Partial differential equations defined by the ϕ-Laplacian operator

dc.contributor.advisorHerrón Osorio, Sigifredo de Jesús
dc.contributor.authorSánchez Monsalve, Diana Milena
dc.contributor.researchgroupAm Análisis Matemático
dc.date.accessioned2026-02-10T19:45:26Z
dc.date.available2026-02-10T19:45:26Z
dc.date.issued2026
dc.descriptiongraficasspa
dc.description.abstractWe study the solvability of quasilinear boundary value problems that involve the phi-Laplacian operator and we obtained new results on the existence of solutions, as well as qualitative properties of them, distributed in three chapters. Firstly, we study classes of singular elliptic problems involving p-Laplacian operator with a homogeneous Dirichlet boundary condition. This p-Laplacian is a particular case of phi-Laplacian. In this chapter we discuss the existence and regularity of the purely singular problem. Then, we investigate the existence of positive solutions with respect to a parameter depending on the behavior of the nonlinearities at infinity and at the origin. We use sub-super solution techniques to prove our existence results. Secondly, we study the solvability of (p,q)-Laplacian problems with nonlinear reaction terms and nonhomogeneous Neumann boundary conditions. This operator, also known as the double phase operator, is also a particular case of the phi-Laplacian. Using variational methods and critical point theory, we prove the existence of weak solutions for the nonlinear problems. Finally, we establish the existence of a countably infinite family of radially symmetric solutions that exhibit sign variations. These solutions are obtained for a Dirichlet boundary value problem that incorporates the phi-Laplace operator. Our main tools are the shooting method, phase plane and energy analysis, which demand extensive use of a Pozohaev-type identity.eng
dc.description.abstractEstudiamos la solubilidad de problemas de valores en la frontera cuasilineales que involucran el operador ϕ-Laplaciano y obtuvimos nuevos resultados sobre la existencia de soluciones, así como propiedades cualitativas de las mismas, distribuidos en tres capítulos. En primer lugar, estudiamos clases de problemas elípticos singulares que involucran el operador p-Laplaciano con condición de frontera de Dirichlet homogénea. Este p-Laplaciano es un caso particular del ϕ-Laplaciano. En este capítulo analizamos la existencia y regularidad del problema puramente singular. A continuación, investigamos la existencia de soluciones positivas con respecto a un parámetro que depende del comportamiento de las no linealidades en el infinito y en el origen. Utilizamos técnicas de sub-super solución para demostrar nuestros resultados de existencia. En segundo lugar, estudiamos la solubilidad de problemas (p, q)-Laplacianos con términos de reacción no lineales y condiciones de contorno de Neumann no homogéneas. Este operador, también conocido como operador de doble fase, es también un caso particular del ϕ-Laplaciano. Utilizando métodos variacionales y la teoría de puntos críticos, demostramos la existencia de soluciones débiles para los problemas no lineales. Por último, establecemos la existencia de una familia infinita y numerable de soluciones radialmente simétricas que presentan variaciones de signo. Estas soluciones se obtienen para un problema de valor en la frontera de Dirichlet que incorpora el operador ϕ-Laplaciano. Nuestras principales herramientas son el método de disparo, el plano de fase y el análisis de energía, que exigen un uso extensivo de una identidad de tipo Pozohaev.spa
dc.description.curricularareaMatemáticas Y Estadística.Sede Manizales
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Matemáticas
dc.format.extent94 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89467
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.publisher.facultyFacultad de Ciencias Exactas y Naturales
dc.publisher.placeManizales, Colombia
dc.publisher.programManizales - Ciencias Exactas y Naturales - Doctorado en Ciencias - Matemáticas
dc.relation.referencesO. Smreker. “Entwicklung eines Gesetzes für den Widerstand bei der Bewegung des Grundwassers”. In: Zeitschr. des Vereines deutscher Ing. 22.4 (1878), pp. 117–128 (cit. on p. 1)
dc.relation.referencesO. Smreker. “Das Grundwasser und seine Verwendung zu Wasserversorgungen”. In: Zeitschr. des Vereines deutscher Ing. 23.4 (1879), pp. 347–362 (cit. on p. 1)
dc.relation.referencesNobuyoshi Fukagai and Kimiaki Narukawa. “Nonlinear eigenvalue problem for a model equation of an elastic surface”. In: Hiroshima Mathematical Journal 25.1 (1995), pp. 19–41 (cit. on p. 1)
dc.relation.referencesKimiaki Narukawa and Takashi Suzuki. “Nonlinear eigenvalue problem for a modified capillary surface equation”. In: Funkcial. Ekvac 37.1 (1994), pp. 81– 100 (cit. on p. 1)
dc.relation.referencesAlessio Pomponio and Tatsuya Watanabe. “Ground state solutions for quasilinear scalar field equations arising in nonlinear optics”. In: Nonlinear Differential Equations and Applications NoDEA 28.3 (2021), p. 26 (cit. on p. 1)
dc.relation.referencesJ. Benedikt, P. Girg, L. Kotrla, and P. Takac. “Origin of the p-Laplacian and A. Missbach”. In: Electronic Journal of Differential Equations 2018.16 (2018), pp. 1–17 (cit. on p. 1)
dc.relation.referencesEunkyung Ko, Eun Kyoung Lee, and R. Shivaji. “Multiplicity of positive solutions to a class of Schrödinger-type singular problems”. In: Discrete Contin. Dyn. Syst. Ser. S 17.5-6 (2024), pp. 2224–2233
dc.relation.referencesJacques Giacomoni, Ian Schindler, and Peter Takáč. “Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation”. In: Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6.1 (2007), pp. 117–158
dc.relation.referencesEunkyung Ko. “Existence of a positive solution to infinite semipositone problems”. In: East Asian mathematical journal 40.3 (2024), pp. 319–328 (cit. on p. 3)
dc.relation.referencesMario Michelle Coclite and G Palmieri. “On a singular nonlinear Dirichlet problem”. In: Communications in Partial Differential Equations 14.10 (1989), pp. 1315–1327 (cit. on p. 3).
dc.relation.referencesDinh Dang Hai. “On singular nonpositone semilinear elliptic problems”. In: (2008) (cit. on p. 3)
dc.relation.referencesEun Kyoung Lee, Ratnasingham Shivaji, and Jinglong Ye. “Subsolutions: a journey from positone to infinite semipositone problems”. In: Proceedings of the Seventh Mississippi State–UAB Conference on Differential Equations and Computational Simulations. Vol. 17. Electron. J. Differ. Equ. Conf. Southwest Texas State Univ., San Marcos, TX, 2009, pp. 123–131 (cit. on p. 3)
dc.relation.referencesMaya Chhetri and Stephen B Robinson. “Existence and multiplicity of positive solutions for classes of singular elliptic PDEs”. In: Journal of mathematical analysis and applications 357.1 (2009), pp. 176–182 (cit. on p. 3)
dc.relation.referencesJ Goddard, Eun Kyoung Lee, Lakshmi S, and R Shivaji. “Existence results for classes of infinite semipositone problems”. In: Boundary Value Problems 2013 (2013), pp. 1–9 (cit. on p. 3)
dc.relation.referencesDD Hai. “On a class of singular p-Laplacian boundary value problems”. In: Journal of mathematical analysis and applications 383.2 (2011), pp. 619–626 (cit. on p. 3)
dc.relation.referencesEun Kyoung Lee, R. Shivaji, and Jinglong Ye. “Classes of infinite semipositone systems”. In: Proc. Roy. Soc. Edinburgh Sect. A 139.4 (2009), pp. 853–865. issn: 0308-2105
dc.relation.referencesDD Hai, L. Sankar, and R. Shivaji. “Infinite semipositone problems with asymptotically linear growth forcing terms”. In: (2012) (cit. on p. 3)
dc.relation.referencesL Barbu and G Morosanu. “Full description of the spectrum of a Steklovlike eigenvalue problem involving the (p, q)-Laplacian”. In: Annals: Series on Mathematics & its Applications 15 (2023) (cit. on pp. 4, 6, 23)
dc.relation.referencesMihai Mihăilescu and Gheorghe Moroşanu. “Eigenvalues of- Δp- Δq under Neumann boundary condition”. In: Canadian Mathematical Bulletin 59.3 (2016), pp. 606–616 (cit. on pp. 4, 6)
dc.relation.referencesLuminiţa Barbu and Gheorghe Moroşanu. “Eigenvalues of the negative (p, q)-Laplacian under a Steklov-like boundary condition”. In: Complex Variables and Elliptic Equations 64.4 (2019), pp. 685–700 (cit. on p. 4)
dc.relation.referencesLuminiţa Barbu and Gheorghe Moroşanu. “Full description of the eigenvalue set of the Steklov (p, q)-Laplacian”. In: Journal of Differential Equations 290 (2021), pp. 1–16 (cit. on p. 4)
dc.relation.referencesLuminiţa Barbu, Andreea Burlacu, and Gheorghe Moroşanu. “On an eigenvalue problem associated with the (p, q)- Laplacian.” In: Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica 32.1 (2024) (cit. on pp. 4, 5)
dc.relation.referencesLuminiţa Barbu, Andreea Burlacu, and Gheorghe Moroşanu. “An Eigenvalue Problem Involving the (p, q)-Laplacian With a Parametric Boundary Condition”. In: Mediterranean Journal of Mathematics 20.4 (2023), p. 232 (cit. on p. 4)
dc.relation.referencesLuminit, a Barbu and Gheorghe Morosanu. “On eigenvalue problems governed by the (p, q)-Laplacian”. In: Studia Universitatis Babes-Bolyai, Mathematica 68.1 (2023) (cit. on p. 4)
dc.relation.referencesJuliano DB de Godoi, Olimpio H Miyagaki, and Rodrigo S Rodrigues. “A class of nonlinear elliptic systems with Steklov-Neumann nonlinear boundary conditions”. In: The Rocky Mountain Journal of Mathematics 46.5 (2016), pp. 1519–1545 (cit. on p. 4)
dc.relation.referencesNikolaos S Papageorgiou, Calogero Vetro, and Francesca Vetro. “Continuous spectrum for a two phase eigenvalue problem with an indefinite and unbounded potential”. In: Journal of Differential Equations 268.8 (2020), pp. 4102–4118 (cit. on p. 4)
dc.relation.referencesPatrizia Pucci. “Multiple solutions for eigenvalue problems involving the (p, q)-Laplacian.” In: Studia Universitatis Babes-Bolyai, Mathematica 68.1 (2023) (cit. on p. 4)
dc.relation.referencesMihai Mihăilescu. “An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue”. In: Communications on Pure and Applied Analysis 10.2 (2010), pp. 701–708 (cit. on p. 4)
dc.relation.referencesMaria Fărcăşeanu, Mihai Mihăilescu, and Denisa Stancu-Dumitru. “On the set of eigenvalues of some PDEs with homogeneous Neumann boundary condition”. In: Nonlinear Analysis: Theory, Methods & Applications 116 (2015), pp. 19–25 (cit. on p. 4)
dc.relation.referencesMieko Tanaka. “Generalized eigenvalue problems for (p, q)-Laplacian with indefinite weight”. In: Journal of Mathematical Analysis and Applications 419.2 (2014), pp. 1181–1192 (cit. on p. 4)
dc.relation.referencesMarian Bocea and Mihai Mihăilescu. “Existence of nonnegative viscosity solutions for a class of problems involving the ∞-Laplacian”. In: Nonlinear Differential Equations and Applications NoDEA 23.2 (2016), p. 11 (cit. on p. 4)
dc.relation.referencesMaria Farcaseanu, Andrei Grecu, Mihai Mihailescu, and Denisa Stancu-Dumitru. “Perturbed eigenvalue problems: An overview”. In: Studia Univ., Babes-Bolyai Math 66 (2021), pp. 55–73 (cit. on p. 4)
dc.relation.referencesA. Castro, J. Cossio, S. Herrón, R. Pardo, and C. Vélez. “Infinitely many radial solutions for a sub-super critical p-Laplacian problem”. In: Ann. Mat. Pura Appl. (4) 199.2 (2020), pp. 737–766
dc.relation.referencesSigifredo Herrón, Emer Lopera, and Diana Sánchez. “Solutions for a problem involving a ϕ-Laplacian-like operator via energy analysis, phase plane and shooting method”. In: Journal of Mathematical Analysis and Applications 543.2 (2025), p. 128910 (cit. on pp. 9, 44)
dc.relation.referencesSigifredo Herrón, Emer Lopera, and Diana Sánchez. “Nonexistence of positive radial solutions for semipositone ϕ-Laplacian problems with superlinear reaction term”. In: arXiv preprint arXiv:2508.05930 (2025) (cit. on p. 9)
dc.relation.referencesSigifredo Herron, Emer Lopera, and Diana Sanchez. “Existence of three positive solutions for a p-sublinear problem involving a Schrodinger p-Laplacian type operator”. In: Electronic Journal of Differential Equations 2025.47 (2025), pp. 1–13 (cit. on p. 9)
dc.relation.referencesSigifredo Herron, Emer Lopera, and Diana Sanchez. “Positive solutions for a semipositone ϕ-Laplacian problem”. In: Journal of Mathematical Analysis and Applications 510.2 (2022), p. 126042 (cit. on p. 9)
dc.relation.referencesAlois Kufner, Oldrich John, and Svatopluk Fucik. Function spaces. Vol. 3. Springer Science & Business Media, 1977 (cit. on pp. 12, 24)
dc.relation.referencesDjairo G De Figueiredo, Jean-Pierre Gossez, and Pedro Ubilla. “Nonhomogeneous Dirichlet problems for the p-Laplacian”. In: Calculus of variations and partial differential equations 56 (2017), pp. 1–19 (cit. on p. 12)
dc.relation.referencesLeszek Gasiński and Nikolaos S. Papageorgiou. Nonsmooth critical point theory and nonlinear boundary value problems. Vol. 8. Series in Mathematical Analysis and Applications. Chapman & Hall/CRC, Boca Raton, FL, 2005, pp. xiv+775. isbn: 1-58488-485-1 (cit. on pp. 12–14)
dc.relation.referencesTomas Godoy, Jean-Pierre Gossez, and Sofia Paczka. “On the asymptotic behavior of the principal eigenvalues of some elliptic problems”. In: Annali di matematica pura ed applicata 189 (2010), pp. 497–521 (cit. on p. 14)
dc.relation.referencesP Takáč. “Degenerate elliptic equations in ordered Banach spaces and applications”. In: Nonlinear differential equations. Chapman and Hall/CRC, 2024, pp. 111–196 (cit. on p. 14)
dc.relation.referencesRavi P. Agarwal, Kanishka Perera, and Donal O’Regan. “A variational approach to singular quasilinear elliptic problems with sign changing nonlinearities”. In: Appl. Anal. 85.10 (2006), pp. 1201–1206
dc.relation.referencesA. C. Lazer and P. J. McKenna. “On a singular nonlinear elliptic boundaryvalue problem”. In: Proc. Amer. Math. Soc. 111.3 (1991), pp. 721–730
dc.relation.referencesPaul H. Rabinowitz. Minimax methods in critical point theory with applications to differential equations. Vol. 65. CBMS Regional Conference Series in Mathematics. Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986, pp. viii+100
dc.relation.referencesL Gasinski and NS Papageorgiou. Nonlinear Analysis. Series in Mathematical Analysis and Applications. Vol. 9. Chapman & Hall/CRC, Boca Raton, FL, 2005 (cit. on pp. 25, 35, 38)
dc.relation.referencesMarino Badiale and Enrico Serra. Semilinear elliptic equations for beginners: existence results via the variational approach. Springer Science & Business Media, 2010 (cit. on p. 30)
dc.relation.referencesAlfonso Castro, Djairo G de Figueredo, and Emer Lopera. “Existence of positive solutions for a semipositone p-Laplacian problem”. In: Proceedings of the Royal Society of Edinburgh Section A: Mathematics 146.3 (2016), pp. 475–482 (cit. on p. 36)
dc.relation.referencesHaim Brézis. Functional analysis, Sobolev spaces and partial differential equations. Vol. 2. 3. Springer, 2011 (cit. on p. 38)
dc.relation.referencesWei-Ming Ni and James Serrin. “Nonexistence theorems for singular solutions of quasilinear partial differential equations”. In: Communications on pure and applied mathematics 39.3 (1986), pp. 379–399 (cit. on pp. 45, 48)
dc.relation.referencesSigifredo Herrón, Emer Lopera, and Diana Sánchez. “Positive solutions for a semipositone ϕ-Laplacian problem”. In: Journal of Mathematical Analysis and Applications 510.2 (2022), p. 126042 (cit. on p. 48)
dc.relation.referencesNichiro Kawano, Wei-Ming Ni, and Shoji Yotsutani. “A generalized Pohozaev identity and its applications”. In: Journal of the Mathematical Society of Japan 42.3 (1990), pp. 541–564 (cit. on p. 48)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc510 - Matemáticas
dc.subject.proposalSub-super solutionseng
dc.subject.proposal(p, q)-Laplacianeng
dc.subject.proposalNonresonanceeng
dc.subject.proposalSub-super solucioneseng
dc.subject.proposalRadial solutionseng
dc.subject.proposalNo resonanciaeng
dc.subject.proposalValores propios de Steklov-Neumanneng
dc.subject.proposalSub-super solucionesspa
dc.subject.proposalNo resonanciaspa
dc.subject.proposalValores propios de Steklov-Neumannspa
dc.subject.proposalSoluciones radialesspa
dc.subject.proposalIdentidad de tipo Pohozaevspa
dc.subject.proposalProblemas sub-supercríticosspa
dc.subject.unescoMatemáticas
dc.subject.unescoMathematics
dc.titlePartial differential equations defined by the ϕ-Laplacian operatoreng
dc.title.translatedEcuaciones diferenciales parciales definidas por el operador ϕ-Laplacianospa
dc.typeTrabajo de grado - Doctorado
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameUniversidad Nacional de Colomiba

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Doctorado en Ciencias – Matemáticas .pdf
Tamaño:
2.51 MB
Formato:
Adobe Portable Document Format
Descripción:
Doctorado en Ciencias – Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: