relation.referencesKowalczyk, T., Pliszko, A., & Drobniak, S. M. (2014). Persicaria Nepalensis (Polygonaceae), a new potentially invasive anthropophyte in the Polish Flora. Polish Botanical Journal, 59(2), 255–261. https://doi.org/10.2478/pbj-2014-0031spa
dc.relation.referencesKozlowski, L. A., Ronzelli, P., Purissimo, C., Daros, E., & Koehler, H. S. (2002). Critical Period of Weed Interference in the Common Bean Crop Under Direct Seeding System. Planta Daninha, 20(2), 213–220. https://doi.org/10.1590/S0100-83582002000200007spa
dc.relation.referencesLee, N., & Thierfelder, C. (2017). Weed control under conservation agriculture in dryland smallholder farming systems of southern Africa. A review. Agronomy for Sustainable Development, 37(5). https://doi.org/10.1007/s13593-017-0453-7spa
dc.relation.referencesLu, P., Li, J., Jin, C., Jiang, B., & Bai, Y. (2016). Different growth responses of an invasive weed and a native crop to nitrogen pulse and competition. PLoS ONE, 11(6), 1–13. https://doi.org/10.1371/journal.pone.0156285spa
dc.relation.referencesManamgoda, D. S., Rossman, A. Y., Castlebury, L. A., Crous, P. W., Madrid, H., Chukeatirote, E., & Hyde, K. D. (2014). The genus Bipolaris. Studies in Mycology, 79(1), 221–288. https://doi.org/10.1016/j.simyco.2014.10.002spa
dc.relation.referencesMartínez, N., & De la Barrera, E. (2017). Germination ecophysiology for three peri-urban ephemeral weeds. PeerJ PrePrints. https://doi.org/10.7287/peerj.preprints.2950spa
dc.relation.referencesMartínez, P., Haramboure, O., Gil, V., Emilio, M., Montes, M., & Rodríguez, I. (2019). Arvenses presentes en cultivo del frijol común (Phaseolus vulgaris) de siembra intermedia y su influencia en el rendimiento agrícola. Centro Agrícola, 46(3), 58–66.spa
dc.relation.referencesMcFadyen, R. C. (2003). Biological Control of Weeds. In T. & Francis (Ed.), Predators and Parasitoids (Opender Ko, Vol. 14, pp. 3–14).spa
dc.relation.referencesMelo, M. P., Soares, D. J., Araújo, J. S. P., & Tostes, G. O. (2009). Alternaria leaf spot, caused by Alternaria thunbergiae, recorded for the first time on Thunbergia alata from Brazil. Australasian Plant Disease Notes, 4(1), 23–25. https://doi.org/10.1071/DN09010spa
dc.relation.referencesMoreno, M., & Burbano, O. (2017). Dynamics of cotton ramulosis epidemics caused by Colletotrichum gossypii var . cephalosporioides in Colombia. Plant Pathology, 149, 443–454. https://doi.org/10.1007/s10658-017-1194-9spa
dc.relation.referencesMortensen, D. A., Bastiaans, L., & Sattin, M. (2000). The role of ecology in the development of weed management systems: An outlook. Weed Research, 40(1), 49–62. https://doi.org/10.1046/j.1365-3180.2000.00174.xspa
dc.relation.referencesNichols, V., Verhulst, N., Cox, R., & Govaerts, B. (2015). Weed dynamics and conservation agriculture principles: A review. Field Crops Research, 183, 56–68. https://doi.org/10.1016/j.fcr.2015.07.012spa
dc.relation.referencesNorsworthy, J. K., Ward, S. M., Shaw, D. R., Llewellyn, R. S., Nichols, R. L., Webster, T. M., Bradley, K. W., Frisvold, G., Powles, S. B., Burgos, N. R., Witt, W. W., & Barrett, M. (2012). Reducing the Risks of Herbicide Resistance: Best Management Practices and Recommendations. Weed Science, 60(SP1), 31–62. https://doi.org/10.1614/ws-d-11-00155.1spa
dc.relation.referencesOerke, E.C., & Dehne, H.-W. (2004). Safeguarding production—losses in major crops and the role of crop protection. Crop Protection, 23(4), 275–285. https://doi.org/10.1016/J.CROPRO.2003.10.001spa
dc.relation.referencesOrtiz, A., Torres, S., Quintana, Y., & López, A. (2015). Primer reporte de resistencia de Cyperus odoratus L. al herbicida pirazosulfuron-etilo. Bioagro, 27(1), 45–50.spa
dc.relation.referencesOwen, M. J., Martinez, N. J., & Powles, S. B. (2015). Multiple herbicide-resistant wild radish (Raphanus raphanistrum) populations dominate Western Australian cropping fields. Crop and Pasture Science, 66(10), 1079–1085. https://doi.org/10.1071/CP15063spa
dc.relation.referencesPapa, J. C., Tuesca, D., & Nisensohn, L. (2010). Control tardío de rama negra (Conyza bonariensis) y peludilla (Gamochaeta spicata) con herbicidas inhibidores de la protoporfirin-IX-oxidasa previo a un cultivo de soja. INTA EEA Oliveros, 45, 85–90.spa
dc.relation.referencesPeschken, D., & McClay, A. (1995). Picking the target: A revision of McClay’s scoring system to determine the suitability of a weed for classical biological control. Proceedings VIII International Symposium on Biological Control of Weeds, 137–143.spa
dc.relation.referencesPlaza, G. A., & Pedraza, M. (2007). Reconocimiento y caracterización ecológica de la flora arvense asociada al cultivo de uchuva. Agronomia Colombiana, 25(2), 306–313.spa
dc.relation.referencesPlaza, G., Quintada, D., Aponte, L., & Chávez, B. (2009). Characterization of the weed community of a rose greenhouse production system in the Bogota Plateau. Agronomi, 27(3), 385–394. https://doi.org/10.1007/s11104-005-2555-2spa
dc.relation.referencesPopov, V. . H. ., & Cornish, P. . S. (2002). Atrazine tolerance of grass species with potential for use in vegetated filters in Australia. Plant and Soil., 280(1), 115–126.spa
dc.relation.referencesQuijano, M., Sierra, J., Gaviria, B., Navarro, R., Castaño, M., Sánchez, D., Marín, D., Arcila, K., & Rojas, J. (2019). Historia, vida y poderes de una especie invasora: estrategia para su control y manejo. Fondo Editorial Universidad Católica de Oriente.spa
dc.relation.referencesQuintero, I., Carbonó, E., & Jarma, A. (2020). Weeds associated with banana crops in Magdalena department, Colombia. Planta Daninha, 38. https://doi.org/10.1590/s0100-83582020380100015spa
dc.relation.referencesRadhakrishnan, R., Alqarawi, A. A., & AbdAllah, E. F. (2018). Bioherbicides: Current knowledge on weed control mechanism. Ecotoxicology and Environmental Safety, 158(April), 131–138. https://doi.org/10.1016/j.ecoenv.2018.04.018spa
dc.relation.referencesRamírez, F. (2017). Mecanismo de resistencia de Paspalum paniculatum L. (Poaceae) al herbicida glifosato. In Instituto Tecnológico de Costa Rica, Cartago. Universidad Nacional Estatal a Distancia, Costa Rica.spa
dc.relation.referencesRamírez Gil, J. G. (2017). Weeds in crops of avocado, tree tomato, pasture, and forage and their relation to yield and production costs. Cultivos Tropicales, 38(3), 14–23. http://ediciones.inca.edu.cuspa
dc.relation.referencesRamírez, J., & Morales, J. (2018). Microbial dynamics in the soil and presence of the avocado wilt complex in plots cultivated with avocado cv . Hass under ENSO phenomena (El Niño – La Niña). Scientia Horticulturae, 240, 273–280. https://doi.org/10.1016/j.scienta.2018.06.047spa
dc.relation.referencesRamirez, M., Pérez, B., & Orozco, A. (2007). Helechos invasores y sucesión post-fuego. Ciencias, 85, 18–25.spa
dc.relation.referencesRao, A. N., Singh, R. G., Mahajan, G., & Wani, S. P. (2018). Weed research issues, challenges, and opportunities in India. Crop Protection, December 2017, 0–1. https://doi.org/10.1016/j.cropro.2018.02.003spa
dc.relation.referencesRice, E. L. (1984). Allelopathy (2nd Editio). Academic Press.spa
dc.relation.referencesRodríguez, M., Plaza, G., Gil, R., & Chaves, B. (2008). Reconocimiento y fluctuación poblacional arvense en el cultivo de espinaca (Spinacea oleracea L .) para el municipio de Cota, Cundinamarca. Agronomia Colombiana, 26(1), 87–96.spa
dc.relation.referencesRonchi, C. P., & Silva, A. A. (2006). Effects of weed species competition on the growth of young coffee plants. Planta Daninha, 24(3), 415–423. https://doi.org/10.1590/S0100-83582006000300001spa
dc.relation.referencesSalas, M., & Salazar, E. (2003). Importancia del uso adecuado de agentes de control biológico. Acta Universitaria, 13(1), 29–35. https://doi.org/10.15174/au.2003.271spa
dc.relation.referencesSalazar, F., Arango, J., & Morales, C. (2012). Interferencia de coberturas vegetales en la zona de raíces y entre calles del cultivo de café. Cenicafé, 63(2), 50–57.spa
dc.relation.referencesSalazar G., L. F., & Hincapié G., É. (2005). Arvenses de mayor interferencia en los cafetales. Avances Técnicos, 333, 1–12. http://www.cenicafe.org/es/index.php/nuestras_publicaciones/avances_tecnicos/avance_tecnico_0333spa
dc.relation.referencesSaldarriaga, A., Londoño, M., & Cordoba, O. (2011). Arvenses. In Problemas fitosanitarios asociados al cultivo de higuerilla en Colombia (Corporació, pp. 25–53). Corpoica. https://doi.org/10.21930/978-958-740-050-2spa
dc.relation.referencesSchwarzländer, M., Hinz, H. L., Winston, R. L., & Day, M. D. (2018). Biological control of weeds: an analysis of introductions, rates of establishment and estimates of success, worldwide. BioControl, 1–13. https://doi.org/10.1007/s10526-018-9890-8spa
dc.relation.referencesShaw, R., Schaffner, U., & Marchante, E. (2016). The regulation of biological control of weeds in Europe – an evolving landscape. EPPO Bulletin, 46(2), 254–258. https://doi.org/10.1111/epp.12308spa
dc.relation.referencesStarr, F., Starr, K., & Loope, L. (2003). Thunbergia alata, Black-eye Susan vine Acanthaceae. In United States Geological Survey-Biological Resources Division (pp. 1–3).spa
dc.relation.referencesStiling. (1999). Ecology: Theories and applications. Prentice Hall, New Jersey.spa
dc.relation.referencesTarrasón, D. (2008). Agroecología: una perspectiva integradora para la sostenibilidad de los socioagroecosistemas. In In: Andrés, P. y Rodríguez, R. (Eds). Evaluación y prevención de riesgos Ambientales en Centroamérica. http://www.creaf.uab.es/propies/pilar/LibroRiesgos/06_Capitulo5.pdfspa
dc.relation.referencesTucuch, F., Orona, F., Almeyda, I., & Aguirre, L. (2013). Indicadores ecológicos de la comunidad de malezas en el cultivo de mango mangifera indica en el estado campeche, México. Revista Internacional de Botánica Experimental, 82, 145–149.spa
dc.relation.referencesVanDriesche, R. ., Hoodle, M. ., & Center, T. . (2007). Control de Plagas y Malezas por Enemigos Naturales (Departamen). www.fs.fed.us/foresthealth/technology/spa
dc.relation.referencesVieira, B., Barreto, R., & De Lima, K. (2018). Controle biológico de plantas daninhas com fungos fitopatogênicos. Controle de Plantas Daninhas, 113–136.spa
dc.relation.referencesVieira, B. S., & Barreto, R. W. (2006). First Record of Bremia lactucae Infecting Sonchus oleraceus and Sonchus asper in Brazil and its Infectivity to Lettuce. Journal of Phytopathology. https://doi.org/https://doi.org/10.1111/j.1439-0434.2006.01064.xspa
dc.relation.referencesZimdahl, R. (2018). Biological Weed Control. In Fundamentals of Weed Science 5th Edition (Academic P, pp. 359–389). https://doi.org/https://doi.org/10.1016/B978-0-12-811143-7.00012-3spa
dc.relation.referencesZohaib, A., Abbas, T., & Tabassum, T. (2016). Weeds Cause Losses in Field Crops through Allelopathy. Notulae Scientia Biologicae, 8(1), 47–56. https://doi.org/10.15835/nsb.8.1.9752spa
dc.relation.referencesAmorim, D., Alves, J., Arcanjo, J., Ribeiro, P., Dantas, R., Finoto, E., & Santos, P. (2018). Characterization of weed in rotated area of maize and cowpea in direct planting. Scientia Agropecuaria, 9(1), 7–15. https://doi.org/10.17268/sci.agropecu.2018.01.01spa
dc.relation.referencesAsav, Ü., Kadioglu, İ., & Yanar, Y. (2016). Stemphylium vesicarium (Wallr.) Simmons as fungal pathogen of false helleborine (Veratrum album L.) and it’s potential as biocontrol agent. Bitki Koruma Bülteni, 56(4), 399–406. https://doi.org/10.16955/bkb.37243spa
dc.relation.referencesAsh, G. (2010). The science, art and business of sucessful bioherbicides. Biological Control, 52(3), 230–240. https://doi.org/10.1016/j.biocontrol.2009.08.007spa
dc.relation.referencesAuld, B. A., Hetherington, S. D., & Smith, H. E. (2003). Advances in bioherbicide formulation. Weed Biology and Management, 3(2), 61–67. https://doi.org/10.1046/j.1445-6664.2003.00086.xspa
dc.relation.referencesBailey, K. L. (2014). The Bioherbicide Approach to Weed Control Using Plant Pathogens. In Integrated Pest Management (pp. 245–266). Elsevier. https://doi.org/10.1016/B978-0-12-398529-3.00014-2spa
dc.relation.referencesBarreto, R., & Evans, H. (1998). Fungal pathogens of Euphorbia heterophylla and E. hirta in Brazil and their potential as weed biocontrol agents. Mycopathologia, 141(1), 21–36. https://doi.org/10.1023/A:1006899831867spa
dc.relation.referencesBoerema, G. H., Loerakker, W. M., & Laundon, G. F. (1980). Phoma rumicicola sp. nov., a cause of leaf spots on Rumex obtusifolius. New Zealand Journal of Botany, 18(4), 473–476. https://doi.org/10.1080/0028825x.1980.10425168spa
dc.relation.referencesBuriticá, P. (1999). Directorio de patógenos y enfermedades de las plantas de importancia económica en Colombia. Instituto Colombiano Agropecuario (ICA). Universidad Nacional de Colombia. hdl.handle.net/20.500.12324/16404spa
dc.relation.referencesCampbell, C., & Madden, L. . (1990). Introduction to Plant Disease Epidemiology. In John Wiley and Sons.spa
dc.relation.referencesCárdenas, B., Baptiste, M., & Castaño, N. (2017). Plantas exóticas con alto potencial de invasión en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.spa
dc.relation.referencesCardona, L. ., & Castaño, J. (2019). Comparación de métodos de inoculación de Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyder & Hansen, causante del marchitamiento vascular del tomate. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(167), 227. https://doi.org/10.18257/raccefyn.854spa
dc.relation.referencesChandramohan, S., Charudattan, R., Sonoda, R., & Singh, M. (2002). Field evaluation of a fungal pathogen mixture for the control of seven weedy grasses. Weed Science, 50(3), 204–213. https://doi.org/10.1614/0043-1745(2002)spa
dc.relation.referencesCharudattan, R. (1991). The Mycoherbicide Approach with Plant Pathogens. Microbial Control of Weeds, 24–57. https://doi.org/10.1007/978-1-4615-9680-6_2spa
dc.relation.referencesCharudattan, R. (2005). Use of plant pathogens as bioherbicides to manage weeds in horticultural crops. Florida State Horticultural Society, 118, 208–214. journals.fcla.edu/.../82918spa
dc.relation.referencesDagno, K., Lahlali, R., Diourté, M., & Jijakli, M. H. (2012). Present status of the development of mycoherbicides against water hyacinth: Successes and challenges. A review. Biotechnology, Agronomy and Society and Environment, 16(3), 360–368. popups.uliege.be:443/1780-4507/index.phpspa
dc.relation.referencesDal Bello, G., & Carranza, M. (1995). Enfermedades de malezas de la zona platense II. Identificación de fitopatógenos con capacidad potencial para el control biológico. Revista de La Facultad de Agronomía, 71(1), 7–14. /www.agro.unlp.edu.ar/revista/index.php/revagro/article/view/940spa
dc.relation.referencesDe Almeida, H., Gomes, L., Leao, A., Silvério, R., & Mendes, A. (2011). Supressão imposta pelo atrazine a Digitaria horizontalis em função do estádio de desenvolvimento. Revista Caatinga, 24(1), 27–33. http://periodicos.ufersa.edu.br/index.php/sistemaspa
dc.relation.referencesDe Lima, K., De Almeida, B., & Viera, H. (2012). Fungos associados a plantas invasoras na cultura de café em experimento tipo face (Free Air CO2 Enrichmente). Embrapa. II Congreso Brasileiro de Recursos Genéticosspa
dc.relation.referencesDenchev, T. T., & Denchev, C. M. (2017). Contributions to the smut fungi of Africa. 3. First record of Microbotryum polygoni-alati. Mycobiota, 7, 19–24. https://doi.org/10.12664/mycobiota.2017.07.04spa
dc.relation.referencesDias, N. M. P., Christoffoleti, P. J., & Tornisielo, V. L. (2005). Identificação taxonômica de espécies de capim-colchão infestantes da cultura da cana-de-açúcar no estado de São Paulo e eficácia de herbicidas no controle de Digitaria nuda. Bragantia, 64(3), 389–396. https://doi.org/10.1590/s0006-87052005000300008spa
dc.relation.referencesDorneles, K. R., Lamego, F. P., Caratti, F. C., Victoria, A. D., Pazdiora, P. C., & DallaK, L. . (2019). First Report of Powdery Mildew Caused by Erysiphe quercicola on Curly Dock (Rumex crispus) in Brazil. Plant Disease, 103(3). https://doi.org/https://doi.org/10.1094/PDIS-09-18-1565-PDNspa
dc.relation.referencesFaccini, D., Puricelli, E., Vergara, E., & Tenaglia, M. (2005). Control de Plantago tomentosa, Rumex crispus y Urtica urens con distintas dosis de herbicidas preemergentes. Soja Siembra Directa, 76, 30–32. AAPRESIDspa
dc.relation.referencesFlores, E., Rocha, P., & Rodrigues, G. (2018). Seeds of weeds as an alternative host of phytopathogens. Plant Pathology, 85, 1–7. https://doi.org/10.1590/1808‑1657000972017spa
dc.relation.referencesGarzón, L. (2019). Identificación de microrganismos asociados al necrosamiento de tallo, en morera Morus sp,. en la meseta de Popayán. Universidad del Cauca, Colombia.spa
dc.relation.referencesHalleen, F., Mostert, L., & Crous, P. W. (2007). Pathogenicity testing of lesser-known vascular fungi of grapevines. Australasian Plant Pathology, 36(3), 277–285. https://doi.org/10.1071/AP07019spa
dc.relation.referencesHarding, D. P., & Raizada, M. N. (2015). Controlling weeds with fungi, bacteria and viruses: A review. Frontiers in Plant Science, 6, 659. https://doi.org/10.3389/fpls.2015.00659spa
dc.relation.referencesHatcher, P. E., Brandsaeter, L. O., Davies, G., Lüscher, A., Hinz, H. L., Eschen, R., & Schaffner, U. (2009). Biological control of Rumex species in Europe: opportunities and constraints. Proceedings of the XII International Symposium on Biological Control of Weeds, La Grande Motte, France, 22-27 April, 2007, 470–475. https://doi.org/10.1079/9781845935061.0470spa
dc.relation.referencesHeap, I. (2019). International Survey of Herbicide Resistant Weeds. Herbicide Resistance Action Committee, the North American Herbicide Resistance Action Committee, and the Weed Science Society of America. www.weedscience.orgspa
dc.relation.referencesHershenhorn, J., Casella, F., & Vurro, M. (2016). Weed biocontrol with fungi: past, present and future. Biocontrol Science and Technology, 26(10), 1313–1328. https://doi.org/10.1080/09583157.2016.1209161spa
dc.relation.referencesHetherington, S., Heather, S., Scanes, M., & Auld, B. (2002). Effects of some environmental conditions on the effectiveness of Drechslera avenacea (Curtis ex Cooke) Shoem.: A potential bioherbicidal organism for Avena fatua L. Biological Control, 24 (2), 103–109. https://doi.org/10.1016/S1049-9644(02)00020-8spa
dc.relation.referencesHubbard, M., Taylor, W., Bailey, K., & Hynes, R. (2016). The dominant modes of action of macrocidins, bioherbicidal metabolites of Phoma macrostoma, differ between susceptible plant species. Environmental and Experimental Botany, 132, 80–91. https://doi.org/10.1016/j.envexpbot.2016.08.009spa
dc.relation.referencesHube, G., Défago, G., & Sedlar, L. (1989). Ramularia rubella (Bon.) Nannf. as a potential mycoherbicide against Rumex weeds. Botanica Helvetica, 99(1), 81–89. https://doi.org/ISSN: 0253-1453spa
dc.relation.referencesHynes, R. K. (2018). Phoma macrostoma: As a broad spectrum bioherbicide for turfgrass and agricultural applications. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 13(5), 1–9. https://doi.org/10.1079/PAVSNNR201813005spa
dc.relation.referencesIGAC. (2007). Estudio General de Suelos y Zonificación de Tierras en el Departamento de Antioquia. Instituto Genográfico Agustín Codazii. www.igac.gov.cospa
dc.relation.referencesKaspary, T. E., García, M. A., Stewart, S., Casaroto, G., Ramos, R., & Bellé, C. (2019). First Report of Alternaria alternata Causing Leaf Spot on Rumex crispus in Uruguay. Plant Desease, 103, 21–39. https://doi.org/https://doi.org/10.1094/PDIS-03-19-0590-PDNspa
dc.relation.referencesKim, B., Cho, K., & Lee, Y. (1998). Anthracnose of Rumex crispus caused by Colletotrichum gloeosporioides. Korean J. Plant Pathology, 14, 358–360.spa
dc.relation.referencesKlaubauf, S., Tharreau, D., Fournier, E., J, G., Crous, P., DeVries, R., & Lebrun, M. (2014). Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Studies in Mycology, 79, 85–120. https://doi.org/10.1016/j.simyco.2014.09.004spa
dc.relation.referencesLeahy, R. M. (1992). Alternaria leaf spot of Thunbergia. In Plant Pathology Circular 352 (Vol. 1471, Issue 352, pp. 1–2). Florida Department of Agriculture and Consumer Services. www.freshfromflorida.com/content/download/11359/144450/pp352.pdfspa
dc.relation.referencesLee, H., & Kim, C. (2002). First Report of Colletotrichum destructivum on Curly Dock. Plant Disease, 86 (11)(1271). https://doi.org/10.1094/PDIS.2002.86.11.1271A.spa
dc.relation.referencesMarin, F., Senwanna, C., Cheewangkoon, R., & Crous, P. (2017). New species and records of Bipolaris and Curvularia from Thailand. Mycosphere, 8(9), 1556–1574. https://doi.org/10.5943/mycosphere/8/9/11spa
dc.relation.referencesMeier, W. (2006). Contribution to the knowledge of Persicaria nepalensis (Meisn.) and P. capitata (Buch. Ham. ex D. Don) invasive species in the Avila National Park , Venezuela. Acta Bot. Venez., 29(1), 1–15. www.jstor.org/stable/41740799spa
dc.relation.referencesMelo, M. P., Soares, D. J., Araújo, J. S. P., & Tostes, G. O. (2009). Alternaria leaf spot, caused by Alternaria thunbergiae, recorded for the first time on Thunbergia alata from Brazil. Australasian Plant Disease Notes, 4(1), 23–25. https://doi.org/10.1071/DN09010spa
dc.relation.referencesMorales, M., Espinosa, G., Morales, Á., Sánchez, B., Jiménez, Á., & Milián-García, Y. (2014). Caracterización morfológica y evaluación de resistencia a Fusarium oxysporum en especies silvestres del género Solanum sección Lycopersicon. Revista Colombiana de Biotecnología, 16(1), 62–73. https://doi.org/10.15446/rev.colomb.biote.v16n1.38259spa
dc.relation.referencesMotlagh, M. . (2011). Evaluation of Epicoccum purpurascens as biological control agent of Echinochloa spp. in rice fields. Journal of Food Agriculture and Environment, 9(1), 394–397.spa
dc.relation.referencesNechet, K. L., & Halfeld, B. A. (2019). Development of Cercospora leaf spot on Ipomoea weed species for biological control. BioControl, 64(2), 185–195. https://doi.org/10.1007/s10526-018-09918-wspa
dc.relation.referencesNewbery, F., Beal, E., & Scrace, J. (2019). First record of Alternaria thunbergiae on Thunbergia alata in Europe. New Disease Reports, 39(1), 14. https://doi.org/10.5197/j.2044-0588.2019.039.014spa
dc.relation.referencesOfficer, D., Ramasamy, S., & Lawrie, A. C. (2012). Effect of season on the efficacy of artificial inoculation of Nigrospora oryzae in Sporobolus fertilis. In In: Valerie Eldershaw (ed.). Eighteenth Australasian Weeds Conference (Issue 1, pp. 142–145). www.caws.org.au/awc/2012/awc201211421.pdfspa
dc.relation.referencesPacanoski, Z. (2015). Bioherbicides. Herbicides, physiology of action and safety. In Intech Open Science. https://doi.org/10.5772 / 61528spa
dc.relation.referencesPeixoto, C., Ottoni, G., Filippi, M., Silva-lobo, V., Prabhu, A., Agronomia, E. De, Goiás, U. F. De, & Postal, C. (2013). Biology of Gaeumannomyces graminis var. graminis isolates from rice and grasses and epidemiological aspects of crown sheath rot of rice. Tropical Plant Pathology, 38(6), 495–504. https://doi.org/10.1590/S1982-56762013000600005spa
dc.relation.referencesPeixoto, N., Ottoni, F., Silva-lobo, L., Filippi, C., Cristina, M., & Prabhu, S. (2014). Mal-do-pé do arroz : hospedeiros e resistência varietal a Gaeumannomyces graminis var. graminis. Pesquisa Agropecuaria Tropical, 44(3), 318–324. www.agro.ufg.br/patspa
dc.relation.referencesQiang, S., Zhu, Y., Summerell, B. A., & Li, Y. (2006). Mycelium of Alternaria alternata as a potential biological control agent for Eupatorium adenophorum. Biocontrol Science and Technology, 16(7), 653–668. https://doi.org/10.1080/09583150600699804spa
dc.relation.referencesQuijano, M., Sierra, J., Gaviria, B., Navarro, R., Castaño, M., Sánchez, D., Marín, D., Arcila, K., & Rojas, J. (2019). Historia, vida y poderes de una especie invasora: estrategia para su control y manejo. Fondo Editorial Universidad Católica de Oriente.spa
dc.relation.referencesRioux, S., Pouleur, S., Randall, P., Vanasse, A., Kelly, T., Dion, Y., & Belkacemi, K. (2016). Efficacy of acetic acid vapours and dry heat to control Fusarium graminearum and Bipolaris sorokiniana in barley and wheat seeds. Phytoprotection, 96(1), 1–11. https://doi.org/10.7202/1037531arspa
dc.relation.referencesSalazar, M., Buriticá, P., & Cadena, G. (2002). Implicaciones de los estudios sobre biodiversidad de los Uredinales (Royas) en la región cafetera colombiana. Cenicafé, 53(3), 219–238. http://www.cenicafe.org/es/publications/arc053(03)219-238.pdfspa
dc.relation.referencesSánchez, C., Gómez, N., Rodríguez, G., Fernández, S., & Ávila, G. (2019). Variabilidad morfológica y sensibilidad de Phytophthora capsici causando marchitez en chile pimiento morrón en Chihuahua, México. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 37(1), 65–71. https://doi.org/10.18781/r.mex.fit.1904-4spa
dc.relation.referencesSanchez, V. (1999). Control biológico de Rottboellia cochinchinensis. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE).spa
dc.relation.referencesSaxena, S., & Kumar, M. (2010). Evaluation of alternaria alternata ITCC4896 for use as mycoherbicide to control Parthenium hysterophorus. Archives of Phytopathology and Plant Protection, 43(12), 1160–1164. https://doi.org/10.1080/03235400802343825spa
dc.relation.referencesSchneider, C., Rasband, W., & Eliceiri, K. (2012). NIH Image to ImageJ: 25 years of Image Analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089spa
dc.relation.referencesShabana, Y., Charudattan, R., & Elwakil, M. A. (1995). Identification , Pathogenicity , and Safety of Alternaria eichhorniae from Egypt as a Bioherbicide Agent for Waterhyacinth. Biological Control, 5(1), 123–125. https://doi.org/10.1006/bcon.1995.1015spa
dc.relation.referencesShipunov, A., Newcombe, G., Raghavendra, A. K. H., & Anderson, C. L. (2008). Hidden diversity of endophytic fungi in an invasive plant. American Journal of Botany, 95(9), 1096–1108. https://doi.org/10.3732/ajb.0800024spa
dc.relation.referencesSingh, J., & Aneja, K. (1999). From Ethnomycology to fungal by biotechnology: exploiting fungi from natural resources for novel products. Springer US. https://doi.org/10.1007/978-1-4615-4815-7spa
dc.relation.referencesSongsomboona, K., Crawforda, R., Crawforda, J., Hansena, J., Cummingsc, J., Mattsond, N., Bergstromb, G., & Viand, D. (2019). Recurrent phenotypic selection for resistance to diseases caused by Bipolaris oryzae in switchgrass (Panicum virgatum L.). Biomass and Bioenergy, 125, 105–113. https://doi.org/https://doi.org/10.1016/j.biombioe.2019.04.009spa
dc.relation.referencesSoylu, S., Dervis, S., & Soylu, E. (2011). First Report of Nigrospora sphaerica Causing Leaf Spots on Chinese Wisteria: A New Host of the Pathogen. Plant Disease, 95(2), 219. https://doi.org/10.1094/PDIS-10-10-0770spa
dc.relation.referencesTeBeest, D. (1996). Biological Control of Weeds with Plant Pathogens and Microbial Pesticides. Advances in Agronomy, 56, 115–137. https://doi.org/https://doi.org/10.1016/S0065-2113(08)60180-7spa
dc.relation.referencesThe R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.r-project.orgspa
dc.relation.referencesThomma, B. P. H. J. (2003). Alternaria spp.: From general saprophyte to specific parasite. Molecular Plant Pathology, 4(4), 225–236. https://doi.org/10.1046/j.1364-3703.2003.00173.xspa
dc.relation.referencesTilley, A. M., & Walker, H. L. (2002). Evaluation of Curvularia intermedia (Cochliobolus intermedius) as a potential microbial herbicide for large crabgrass (Digitaria sanguinalis). Biological Control, 25(1), 12–21. https://doi.org/10.1016/S1049-9644(02)00035-Xspa
dc.relation.referencesToscano, L., Vertiz, E., Cervantes, L., Amado, M., García, Á., Beleño, M., & Castro, M. (2015). Comparación de tres tecnologías en la preservación de conidias de hongos filamentosos y pruebas de viabilidad. Ciencia y Tecnología, 1(15), 125–134. https://doi.org/10.18682/cyt.v1i15.278spa
dc.relation.referencesUdaya Prakash, N. K., Ashwin Karthick, N., Poomagal, D., Susithra, M., Chandran, M., & Bhuvaneswari, S. (2018). Fungal endophytes of an aquatic weed Marsilea minuta Linn. Current Research in Environmental and Applied Mycology, 8(1), 86–95. https://doi.org/10.5943/cream/8/1/7spa
dc.relation.referencesVallejo, F., & Estrada, E. (2016). Mejoramiento genético de plantas Segunda Edición. Universidad Nacional de Colombia, sede Palmira.spa
dc.relation.referencesWoudenberg, J., Hanse, B., Van Leeuwen, G., Groenewald, J. Z., & Crous, P. W. (2017). Stemphylium revisited. Studies in Mycology, 87, 77–103. https://doi.org/10.1016/j.simyco.2017.06.001spa
dc.relation.referencesZaller, J. G. (2004). Ecology and non-chemical control of Rumex crispus and R. obtusifolius (Polygonaceae): A review. Weed Research, 44(6), 414–432. https://doi.org/10.1111/j.1365-3180.2004.00416.xspa
dc.relation.referencesZhang, W., Wolf, T., Bailey, K., Mortensen, K., & Boyetchko, S. (2003). Screening of adjuvants for bioherbicide formulations with. Biolological Control, 26(1), 95–108. https://doi.org/10.1016/S1049-9644(02)00133-0spa
dc.relation.referencesAvis, T. J., Hamelin, R. C., & Bélanger, R. R. (2010). Approaches to molecular characterization of fungal biocontrol agents: some case studies. Canadian Journal of Plant Pathology, 23(1), 8–12. https://doi.org/10.1080/07060660109506902spa
dc.relation.referencesCai, X., & Gu, M. (2016). Bioherbicides in Organic Horticulture. Horticulturae, 2(2), 3. https://doi.org/10.3390/horticulturae2020003spa
dc.relation.referencesCharudattan, R., & Dinoor, A. (2000). Biological control of weeds using plant pathogens: Accomplishments and limitations. Crop Protection, 19(8–10), 691–695. https://doi.org/10.1016/S0261-2194(00)00092-2spa
dc.relation.referencesGaskin, J. F., Bon, M.-C., Cock, M. J. W., Cristofaro, M., DeBiase, A., DeClerck-Floate, R., Ellison, C. A., Hinz, H. L., Hufbauer, R. A., Julien, M. H., & Sforza, R. (2011). Applying molecular-based approaches to classical biological control of weeds. Biological Control, 58(1), 1–21. https://doi.org/https://doi.org/10.1016/j.biocontrol.2011.03.015spa
dc.relation.referencesHershenhorn, J., Casella, F., & Vurro, M. (2016). Weed biocontrol with fungi: past, present and future. Biocontrol Science and Technology, 26(10), 1313–1328. https://doi.org/10.1080/09583157.2016.1209161spa
dc.relation.referencesKremer, R. J. (2005). The Role of Bioherbicides in Weed Management The Role of Bioherbicides in Weed Management. Biopesticides International, 1(3–4), 127–141.spa
dc.relation.referencesKumar, V., AggarwalA, N., & Njali, K. (2018). Bioherbicidal Concept: A Novel Strategy to Control Weeds. In J. Singh, D. Sharma, G. Kumar, & S. N. (Eds.), Microbial Bioprospecting for Sustainable Development. Springer, Singapore (pp. 29–40). https://doi.org/10.1007/978-981-13-0053-0_2spa
dc.relation.referencesLeiss, K. . (2001). Phenotypic plasticity and genetic differentiation in ruderal and agriculture populations of the weed Senecio vulgaris L: a implication fr its biological control. Weed Research, 76, 15–17.spa
dc.relation.referencesMoss, S. (2018). Integrated weed management (IWM): why are farmers reluctant to adopt non‐chemical alternatives to herbicides? Pest Management Science, 75(1), 1205–1211. https://doi.org/10.1002/ps.5267spa
dc.relation.referencesPaynter, Q., Fowler, S. V., & Groenteman, R. (2018). Making weed biological control predictable, safer and more effective: perspectives from New Zealand. BioControl. BioControl, 63, 427–436. https://doi.org/10.1007/s10526-017-9837-5spa
dc.relation.referencesSaritha, M., & Prasad, N. (2019). Chapter 15 - The Status of Research and Application of Biofertilizers and Biopesticides: Global Scenario. In Recent Developments in Applied Microbiology and Biochemistry (pp. 195–207). Academic Press. https://doi.org/ht1016/B978-0-12-816328-3.00015-5spa
dc.relation.referencesSchwarzländer, M., Hinz, H. L., Winston, R. L., & Day, M. D. (2018). Biological control of weeds: an analysis of introductions, rates of establishment and estimates of success, worldwide. BioControl, 1–13. https://doi.org/10.1007/s10526-018-9890-8spa
dc.relation.referencesTriolet, M., Guillemin, J., Andre, O., & Steinberg, C. (2019). Fungal-based bioherbicides for weed control: a myth or a reality? Weed Research, March, 60–77. https://doi.org/10.1111/wre.12389spa
dc.relation.referencesUludag, A., Uremis, I., & Arslan, M. (2018). Chapter 7 - Biological Weed Control. In K. Jabran & B. Chauhan (Eds.), Non-Chemical Weed Control (pp. 115–132). Academic Press. https://doi.org/10.1016/B978-0-12-809881-3.00007-3spa
dc.relation.referencesWestwood, J. H., Charudattan, R., Duke, S. O., Fennimore, S. A., Marrone, P., Slaughter, D. C., Swanton, C., & Zollinger, R. (2018). Weed Management in 2050 : Perspectives on the Future of Weed Science. Weed Science, 66(3), 275–285. https://doi.org/10.1017/wsc.2017.78spa
dc.relation.referencesZhang, W., Wolf, T., Bailey, K., Mortensen, K., & Boyetchko, S. (2003). Screening of adjuvants for bioherbicide formulations with. Biolological Control, 26(1), 95–108. https://doi.org/10.1016/S1049-9644(02)00133-0spa
dc.relation.referencesZimdahl, R. (2018). Biological Weed Control. In Fundamentals of Weed Science 5th Edition (Academic P, pp. 359–389). https://doi.org/10.1016/B978-0-12-811143-7.00012-3spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.proposalBiological control of weedseng
dc.subject.proposalControl biológico de arvensesspa
dc.subject.proposalMicoherbicidasspa
dc.subject.proposalMycoherbicideseng
dc.subject.proposalPlant protectioneng
dc.subject.proposalProtección de plantasspa
dc.subject.proposalManejo de arvensesspa
dc.subject.proposalWeed managementeng
dc.titlePotencial fitopatogénico de hongos asociados a arvenses en cultivos del Altiplano Oriente de Antioquia, Colombiaspa
dc.title.alternativePhytopathological potential of fungi associated with weeds in crops in the East of Antioquia, Colombia.spa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152445264.2020.pdf
Tamaño:
5.53 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: