Estimating expected returns with forecast combinations
dc.contributor.advisor | Gómez Portilla, Karoll | |
dc.contributor.author | Richter, Robert | |
dc.contributor.researchgroup | Grupo Interdisciplinario en Teoría e Investigación Aplicada en Ciencias Económicas | spa |
dc.date.accessioned | 2021-09-03T22:41:41Z | |
dc.date.available | 2021-09-03T22:41:41Z | |
dc.date.issued | 2021-09-03 | |
dc.description | Ilustraciones | spa |
dc.description.abstract | This thesis proposes to apply forecasts produced by expert aggregation as novel predictor of expected returns to 2 different portfolio strategies: 1) mean-variance as proposed by (Markowitz, 1952) and 2) shrinkage of the covariance matrix S as in (Ledoit, 2004). Experts were built by generating forecasts with quantile regression as in generalized random forests and automatised versions of exponential smoothing and ARIMA. This study evaluates the predictive performance of two forecast combination algorithms 1) ML-Prod and 2) ML-Poly using a simulation study, before applying the superior method to a portfolio scenario. After evaluating prediction accuracy, the superior ML-Poly algorithm was chosen to forecast expected returns and showed promising out-of-sample results for the considered portfolios, returning superior values for the selected performance parameter and only marginal inferior results in terms of turnover ratio. Using the simulation study, the results of the portfolios were also validated. | eng |
dc.description.abstract | Esta tesis propone aplicar los pronósticos generados por la agregación de expertos como un novedoso predictor de los rendimientos esperados a 2 estrategias de portafolio diferentes: 1) Mean-Variance como propone (Markowitz, 1952) y 2) contracción de la matriz de covarianza S como en (Ledoit, 2004). Los expertos se construyeron generando pronósticos con Quantile Regression de Generalized Random Forests y versiones automatizadas de Exponential Smoothing y ARIMA. Este estudio evalúa la precisión de los pronósticos de dos algoritmos de agregación de expertos 1) ML-Prod y 2) ML-Poly mediante un estudio de simulación, antes de aplicar el método superior a un portafolio diversificado. Después de evaluar la precisión de los pronósticos, se eligió el algoritmo superior ML-Poly para pronosticar los rendimientos esperados y mostró resultados prometedores fuera de la muestra para los portafolios considerados, devolviendo valores superiores para los parámetros de rendimiento seleccionados y resultados inferiores marginales en términos de ratio de rotación. Mediante el estudio de simulación, también se validaron los resultados de los portafolios. (Texto tomado de la fuente). | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Administración | spa |
dc.description.methods | Estudio Empirico | spa |
dc.description.notes | Mención Meritoria | spa |
dc.description.notes | Tesis de grado presentada como requisito parcial para optar al título de: Magister en Administración de Negocios (Universidad Europea de Viadrina) | spa |
dc.description.researcharea | Seminario de Investigación II | spa |
dc.format.extent | xii, 48 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/80095 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Escuela de Administración y Contaduría Pública | spa |
dc.publisher.faculty | Facultad de Ciencias Económicas | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias Económicas - Maestría en Administración | spa |
dc.relation.references | Amit, Y. & Geman, D. (1997). Shape quantization and recognition with randomized trees. 0899-7667, 9 (7), 1545–1588. https://doi.org/10.1162/neco.1997.9.7.1545 | |
dc.relation.references | Anderson, B. D. O. (2012). Optimal filtering. Dover Publications. | |
dc.relation.references | Aoki, M. & Havenner, A. (1991). State space modeling of multiple time series. Econometric Reviews, 10 (1), 1–59. https://doi.org/10.1080/07474939108800194 | |
dc.relation.references | Arlot, S. & Genuer, R. (2014). Analysis of purely random forests bias. https://arxiv.org/pdf/1407.3939 | |
dc.relation.references | Athey, S., Tibshirani, J. & Wager, S. (2019). Generalized random forests. 0090-5364, 47 (2), 1148–1178. https://doi.org/10.1214/18-AOS1709 | |
dc.relation.references | Ban, G.-Y., El Karoui, N. & Lim, A. E. B. (2018). Machine learning and portfolio optimiz ation, (64), 1136–1154. | |
dc.relation.references | Biau, G. (2012). Analysis of a random forests model, (13), 1063–1095. | |
dc.relation.references | Biau, G., Devroye, L. & Lugosi, G. (2008). Consistency of random forests and other averaging classifiers, (9), 2015–2033. | |
dc.relation.references | Blum, A. & Mansour, Y. (2007). From external to internal regret. Journal of Machine Learning Research, 8 (47), 1307–1324. | |
dc.relation.references | Box, G. E. P. & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. Holden Day. | |
dc.relation.references | Breiman, L. (1984). Classification and regression trees [Breiman, Leo, (author.)]. [Routledge]. | |
dc.relation.references | Breiman, L. (1996). Bagging predictors [PII: BF00058655]. 08856125, 24 (2), 123–140. https://doi.org/10.1007/BF00058655 | |
dc.relation.references | Breiman, L. (2001). Random forests [PII: 354300]. 08856125, 45 (1), 5–32. https://doi.org/10.1023/A:1010933404324 | |
dc.relation.references | Brockwell, P. J. & Davis, R. A. (2006). Time series: Theory and methods (2nd ed., correc ted.). New York, Springer. | |
dc.relation.references | Buhlmann, P. & Yu, B. (2002). Analyzing bagging [PII: aos30n4r01]. 0090-5364, 30 (4), 927–961. https://doi.org/10.1214/aos/1031689014 | |
dc.relation.references | Cesa-Bianchi, N. & Lugosi, G. (2006). Prediction, learning, and games. Cambridge University Press. | |
dc.relation.references | Cesa-Bianchi, N. & Lugosi, G. (2003). Potential-based algorithms in on-line prediction and game theory [PII: 5120299]. 08856125, 51 (3), 239–261. https://doi.org/10.1023/A:1022901500417 | |
dc.relation.references | Amit, Y. & Geman, D. (1997). Shape quantization and recognition with randomized trees. 0899-7667, 9 (7), 1545–1588. https://doi.org/10.1162/neco.1997.9.7.1545 | |
dc.relation.references | Anderson, B. D. O. (2012). Optimal filtering. Dover Publications. | |
dc.relation.references | Aoki, M. & Havenner, A. (1991). State space modeling of multiple time series. Econometric Reviews, 10 (1), 1–59. https://doi.org/10.1080/07474939108800194 | |
dc.relation.references | Arlot, S. & Genuer, R. (2014). Analysis of purely random forests bias. https://arxiv.org/pdf/1407.3939 | |
dc.relation.references | Athey, S., Tibshirani, J. & Wager, S. (2019). Generalized random forests. 0090-5364, 47 (2), 1148–1178. https://doi.org/10.1214/18-AOS1709 | |
dc.relation.references | Ban, G.-Y., El Karoui, N. & Lim, A. E. B. (2018). Machine learning and portfolio optimiz ation, (64), 1136–1154. | |
dc.relation.references | Biau, G. (2012). Analysis of a random forests model, (13), 1063–1095. | |
dc.relation.references | Biau, G., Devroye, L. & Lugosi, G. (2008). Consistency of random forests and other averaging classifiers, (9), 2015–2033. | |
dc.relation.references | Blum, A. & Mansour, Y. (2007). From external to internal regret. Journal of Machine Learning Research, 8 (47), 1307–1324. | |
dc.relation.references | Box, G. E. P. & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. Holden Day. | |
dc.relation.references | Breiman, L. (1984). Classification and regression trees [Breiman, Leo, (author.)]. [Routledge]. | |
dc.relation.references | Breiman, L. (1996). Bagging predictors [PII: BF00058655]. 08856125, 24 (2), 123–140. https://doi.org/10.1007/BF00058655 | |
dc.relation.references | Breiman, L. (2001). Random forests [PII: 354300]. 08856125, 45 (1), 5–32. https://doi.org/10.1023/A:1010933404324 | |
dc.relation.references | Brockwell, P. J. & Davis, R. A. (2006). Time series: Theory and methods (2nd ed., correc ted.). New York, Springer. | |
dc.relation.references | Buhlmann, P. & Yu, B. (2002). Analyzing bagging [PII: aos30n4r01]. 0090-5364, 30 (4), 927–961. https://doi.org/10.1214/aos/1031689014 | |
dc.relation.references | Cesa-Bianchi, N. & Lugosi, G. (2006). Prediction, learning, and games. Cambridge University Press. | |
dc.relation.references | Cesa-Bianchi, N. & Lugosi, G. (2003). Potential-based algorithms in on-line prediction and game theory [PII: 5120299]. 08856125, 51 (3), 239–261. https://doi.org/10.1023/A:1022901500413 | |
dc.relation.references | Hyndman, R. J., Koehler, A. B., Ord, J. K. & Snyder, R. D. (2008). Forecasting with exponential smoothing: The state space approach. Berlin, Heidelberg, Springer. https://doi.org/10.1007/978-3-540-71918-2 | |
dc.relation.references | Jagannathan, R. & Ma, T. (2003). Risk reduction in large portfolios: Why imposing the wrong constraints helps, 58 (4), 1651–1683. https://doi.org/10.1111/1540-6261.00580 | |
dc.relation.references | Koenker, R. (2005). Quantile regression [Koenker, Roger (VerfasserIn)]. Cambridge, Cam bridge University Press. https://doi.org/10.1017/CBO9780511754098 | |
dc.relation.references | Koenker, R. & Bassett, G. (1978). Regression quantiles [Econometrica, 46(1), 33]. Econo metrica, 46 (1), 33. https://doi.org/10.2307/1913643 | |
dc.relation.references | Kwiatkowski, D., Phillips, P. C., Schmidt, P. & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root [PII: 030440769290104Y]. Journal of Econometrics, 54 (1-3), 159–178. https://doi.org/10.1016/0304-4076(92)90104-y | |
dc.relation.references | Landau, S. & Chis Ster, I. (2010). Cluster analysis: Overview, 72–83. https://doi.org/10.1016/B978-0-08-044894-7.01315-4 | |
dc.relation.references | Ledoit, O. & Wolf, M. (2004). Honey, i shrunk the sample covariance matrix, (4), 110–119. https://doi.org/10.3905/jpm.2004.110 | |
dc.relation.references | Lin, Y. & Jeon, Y. (2006). Random forests and adaptive nearest neighbors. 0162-1459, 101 (474), 578–590. https://doi.org/10.1198/016214505000001230 | |
dc.relation.references | Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. 00346535, 47 (1), 13. https://doi.org/10.2307/1924119 | |
dc.relation.references | Littlestone, N. & Warmuth, M. K. (1994). The weighted majority algorithm [PII: S0890540184710091]. Information and Computation, 108 (2), 212–261. https://doi.org/10.1006/inco.1994.1009 | |
dc.relation.references | Lopez de Prado, M. (2016). Building diversified portfolios that outperform out of sample. The Journal of Portfolio Management, 42 (4), 59–69. https://doi.org/10.3905/jpm.2016.42.4.059 | |
dc.relation.references | Makridakis, S. & Hibon, M. (2000). The m3-competition: Results, conclusions and implica tions [PII: S0169207000000571]. International Journal of Forecasting, 16 (4), 451–476. https://doi.org/10.1016/S0169-2070(00)00057-1 | |
dc.relation.references | Markowitz, H. M. (1952). Portfolio selection, (Vol. 7, No. 1), 77–91. | |
dc.relation.references | McAndrew, T., Wattanachit, N., Gibson, G. C. & Reich, N. G. (2019). Aggregating predic tions from experts: A scoping review of statistical methods, experiments, and applica tions [https://github.com/tomcm39/AggregatingExpertElicitedDataForPrediction v0.2: updated funding info]. https://arxiv.org/pdf/1912.11409 | |
dc.relation.references | Meinshausen, N. (2006). Quantile regression forests. Journal of Machine Learning Research, 7 (Jun), 983–999. | |
dc.relation.references | Mentch, L. & Hooker, G. (2016). Quantifying uncertainty in random forests via confidence intervals and hypothesis tests, (17), 1–41. | |
dc.relation.references | Merton, R. C. (1980). On estimating the expected return on the market: An exploratory investigation, (8), 323–361 | |
dc.relation.references | Mossin, J. (1966). Equilibrium in a capital asset market, (34), 768–783. | |
dc.relation.references | Newey, W. K. (1994). The asymptotic variance of semiparametric estimators, 62 (6), 1349. https://doi.org/10.2307/2951752 | |
dc.relation.references | Schmidhuber, J. (2014). Deep learning in neural networks: An overview, (61), 85–117. | |
dc.relation.references | Scornet, E., Biau, G. & Vert, J.-P. (2015). Consistency of random forests. 0090-5364, 43 (4), 1716–1741. https://doi.org/10.1214/15-AOS1321 | |
dc.relation.references | Sharpe, W. F. (1964). Capital asset prices: a theory of market equilibirium under conditions of risk, (19), 425–442. | |
dc.relation.references | Sharpe, W. F. (1970). Portolio theory and capital markets. McGraw-Hill. | |
dc.relation.references | Staniswalis, J. G. (1989). The kernel estimate of a regression function in likelihood-based models. 0162-1459, 84 (405), 276. https://doi.org/10.2307/2289874 | |
dc.relation.references | Stone, C. J. (1977). Consistent nonparametric regression, (5), 595–620. | |
dc.relation.references | Tibshirani, R. & Hastie, T. (1987). Local likelihood estimation. 0162-1459, 82 (398), 559–567. https://doi.org/10.1080/01621459.1987.10478466 | |
dc.relation.references | Timmermann, A. (2006). Chapter 4 forecast combinations. In G. Elliott, C. Granger | |
dc.relation.references | Vovk, V. (1998). A game of prediction with expert advice [PII: S0022000097915567]. Journal of Computer and System Sciences, 56 (2), 153–173. https://doi.org/10.1006/jcss. 1997.1556 | |
dc.relation.references | Wager, S. & Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using random forests. 0162-1459, 113 (523), 1228–1242. https://doi.org/10.1080/01621459.2017.1319839 | |
dc.relation.references | Wager, S. & Walther, G. (2015). Adaptive concentration of regression trees, with application to random forests. https://arxiv.org/pdf/1503.06388 | |
dc.relation.references | Zeileis, A., Hothorn, T. & Hornik, K. (2008). Model-based recursive partitioning. 1061-8600, 17 (2), 492–514. https://doi.org/10.1198/106186008X31933 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.subject.ddc | 330 - Economía | spa |
dc.subject.ecm | Financial Forecasting and Simulation | eng |
dc.subject.ecm | Predicción y simulación financiera | spa |
dc.subject.jel | C53 Forecasting Models; Simulation Methods | |
dc.subject.lemb | Economic forecasting | |
dc.subject.lemb | Pronóstico de la economía | |
dc.subject.lemb | Forecasting techniques | |
dc.subject.lemb | Técnicas de predicción | |
dc.subject.other | Financial Forecasting and Simulation | eng |
dc.subject.other | Predicción y simulación financiera | spa |
dc.subject.proposal | Shrinkage | eng |
dc.subject.proposal | Decision tress | eng |
dc.subject.proposal | Expert aggregation | eng |
dc.subject.proposal | Media-varianza | spa |
dc.subject.proposal | Mean-variance | eng |
dc.subject.proposal | Generalized random forest | eng |
dc.subject.proposal | Automatic arima | eng |
dc.subject.proposal | Portfolio optimisation | eng |
dc.subject.proposal | Exponential smoothing | eng |
dc.subject.proposal | Árboles de decision | spa |
dc.subject.proposal | Arima automatizado | spa |
dc.subject.proposal | Agregación de expertos | spa |
dc.subject.proposal | Optimización de portafolios | spa |
dc.title | Estimating expected returns with forecast combinations | eng |
dc.title.translated | Estimación de los rendimientos esperados con combinaciones de previsiones | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis_RobertRichter.pdf
- Tamaño:
- 905.16 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Administración
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: