Relevancia del receptor del factor de crecimiento similar a insulina (IGF-1R) en el fenotipo celular pluripotente de trofoblasto humano
dc.contributor.advisor | Umaña Pérez, Adriana | |
dc.contributor.author | Ramírez Ambrosio, Oscar Mauricio | |
dc.contributor.researchgroup | Grupo de Investigación en Hormonas | spa |
dc.date.accessioned | 2023-08-14T16:06:31Z | |
dc.date.available | 2023-08-14T16:06:31Z | |
dc.date.issued | 2023 | |
dc.description | ilustraciones, diagramas, fotografías a color | spa |
dc.description.abstract | Diversos estudios han puesto de manifiesto la relación entre la señalización celular mediada por el receptor del Factor de Crecimiento similar a Insulina 1 (IGF-1R), la expresión de factores de pluripotencia canónicos, el cáncer y la enfermedad trofoblástica gestacional (ETG), sin embargo, se desconoce la relevancia de la señalización del IGF-1R mediada por IGF2, principal factor de crecimiento expresado durante la gestación, en la expresión de los factores de pluripotencia Oct4, Sox2 y Nanog en trofoblasto. Para acercarnos a este interrogante, se utilizó como modelo biológico la línea celular proveniente de trofoblasto humano del primer trimestre de gestación HTR-8/SVneo y una línea derivada de ella por silenciamiento estable para el IGF-1R (HTR-8/SVneo shIGF-IR). Ambas líneas celulares crecieron bajo privación de suero fetal bovino en presencia o ausencia de IGF2 10 nM durante 12, 24, 36, 48 y 72h. Los genes de interés se cuantificaron mediante RT-qPCR. HTR-8/SVneo presenta una sobreexpresión Masiva Aguda de los tres Factores de Pluripotencia (SEMA-FP) a las 12h respecto a la condición basal (Nanog: 43 veces, Oct4: 10 veces, Sox2: 8 veces, p<0.001) dependiente de niveles basales de IGF-1R, como respuesta a la privación de suero, probablemente como mecanismo de protección frente al estrés celular, manteniendo su potencial de diferenciación y de regeneración de sus subpoblaciones celulares. Oct4, Sox2 y Nanog presentan expresión mínima (basal) de transcrito independiente de la presencia de suero e IGF2, no obstante, el suero inhibe la SEMA-FP de los tres factores, mientras que IGF2, en ausencia de suero, inhibe parcialmente la de Oct4 y Nanog, pero no la de Sox2. Estas inhibiciones pueden depender o no de la existencia de niveles basales de IGF-1R para cada uno de los tres factores. La detección de los tres FP es retadora a nivel de proteína en HTR-8/SVneo debido a su baja expresión, la cual se limita a subpoblaciones celulares específicas. IGF-1R y Nanog se postulan como blancos moleculares a ser tenidos en cuenta en estudios dirigidos al tratamiento de ETG como coriocarcinoma, particularmente aquellos que poseen células madre del cáncer y presentan resistencia a tratamientos convencionales. (Texto tomado de la fuente) | spa |
dc.description.abstract | Several studies have revealed the link between the Insulin-like Growth Factor 1 receptor (IGF-1R) mediated cell signaling, the expression of canonical pluripotency factors, cancer and gestational trophoblastic disease (GTD). Nevertheless, the relevance of IGF-1R mediated IGF2 (the main growth factor expressed during pregnancy) regulation of Oct4, Sox2 and Nanog pluripotency factors in trophoblasts is unknown. To approach this question, we used as biological models the first trimester derived human trophoblast cell line HTR-8/SVneo and a HTR-8/SVneo derived IGF-1R stable silenced cell line. Both cell lines grew under fetal bovine serum deprivation in the presence or absence of IGF2 10 nM for 12, 24, 36, 48 and 72h. The genes of interest were quantified by RT-qPCR. HTR-8/SVneo showed an Acute Massive Overexpression of the three Pluripotency Factors (AMO-PF) at 12h compared to the baseline condition (Nanog: 43-fold, Oct4: 10-fold and Sox2: 8-fold, p<0.001-0.0001) dependent on basal IGF-1R levels, as a response to serum deprivation, probably as a protection mechanism against cellular stress, in order to maintain the cell subpopulation regenerative and differentiation potential. Oct4, Sox2 and Nanog showed a transcript expression minimum (baseline), independent of serum and IGF2 presence, nevertheless, serum inhibits the AMO-PF of all three factors, while IGF2, in the absence of serum, partially inhibits Oct4 and Nanog but not Sox2. The dependence of these inhibitions on IGF-1R baseline levels is specific for each of the three factors. Detection of all three PFs is particularly challenging at the protein level in HTR-8/SVneo due to their low expression, which is limited to specific cell subpopulations. We propose IGF-1R and Nanog as molecular targets to be considered in GTD (such as choriocarcinoma) treatment studies, particularly those including cancer stem cells and showing conventional treatment resistance. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Bioquímica | spa |
dc.description.researcharea | Factores de crecimiento, diferenciación y cáncer | spa |
dc.format.extent | xvi, 73 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84551 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Bioquímica | spa |
dc.relation.references | Abou-Kheir, W., Barrak, J., Hadadeh, O., & Daoud, G. (2017). HTR-8/SVneo cell line contains a mixed population of cells. Placenta, 50, 1–7. https://doi.org/10.1016/j.placenta.2016.12.007 | spa |
dc.relation.references | Akberdin, I. R., Omelyanchuk, N. A., Fadeev, S. I., Leskova, N. E., Oschepkova, E. A., Kazantsev, F. V., Matushkin, Y. G., Afonnikov, D. A., & Kolchanov, N. A. (2018). Pluripotency gene network dynamics: System views from parametric analysis. In PLoS ONE (Vol. 13, Issue 3). https://doi.org/10.1371/journal.pone.0194464 | spa |
dc.relation.references | Alarcón Barrera, J. C., & Umaña Pérez, Y. A. (2011). Interacción del sistema de factores de crecimiento similares a la insulina (IGF) y la hormona gonadotropina (hGC) en la diferenciación celular trofoblástica. | spa |
dc.relation.references | Balahmar, R. M., Boocock, D. J., Coveney, C., Ray, S., Vadakekolathu, J., Regad, T., Ali, S., & Sivasubramaniam, S. (2018). Identification and characterisation of NANOG+/ OCT-4high/ SOX2+ doxorubicin-resistant stem-like cells from transformed trophoblastic cell lines. Oncotarget, 9(6), 7054–7065. https://doi.org/10.18632/oncotarget.24151 | spa |
dc.relation.references | Barroca, V., Lewandowski, D., Jaracz-Ros, A., & Hardouin, S. N. (2017). Paternal Insulin-like Growth Factor 2 (Igf2) Regulates Stem Cell Activity During Adulthood. EBioMedicine, 15, 150–162. https://doi.org/10.1016/j.ebiom.2016.11.035 | spa |
dc.relation.references | Beck, B., & Blanpain, C. (2013). Unravelling cancer stem cell potential. Nature Reviews Cancer, 13(10), 727–738. https://doi.org/10.1038/nrc3597 | spa |
dc.relation.references | Belfiore, A., Frasca, F., Pandini, G., Sciacca, L., & Vigneri, R. (2009). Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocrine Reviews, 30(6), 586–623. https://doi.org/10.1210/er.2008-0047 | spa |
dc.relation.references | Belfiore, A., Malaguarnera, R., Vella, V., Lawrence, M. C., Sciacca, L., Frasca, F., Morrione, A., & Vigneri, R. (2017). Insulin receptor isoforms in physiology and disease: An updated view. Endocrine Reviews, 38(5), 1–84. https://doi.org/10.1210/er.2017-00073 | spa |
dc.relation.references | Bellazi, L., Mornet, E., Meurice, G., Pata-Merci, N., De Mazancourt, P., & Dieudonné, M. N. (2011). Genome wide expression profile in human HTR-8/Svneo trophoblastic cells in response to overexpression of placental alkaline phosphatase gene. Placenta, 32(10), 771–777. https://doi.org/10.1016/j.placenta.2011.06.029 | spa |
dc.relation.references | Bermúdez, A. J., Cortés, C., Díaz, L. E., Crane, C., Ching, R., Aragón, M., Cantero, M., Bernal, Y., Alava, C., Arteaga, C., Anzola, C., Carrasco-Rodríguez, S., & Sánchez-Gómez, M. (2006). Estudio bioquímico y genético de la enfermedad trofoblástica gestacional. Revista MEDICINA, 28(1), 14–18. | spa |
dc.relation.references | Bieberich, E., & Wang, G. (2013). Molecular Mechanisms Underlying Pluripotency. InTech. https://doi.org/10.5772/45917 | spa |
dc.relation.references | Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., Gifford, D. K., Melton, D. A., Jaenisch, R., & Young, R. A. (2005). Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells. Cell, 122(6), 947–956. https://doi.org/10.1016/j.cell.2005.08.020. | spa |
dc.relation.references | Chambers, I., & Tomlinson, S. R. (2009). The transcriptional foundation of pluripotency. Development, 136(14), 2311–2322. https://doi.org/10.1242/dev.024398 | spa |
dc.relation.references | Chen, P. C., Kuo, Y. C., Chuong, C. M., & Huang, Y. H. (2021). Niche Modulation of IGF-1R Signaling: Its Role in Stem Cell Pluripotency, Cancer Reprogramming, and Therapeutic Applications. In Frontiers in Cell and Developmental Biology (Vol. 8). https://doi.org/10.3389/fcell.2020.625943 | spa |
dc.relation.references | Chughtai, S. (2020). The nuclear translocation of insulin-like growth factor receptor and its significance in cancer cell survival. In Cell Biochemistry and Function (Vol. 38, Issue 4). https://doi.org/10.1002/cbf.3479 | spa |
dc.relation.references | Cianfarani, S. (2012). Insulin-like growth factor-II: New roles for an old actor. Frontiers in Endocrinology, 3, 1–4. https://doi.org/10.3389/fendo.2012.00118 | spa |
dc.relation.references | Clarke, M. F., Dick, J. E., Dirks, P. B., Eaves, C. J., Jamieson, C. H. M., Jones, D. L., Visvader, J., Weissman, I. L., & Wahl, G. M. (2006). Cancer stem cells - Perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Research, 66(19), 9339–9344. https://doi.org/10.1158/0008-5472.CAN-06-3126 | spa |
dc.relation.references | De Los Angeles, A., Ferrari, F., Xi, R., Fujiwara, Y., Benvenisty, N., Deng, H., Hochedlinger, K., Jaenisch, R., Lee, S., Leitch, H. G., Lensch, M. W., Lujan, E., Pei, D., Rossant, J., Wernig, M., Park, P. J., & Daley, G. Q. (2015). Hallmarks of pluripotency. Nature, 525(7570), 469–478. https://doi.org/10.1038/nature15515 | spa |
dc.relation.references | Denduluri, S. K., Idowu, O., Wang, Z., Liao, Z., Yan, Z., Mohammed, M. K., Ye, J., Wei, Q., Wang, J., Zhao, L., & Luu, H. H. (2015a). Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes & Diseases, 2(1), 13–25. https://doi.org/10.1016/j.gendis.2014.10.004 | spa |
dc.relation.references | Denduluri, S. K., Idowu, O., Wang, Z., Liao, Z., Yan, Z., Mohammed, M. K., Ye, J., Wei, Q., Wang, J., Zhao, L., & Luu, H. H. (2015b). Insulin-like growth factor (IGF) signaling intumorigenesis and the development ofcancer drug resistance. Genes and Diseases, 2(1), 13–25. https://doi.org/10.1016/j.gendis.2014.10.004 | spa |
dc.relation.references | Diaz, L. E., Chuan, Y. C., Lewitt, M., Fernandez-Perez, L., Carrasco-Rodr??guez, S., Sanchez-Gomez, M., & Flores-Morales, A. (2007). IGF-II regulates metastatic properties of choriocarcinoma cells through the activation of the insulin receptor. Molecular Human Reproduction, 13(8), 567–576. https://doi.org/10.1093/molehr/gam039 | spa |
dc.relation.references | Díaz, L. E., Chuan, Y. C., Lewitt, M., Fernandez-Perez, L., Carrasco-Rodríguez, S., Sanchez-Gomez, M., & Flores-Morales, A. (2007). IGF-II regulates metastatic properties of choriocarcinoma cells through the activation of the insulin receptor. Molecular Human Reproduction, 13(8), 567–576. https://doi.org/10.1093/molehr/gam039 | spa |
dc.relation.references | Dreesen, O., & Brivanlou, A. H. (2007). Signaling pathways in cancer and embryonic stem cells. Stem Cell Reviews, 3(1), 7–17. https://doi.org/10.1007/s12015-007-0004-8 | spa |
dc.relation.references | Dyer, A. H., Vahdatpour, C., Sanfeliu, A., & Tropea, D. (2016). The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience, 325, 89–99. https://doi.org/10.1016/j.neuroscience.2016.03.056 | spa |
dc.relation.references | Feng, H. C., Choy, M. Y., Wen, D., Lok, W. H., Lau, W. M., Cheung, A. N. Y., Ngan, H. Y. S., & Sai, W. T. (2005). Establishment and characterization of a human first-trimester extravillous trophoblast cell line (TEV-1). Journal of the Society for Gynecologic Investigation, 12(4). https://doi.org/10.1016/j.jsgi.2005.02.008 | spa |
dc.relation.references | Ferretti, C., Bruni, L., Dangles-Marie, V., Pecking, A. P., & Bellet, D. (2007). Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Human Reproduction Update, 13(2), 121–141. https://doi.org/10.1093/humupd/dml048 | spa |
dc.relation.references | Forbes, K., Westwood, M., Baker, P. N., & Aplin, J. D. (2008). Insulin-like growth factor I and II regulate the life cycle of trophoblast in the developing human placenta. American Journal of Physiology - Cell Physiology, 294(6), 1313–1322. https://doi.org/10.1152/ajpcell.00035.2008 | spa |
dc.relation.references | Frystyk, J. (2004). Free insulin-like growth factors - Measurements and relationships to growth hormone secretion and glucose homeostasis. Growth Hormone and IGF Research, 14, 337–375. https://doi.org/10.1016/j.ghir.2004.06.001 | spa |
dc.relation.references | Fulda, S., & Pervaiz, S. (2010). Apoptosis signaling in cancer stem cells. The International Journal of Biochemistry & Cell Biology, 42, 31–38. https://doi.org/10.1016/j.biocel.2009.06.010 | spa |
dc.relation.references | Gaggianesi, M., Di Franco, S., Pantina, V. D., Porcelli, G., D’Accardo, C., Verona, F., Veschi, V., Colarossi, L., Faldetta, N., Pistone, G., Bongiorno, M. R., Todaro, M., & Stassi, G. (2021). Messing Up the Cancer Stem Cell Chemoresistance Mechanisms Supported by Tumor Microenvironment. In Frontiers in Oncology (Vol. 11). https://doi.org/10.3389/fonc.2021.702642 | spa |
dc.relation.references | Gawlik-Rzemieniewska, N., & Bednarek, I. (2016). The role of NANOG transcriptional factor in the development of malignant phenotype of cancer cells. In Cancer Biology and Therapy (Vol. 17, Issue 1). https://doi.org/10.1080/15384047.2015.1121348 | spa |
dc.relation.references | Ge, C., Yu, P., Fang, M., Wang, H., & Zhang, Y. (2021). Selection of reliable reference genes for analysis of gene expression in the rat placenta. Molecular and Cellular Biochemistry, 476(7), 2613–2622. https://doi.org/10.1007/s11010-021-04115-3 | spa |
dc.relation.references | Graham, C. H., Hawley, T. S., Hawley, R. G., MacDougall, J. R., Kerbel, R. S., Khoo, N., & Lala, P. K. (1993). Establishment and characterization of first trimester human trophoblast cells with extended lifespan. In Experimental cell research (Vol. 206, pp. 204–211). https://doi.org/10.1006/excr.1993.1139 | spa |
dc.relation.references | Han, L., Shi, S., Gong, T., Zhang, Z., & Sun, X. (2013). Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharmaceutica Sinica B, 3(2), 65–75. https://doi.org/10.1016/j.apsb.2013.02.006 | spa |
dc.relation.references | Hanahan, D., & Weinberg, R. A. (2011a). Hallmarks of cancer: The next generation. In Cell (Vol. 144, pp. 646–674). | spa |
dc.relation.references | Hanahan, D., & Weinberg, R. A. (2011b). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013 | spa |
dc.relation.references | Harris, L. K., Crocker, I. P., Baker, P. N., Aplin, J. D., & Westwood, M. (2011). IGF2 actions on trophoblast in human placenta are regulated by the insulin-like growth factor 2 receptor, which can function as both a signaling and clearance receptor. Biology of Reproduction, 84(3), 440–446. https://doi.org/10.1095/biolreprod.110.088195 | spa |
dc.relation.references | Holtan, S. G., Creedon, D. J., Haluska, P., & Markovic, S. N. (2009). Cancer and Pregnancy: Parallels in Growth, Invasion, and Immune Modulation and Implications for Cancer Therapeutic Agents. Mayo Clinic Proceedings, 84(11), 985–1000. https://doi.org/10.4065/84.11.985 | spa |
dc.relation.references | Huang, Y.-H., Chin, C.-C., Ho, H.-N., Chou, C.-K., Shen, C.-N., Kuo, H.-C., Wu, T.-J., Wu, Y.-C., Hung, Y.-C., Chang, C.-C., & Ling, T.-Y. (2009). Pluripotency of mouse spermatogonial stem cells maintained by IGF-1- dependent pathway. The FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 23, 2076–2087. https://doi.org/10.1096/fj.08-121939 | spa |
dc.relation.references | Jeter, C. R., Yang, T., Wang, J., Chao, H. P., & Tang, D. G. (2015). Concise Review: NANOG in Cancer Stem Cells and Tumor Development: An Update and Outstanding Questions. Stem Cells, 33(8), 2381–2390. https://doi.org/10.1002/stem.2007 | spa |
dc.relation.references | Kasprzak, A., Kwasniewski, W., Adamek, A., & Gozdzicka-Jozefiak, A. (2017). Insulin-like growth factor (IGF) axis in cancerogenesis. Mutation Research - Reviews in Mutation Research, 772, 78–104. https://doi.org/10.1016/j.mrrev.2016.08.007 | spa |
dc.relation.references | Kim, J., Chu, J., Shen, X., Wang, J., & Orkin, S. H. (2008). An Extended Transcriptional Network for Pluripotency of Embryonic Stem Cells. Cell, 132, 1049–1061. https://doi.org/10.1016/j.cell.2008.02.039 | spa |
dc.relation.references | Kim, P. T. W., & Ong, C. J. (2012). Differentiation of Definitive Endoderm from mESCs. Chapter 17, 55, 303–319. https://doi.org/10.1007/978-3-642-30406-4 | spa |
dc.relation.references | Kondoh, H., Uchikawa, M., & Kamachi, Y. (2004). Interplay of Pax6 and SOX2 in lens development as a paradigm of genetic switch mechanisms for cell differentiation. In International Journal of Developmental Biology (Vol. 48, Issues 8–9). https://doi.org/10.1387/ijdb.041868hk | spa |
dc.relation.references | Krauss. (2009). :Biochemistry of Signal Transduction and Regulation. In The Quarterly Review of Biology (Vol. 84). https://doi.org/10.1086/603489 | spa |
dc.relation.references | Kruger, N. J. (2009). The Bradford Method For Protein Quantitation. https://doi.org/10.1007/978-1-59745-198-7_4 | spa |
dc.relation.references | Kruger, T. F., & Botha, M. H. (2007). Clinical Gynaecology. Juta. https://books.google.co.ve/books?id=uEdqlYXUNDwC | spa |
dc.relation.references | Kuo, Y. C., Au, H. K., Hsu, J. L., Wang, H. F., Lee, C. J., Peng, S. W., Lai, S. C., Wu, Y. C., Ho, H. N., & Huang, Y. H. (2018). IGF-1R Promotes Symmetric Self-Renewal and Migration of Alkaline Phosphatase+ Germ Stem Cells through HIF-2α-OCT4/CXCR4 Loop under Hypoxia. Stem Cell Reports, 10(2), 524–537. https://doi.org/10.1016/j.stemcr.2017.12.003 | spa |
dc.relation.references | Li, Y., Lu, H., Ji, Y., Wu, S., & Yang, Y. (2016). Identification of genes for normalization of real-time RT-PCR data in placental tissues from intrahepatic cholestasis of pregnancy. Placenta, 48, 133–135. https://doi.org/10.1016/j.placenta.2016.10.017 | spa |
dc.relation.references | Li, Y., Wang, Z., Ajani, J. A., & Song, S. (2021). Drug resistance and Cancer stem cells. In Cell Communication and Signaling (Vol. 19, Issue 1). https://doi.org/10.1186/s12964-020-00627-5 | spa |
dc.relation.references | Ling, G. Q., Chen, D. B., Wang, B. Q., & Zhang, L. S. (2012). Expression of the pluripotency markers Oct3/4, Nanog and Sox2 in human breast cancer cell lines. Oncology Letters, 4(6), 1264–1268. https://doi.org/10.3892/ol.2012.916 | spa |
dc.relation.references | Linneberg-Agerholm, M., Wong, Y. F., Herrera, J. A. R., Monteiro, R. S., Anderson, K. G. V., & Brickman, J. M. (2019). Naïve human pluripotent stem cells respond to Wnt, Nodal and LIF signalling to produce expandable naïve extra-embryonic endoderm. Development (Cambridge), 146(24). https://doi.org/10.1242/dev.180620 | spa |
dc.relation.references | Liu, A., Yu, X., & Liu, S. (2013). Pluripotency transcription factors and cancer stem cells: Small genes make a big difference. Chinese Journal of Cancer, 32(9), 483–487. https://doi.org/10.5732/cjc.012.10282 | spa |
dc.relation.references | Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4). | spa |
dc.relation.references | Lodhia, K., Tienchaiananda, P., & Haluska, P. (2015). Understanding the key to targeting the IGF axis in cancer: A biomarker assessment. Frontiers in Oncology, 5(JUN), 1–14. https://doi.org/10.3389/fonc.2015.00142 | spa |
dc.relation.references | Loh, Y. H., Wu, Q., Chew, J. L., Vega, V. B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., Wong, K. Y., Sung, K. W., Lee, C. W. H., Zhao, X. D., Chiu, K. P., Lipovich, L., Kuznetsov, V. A., Robson, P., Stanton, L. W., … Ng, H. H. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 38(4), 431–440. https://doi.org/10.1038/ng1760 | spa |
dc.relation.references | Loregger, T., Pollheimer, J., & Knöfler, M. (2003). Regulatory Transcription Factors Controlling Function and Differentiation of Human Trophoblast - A Review. Placenta, 17, S104–S110. https://doi.org/10.1053/plac.2002.0929 | spa |
dc.relation.references | Lunghi, L., Ferretti, M. E., Medici, S., Biondi, C., & Vesce, F. (2007). Control of human trophoblast function. Reproductive Biology and Endocrinology : RB&E, 5(1), 6. https://doi.org/10.1186/1477-7827-5-6 | spa |
dc.relation.references | Luo, W., Li, S., Peng, B., Ye, Y., Deng, X., & Yao, K. (2013). Embryonic Stem Cells Markers SOX2, OCT4 and Nanog Expression and Their Correlations with Epithelial-Mesenchymal Transition in Nasopharyngeal Carcinoma. PLoS ONE, 8(2). https://doi.org/10.1371/journal.pone.0056324 | spa |
dc.relation.references | Magnucki, G., Schenk, U., Ahrens, S., Navarrete Santos, A., Gernhardt, C. R., Schaller, H.-G., & Hoang-Vu, C. (2013). Expression of the IGF-1, IGFBP-3 and IGF-1 receptors in dental pulp stem cells and impacted third molars. Journal of Oral Science, 55(4), 319–327. https://doi.org/10.2334/josnusd.55.319 | spa |
dc.relation.references | Malaguarnera, R., & Belfiore, A. (2014). The emerging role of insulin and insulin-like growth factor signaling in cancer stem cells. Frontiers in Endocrinology, 5, 1–15. https://doi.org/10.3389/fendo.2014.00010 | spa |
dc.relation.references | Marikawa, Y., & Alarcon, V. B. (2012). Creation of trophectoderm, the first epithelium, in mouse preimplantation development. In Results and Problems in Cell Differentiation (Vol. 55). https://doi.org/10.1007/978-3-642-30406-4_9 | spa |
dc.relation.references | Melton, D. (2014). ‘Stemness ’: Definitions , Criteria, and Standards. Essentials of Stem Cell Biology, 7–17. https://doi.org/10.1016/B978-0-12-409503-8.00002-0 | spa |
dc.relation.references | Mol, J. (2019). Supplementary Materials. 3–7. | spa |
dc.relation.references | Muchkaeva, I. A., Dashinimaev, E. B., Terskikh, V. V, Sukhanov, Y. V, & Vasiliev, A. V. (2012). Molecular mechanisms of induced pluripotency. Acta Naturae, 4(1), 12–22. https://doi.org/10.5114/wo.2014.47134 | spa |
dc.relation.references | Murcia-Lora, J. M., & Esparza-Encina, M. L. (2009). VENTAJAS DE LA REPRODUCCIÓN HUMANA NATURAL. PERSONA Y BIOÉTICA, 13(1), 85–93. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-31222009000100007 | spa |
dc.relation.references | Nandi, P., Lim, H., Torres-Garcia, E. J., & Lala, P. K. (2018). Human trophoblast stem cell self-renewal and differentiation: Role of decorin. Scientific Reports, 8(1), 1–14. https://doi.org/10.1038/s41598-018-27119-4 | spa |
dc.relation.references | Nichols, J., & Smith, A. (2009). Naive and Primed Pluripotent States. Cell Stem Cell, 4(6), 487–492. https://doi.org/10.1016/j.stem.2009.05.015 | spa |
dc.relation.references | O’Dell, S. D., & Day, I. N. M. (1998). Molecules in focus Insulin-like growth factor II (IGF-II). The International Journal of Biochemistry & Cell Biology, 30, 767–771. https://doi.org/10.1016/S1357-2725(98)00048-X | spa |
dc.relation.references | Osher, E., & Macaulay, V. M. (2019). Therapeutic Targeting of the IGF Axis. Cells, 8(8), 895. https://doi.org/10.3390/cells8080895 | spa |
dc.relation.references | Peng, Y., Dai, Y., Hitchcock, C., Yang, X., Kassis, E. S., Liu, L., Luo, Z., Sun, H.-L., Cui, R., Wei, H., Kim, T., Lee, T. J., Jeon, Y.-J., Nuovo, G. J., Volinia, S., He, Q., Yu, J., Nana-Sinkam, P., & Croce, C. M. (2013). Insulin growth factor signaling is regulated by microRNA-486, an underexpressed microRNA in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 110(37), 15043–15048. https://doi.org/10.1073/pnas.1307107110 | spa |
dc.relation.references | Perez Millan, M. I., & Lorenti, A. (2006). Celulas troncales (stem cells) y regeneracion cardiaca. MEDICINA (Buenos Aires), 66(6), 574–582. | spa |
dc.relation.references | Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research, 29(9). https://doi.org/10.1093/nar/29.9.e45 | spa |
dc.relation.references | Playford, M. P., Bicknell, D., Bodmer, W. F., & Macaulay, V. M. (2000). Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of beta-catenin. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 12103–12108. https://doi.org/10.1073/pnas.210394297 | spa |
dc.relation.references | Riedemann, J., & Macaulay, V. M. (2006). IGF1R signalling and its inhibition. Endocrine-Related Cancer, 13, S33–S43. https://doi.org/10.1677/erc.1.01280 | spa |
dc.relation.references | Rieger, L., & O’Connor, R. (2021). Controlled Signaling—Insulin-Like Growth Factor Receptor Endocytosis and Presence at Intracellular Compartments. In Frontiers in Endocrinology (Vol. 11). https://doi.org/10.3389/fendo.2020.620013 | spa |
dc.relation.references | Rota, L. M., & Wood, T. L. (2015). Crosstalk of the insulin-like growth factor receptor with the Wnt signaling pathway in breast cancer. Frontiers in Endocrinology, 6(MAY), 1–5. https://doi.org/10.3389/fendo.2015.00092 | spa |
dc.relation.references | Sánchez-Gómez, M. (2014). Entendiendo el papel del sistema de factores de crecimiento similares a la insulina ( IGF ) en la regulación funcional del trofoblasto humano. Rev. Acad. Colomb. Cienc., 38(Supl.), 118–128. | spa |
dc.relation.references | Sánchez-Gómez, M. (2006). Significado Biológico Del Eje Hormona De Crecimiento ( Gh ) / Factor De Crecimiento Similar a La Insulina ( Igf ). Rev. Acad. Colomb. Cienc., 30(114), 101–108. | spa |
dc.relation.references | Sciacca, L., Le Moli, R., & Vigneri, R. (2012). Insulin analogs and cancer. Frontiers in Endocrinology, 3, 1–9. https://doi.org/10.3389/fendo.2012.00021 | spa |
dc.relation.references | Serrano, M.-L., Umaña-Pérez, A., Garay-Baquero, D. J., & Sánchez-Gómez, M. (2012). New Biomarkers for Cervical Cancer–Perspectives from the IGF System. Topics on Cervical Cancer With an Advocacy for Prevention, 20(6), 413–420. https://doi.org/10.1159/000353672 | spa |
dc.relation.references | Shan, J., Shen, J., Liu, L., Xia, F., Xu, C., Duan, G., Xu, Y., Ma, Q., Yang, Z., Zhang, Q., Ma, L., Liu, J., Xu, S., Yan, X., Bie, P., Cui, Y., Bian, X. W., & Qian, C. (2012). Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma. Hepatology, 56(3), 1004–1014. https://doi.org/10.1002/hep.25745 | spa |
dc.relation.references | Siddle, K. (2011). Signalling by insulin and IGF receptors: Supporting acts and new players. Journal of Molecular Endocrinology, 47(1), R1–R10. https://doi.org/10.1530/JME-11-0022 | spa |
dc.relation.references | Singh, P., Alex, J. M., & Bast, F. (2014). Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: Novel treatment strategies for cancer. Medical Oncology, 31(804). https://doi.org/10.1007/s12032-013-0805-3 | spa |
dc.relation.references | Siu, M. K. Y., Wong, E. S. Y., Hoi, Y. C., Ngan, H. Y. S., Chan, K. Y. K., & Cheung, A. N. Y. (2008). Overexpression of NANOG in gestational trophoblastic diseases: Effect on apoptosis, cell invasion, and clinical outcome. In American Journal of Pathology (Vol. 173, Issue 4, pp. 1165–1172). https://doi.org/10.2353/ajpath.2008.080288 | spa |
dc.relation.references | Soper, J. T. (2006). Gestational Trophoblastic Disease. Obstetrics & Gynecology, 108(1), 2380–2384. | spa |
dc.relation.references | Stenhouse, C., Hogg, C. O., & Ashworth, C. J. (2020). Identification of appropriate reference genes for qPCR analyses of porcine placentae and endometria, supplying foetuses of different size and sex, at multiple gestational days. Reproduction in Domestic Animals, 55(7), 785–794. https://doi.org/10.1111/rda.13685 | spa |
dc.relation.references | Strebinger, D., Deluz, C., Friman, E. T., Govindan, S., Alber, A. B., & Suter, D. M. (2019). Endogenous fluctuations of OCT 4 and SOX 2 bias pluripotent cell fate decisions . Molecular Systems Biology, 15(9), 1–19. https://doi.org/10.15252/msb.20199002 | spa |
dc.relation.references | Sun, A. X., Liu, C. J., Sun, Z. Q., & Wei, Z. (2014). NANOG: A promising target for digestive malignant tumors. World Journal of Gastroenterology, 20(36), 13071–13078. https://doi.org/10.3748/wjg.v20.i36.13071 | spa |
dc.relation.references | Svingen, T., Letting, H., Hadrup, N., Hass, U., & Vinggaard, A. M. (2015). Selection of reference genes for quantitative RT-PCR (RT-qPCR) analysis of rat tissues under physiological and toxicological conditions. PeerJ, 2015(3). https://doi.org/10.7717/peerj.855 | spa |
dc.relation.references | Takahashi, S. I. (2019). IGF research 2016–2018. Growth Hormone and IGF Research, 48–49(November), 65–69. https://doi.org/10.1016/j.ghir.2019.10.004 | spa |
dc.relation.references | Tapia, N., Maccarthy, C., Esch, D., Gabriele Marthaler, A., Tiemann, U., Araúzo-Bravo, M. J., Jauch, R., Cojocaru, V., & Schöler, H. R. (2015). Dissecting the role of distinct OCT4-SOX2 heterodimer configurations in pluripotency. Scientific Reports, 5. https://doi.org/10.1038/srep13533 | spa |
dc.relation.references | Ungewitter, E., & Scrable, H. (2010). Δ40p53 controls the switch from pluripotency to differentiation by regulating IGF signaling in ESCs. Genes and Development, 24, 2408–2419. https://doi.org/10.1101/gad.1987810 | spa |
dc.relation.references | WANG, C. H. A. O., LI, X., DANG, H., LIU, P. I. N. G., ZHANG, B. O., & XU, F. E. N. G. (2019). Insulin-like growth factor 2 regulates the proliferation and differentiation of rat adipose-derived stromal cells via IGF-1R and IR. Cytotherapy, 21(6), 619–630. https://doi.org/10.1016/j.jcyt.2018.11.010 | spa |
dc.relation.references | Wang, C., Su, K., Zhang, Y., Zhang, W., Zhao, Q., Chu, D., & Guo, R. (2019). IR-A/IGF-1R-mediated signals promote epithelial-mesenchymal transition of endometrial carcinoma cells by activating PI3K/AKT and ERK pathways. Cancer Biology and Therapy, 20(3). https://doi.org/10.1080/15384047.2018.1529096 | spa |
dc.relation.references | Wang, X. H., Wu, H. Y., Gao, J., Wang, X. H., Gao, T. H., & Zhang, S. F. (2019). IGF1R facilitates epithelial-mesenchymal transition and cancer stem cell properties in neuroblastoma via the STAT3/AKT axis. Cancer Management and Research, 11, 5459–5472. https://doi.org/10.2147/CMAR.S196862 | spa |
dc.relation.references | Weber, M., Knoefler, I., Schleussner, E., Markert, U. R., & Fitzgerald, J. S. (2013). HTR8/SVneo cells display trophoblast progenitor cell-like characteristics indicative of self-renewal, repopulation activity, and expression of “stemness-” associated transcription factors. BioMed Research International, 2013, 1–10. https://doi.org/10.1155/2013/243649 | spa |
dc.relation.references | Weidgang, C. E., Seufferlein, T., Kleger, A., & Mueller, M. (2016). Pluripotency factors on their lineage move. Stem Cells International, 2016. https://doi.org/10.1155/2016/6838253 | spa |
dc.relation.references | Werner, H., Shalita-Chesner, M., Abramovitch, S., Idelman, G., Shaharabani-Gargir, L., & Glaser, T. (2000). Regulation of the insulin-like growth factor-I receptor gene by oncogenes and antioncogenes: implications in human cancer. Molecular Genetics and Metabolism, 71, 315–320. https://doi.org/10.1006/mgme.2000.3044 | spa |
dc.relation.references | Xiu, M., Huan, X., Ou, Y., Ying, S., & Wang, J. (2021). The basic route of nuclear-targeted transport of IGF-1/IGF-1R and potential biological functions in intestinal epithelial cells. Cell Proliferation, 54(6). https://doi.org/10.1111/cpr.13030 | spa |
dc.relation.references | Xu, C., Xie, D., Yu, S. C., Yang, X. J., He, L. R., Yang, J., Ping, Y. F., Wang, B., Yang, L., Xu, S. L., Cui, W., Wang, Q. L., Fu, W. J., Liu, Q., Qian, C., Cui, Y. H., Rich, J. N., Kung, H. F., Zhang, X., & Bian, X. W. (2013). β-catenin/POU5F1/SOX2 transcription factor complex mediates IGF-I receptor signaling and predicts poor prognosis in lung adenocarcinoma. Cancer Research, 73(10), 3181–3189. https://doi.org/10.1158/0008-5472.CAN-12-4403 | spa |
dc.relation.references | Xu, D. D., Wang, Y., Zhou, P. J., Qin, S. R., Zhang, R., Zhang, Y., Xue, X., Wang, J., Wang, X., Chen, H. C., Wang, X., Pan, Y. W., Zhang, L., Yan, H. Z., Liu, Q. Y., Liu, Z., Chen, S. H., Chen, H. Y., & Wang, Y. F. (2018). The IGF2/IGF1R/Nanog signaling pathway regulates the proliferation of acute myeloid leukemia stem cells. Frontiers in Pharmacology, 9(June), 1–14. https://doi.org/10.3389/fphar.2018.00687 | spa |
dc.relation.references | Xu, Y., Kong, G. K. W., Menting, J. G., Margetts, M. B., Delaine, C. A., Jenkin, L. M., Kiselyov, V. V., De Meyts, P., Forbes, B. E., & Lawrence, M. C. (2018). How ligand binds to the type 1 insulin-like growth factor receptor. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03219-7 | spa |
dc.relation.references | Yao, C., Su, L., Shan, J., Zhu, C., Liu, L., Liu, C., Xu, Y., Yang, Z., Bian, X., Shao, J., Li, J., Lai, M., Shen, J., & Qian, C. (2016). IGF/STAT3/NANOG/Slug Signaling Axis Simultaneously Controls Epithelial-Mesenchymal Transition and Stemness Maintenance in Colorectal Cancer. AlphaMed Press 2016, 820–831. https://doi.org/http://dx.doi.org/ 10.1002/stem.2320 | spa |
dc.relation.references | Youssef, A., & Han, V. K. M. (2016). Low oxygen tension modulates the insulin-like growth factor-1 or -2 signaling via both insulin-like growth factor-1 receptor and insulin receptor to maintain stem cell identity in placental mesenchymal stem cells. Endocrinology, 157(3), 1163–1174. https://doi.org/10.1210/en.2015-1297 | spa |
dc.relation.references | Yu, H., & Rohan, T. (2000). Role of the Insulin-Like Growth Factor Family in Cancer Development and Progression. Journal of the National Cancer Institute, 92(18), 1472–1489. | spa |
dc.relation.references | Zhang, H., Pelzer, A. M., Kiang, D. T., & Yee, D. (2007). Down-regulation of type I insulin-like growth factor receptor increases sensitivity of breast cancer cells to insulin. Cancer Research, 67(1), 391–397. https://doi.org/10.1158/0008-5472.CAN-06-1712 | spa |
dc.relation.references | Zhao, H., Ozen, M., Wong, R. J., & Stevenson, D. K. (2015). Heme oxygenase-1 in pregnancy and cancer: similarities in cellular invasion, cytoprotection, angiogenesis, and immunomodulation. Frontiers in Pharmacology, 5(January), 1–10. https://doi.org/10.3389/fphar.2014.00295 | spa |
dc.relation.references | Zhou, H. M., Zhang, J. G., Zhang, X., & Li, Q. (2021). Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. In Signal Transduction and Targeted Therapy (Vol. 6, Issue 1). https://doi.org/10.1038/s41392-020-00430-1 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | spa |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | spa |
dc.subject.decs | Adult Germline Stem Cells | eng |
dc.subject.decs | Células madre | spa |
dc.subject.decs | Stem Cells | eng |
dc.subject.decs | Células Madre Embrionarias | spa |
dc.subject.decs | Embryonic Stem Cells | eng |
dc.subject.lemb | Células Madre Germinales Adultas | spa |
dc.subject.proposal | Pluripotencia | spa |
dc.subject.proposal | Cáncer | spa |
dc.subject.proposal | Factores de crecimiento | spa |
dc.subject.proposal | Trofoblasto | spa |
dc.subject.proposal | Pluripotency | eng |
dc.subject.proposal | Cancer | eng |
dc.subject.proposal | Growth Factors | eng |
dc.subject.proposal | Trophoblast | eng |
dc.title | Relevancia del receptor del factor de crecimiento similar a insulina (IGF-1R) en el fenotipo celular pluripotente de trofoblasto humano | spa |
dc.title.translated | Relevance of the Insulin-like growth factor receptor (IGF-1R) in the human trophoblast pluripotent cell phenotype | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Other | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Minciencias | spa |
oaire.fundername | División de Investigación Sede Bogotá - DIB | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1020757401.2023.pdf
- Tamaño:
- 1.85 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Bioquímica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: