Classification techniques for imaginary speech brain signal through spatial functional data

dc.contributor.advisorBohorquez Castañeda, Martha Patriciaspa
dc.contributor.authorBejarano Salcedo, Valeriaspa
dc.contributor.cvlacBejarano Salcedo, Valeria [0001764581]spa
dc.contributor.orcidBejarano Salcedo, Valeria [0000-0002-8975-2641]spa
dc.date.accessioned2024-01-15T14:46:46Z
dc.date.available2024-01-15T14:46:46Z
dc.date.issued2023
dc.descriptionilustraciones (principalmente a color), diagramasspa
dc.description.abstractThe present work aims to classify the thought of the five Spanish vowels measured by electroencephalograms (EEG) of 21 electrodes around the Broca's area of the brain of 23 individuals. This was addressed by the framework of spatial functional data, considering each EEG a continuous curve in L2 and performing functional kriging, several images were constructed to apply classification techniques of machine and deep learning. Finally, both classification routines on average achieve more than 91\% precision for each individual, considering that each individual should have its own classification mechanism. (Texto tomado de la fuente)eng
dc.description.abstractEl presente trabajo tiene como objetivo clasificar el pensamiento de las cinco vocales del idioma español medidas a través de electroencefalogramas en 21 electrodos alrededor del área de Broca del cerebro en 23 individuos. Para esto se empleó el marco de los datos espaciales funcionales, considerando cada medición EEG una curva continua en L2 y realizando kriging funcional, se construyeron varias imágenes para aplicar técnicas de clasificación de aprendizaje de máquina y profundo. Finalmente, ambas rutinas de clasificación en promedio lograron una precisión de más del 91% para cada individuo, hay que tener en cuenta que cada individuo debe contar con su propio mecanismo de clasificación.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Ciencias - Estadísticaspa
dc.description.researchareaDatos espaciales funcionalesspa
dc.format.extentix, 55 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85267
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesAbiri, R., Borhani, S., Sellers, E. W., Jiang, Y., and Zhao, X. (2019). A comprehensive review of eeg-based brain-computer interface paradigms. Journal of neural engineering, 16(1):011001.spa
dc.relation.referencesAlderson-Day, B. and Fernyhough, C. (2015). Inner speech: development, cognitive functions, phenomenology, and neurobiology. Psychological bulletin, 141(5):931.spa
dc.relation.referencesAneiros, G., Cao, R., Fraiman, R., Genest, C., and Vieu, P. (2019). Recent advances in functional data analysis and high-dimensional statistics. Journal of Multivariate Analysis, 170:3-9.spa
dc.relation.referencesAneiros, G., Horová, I., Husková, M., and Vieu, P. (2022). On functional data analysis and related topics. Journal of Multivariate Analysis, 189:104861.spa
dc.relation.referencesArnal, L. H., Poeppel, D., and Giraud, A.-L. (2016). A neurophysiological perspective on speech processing in "the neurobiology of language". In Neurobiology of language, pages 463-478. Elsevier.spa
dc.relation.referencesBaíllo, A., Cuevas, A., and Fraiman, R. (2011). Classi fication methods for functional data. The Oxford handbook of functional data analysis.spa
dc.relation.referencesBerlinet, A., Biau, G., and Rouviere, L. (2008). Functional supervised classi fication with wavelets. In Annales de l'ISUP, volume 52, page 19.spa
dc.relation.referencesBijsterbosch, J. D., Woolrich, M. W., Glasser, M. F., Robinson, E. C., Beckmann, C. F., Van Essen, D. C., Harrison, S. J., and Smith, S. M. (2018). The relationship between spatial con figuration and functional connectivity of brain regions. elife, 7:e32992.spa
dc.relation.referencesBishop, C. M. and Nasrabadi, N. M. (2006). Pattern recognition and machine learning, volume 4. Springer.spa
dc.relation.referencesBohorquez, M., Giraldo, R., and Mateu, J. (2016). Optimal sampling for spatial prediction of functional data. Statistical Methods & Applications, 25(1):39-54.spa
dc.relation.referencesBohorquez, M., Giraldo, R., and Mateu, J. (2017). Multivariate functional random fields: prediction and optimal sampling. Stochastic Environmental Research and Risk Assess- ment, 31(1):53-70.spa
dc.relation.referencesBohorquez, M., Giraldo, R., and Mateu, J. (2022). Spatial prediction and optimal sampling for multivariate functional random fields. Geostatistical Functional Data Analysis, pages 329-349.spa
dc.relation.referencesBosq, D. (2000). Linear processes in function spaces: theory and applications, volume 149. Springer Science & Business Media.spa
dc.relation.referencesBreiman, L. (2017). Classi fication and regression trees. Routledge.spa
dc.relation.referencesBulárka, S. and Gontean, A. (2016). Brain-computer interface review. In 2016 12th IEEE International Symposium on Electronics and Telecommunications (ISETC), pages 219- 222. IEEE.spa
dc.relation.referencesBuzsáki, G. and da Silva, F. L. (2012). High frequency oscillations in the intact brain. Progress in neurobiology, 98(3):241-249.spa
dc.relation.referencesChamroukhi, F. and Nguyen, H. D. (2019). Model-based clustering and classi fication of functional data. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(4):e1298.spa
dc.relation.referencesChiles, J.-P. and Del ner, P. (2009). Geostatistics: modeling spatial uncertainty, volume 497. John Wiley & Sons.spa
dc.relation.referencesChollet, F. (2021). Deep learning with Python. Simon and Schuster.spa
dc.relation.referencesCuevas, A. (2014). A partial overview of the theory of statistics with functional data. Journal of Statistical Planning and Inference, 147:1-23.spa
dc.relation.referencesDaSalla, C. S., Kambara, H., Sato, M., and Koike, Y. (2009). Single-trial classifi cation of vowel speech imagery using common spatial patterns. Neural networks, 22(9):1334-1339.spa
dc.relation.referencesDietrich, D., Lang, R., Bruckner, D., Fodor, G., and Müller, B. (2010). Limitations, possibilities and implications of brain-computer interfaces. In 3rd International Conference on Human System Interaction, pages 722-726.spa
dc.relation.referencesDubuc, B. (8 de mayo de 2023). MODELS OF SPOKEN AND WRITTEN LANGUAGE FUNCTIONS IN THE BRAIN. https://thebrain.mcgill.ca/flash/d/d_10/d_10_ cr/d_10_cr_lan/d_10_cr_lan.html#2.spa
dc.relation.referencesD'Zmura, M., Deng, S., Lappas, T., Thorpe, S., and Srinivasan, R. (2009). Toward eeg sensing of imagined speech. In International Conference on Human-Computer Interaction, pages 40-48. Springer.spa
dc.relation.referencesElías Fernández, A. (2020). Depth-based method for functional data analysis.spa
dc.relation.referencesFebrero-Bande, M., González-Manteiga, W., Prallon, B., and Saporito, Y. F. (2022). Functional classi fication of bitcoin addresses. arXiv preprint arXiv:2202.12019.spa
dc.relation.referencesFerraty, F. (2011). Recent advances in functional data analysis and related topics.spa
dc.relation.referencesFerraty, F. and Vieu, P. (2006). Nonparametric functional data analysis: theory and practice, volume 76. Springer.spa
dc.relation.referencesGhane, P. (2015). Silent speech recognition in EEG-based Brain Computer Interface. Purdue University.spa
dc.relation.referencesGiraldo, R., Delicado, P., and Mateu, J. (2011). Ordinary kriging for function-valued spatial data. Environmental and ecological statistics, 18(3):411-426.spa
dc.relation.referencesGoulard, M. and Voltz, M. (1993). Geostatistical interpolation of curves: a case study in soil science. In Geostatistics Tróia'92, pages 805-816. Springer.spa
dc.relation.referencesGuo, X., Kurtek, S., and Bharath, K. (2022). Variograms for kriging and clustering of spatial functional data with phase variation. Spatial Statistics, page 100687.spa
dc.relation.referencesHarezlak, J., Ruppert, D., and Wand, M. P. (2018). Semiparametric regression with R. Springer.spa
dc.relation.referencesHochberg, L. R. and Donoghue, J. P. (2006). Sensors for brain-computer interfaces. IEEE Engineering in Medicine and Biology Magazine, 25(5):32-38.spa
dc.relation.referencesHorváth, L. and Kokoszka, P. (2012). Inference for functional data with applications, volume 200. Springer Science & Business Media.spa
dc.relation.referencesHsing, T. and Eubank, R. (2015). Theoretical foundations of functional data analysis, with an introduction to linear operators. John Wiley & Sons, Chichester- United Kingdom.spa
dc.relation.referencesJacques, J. and Preda, C. (2014). Functional data clustering: a survey. Advances in Data Analysis and Classi fication, 8(3):231-255.spa
dc.relation.referencesKumar, S., Khan, Z., and Jain, A. (2012). A review of content based image classifi cation using machine learning approach. International Journal of Advanced Computer Research, 2(3):55.spa
dc.relation.referencesLi, Y., Qiu, Y., and Xu, Y. (2022). From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas. Journal of Multivariate Analysis, 188:104806.spa
dc.relation.referencesLópez-Pintado, S. and Romo, J. (2006). Depth-based classi fication for functional data. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 72:103.spa
dc.relation.referencesLotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A., and Yger, F. (2018). A review of classi fication algorithms for eeg-based brain{computer interfaces: a 10 year update. Journal of neural engineering, 15(3):031005.spa
dc.relation.referencesLoussaief, S. and Abdelkrim, A. (2016). Machine learning framework for image classi fication. In 2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), pages 58-61. IEEE.spa
dc.relation.referencesManjrekar, O. N. and Dudukovic, M. P. (2019). Identifi cation of flow regime in a bubble column reactor with a combination of optical probe data and machine learning technique. Chemical Engineering Science: X, 2:100023.spa
dc.relation.referencesMardiyyah, A. (2020). The support vector machine: Basic concept. https://medium.com/ swlh/the-support-vector-machine-basic-concept-a5106bd3cc5f.spa
dc.relation.referencesMarkello, R. D., Hansen, J. Y., Liu, Z.-Q., Bazinet, V., Sha ei, G., Suárez, L. E., Blostein, N., Seidlitz, J., Baillet, S., Satterthwaite, T. D., et al. (2022). Neuromaps: structural and functional interpretation of brain maps. Nature Methods, 19(11):1472-1479.spa
dc.relation.referencesMarsland, S. (2015). Machine learning: an algorithmic perspective. CRC press.spa
dc.relation.referencesMartin-Barragan, B., Lillo, R., and Romo, J. (2014). Interpretable support vector machines for functional data. European Journal of Operational Research, 232(1):146-155.spa
dc.relation.referencesMesulam, M. (2011). Brain mapping.spa
dc.relation.referencesMitra, P. P. and Pesaran, B. (1999). Analysis of dynamic brain imaging data. Biophysical journal, 76(2):691-708.spa
dc.relation.referencesMucherino, A., Papajorgji, P. J., Pardalos, P. M., Mucherino, A., Papajorgji, P. J., and Pardalos, P. M. (2009). K-nearest neighbor classi fication. Data mining in agriculture, pages 83-106.spa
dc.relation.referencesNath, S. S., Mishra, G., Kar, J., Chakraborty, S., and Dey, N. (2014). A survey of image classi fication methods and techniques. In 2014 International conference on control, instrumentation, communication and computational technologies (ICCICCT), pages 554-557. IEEE.spa
dc.relation.referencesNicolas-Alonso, L. F. and Gomez-Gil, J. (2012). Brain computer interfaces, a review. sensors, 12(2):1211-1279.spa
dc.relation.referencesOlokodana, I. L., Mohanty, S. P., and Kougianos, E. (2020). Krig-detect: Exploring alternative kriging methods for real-time seizure detection from eeg signals. In 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), pages 1-6. IEEE.spa
dc.relation.referencesOshinubi, K., Ibrahim, F., Rachdi, M., and Demongeot, J. (2022). Functional data analysis: Application to daily observation of covid-19 prevalence in france. AIMS Mathematics, 7(4):5347-5385.spa
dc.relation.referencesPatil, P. G. and Turner, D. A. (2008). The development of brain-machine interface neuroprosthetic devices. Neurotherapeutics, 5:137-146.spa
dc.relation.referencesPebesma, E. J. (2001). Gstat user's manual. Dept. of Physical Geography, Utrecht University, Utrecht, The Netherlands.spa
dc.relation.referencesPedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830.spa
dc.relation.referencesPopescu, M. C. and Sasu, L. M. (2014). Feature extraction, feature selection and machine learning for image classi fication: A case study. In 2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), pages 968-973. IEEE.spa
dc.relation.referencesPorbadnigk, A., Wester, M., and Calliess, T. S. J.-p. (2009). Eeg-based speech recognition impact of temporal effects.spa
dc.relation.referencesProfessor Dave Explains (2020). The Brain and Language. https://www.youtube.com/ watch?v=zj0yud4wv74. [Video file].spa
dc.relation.referencesRamsay, J. and Silverman, B. (2005). Functional Data Analysis. Springer, New York.spa
dc.relation.referencesRathi, V. P. and Palani, S. (2012). Brain tumor mri image classifi cation with feature selection and extraction using linear discriminant analysis. arXiv preprint arXiv:1208.2128.spa
dc.relation.referencesRoehm, D., Klimesch, W., Haider, H., and Doppelmayr, M. (2001). The role of theta and alpha oscillations for language comprehension in the human electroencephalogram. Neuroscience letters, 310(2-3):137-140.spa
dc.relation.referencesRossi, F. and Villa, N. (2008). Recent advances in the use of svm for functional data classi fication. Functional and operatorial statistics, pages 273-280.spa
dc.relation.referencesSarmiento, L. C., Villamizar, S., López, O., Collazos, A. C., Sarmiento, J., and Rodríguez, J. B. (2021). Recognition of eeg signals from imagined vowels using deep learning methods. Sensors, 21(19):6503.spa
dc.relation.referencesSchultz, T., Wand, M., Hueber, T., Krusienski, D. J., Herff, C., and Brumberg, J. S. (2017). Biosignal-based spoken communication: A survey. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25(12):2257-2271.spa
dc.relation.referencesSecchi, P., Vantini, S., and Vitelli, V. (2011). Spatial clustering of functional data. In Recent Advances in Functional Data Analysis and Related Topics, pages 283-289. Springer.spa
dc.relation.referencesSguera, C., Galeano, P., and Lillo, R. (2014). Spatial depth-based classifi cation for functional data. Test, 23(4):725-750.spa
dc.relation.referencesShangguan, P., Qiu, T., Liu, T., Zou, S., Liu, Z., and Zhang, S. (2020). Feature extraction of eeg signals based on functional data analysis and its application to recognition of driver fatigue state. Physiological Measurement, 41(12):125004.spa
dc.relation.referencesTamuly, S., Jyotsna, C., and Amudha, J. (2020). Deep learning model for image classifi cation. In Computational Vision and Bio-Inspired Computing: ICCVBIC 2019, pages 312-320. Springer.spa
dc.relation.referencesVandewalle, V., Preda, C., and Dabo-Niang, S. (2022). Clustering spatial functional data. Geostatistical Functional Data Analysis, pages 155-174.spa
dc.relation.referencesWang, J.-L., Chiou, J.-M., and Müller, H.-G. (2016). Functional data analysis. Annual Review of Statistics and its application, 3:257-295.spa
dc.relation.referencesWang, P., Fan, E., and Wang, P. (2021). Comparative analysis of image classi fication algorithms based on traditional machine learning and deep learning. Pattern Recognition Letters, 141:61-67.spa
dc.relation.referencesWang, W., Liang, D., Chen, Q., Iwamoto, Y., Han, X.-H., Zhang, Q., Hu, H., Lin, L., and Chen, Y.-W. (2020). Medical image classifi cation using deep learning. In Deep learning in healthcare, pages 33-51. Springer.spa
dc.relation.referencesWester, M. (2006). Unspoken speech-speech recognition based on electroencephalography. Master's Thesis, Universitat Karlsruhe (TH).spa
dc.relation.referencesWu, H. and Li, Y.-F. (2022). Clustering spatially correlated functional data with multiple scalar covariates. IEEE Transactions on Neural Networks and Learning Systems.spa
dc.relation.referencesYi, Y., Billor, N., Liang, M., Cao, X., Ekstrom, A., and Zheng, J. (2022). Classi cation of eeg signals: An interpretable approach using functional data analysis. Journal of Neuroscience Methods, 376:109609.spa
dc.relation.referencesZhang, J.-T. and Zhu, T. (2022). A new k-nearest neighbors classi fier for functional data. Statistics and Its Interface, 15(2):247-260.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.decsElectroencefalografíaspa
dc.subject.decsElectroencephalographyeng
dc.subject.lccProceso de imágenesspa
dc.subject.lccImage processingeng
dc.subject.lembAnálisis espacial (Estadística)spa
dc.subject.lembSpatial analysis (statistics)eng
dc.subject.proposalEEGeng
dc.subject.proposalspatial functional dataeng
dc.subject.proposalkrigingeng
dc.subject.proposalimage classificationeng
dc.subject.proposaldatos funcionales espacialesspa
dc.subject.proposalclasificación de imágenesspa
dc.subject.proposalEEGspa
dc.subject.proposalkrigingspa
dc.subject.wikidataKrigeajespa
dc.subject.wikidatakrigingeng
dc.titleClassification techniques for imaginary speech brain signal through spatial functional dataeng
dc.title.translatedTécnicas de clasificación para discurso imaginario por señales del cerebro a través de datos espaciales funcionalesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ciencias - Estadística.pdf
Tamaño:
56.95 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: