Relevancia del receptor del factor de crecimiento similar a insulina (IGF-1R) en el fenotipo celular pluripotente de trofoblasto humano

dc.contributor.advisorUmaña Pérez, Adriana
dc.contributor.authorRamírez Ambrosio, Oscar Mauricio
dc.contributor.researchgroupGrupo de Investigación en Hormonasspa
dc.date.accessioned2023-08-14T16:06:31Z
dc.date.available2023-08-14T16:06:31Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, fotografías a colorspa
dc.description.abstractDiversos estudios han puesto de manifiesto la relación entre la señalización celular mediada por el receptor del Factor de Crecimiento similar a Insulina 1 (IGF-1R), la expresión de factores de pluripotencia canónicos, el cáncer y la enfermedad trofoblástica gestacional (ETG), sin embargo, se desconoce la relevancia de la señalización del IGF-1R mediada por IGF2, principal factor de crecimiento expresado durante la gestación, en la expresión de los factores de pluripotencia Oct4, Sox2 y Nanog en trofoblasto. Para acercarnos a este interrogante, se utilizó como modelo biológico la línea celular proveniente de trofoblasto humano del primer trimestre de gestación HTR-8/SVneo y una línea derivada de ella por silenciamiento estable para el IGF-1R (HTR-8/SVneo shIGF-IR). Ambas líneas celulares crecieron bajo privación de suero fetal bovino en presencia o ausencia de IGF2 10 nM durante 12, 24, 36, 48 y 72h. Los genes de interés se cuantificaron mediante RT-qPCR. HTR-8/SVneo presenta una sobreexpresión Masiva Aguda de los tres Factores de Pluripotencia (SEMA-FP) a las 12h respecto a la condición basal (Nanog: 43 veces, Oct4: 10 veces, Sox2: 8 veces, p<0.001) dependiente de niveles basales de IGF-1R, como respuesta a la privación de suero, probablemente como mecanismo de protección frente al estrés celular, manteniendo su potencial de diferenciación y de regeneración de sus subpoblaciones celulares. Oct4, Sox2 y Nanog presentan expresión mínima (basal) de transcrito independiente de la presencia de suero e IGF2, no obstante, el suero inhibe la SEMA-FP de los tres factores, mientras que IGF2, en ausencia de suero, inhibe parcialmente la de Oct4 y Nanog, pero no la de Sox2. Estas inhibiciones pueden depender o no de la existencia de niveles basales de IGF-1R para cada uno de los tres factores. La detección de los tres FP es retadora a nivel de proteína en HTR-8/SVneo debido a su baja expresión, la cual se limita a subpoblaciones celulares específicas. IGF-1R y Nanog se postulan como blancos moleculares a ser tenidos en cuenta en estudios dirigidos al tratamiento de ETG como coriocarcinoma, particularmente aquellos que poseen células madre del cáncer y presentan resistencia a tratamientos convencionales. (Texto tomado de la fuente)spa
dc.description.abstractSeveral studies have revealed the link between the Insulin-like Growth Factor 1 receptor (IGF-1R) mediated cell signaling, the expression of canonical pluripotency factors, cancer and gestational trophoblastic disease (GTD). Nevertheless, the relevance of IGF-1R mediated IGF2 (the main growth factor expressed during pregnancy) regulation of Oct4, Sox2 and Nanog pluripotency factors in trophoblasts is unknown. To approach this question, we used as biological models the first trimester derived human trophoblast cell line HTR-8/SVneo and a HTR-8/SVneo derived IGF-1R stable silenced cell line. Both cell lines grew under fetal bovine serum deprivation in the presence or absence of IGF2 10 nM for 12, 24, 36, 48 and 72h. The genes of interest were quantified by RT-qPCR. HTR-8/SVneo showed an Acute Massive Overexpression of the three Pluripotency Factors (AMO-PF) at 12h compared to the baseline condition (Nanog: 43-fold, Oct4: 10-fold and Sox2: 8-fold, p<0.001-0.0001) dependent on basal IGF-1R levels, as a response to serum deprivation, probably as a protection mechanism against cellular stress, in order to maintain the cell subpopulation regenerative and differentiation potential. Oct4, Sox2 and Nanog showed a transcript expression minimum (baseline), independent of serum and IGF2 presence, nevertheless, serum inhibits the AMO-PF of all three factors, while IGF2, in the absence of serum, partially inhibits Oct4 and Nanog but not Sox2. The dependence of these inhibitions on IGF-1R baseline levels is specific for each of the three factors. Detection of all three PFs is particularly challenging at the protein level in HTR-8/SVneo due to their low expression, which is limited to specific cell subpopulations. We propose IGF-1R and Nanog as molecular targets to be considered in GTD (such as choriocarcinoma) treatment studies, particularly those including cancer stem cells and showing conventional treatment resistance.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Bioquímicaspa
dc.description.researchareaFactores de crecimiento, diferenciación y cáncerspa
dc.format.extentxvi, 73 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84551
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesAbou-Kheir, W., Barrak, J., Hadadeh, O., & Daoud, G. (2017). HTR-8/SVneo cell line contains a mixed population of cells. Placenta, 50, 1–7. https://doi.org/10.1016/j.placenta.2016.12.007spa
dc.relation.referencesAkberdin, I. R., Omelyanchuk, N. A., Fadeev, S. I., Leskova, N. E., Oschepkova, E. A., Kazantsev, F. V., Matushkin, Y. G., Afonnikov, D. A., & Kolchanov, N. A. (2018). Pluripotency gene network dynamics: System views from parametric analysis. In PLoS ONE (Vol. 13, Issue 3). https://doi.org/10.1371/journal.pone.0194464spa
dc.relation.referencesAlarcón Barrera, J. C., & Umaña Pérez, Y. A. (2011). Interacción del sistema de factores de crecimiento similares a la insulina (IGF) y la hormona gonadotropina (hGC) en la diferenciación celular trofoblástica.spa
dc.relation.referencesBalahmar, R. M., Boocock, D. J., Coveney, C., Ray, S., Vadakekolathu, J., Regad, T., Ali, S., & Sivasubramaniam, S. (2018). Identification and characterisation of NANOG+/ OCT-4high/ SOX2+ doxorubicin-resistant stem-like cells from transformed trophoblastic cell lines. Oncotarget, 9(6), 7054–7065. https://doi.org/10.18632/oncotarget.24151spa
dc.relation.referencesBarroca, V., Lewandowski, D., Jaracz-Ros, A., & Hardouin, S. N. (2017). Paternal Insulin-like Growth Factor 2 (Igf2) Regulates Stem Cell Activity During Adulthood. EBioMedicine, 15, 150–162. https://doi.org/10.1016/j.ebiom.2016.11.035spa
dc.relation.referencesBeck, B., & Blanpain, C. (2013). Unravelling cancer stem cell potential. Nature Reviews Cancer, 13(10), 727–738. https://doi.org/10.1038/nrc3597spa
dc.relation.referencesBelfiore, A., Frasca, F., Pandini, G., Sciacca, L., & Vigneri, R. (2009). Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocrine Reviews, 30(6), 586–623. https://doi.org/10.1210/er.2008-0047spa
dc.relation.referencesBelfiore, A., Malaguarnera, R., Vella, V., Lawrence, M. C., Sciacca, L., Frasca, F., Morrione, A., & Vigneri, R. (2017). Insulin receptor isoforms in physiology and disease: An updated view. Endocrine Reviews, 38(5), 1–84. https://doi.org/10.1210/er.2017-00073spa
dc.relation.referencesBellazi, L., Mornet, E., Meurice, G., Pata-Merci, N., De Mazancourt, P., & Dieudonné, M. N. (2011). Genome wide expression profile in human HTR-8/Svneo trophoblastic cells in response to overexpression of placental alkaline phosphatase gene. Placenta, 32(10), 771–777. https://doi.org/10.1016/j.placenta.2011.06.029spa
dc.relation.referencesBermúdez, A. J., Cortés, C., Díaz, L. E., Crane, C., Ching, R., Aragón, M., Cantero, M., Bernal, Y., Alava, C., Arteaga, C., Anzola, C., Carrasco-Rodríguez, S., & Sánchez-Gómez, M. (2006). Estudio bioquímico y genético de la enfermedad trofoblástica gestacional. Revista MEDICINA, 28(1), 14–18.spa
dc.relation.referencesBieberich, E., & Wang, G. (2013). Molecular Mechanisms Underlying Pluripotency. InTech. https://doi.org/10.5772/45917spa
dc.relation.referencesBoyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., Gifford, D. K., Melton, D. A., Jaenisch, R., & Young, R. A. (2005). Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells. Cell, 122(6), 947–956. https://doi.org/10.1016/j.cell.2005.08.020.spa
dc.relation.referencesChambers, I., & Tomlinson, S. R. (2009). The transcriptional foundation of pluripotency. Development, 136(14), 2311–2322. https://doi.org/10.1242/dev.024398spa
dc.relation.referencesChen, P. C., Kuo, Y. C., Chuong, C. M., & Huang, Y. H. (2021). Niche Modulation of IGF-1R Signaling: Its Role in Stem Cell Pluripotency, Cancer Reprogramming, and Therapeutic Applications. In Frontiers in Cell and Developmental Biology (Vol. 8). https://doi.org/10.3389/fcell.2020.625943spa
dc.relation.referencesChughtai, S. (2020). The nuclear translocation of insulin-like growth factor receptor and its significance in cancer cell survival. In Cell Biochemistry and Function (Vol. 38, Issue 4). https://doi.org/10.1002/cbf.3479spa
dc.relation.referencesCianfarani, S. (2012). Insulin-like growth factor-II: New roles for an old actor. Frontiers in Endocrinology, 3, 1–4. https://doi.org/10.3389/fendo.2012.00118spa
dc.relation.referencesClarke, M. F., Dick, J. E., Dirks, P. B., Eaves, C. J., Jamieson, C. H. M., Jones, D. L., Visvader, J., Weissman, I. L., & Wahl, G. M. (2006). Cancer stem cells - Perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Research, 66(19), 9339–9344. https://doi.org/10.1158/0008-5472.CAN-06-3126spa
dc.relation.referencesDe Los Angeles, A., Ferrari, F., Xi, R., Fujiwara, Y., Benvenisty, N., Deng, H., Hochedlinger, K., Jaenisch, R., Lee, S., Leitch, H. G., Lensch, M. W., Lujan, E., Pei, D., Rossant, J., Wernig, M., Park, P. J., & Daley, G. Q. (2015). Hallmarks of pluripotency. Nature, 525(7570), 469–478. https://doi.org/10.1038/nature15515spa
dc.relation.referencesDenduluri, S. K., Idowu, O., Wang, Z., Liao, Z., Yan, Z., Mohammed, M. K., Ye, J., Wei, Q., Wang, J., Zhao, L., & Luu, H. H. (2015a). Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes & Diseases, 2(1), 13–25. https://doi.org/10.1016/j.gendis.2014.10.004spa
dc.relation.referencesDenduluri, S. K., Idowu, O., Wang, Z., Liao, Z., Yan, Z., Mohammed, M. K., Ye, J., Wei, Q., Wang, J., Zhao, L., & Luu, H. H. (2015b). Insulin-like growth factor (IGF) signaling intumorigenesis and the development ofcancer drug resistance. Genes and Diseases, 2(1), 13–25. https://doi.org/10.1016/j.gendis.2014.10.004spa
dc.relation.referencesDiaz, L. E., Chuan, Y. C., Lewitt, M., Fernandez-Perez, L., Carrasco-Rodr??guez, S., Sanchez-Gomez, M., & Flores-Morales, A. (2007). IGF-II regulates metastatic properties of choriocarcinoma cells through the activation of the insulin receptor. Molecular Human Reproduction, 13(8), 567–576. https://doi.org/10.1093/molehr/gam039spa
dc.relation.referencesDíaz, L. E., Chuan, Y. C., Lewitt, M., Fernandez-Perez, L., Carrasco-Rodríguez, S., Sanchez-Gomez, M., & Flores-Morales, A. (2007). IGF-II regulates metastatic properties of choriocarcinoma cells through the activation of the insulin receptor. Molecular Human Reproduction, 13(8), 567–576. https://doi.org/10.1093/molehr/gam039spa
dc.relation.referencesDreesen, O., & Brivanlou, A. H. (2007). Signaling pathways in cancer and embryonic stem cells. Stem Cell Reviews, 3(1), 7–17. https://doi.org/10.1007/s12015-007-0004-8spa
dc.relation.referencesDyer, A. H., Vahdatpour, C., Sanfeliu, A., & Tropea, D. (2016). The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience, 325, 89–99. https://doi.org/10.1016/j.neuroscience.2016.03.056spa
dc.relation.referencesFeng, H. C., Choy, M. Y., Wen, D., Lok, W. H., Lau, W. M., Cheung, A. N. Y., Ngan, H. Y. S., & Sai, W. T. (2005). Establishment and characterization of a human first-trimester extravillous trophoblast cell line (TEV-1). Journal of the Society for Gynecologic Investigation, 12(4). https://doi.org/10.1016/j.jsgi.2005.02.008spa
dc.relation.referencesFerretti, C., Bruni, L., Dangles-Marie, V., Pecking, A. P., & Bellet, D. (2007). Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Human Reproduction Update, 13(2), 121–141. https://doi.org/10.1093/humupd/dml048spa
dc.relation.referencesForbes, K., Westwood, M., Baker, P. N., & Aplin, J. D. (2008). Insulin-like growth factor I and II regulate the life cycle of trophoblast in the developing human placenta. American Journal of Physiology - Cell Physiology, 294(6), 1313–1322. https://doi.org/10.1152/ajpcell.00035.2008spa
dc.relation.referencesFrystyk, J. (2004). Free insulin-like growth factors - Measurements and relationships to growth hormone secretion and glucose homeostasis. Growth Hormone and IGF Research, 14, 337–375. https://doi.org/10.1016/j.ghir.2004.06.001spa
dc.relation.referencesFulda, S., & Pervaiz, S. (2010). Apoptosis signaling in cancer stem cells. The International Journal of Biochemistry & Cell Biology, 42, 31–38. https://doi.org/10.1016/j.biocel.2009.06.010spa
dc.relation.referencesGaggianesi, M., Di Franco, S., Pantina, V. D., Porcelli, G., D’Accardo, C., Verona, F., Veschi, V., Colarossi, L., Faldetta, N., Pistone, G., Bongiorno, M. R., Todaro, M., & Stassi, G. (2021). Messing Up the Cancer Stem Cell Chemoresistance Mechanisms Supported by Tumor Microenvironment. In Frontiers in Oncology (Vol. 11). https://doi.org/10.3389/fonc.2021.702642spa
dc.relation.referencesGawlik-Rzemieniewska, N., & Bednarek, I. (2016). The role of NANOG transcriptional factor in the development of malignant phenotype of cancer cells. In Cancer Biology and Therapy (Vol. 17, Issue 1). https://doi.org/10.1080/15384047.2015.1121348spa
dc.relation.referencesGe, C., Yu, P., Fang, M., Wang, H., & Zhang, Y. (2021). Selection of reliable reference genes for analysis of gene expression in the rat placenta. Molecular and Cellular Biochemistry, 476(7), 2613–2622. https://doi.org/10.1007/s11010-021-04115-3spa
dc.relation.referencesGraham, C. H., Hawley, T. S., Hawley, R. G., MacDougall, J. R., Kerbel, R. S., Khoo, N., & Lala, P. K. (1993). Establishment and characterization of first trimester human trophoblast cells with extended lifespan. In Experimental cell research (Vol. 206, pp. 204–211). https://doi.org/10.1006/excr.1993.1139spa
dc.relation.referencesHan, L., Shi, S., Gong, T., Zhang, Z., & Sun, X. (2013). Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharmaceutica Sinica B, 3(2), 65–75. https://doi.org/10.1016/j.apsb.2013.02.006spa
dc.relation.referencesHanahan, D., & Weinberg, R. A. (2011a). Hallmarks of cancer: The next generation. In Cell (Vol. 144, pp. 646–674).spa
dc.relation.referencesHanahan, D., & Weinberg, R. A. (2011b). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013spa
dc.relation.referencesHarris, L. K., Crocker, I. P., Baker, P. N., Aplin, J. D., & Westwood, M. (2011). IGF2 actions on trophoblast in human placenta are regulated by the insulin-like growth factor 2 receptor, which can function as both a signaling and clearance receptor. Biology of Reproduction, 84(3), 440–446. https://doi.org/10.1095/biolreprod.110.088195spa
dc.relation.referencesHoltan, S. G., Creedon, D. J., Haluska, P., & Markovic, S. N. (2009). Cancer and Pregnancy: Parallels in Growth, Invasion, and Immune Modulation and Implications for Cancer Therapeutic Agents. Mayo Clinic Proceedings, 84(11), 985–1000. https://doi.org/10.4065/84.11.985spa
dc.relation.referencesHuang, Y.-H., Chin, C.-C., Ho, H.-N., Chou, C.-K., Shen, C.-N., Kuo, H.-C., Wu, T.-J., Wu, Y.-C., Hung, Y.-C., Chang, C.-C., & Ling, T.-Y. (2009). Pluripotency of mouse spermatogonial stem cells maintained by IGF-1- dependent pathway. The FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 23, 2076–2087. https://doi.org/10.1096/fj.08-121939spa
dc.relation.referencesJeter, C. R., Yang, T., Wang, J., Chao, H. P., & Tang, D. G. (2015). Concise Review: NANOG in Cancer Stem Cells and Tumor Development: An Update and Outstanding Questions. Stem Cells, 33(8), 2381–2390. https://doi.org/10.1002/stem.2007spa
dc.relation.referencesKasprzak, A., Kwasniewski, W., Adamek, A., & Gozdzicka-Jozefiak, A. (2017). Insulin-like growth factor (IGF) axis in cancerogenesis. Mutation Research - Reviews in Mutation Research, 772, 78–104. https://doi.org/10.1016/j.mrrev.2016.08.007spa
dc.relation.referencesKim, J., Chu, J., Shen, X., Wang, J., & Orkin, S. H. (2008). An Extended Transcriptional Network for Pluripotency of Embryonic Stem Cells. Cell, 132, 1049–1061. https://doi.org/10.1016/j.cell.2008.02.039spa
dc.relation.referencesKim, P. T. W., & Ong, C. J. (2012). Differentiation of Definitive Endoderm from mESCs. Chapter 17, 55, 303–319. https://doi.org/10.1007/978-3-642-30406-4spa
dc.relation.referencesKondoh, H., Uchikawa, M., & Kamachi, Y. (2004). Interplay of Pax6 and SOX2 in lens development as a paradigm of genetic switch mechanisms for cell differentiation. In International Journal of Developmental Biology (Vol. 48, Issues 8–9). https://doi.org/10.1387/ijdb.041868hkspa
dc.relation.referencesKrauss. (2009). :Biochemistry of Signal Transduction and Regulation. In The Quarterly Review of Biology (Vol. 84). https://doi.org/10.1086/603489spa
dc.relation.referencesKruger, N. J. (2009). The Bradford Method For Protein Quantitation. https://doi.org/10.1007/978-1-59745-198-7_4spa
dc.relation.referencesKruger, T. F., & Botha, M. H. (2007). Clinical Gynaecology. Juta. https://books.google.co.ve/books?id=uEdqlYXUNDwCspa
dc.relation.referencesKuo, Y. C., Au, H. K., Hsu, J. L., Wang, H. F., Lee, C. J., Peng, S. W., Lai, S. C., Wu, Y. C., Ho, H. N., & Huang, Y. H. (2018). IGF-1R Promotes Symmetric Self-Renewal and Migration of Alkaline Phosphatase+ Germ Stem Cells through HIF-2α-OCT4/CXCR4 Loop under Hypoxia. Stem Cell Reports, 10(2), 524–537. https://doi.org/10.1016/j.stemcr.2017.12.003spa
dc.relation.referencesLi, Y., Lu, H., Ji, Y., Wu, S., & Yang, Y. (2016). Identification of genes for normalization of real-time RT-PCR data in placental tissues from intrahepatic cholestasis of pregnancy. Placenta, 48, 133–135. https://doi.org/10.1016/j.placenta.2016.10.017spa
dc.relation.referencesLi, Y., Wang, Z., Ajani, J. A., & Song, S. (2021). Drug resistance and Cancer stem cells. In Cell Communication and Signaling (Vol. 19, Issue 1). https://doi.org/10.1186/s12964-020-00627-5spa
dc.relation.referencesLing, G. Q., Chen, D. B., Wang, B. Q., & Zhang, L. S. (2012). Expression of the pluripotency markers Oct3/4, Nanog and Sox2 in human breast cancer cell lines. Oncology Letters, 4(6), 1264–1268. https://doi.org/10.3892/ol.2012.916spa
dc.relation.referencesLinneberg-Agerholm, M., Wong, Y. F., Herrera, J. A. R., Monteiro, R. S., Anderson, K. G. V., & Brickman, J. M. (2019). Naïve human pluripotent stem cells respond to Wnt, Nodal and LIF signalling to produce expandable naïve extra-embryonic endoderm. Development (Cambridge), 146(24). https://doi.org/10.1242/dev.180620spa
dc.relation.referencesLiu, A., Yu, X., & Liu, S. (2013). Pluripotency transcription factors and cancer stem cells: Small genes make a big difference. Chinese Journal of Cancer, 32(9), 483–487. https://doi.org/10.5732/cjc.012.10282spa
dc.relation.referencesLivak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4).spa
dc.relation.referencesLodhia, K., Tienchaiananda, P., & Haluska, P. (2015). Understanding the key to targeting the IGF axis in cancer: A biomarker assessment. Frontiers in Oncology, 5(JUN), 1–14. https://doi.org/10.3389/fonc.2015.00142spa
dc.relation.referencesLoh, Y. H., Wu, Q., Chew, J. L., Vega, V. B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., Wong, K. Y., Sung, K. W., Lee, C. W. H., Zhao, X. D., Chiu, K. P., Lipovich, L., Kuznetsov, V. A., Robson, P., Stanton, L. W., … Ng, H. H. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 38(4), 431–440. https://doi.org/10.1038/ng1760spa
dc.relation.referencesLoregger, T., Pollheimer, J., & Knöfler, M. (2003). Regulatory Transcription Factors Controlling Function and Differentiation of Human Trophoblast - A Review. Placenta, 17, S104–S110. https://doi.org/10.1053/plac.2002.0929spa
dc.relation.referencesLunghi, L., Ferretti, M. E., Medici, S., Biondi, C., & Vesce, F. (2007). Control of human trophoblast function. Reproductive Biology and Endocrinology : RB&E, 5(1), 6. https://doi.org/10.1186/1477-7827-5-6spa
dc.relation.referencesLuo, W., Li, S., Peng, B., Ye, Y., Deng, X., & Yao, K. (2013). Embryonic Stem Cells Markers SOX2, OCT4 and Nanog Expression and Their Correlations with Epithelial-Mesenchymal Transition in Nasopharyngeal Carcinoma. PLoS ONE, 8(2). https://doi.org/10.1371/journal.pone.0056324spa
dc.relation.referencesMagnucki, G., Schenk, U., Ahrens, S., Navarrete Santos, A., Gernhardt, C. R., Schaller, H.-G., & Hoang-Vu, C. (2013). Expression of the IGF-1, IGFBP-3 and IGF-1 receptors in dental pulp stem cells and impacted third molars. Journal of Oral Science, 55(4), 319–327. https://doi.org/10.2334/josnusd.55.319spa
dc.relation.referencesMalaguarnera, R., & Belfiore, A. (2014). The emerging role of insulin and insulin-like growth factor signaling in cancer stem cells. Frontiers in Endocrinology, 5, 1–15. https://doi.org/10.3389/fendo.2014.00010spa
dc.relation.referencesMarikawa, Y., & Alarcon, V. B. (2012). Creation of trophectoderm, the first epithelium, in mouse preimplantation development. In Results and Problems in Cell Differentiation (Vol. 55). https://doi.org/10.1007/978-3-642-30406-4_9spa
dc.relation.referencesMelton, D. (2014). ‘Stemness ’: Definitions , Criteria, and Standards. Essentials of Stem Cell Biology, 7–17. https://doi.org/10.1016/B978-0-12-409503-8.00002-0spa
dc.relation.referencesMol, J. (2019). Supplementary Materials. 3–7.spa
dc.relation.referencesMuchkaeva, I. A., Dashinimaev, E. B., Terskikh, V. V, Sukhanov, Y. V, & Vasiliev, A. V. (2012). Molecular mechanisms of induced pluripotency. Acta Naturae, 4(1), 12–22. https://doi.org/10.5114/wo.2014.47134spa
dc.relation.referencesMurcia-Lora, J. M., & Esparza-Encina, M. L. (2009). VENTAJAS DE LA REPRODUCCIÓN HUMANA NATURAL. PERSONA Y BIOÉTICA, 13(1), 85–93. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-31222009000100007spa
dc.relation.referencesNandi, P., Lim, H., Torres-Garcia, E. J., & Lala, P. K. (2018). Human trophoblast stem cell self-renewal and differentiation: Role of decorin. Scientific Reports, 8(1), 1–14. https://doi.org/10.1038/s41598-018-27119-4spa
dc.relation.referencesNichols, J., & Smith, A. (2009). Naive and Primed Pluripotent States. Cell Stem Cell, 4(6), 487–492. https://doi.org/10.1016/j.stem.2009.05.015spa
dc.relation.referencesO’Dell, S. D., & Day, I. N. M. (1998). Molecules in focus Insulin-like growth factor II (IGF-II). The International Journal of Biochemistry & Cell Biology, 30, 767–771. https://doi.org/10.1016/S1357-2725(98)00048-Xspa
dc.relation.referencesOsher, E., & Macaulay, V. M. (2019). Therapeutic Targeting of the IGF Axis. Cells, 8(8), 895. https://doi.org/10.3390/cells8080895spa
dc.relation.referencesPeng, Y., Dai, Y., Hitchcock, C., Yang, X., Kassis, E. S., Liu, L., Luo, Z., Sun, H.-L., Cui, R., Wei, H., Kim, T., Lee, T. J., Jeon, Y.-J., Nuovo, G. J., Volinia, S., He, Q., Yu, J., Nana-Sinkam, P., & Croce, C. M. (2013). Insulin growth factor signaling is regulated by microRNA-486, an underexpressed microRNA in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 110(37), 15043–15048. https://doi.org/10.1073/pnas.1307107110spa
dc.relation.referencesPerez Millan, M. I., & Lorenti, A. (2006). Celulas troncales (stem cells) y regeneracion cardiaca. MEDICINA (Buenos Aires), 66(6), 574–582.spa
dc.relation.referencesPfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research, 29(9). https://doi.org/10.1093/nar/29.9.e45spa
dc.relation.referencesPlayford, M. P., Bicknell, D., Bodmer, W. F., & Macaulay, V. M. (2000). Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of beta-catenin. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 12103–12108. https://doi.org/10.1073/pnas.210394297spa
dc.relation.referencesRiedemann, J., & Macaulay, V. M. (2006). IGF1R signalling and its inhibition. Endocrine-Related Cancer, 13, S33–S43. https://doi.org/10.1677/erc.1.01280spa
dc.relation.referencesRieger, L., & O’Connor, R. (2021). Controlled Signaling—Insulin-Like Growth Factor Receptor Endocytosis and Presence at Intracellular Compartments. In Frontiers in Endocrinology (Vol. 11). https://doi.org/10.3389/fendo.2020.620013spa
dc.relation.referencesRota, L. M., & Wood, T. L. (2015). Crosstalk of the insulin-like growth factor receptor with the Wnt signaling pathway in breast cancer. Frontiers in Endocrinology, 6(MAY), 1–5. https://doi.org/10.3389/fendo.2015.00092spa
dc.relation.referencesSánchez-Gómez, M. (2014). Entendiendo el papel del sistema de factores de crecimiento similares a la insulina ( IGF ) en la regulación funcional del trofoblasto humano. Rev. Acad. Colomb. Cienc., 38(Supl.), 118–128.spa
dc.relation.referencesSánchez-Gómez, M. (2006). Significado Biológico Del Eje Hormona De Crecimiento ( Gh ) / Factor De Crecimiento Similar a La Insulina ( Igf ). Rev. Acad. Colomb. Cienc., 30(114), 101–108.spa
dc.relation.referencesSciacca, L., Le Moli, R., & Vigneri, R. (2012). Insulin analogs and cancer. Frontiers in Endocrinology, 3, 1–9. https://doi.org/10.3389/fendo.2012.00021spa
dc.relation.referencesSerrano, M.-L., Umaña-Pérez, A., Garay-Baquero, D. J., & Sánchez-Gómez, M. (2012). New Biomarkers for Cervical Cancer–Perspectives from the IGF System. Topics on Cervical Cancer With an Advocacy for Prevention, 20(6), 413–420. https://doi.org/10.1159/000353672spa
dc.relation.referencesShan, J., Shen, J., Liu, L., Xia, F., Xu, C., Duan, G., Xu, Y., Ma, Q., Yang, Z., Zhang, Q., Ma, L., Liu, J., Xu, S., Yan, X., Bie, P., Cui, Y., Bian, X. W., & Qian, C. (2012). Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma. Hepatology, 56(3), 1004–1014. https://doi.org/10.1002/hep.25745spa
dc.relation.referencesSiddle, K. (2011). Signalling by insulin and IGF receptors: Supporting acts and new players. Journal of Molecular Endocrinology, 47(1), R1–R10. https://doi.org/10.1530/JME-11-0022spa
dc.relation.referencesSingh, P., Alex, J. M., & Bast, F. (2014). Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: Novel treatment strategies for cancer. Medical Oncology, 31(804). https://doi.org/10.1007/s12032-013-0805-3spa
dc.relation.referencesSiu, M. K. Y., Wong, E. S. Y., Hoi, Y. C., Ngan, H. Y. S., Chan, K. Y. K., & Cheung, A. N. Y. (2008). Overexpression of NANOG in gestational trophoblastic diseases: Effect on apoptosis, cell invasion, and clinical outcome. In American Journal of Pathology (Vol. 173, Issue 4, pp. 1165–1172). https://doi.org/10.2353/ajpath.2008.080288spa
dc.relation.referencesSoper, J. T. (2006). Gestational Trophoblastic Disease. Obstetrics & Gynecology, 108(1), 2380–2384.spa
dc.relation.referencesStenhouse, C., Hogg, C. O., & Ashworth, C. J. (2020). Identification of appropriate reference genes for qPCR analyses of porcine placentae and endometria, supplying foetuses of different size and sex, at multiple gestational days. Reproduction in Domestic Animals, 55(7), 785–794. https://doi.org/10.1111/rda.13685spa
dc.relation.referencesStrebinger, D., Deluz, C., Friman, E. T., Govindan, S., Alber, A. B., & Suter, D. M. (2019). Endogenous fluctuations of OCT 4 and SOX 2 bias pluripotent cell fate decisions . Molecular Systems Biology, 15(9), 1–19. https://doi.org/10.15252/msb.20199002spa
dc.relation.referencesSun, A. X., Liu, C. J., Sun, Z. Q., & Wei, Z. (2014). NANOG: A promising target for digestive malignant tumors. World Journal of Gastroenterology, 20(36), 13071–13078. https://doi.org/10.3748/wjg.v20.i36.13071spa
dc.relation.referencesSvingen, T., Letting, H., Hadrup, N., Hass, U., & Vinggaard, A. M. (2015). Selection of reference genes for quantitative RT-PCR (RT-qPCR) analysis of rat tissues under physiological and toxicological conditions. PeerJ, 2015(3). https://doi.org/10.7717/peerj.855spa
dc.relation.referencesTakahashi, S. I. (2019). IGF research 2016–2018. Growth Hormone and IGF Research, 48–49(November), 65–69. https://doi.org/10.1016/j.ghir.2019.10.004spa
dc.relation.referencesTapia, N., Maccarthy, C., Esch, D., Gabriele Marthaler, A., Tiemann, U., Araúzo-Bravo, M. J., Jauch, R., Cojocaru, V., & Schöler, H. R. (2015). Dissecting the role of distinct OCT4-SOX2 heterodimer configurations in pluripotency. Scientific Reports, 5. https://doi.org/10.1038/srep13533spa
dc.relation.referencesUngewitter, E., & Scrable, H. (2010). Δ40p53 controls the switch from pluripotency to differentiation by regulating IGF signaling in ESCs. Genes and Development, 24, 2408–2419. https://doi.org/10.1101/gad.1987810spa
dc.relation.referencesWANG, C. H. A. O., LI, X., DANG, H., LIU, P. I. N. G., ZHANG, B. O., & XU, F. E. N. G. (2019). Insulin-like growth factor 2 regulates the proliferation and differentiation of rat adipose-derived stromal cells via IGF-1R and IR. Cytotherapy, 21(6), 619–630. https://doi.org/10.1016/j.jcyt.2018.11.010spa
dc.relation.referencesWang, C., Su, K., Zhang, Y., Zhang, W., Zhao, Q., Chu, D., & Guo, R. (2019). IR-A/IGF-1R-mediated signals promote epithelial-mesenchymal transition of endometrial carcinoma cells by activating PI3K/AKT and ERK pathways. Cancer Biology and Therapy, 20(3). https://doi.org/10.1080/15384047.2018.1529096spa
dc.relation.referencesWang, X. H., Wu, H. Y., Gao, J., Wang, X. H., Gao, T. H., & Zhang, S. F. (2019). IGF1R facilitates epithelial-mesenchymal transition and cancer stem cell properties in neuroblastoma via the STAT3/AKT axis. Cancer Management and Research, 11, 5459–5472. https://doi.org/10.2147/CMAR.S196862spa
dc.relation.referencesWeber, M., Knoefler, I., Schleussner, E., Markert, U. R., & Fitzgerald, J. S. (2013). HTR8/SVneo cells display trophoblast progenitor cell-like characteristics indicative of self-renewal, repopulation activity, and expression of “stemness-” associated transcription factors. BioMed Research International, 2013, 1–10. https://doi.org/10.1155/2013/243649spa
dc.relation.referencesWeidgang, C. E., Seufferlein, T., Kleger, A., & Mueller, M. (2016). Pluripotency factors on their lineage move. Stem Cells International, 2016. https://doi.org/10.1155/2016/6838253spa
dc.relation.referencesWerner, H., Shalita-Chesner, M., Abramovitch, S., Idelman, G., Shaharabani-Gargir, L., & Glaser, T. (2000). Regulation of the insulin-like growth factor-I receptor gene by oncogenes and antioncogenes: implications in human cancer. Molecular Genetics and Metabolism, 71, 315–320. https://doi.org/10.1006/mgme.2000.3044spa
dc.relation.referencesXiu, M., Huan, X., Ou, Y., Ying, S., & Wang, J. (2021). The basic route of nuclear-targeted transport of IGF-1/IGF-1R and potential biological functions in intestinal epithelial cells. Cell Proliferation, 54(6). https://doi.org/10.1111/cpr.13030spa
dc.relation.referencesXu, C., Xie, D., Yu, S. C., Yang, X. J., He, L. R., Yang, J., Ping, Y. F., Wang, B., Yang, L., Xu, S. L., Cui, W., Wang, Q. L., Fu, W. J., Liu, Q., Qian, C., Cui, Y. H., Rich, J. N., Kung, H. F., Zhang, X., & Bian, X. W. (2013). β-catenin/POU5F1/SOX2 transcription factor complex mediates IGF-I receptor signaling and predicts poor prognosis in lung adenocarcinoma. Cancer Research, 73(10), 3181–3189. https://doi.org/10.1158/0008-5472.CAN-12-4403spa
dc.relation.referencesXu, D. D., Wang, Y., Zhou, P. J., Qin, S. R., Zhang, R., Zhang, Y., Xue, X., Wang, J., Wang, X., Chen, H. C., Wang, X., Pan, Y. W., Zhang, L., Yan, H. Z., Liu, Q. Y., Liu, Z., Chen, S. H., Chen, H. Y., & Wang, Y. F. (2018). The IGF2/IGF1R/Nanog signaling pathway regulates the proliferation of acute myeloid leukemia stem cells. Frontiers in Pharmacology, 9(June), 1–14. https://doi.org/10.3389/fphar.2018.00687spa
dc.relation.referencesXu, Y., Kong, G. K. W., Menting, J. G., Margetts, M. B., Delaine, C. A., Jenkin, L. M., Kiselyov, V. V., De Meyts, P., Forbes, B. E., & Lawrence, M. C. (2018). How ligand binds to the type 1 insulin-like growth factor receptor. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03219-7spa
dc.relation.referencesYao, C., Su, L., Shan, J., Zhu, C., Liu, L., Liu, C., Xu, Y., Yang, Z., Bian, X., Shao, J., Li, J., Lai, M., Shen, J., & Qian, C. (2016). IGF/STAT3/NANOG/Slug Signaling Axis Simultaneously Controls Epithelial-Mesenchymal Transition and Stemness Maintenance in Colorectal Cancer. AlphaMed Press 2016, 820–831. https://doi.org/http://dx.doi.org/ 10.1002/stem.2320spa
dc.relation.referencesYoussef, A., & Han, V. K. M. (2016). Low oxygen tension modulates the insulin-like growth factor-1 or -2 signaling via both insulin-like growth factor-1 receptor and insulin receptor to maintain stem cell identity in placental mesenchymal stem cells. Endocrinology, 157(3), 1163–1174. https://doi.org/10.1210/en.2015-1297spa
dc.relation.referencesYu, H., & Rohan, T. (2000). Role of the Insulin-Like Growth Factor Family in Cancer Development and Progression. Journal of the National Cancer Institute, 92(18), 1472–1489.spa
dc.relation.referencesZhang, H., Pelzer, A. M., Kiang, D. T., & Yee, D. (2007). Down-regulation of type I insulin-like growth factor receptor increases sensitivity of breast cancer cells to insulin. Cancer Research, 67(1), 391–397. https://doi.org/10.1158/0008-5472.CAN-06-1712spa
dc.relation.referencesZhao, H., Ozen, M., Wong, R. J., & Stevenson, D. K. (2015). Heme oxygenase-1 in pregnancy and cancer: similarities in cellular invasion, cytoprotection, angiogenesis, and immunomodulation. Frontiers in Pharmacology, 5(January), 1–10. https://doi.org/10.3389/fphar.2014.00295spa
dc.relation.referencesZhou, H. M., Zhang, J. G., Zhang, X., & Li, Q. (2021). Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. In Signal Transduction and Targeted Therapy (Vol. 6, Issue 1). https://doi.org/10.1038/s41392-020-00430-1spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.decsAdult Germline Stem Cellseng
dc.subject.decsCélulas madrespa
dc.subject.decsStem Cellseng
dc.subject.decsCélulas Madre Embrionariasspa
dc.subject.decsEmbryonic Stem Cellseng
dc.subject.lembCélulas Madre Germinales Adultasspa
dc.subject.proposalPluripotenciaspa
dc.subject.proposalCáncerspa
dc.subject.proposalFactores de crecimientospa
dc.subject.proposalTrofoblastospa
dc.subject.proposalPluripotencyeng
dc.subject.proposalCancereng
dc.subject.proposalGrowth Factorseng
dc.subject.proposalTrophoblasteng
dc.titleRelevancia del receptor del factor de crecimiento similar a insulina (IGF-1R) en el fenotipo celular pluripotente de trofoblasto humanospa
dc.title.translatedRelevance of the Insulin-like growth factor receptor (IGF-1R) in the human trophoblast pluripotent cell phenotypeeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentOtherspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMincienciasspa
oaire.fundernameDivisión de Investigación Sede Bogotá - DIBspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020757401.2023.pdf
Tamaño:
1.85 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: