Análisis comparativo de los puentes estocásticos: simulación, estimación y bondad de ajuste

dc.contributor.advisorArunachalam, Viswanathanspa
dc.contributor.authorRangel Gutiérrez, Jhonier Sebastianspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0002034802spa
dc.contributor.orcidRangel Gutiérrez, Jhonier [0000-0002-6849-5551]spa
dc.date.accessioned2024-05-28T21:32:20Z
dc.date.available2024-05-28T21:32:20Z
dc.date.issued2024-05-28
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn este trabajo se presenta un análisis comparativo entre el puente browniano clásico y puentes brownianos fraccionarios con diferentes parámetros de Hurst. También se aborda un enfoque para la inferencia clásica sobre los parámetros de estos modelos. Se explica además cómo simular estos procesos cuando los parámetros ya son conocidos o estimados. Asimismo, se describe una metodología para llevar a cabo pruebas de bondad de ajuste mediante el uso de técnicas de envolvimiento. Por último, se presentan tres aplicaciones en datos funcionales, estadística espacial y procesamiento del lenguaje natural. (Texto tomado de la fuente).spa
dc.description.abstractThis work presents a comparative analysis between the classic Brownian bridge and fractional Brownian bridges with different Hurst parameters. It also introduces an approach to classical inference on the parameters of these models. The simulation of these processes is explained when the parameters are either known or estimated. Additionally, a method for conducting goodness-of-fit tests using the envelopment technique is discussed. Finally, three applications in functional data, spatial statistics, and natural language processing are presented.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.format.extentviii, 63 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86172
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesARAGÓN URREGO, Daniel: Valoración de opciones americanas por el método de malla estocástica bajo movimiento Browniano fraccional del activo subyacente (American Option Pricing by the Stochastic Mesh Method Under Fractional Brownian Movement of the Underlying Asset). (2018)spa
dc.relation.referencesBRAS, Pierre ; KOHATSU-HIGA, Arturo: Simulation of reflected Brownian motion on two dimensional wedges. In: Stochastic Processes and their Applications 156 (2023), S. 349–378spa
dc.relation.referencesCARLSON, Max ; KIRBY, Robert M. ; SUNDAR, Hari: A scalable framework for solving fractional diffusion equations. In: Proceedings of the 34th ACM International Conference on Supercomputing, 2020, S. 1–11spa
dc.relation.referencesCASELLA, George ; FERRÁNDIZ, Juan ; PEÑA, Daniel ; INSUA, David R. ; BERNARDO, José M ; GARCÍA-LÓPEZ, PA ; GONZÁLEZ, A ; BERGER, J ; DAWID, AP ; DICICCIO, Thomas J. u. a.: Statistical inference and Monte Carlo algorithms. In: Test 5 (1996), S. 249–344spa
dc.relation.referencesCASTAÑEDA, Liliana B. ; ARUNACHALAM, Viswanathan ; DHARMARAJA, Selvamuthu: Introduction to probability and stochastic processes with applications. John Wiley & Sons, 2012spa
dc.relation.referencesCHOW, Winston C.: Brownian bridge. In: Wiley interdisciplinary reviews: computational statistics 1 (2009), Nr. 3, S. 325–332spa
dc.relation.referencesCOOK, R D.: Envelope methods. In: Wiley Interdisciplinary Reviews: Computational Statistics 12 (2020), Nr. 2, S. e1484spa
dc.relation.referencesDASGUPTA, Anirban: Asymptotic theory of statistics and probability. Bd. 180. Springer, 2008spa
dc.relation.referencesDIEKER, Ton: Simulation of fractional Brownian motion, Masters Thesis, Department of Mathematical Sciences, University of Twente …, Diss., 2004spa
dc.relation.referencesEMBRECHTS, Paul ; MAEJIMA, Makoto: An introduction to the theory of self-similar stochastic processes. In: International journal of modern physics B 14 (2000), Nr. 12n13, S. 1399–1420spa
dc.relation.referencesFRIEDRICH, Jan ; GALLON, Sebastian ; PUMIR, Alain ; GRAUER, Rainer: Stochastic interpolation of sparsely sampled time series via multipoint fractional Brownian bridges. In: Physical Review Letters 125 (2020), Nr. 17, S. 170602spa
dc.relation.referencesGOLDSMITH, Jeff ; GREVEN, Sonja ; CRAINICEANU, CIPRIAN: Corrected confidence bands for functional data using principal components. In: Biometrics 69 (2013), Nr. 1, S. 41–51spa
dc.relation.referencesGORGENS, Maik: Conditioning of Gaussian processes and a zero area Brownian bridge. In: arXiv preprint arXiv:1302.4186 (2013)spa
dc.relation.referencesGOSSET, William S.: William Sealy Gosset. In: Biographical Encyclopedia of Mathematicians 1 (1908), S. 239spa
dc.relation.referencesHOLLANDER, Myles ; WOLFE, Douglas A. ; CHICKEN, Eric: Nonparametric statistical methods. John Wiley & Sons, 2013spa
dc.relation.referencesKOKOSZKA, Piotr ; REIMHERR, Matthew: Introduction to functional data analysis. CRC press, 2017spa
dc.relation.referencesKOLMOGOROV, Andrei N.: Wienersche spiralen und einige andere interessante kurven in hilbertscen raum, cr (doklady). In: Acad. Sci. URSS (NS) 26 (1940), S. 115–118spa
dc.relation.referencesKRANSTAUBER, Bart ; KAYS, Roland ; LAPOINT, Scott D. ; WIKELSKI, Martin ; SAFI, Kamran: A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. In: Journal of Animal Ecology 81 (2012), Nr. 4, S. 738–746spa
dc.relation.referencesLAMPERTI, John: Semi-stable stochastic processes. In: Transactions of the American mathematical Society 104 (1962), Nr. 1, S. 62–78spa
dc.relation.referencesMALLIAVIN, Paul: Stochastic analysis. Bd. 313. Springer, 2015spa
dc.relation.referencesMANSUY, Roger ; YOR, Marc: Aspects of Brownian motion. Springer Science & Business Media, 2008spa
dc.relation.referencesNAPIERALA, Matthew A.: What is the Bonferroni correction? In: Aaos Now (2012), S. 40–41spa
dc.relation.referencesNUALART, David: The Malliavin calculus and related topics. Bd. 1995. Springer, 2006spa
dc.relation.referencesØKSENDAL, Bernt ; ØKSENDAL, Bernt: Stochastic differential equations. Springer, 2003spa
dc.relation.referencesÖZAK, Myriam M. n. ; CASTAÑEDA, Liliana B.: Introducción a la teoría avanzada de la probabilidad. Bd. 2. Univ. Nacional de Colombia, 2002spa
dc.relation.referencesRAJU, Tonse N.: William Sealy Gosset and William A. Silverman: two “students” of science. In: Pediatrics 116 (2005), Nr. 3, S. 732–735spa
dc.relation.referencesRINCÓN, Luis: Introducción a los procesos estocásticos. UNAM, Facultad de Ciencias, 2012spa
dc.relation.referencesRINCÓN, Luis: Introducción a la probabilidad. (2014)spa
dc.relation.referencesROSTEK, S ; SCHÖBEL, R: A note on the use of fractional Brownian motion for financial modeling. In: Economic Modelling 30 (2013), S. 30–35spa
dc.relation.referencesSRIVASTAVA, Muni S.: Multivariate theory for analyzing high dimensional data. In: Journal of the Japan Statistical Society 37 (2007), Nr. 1, S. 53–86spa
dc.relation.referencesSURYAWAN, Herry P. ; GUNARSO, Boby: Self-intersection local times of generalized mixed fractional Brownian motion as white noise distributions. In: Journal of Physics: Conference Series Bd. 855 IOP Publishing, 2017, S. 012050spa
dc.relation.referencesTAQQU, Murad: Weak convergence to fractional Brownian motion and to the Rosenblatt process. In: Advances in Applied Probability 7 (1975), Nr. 2, S. 249–249spa
dc.relation.referencesWANG, Jian ; LIN, Dongding ; LI, Wenjie: Dialogue Planning via Brownian Bridge Stochastic Process for Goal-directed Proactive Dialogue. In: arXiv preprint arXiv:2305.05290 (2023)spa
dc.relation.referencesWANG, Shiyan ; RAMKRISHNA, Doraiswami ; NARSIMHAN, Vivek: Exact sampling of polymer conformations using Brownian bridges. In: The Journal of Chemical Physics 153 (2020), Nr. 3, S. 034901spa
dc.relation.referencesWASSERMAN, Larry: All of nonparametric statistics. Springer Science & Business Media, 2006spa
dc.relation.referencesWEI, Bo-Cheng: Exponential family nonlinear models. Bd. 1. Springer, 1998spa
dc.relation.referencesXU, Mengjia: Understanding graph embedding methods and their applications. In: SIAM Review 63 (2021), Nr. 4, S. 825–853spa
dc.relation.referencesYERLIKAYA-ÖZKURT, Fatma ; VARDAR-ACAR, Ceren ; YOLCU-OKUR, Yeliz ; WEBER, G-W: Estimation of the Hurst parameter for fractional Brownian motion using the CMARS method. In: Journal of Computational and Applied Mathematics 259 (2014), S. 843–850spa
dc.relation.referencesYUAN, Chenggui ; MAO, Xuerong: Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching. In: Mathematics and Computers in Simulation 64 (2004), Nr. 2, S. 223–235spa
dc.relation.referencesZHU, Chenyao ; LUO, Lan ; LI, Rui ; GUO, Junhui ; WANG, Qining: Wearable Motion Analysis System for Thoracic Spine Mobility with Inertial Sensors. In: IEEE Transactions on Neural Systems and Rehabilitation Engineering (2024)spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.proposalPuente brownianospa
dc.subject.proposalPuente browniano fraccionalspa
dc.subject.proposalPuente gaussianospa
dc.subject.proposalEstimaciónspa
dc.subject.proposalSimulación mediante métodos numéricosspa
dc.subject.proposalMétodo de Euler-Maruyamaspa
dc.subject.proposalMétodo de Choleskyspa
dc.subject.proposalBrownian bridgespa
dc.subject.proposalFractional brownian bridgeeng
dc.subject.proposalGaussian bridgeeng
dc.subject.proposalEstimationeng
dc.subject.proposalSimulation by numerical methodseng
dc.subject.proposalEuler-Maruyama methodeng
dc.subject.proposalCholesky methodeng
dc.subject.wikidataestocásticaspa
dc.subject.wikidatastochasticeng
dc.subject.wikidataBondad de ajustespa
dc.subject.wikidatagoodness of fiteng
dc.subject.wikidataPuente brownianospa
dc.subject.wikidataBrownian bridgeeng
dc.titleAnálisis comparativo de los puentes estocásticos: simulación, estimación y bondad de ajustespa
dc.title.translatedComparative analysis of stochastic bridges: simulation, estimation and goodness of fiteng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TRABAJO_FINAL (50).pdf
Tamaño:
577.92 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: