Restauración de imágenes borrosas usando programación lineal

dc.contributor.advisorRuiz Vera, Jorge Mauriciospa
dc.contributor.authorFuentes Gil, José Exequielspa
dc.date.accessioned2020-09-22T18:50:17Zspa
dc.date.available2020-09-22T18:50:17Zspa
dc.date.issued2020-09-04spa
dc.description.abstractIn the process of capturing images, it is common to deal with deteriorated images. These appear in various fields such as: astronomy, medicine, among others. In this work, a method is developed for the restoration of blurred images based on the approach of poorly proposed integral equations. The solution of the integral equation is seen as the minimum of a limited optimization problem in the norm $ || \cdot ||_{L_1}$. In this way, it is expressed as a linear programming problem. Also, it was found that the problem needs to be adapted to the particular image restoration problem by adding additional terms to the originally proposed model. In addition, evaluating its efficiency and effectiveness, this method is shown to be competitive with respect to other ones, and it can be used in different environments, showing satisfactory results.spa
dc.description.abstractEn el proceso de captura de imágenes es común tratar con imágenes deterioradas. Estas aparecen en diversos ámbitos como lo son: astronomía, medicina, entre otros. En este trabajo se desarrolla un método para la restauración de imágenes borrosas basado en el planteamiento de ecuaciones integrales mal propuestas. La solución de la ecuación integral es vista como el mínimo de un problema de optimización considerado en la norma $||\cdot||_{L_1}$. De esta forma es expresado como un problema de programación lineal. También, se encontró que el problema debe ser adaptado al caso particular de la restauración de imágenes agregando términos extra al modelo originalmente propuesto. Además de evaluar su eficiencia y eficacia, se muestra que este método es competitivo con respecto a otros propuestos inicialmente y que puede ser usado en diferentes ámbitos mostrando resultados satisfactorios.spa
dc.description.additionalLínea de Investigación: Matemática aplicada, procesamiento de imágenesspa
dc.description.degreelevelMaestríaspa
dc.format.extent104spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78488
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemática Aplicadaspa
dc.relation.referencesRestauración de ultrasonido. https://google.com.com/ultrasonido/, 2019.spa
dc.relation.referencesM. S. Bazaraa, J. J. Jarvis, and H. D. Sherali. Linear programming and network flows. John Wiley & Sons, 2011.spa
dc.relation.referencesD. S. Biggs and M. Andrews. Acceleration of iterative image restoration algorithms. Applied optics, 36(8):1766–1775, 1997.spa
dc.relation.referencesS. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.spa
dc.relation.referencesA. Buades, B. Coll, and J. M. Morel. On image denoising methods. CMLA Preprint, 5, 2004.spa
dc.relation.referencesCanal1.com. Video de c´amara de seguridad. https://canal1.com.co/entretenimiento/virales/ video-camara-de-seguridad-agresion-pareja-gay-andino/, 2019.spa
dc.relation.referencesK. Chen. Matrix preconditioning techniques and applications, volume 19. Cambridge University Press, 2005.spa
dc.relation.referencesJ. G. N. Christian Hansen and D. P. O’Leary. http://www.imm.dtu.dk/ pcha/hno/, 2011.spa
dc.relation.referencesM. B. Cohen, Y. T. Lee, and Z. Song. Solving linear programs in the current matrix multiplication time. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 938–942. ACM, 2019.spa
dc.relation.referencesJ. C. del Valle Sotelo. Álgebra lineal para estudiantes de Ingenieria y ciencias. Mc Graw Hill, 2011.spa
dc.relation.referencesflickr.com. Placa de auto. from https://www.flickr.com/photos/pattoncito/2471478157, 2019.spa
dc.relation.referencesR. M. Freund. Primal-Dual Interior-Point Methods for Linear Programming based on Newton’s Method. Massachusetts Institute of Technology, 2004.spa
dc.relation.referencesR. Gonzalez, R. Woods, and S. Eddins. Digital Image Processing Using MATLAB. McGraw Hill Education, 2013.spa
dc.relation.referencesW. Hackbusch. Iterative solution of large sparse systems of equations, volume 95. Sprin- ger, 1994.spa
dc.relation.referencesR. J. Hanisch, R. L. White, and R. L. Gilliland. Deconvolution of hubbles space telescope images and spectra. In Deconvolution of images and spectra (2nd ed.), pages 310–360. 1996.spa
dc.relation.referencesP. C. Hansen, J. G. Nagy, and D. P. O’leary. Deblurring images: matrices, spectra, and filtering, volume 3. Siam, 2006.spa
dc.relation.referencesW. Harwood. Fixing Hubble’s blurry vision. https://spaceflightnow.com/2015/04/23/fixing- hubbles-blurry-vision/, 2015.spa
dc.relation.referencesR. A. Hummel, B. Kimia, and S. W. Zucker. Deblurring gaussian blur. Computer Vision, Graphics, and Image Processing, 38(1):66–80, 1987.spa
dc.relation.referencesinfoagro.com. El cultivo de la Orquídea. https://www.infoagro.com/documentos/el- cultivo-orquidea.asp.spa
dc.relation.referencesiredbubble.com. Diosa Aqua. https://www.redbubble.com/3790348-chibi-llorando- aqua?p=sticker, 2019.spa
dc.relation.referencesM. Jin, S. Roth, and P. Favaro. Normalized blind deconvolution. In Proceedings of the European Conference on Computer Vision (ECCV), pages 668–684, 2018.spa
dc.relation.referencesS. L. Kala. Deblurring images via partial differential equations. Proceedings of the Louisiana-Mississippi Section of the Mathematical Association of America, 2004.spa
dc.relation.referencesD. Kincaid and W. Cheney. Análisis numérico las matemáticas del cálculo científico. Adison-Wesley, 1994.spa
dc.relation.referencesV. Klee and G. J. Minty. How good is the simplex algorithm? Technical report, Wa- shington university Seattle departament of Mathematics, 1970.spa
dc.relation.referencesR. Kress. Numerical analysis. Academic Edition, 1, 1998.spa
dc.relation.referencesR. Kress, V. Maz’ya, and V. Kozlov. Linear integral equations, volume 82. Springer, 1989.spa
dc.relation.referencesD. Krishnan. https://dilipkay.wordpress.com/blind-deconvolution/, 2011.spa
dc.relation.referencesD. Krishnan, T. Tay, and R. Fergus. Blind deconvolution using a normalized sparsity measure. In CVPR 2011, pages 233–240. IEEE, 2011.spa
dc.relation.referencesR. Mammone and G. Eichmann. Superresolving image restoration using linear pro- gramming. Applied optics, 21(3):496–501, 1982.spa
dc.relation.referencesR. Mammoni. Image recovery: Theory and aplication. Academic Press, 1987.spa
dc.relation.referencesI. Mantilla. Análisis Numérico. Universidad Nacional de Colombia. Bogotá, 2004.spa
dc.relation.referencesS. Mehrotra. On the implementation of a primal-dual interior point method. SIAM Journal on optimization, 2(4):575–601, 1992.spa
dc.relation.referencesA. Moffat. A theoretical investigation of focal stellar images in the photographic emulsion and application to photographic photometry. Astronomy and Astrophysics, 3:455, 1969.spa
dc.relation.referencesH. Moore, V. C. Olguín, and R. M. Nuño. Matlab para ingenieros. Number 620.0013M66 2007. Pearson Educación, 2007.spa
dc.relation.referencesNASA, ESA, the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration and K. Noll (STScI). NGC 6050. https://www.spacetelescope.org/images/heic0810ap/, 2008.spa
dc.relation.referencesW. H. Richardson. Bayesian-based iterative method of image restoration. JoSA, 62(1):55–59, 1972.spa
dc.relation.referencesH. S. Saeed Ketabchi, Hossein Moosaei and M. Hedayati. New methods for solving large scale linear programming problems in the windows and linux computer operating systems. Appl. Math. Inf. Sci., 7, Octubre 2018.spa
dc.relation.referencesTucarro.com. Placa de automóvil. https://tucarro.com/, 2018.spa
dc.relation.referencesC. F. Van Loan and G. H. Golub. Matrix computations. Johns Hopkins University Press, 1983.spa
dc.relation.referencesVicmat.com. La Conjetura de Nicomaco. https://vicmat.com/la-conjetura-nicomaco- cubo-diferencia-dos-cuadrados/, 2017.spa
dc.relation.referencesZ. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, et al. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612, 2004.spa
dc.relation.referencesWikipedia.org. Argumento diagonal de Cantor. https://es.wikipedia.org/wiki/Argumento- de-la-diagonal-de-Cantor, 2019.spa
dc.relation.referencesM. Zaharescu and C. A. Boiangiu. Image deblurring: challenges and solutions. The 12th International Conference on Circuits, Systems, Electronics, Control & Signal Processing (CSECS ’13), 9:10, 2013.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.ddc510 - Matemáticas::518 - Análisis numéricospa
dc.subject.proposalImágenes borrosasspa
dc.subject.proposalBlurry imageseng
dc.subject.proposalProblemas inversosspa
dc.subject.proposalIll posed problemseng
dc.subject.proposalProblemas mal propuestosspa
dc.subject.proposalInverse problemseng
dc.subject.proposalLinear programmingeng
dc.subject.proposalProgramación linealspa
dc.subject.proposalRegularizaciónspa
dc.subject.proposalRegularizationeng
dc.titleRestauración de imágenes borrosas usando programación linealspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de maestría.pdf
Tamaño:
8.13 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: