Desarrollo de un genosensor piezoeléctrico

dc.contributor.advisorJaramillo Grajales, Marisolspa
dc.contributor.advisorVásquez Araque, Neil Aldrinspa
dc.contributor.authorBarrientos-Urdinola, Kaoryspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.contributor.researchgroupGrupo de Investigación en Biotecnología Animal (GIBA)spa
dc.date.accessioned2020-04-29T15:15:23Zspa
dc.date.available2020-04-29T15:15:23Zspa
dc.date.issued2019-08-30spa
dc.description.abstractEscherichia coli O157:H7 es un patógeno importante en la contaminación de alimentos que causa brotes con una alta morbilidad. Dado que los métodos tradicionales para su detección, a menudo tardan 24 horas en emitir el resultado, existe la necesidad de desarrollar nuevas metodologías que permitan una detección rápida, simple, confiable y específica. Bajo este escenario, el desarrollo de biosensores puede ser una alternativa para dar un resultado rápido cuando exista sospecha de contaminación. Un genosensor piezoeléctrico es un dispositivo capaz de modificar la frecuencia de vibración del cristal de cuarzo, debido a los cambios de masa producidos en la superficie del electrodo de oro, estos son el resultado de la interacción entre el biomarcador de interés y el biorreceptor génico que se encuentra inmovilizado a la superficie del transductor por medio de la interfaz biológica. El adecuado diseño y selección de los elementos específicos de reconocimiento biológico, la apropiada inmovilización sobre el transductor y la selección y desarrollo del sistema de caracterización, se convierten en tareas fundamentales para el éxito en el desarrollo de estos dispositivos de detección. En esta investigación, se seleccionó como biomarcador del patógeno, una región del gen rfbE, que codifica para el antígeno O de la bacteria. Aplicando el método de fisiadsorción basado en la unión entre la proteína estreptavidina y la molécula biotina, se inmovilizó el biorreceptor génico sobre la superficie, para detectar la hibridación de este con su secuencia complementaria. Para la detección del evento biológico de interés, se utilizó un genosensor piezoeléctrico, configurado como microbalanza de cristal de cuarzo de alta frecuencia. Finalmente, se analizó el desempeño del dispositivo por medio de las características de especificidad, repetibilidad y reusabilidad.spa
dc.description.abstractEscherichia coli O157: H7 is a major pathogen in food contamination that causes outbreaks with high morbidity. The traditional methods for their detection often take a long time, therefore there is a need to develop new methodologies that allow rapid, simple, reliable and specific detection. Under this scenario, development in biosensors could offer an alternative for fast testing in suspected cases of bacterial contamination. A piezoelectric genosensor is a device that is able to shift its quartz crystal frequency give mass changed on the surface of its gold electrode, which occur due to the interaction between the biomarker and the gene bioreceptor, which is immobilized on the transducer surface through biological interface. The appropriate design and selection of the specific elements for biological recognition, adequate immobilization on the transducer and the selection and development of the characterization system, are essential tasks for successfully develop these devices. In this research, it was selected a sequence of the rfbE gene as a biomarker, which encodes O-antigen in Escherichia coli. Applying the physisorption method based on the union between the streptavidin protein and the biotin molecule, the bioreceptor was immobilized on the surface for the detection of the complementary strand. The piezoelectric genosensor was configured to be a high-frequency quartz crystal microbalance. Finally, the performance of the device was analyzed assessing specificity, repeatability, and reusability characteristicsspa
dc.description.degreelevelMaestríaspa
dc.description.projectDesarrollo de un genosensor piezoeléctrico para la detección de secuencias de ADN de patógenos infecciososspa
dc.format.extent144spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationK. Barrientos, Desarrollo de un genosensor piezoeléctrico, Universidad Nacional de Colombia, Tesis de maestria, 2019.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77465
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de biocienciasspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.referencesCenters for Disease Control and Prevention, Timeline for reporting cases of E.coli O157 Infection, 2019. https://www.cdc.gov/ecoli/reporting-timeline.html (accessed May 22, 2019).spa
dc.relation.referencesK.E. Heiman, R.K. Mody, S.D. Johnson, P.M. Griffin, L.H. Gould, Escherichia coli O157 Outbreaks in the United States, 2003-2012., Emerg. Infect. Dis. 21 (2015) 1293–1301. https://doi.org/10.3201/eid2108.141364.spa
dc.relation.referencesJ.Y. Lim, J.W. Yoon, C.J. Hovde, A brief overview of Escherichia coli O157:H7 and its plasmid O157, J. Microbiol. Biotechnol. 20 (2010) 1–10. https://doi.org/10.4014/jmb.0908.08007.spa
dc.relation.referencesF. Malvano, R. Pilloton, D. Albanese, Sensitive Detection of Escherichia coli O157:H7 in Food Products by Impedimetric Immunosensors., Sensors (Basel). 18 (2018). https://doi.org/10.3390/s18072168.spa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural, Ministerio de Salud y Protección Social, Resolución 2690 de 2015. Directrices para la formulación del Programa de Verificación Microbiológica del Sistema Oficial de Inspección, Vigilancia y Control de la Carne y Productos Cárnicos Comestibles, Bogotá, D.C., Colombia, 2015. https://www.minsalud.gov.co/Normatividad_Nuevo/Resolución 2690 de 2015.pdf (accessed August 5, 2019).spa
dc.relation.referencesB. Nagel, H. Dellweg, L.M. Gierasch, Glossary for chemists of terms used in biotechnology (IUPAC Recommendations 1992), Pure Appl. Chem. 64 (1992) 143–168. https://doi.org/10.1351/pac199264010143.spa
dc.relation.referencesC. Jiménez, D. León, Biosensores: Aplicaciones y perspectivas en el control y calidad de procesos y productos alimenticios, Vitae. 16 (2009) 144–154. http://aprendeenlinea.udea.edu.co/revistas/index.php/vitae/article/view/1436.spa
dc.relation.referencesY. Montagut, J. V. García, Y. Jiménez, C. March, Á. Montoya, A. Arnau, Validation of a phase-mass characterization concept and interface for acoustic biosensors, Sensors. 11 (2011) 4702–4720. https://doi.org/10.3390/s110504702.spa
dc.relation.referencesP. Skládal, Piezoelectric biosensors, TrAC - Trends Anal. Chem. 79 (2016) 127–133. https://doi.org/10.1016/j.trac.2015.12.009.spa
dc.relation.referencesY.J. Montagut, Estudio y análisis del efecto rugoso sobre la respuesta del sensor de cuarzo AT en medios fluidos, Universidad Politécnica de Valencia, 2011. https://doi.org/10.4995/Thesis/10251/9688.spa
dc.relation.referencesA. Montoya, C. March, Y. Montagut, M. Moreno, J. Manclus, A. Arnau, Y. Jimenez, M. Jaramillo, P. Marin, R. Torres, A High Fundamental Frequency (HFF)-based QCM Immunosensor for Tuberculosis Detection, Curr. Top. Med. Chem. 17 (2017) 1623–1630. https://doi.org/10.2174/1568026617666161104105210.spa
dc.relation.referencesC. March, J. V. García, Á. Sánchez, A. Arnau, Y. Jiménez, P. García, J.J. Manclús, Á. Montoya, High-frequency phase shift measurement greatly enhances the sensitivity of QCM immunosensors, Biosens. Bioelectron. 65 (2015) 1–8. https://doi.org/10.1016/j.bios.2014.10.001.spa
dc.relation.referencesL. Cervera-Chiner, M. Juan-Borrás, C. March, A. Arnau, I. Escriche, Á. Montoya, Y. Jiménez, High Fundamental Frequency Quartz Crystal Microbalance (HFF-QCM) immunosensor for pesticide detection in honey, Food Control. 92 (2018) 1–6. https://doi.org/10.1016/j.foodcont.2018.04.026.spa
dc.relation.referencesS.L. Percival, D.W. Williams, Escherichia coli, Second Edi, Elsevier, 2013. https://doi.org/10.1016/B978-0-12-415846-7.00006-8.spa
dc.relation.referencesS.D. Manning, Escherichia coli infections, 2nd ed., Chelsea House, 2010.spa
dc.relation.referencesM.J. Hill, Intestinal flora and endogenous vitamin synthesis, Eur. J. Cancer Prev. 6 (1997) 43–45.spa
dc.relation.referencesJ.M. Van Hattem, A. Cabal, M.S. Arcilla, J. Alvarez, M.D. De Jong, D.C. Melles, J. Penders, M.C.J. Bootsma, P.J. Van Genderen, A. Goorhuis, M. Grobusch, N. Molhoek, A.M.L.O. Lashof, E.E. Stobberingh, H.A. Verbrugh, C.G. Schmidt, C. Schultsz, Risk of acquisition of human diarrhoeagenic Escherichia coli virulence genes in intercontinental travellers: A prospective, multi-centre study, Travel Med. Infect. Dis. (2018) 1–8. https://doi.org/10.1016/j.tmaid.2018.12.005.spa
dc.relation.referencesS. Morabito, Pathogenic escherichia coli: molecular and cellular microbiology, Caister Academic Press, Norfolk, 2014.spa
dc.relation.referencesN.K.D. Ragupathi, D.P.M. Sethuvel, F.Y. Inbanathan, B. Veeraraghavan, Accurate differentiation of Escherichia coli and Shigella serogroups: challenges and strategies, New Microbes New Infect. 21 (2018) 58. https://doi.org/10.1016/J.NMNI.2017.09.003.spa
dc.relation.referencesA. Caprioli, S. Morabito, H. Brugère, E. Oswald, Enterohaemorrhagic Escherichia coli: emerging issues on virulence and modes of transmission, Vet. Res. 36 (2005) 289–311. https://doi.org/10.1051/vetres:2005002.spa
dc.relation.referencesG. Kang, C.A. Hart, P. Shears, Bacterial Enteropathogens, Twenty Thi, 2013. https://doi.org/10.1016/B978-0-7020-5101-2.00025-X.spa
dc.relation.referencesD.M. Kagkli, T.P. Weber, M. Van den Bulcke, S. Folloni, R. Tozzoli, S. Morabito, M. Ermolli, L. Gribaldo, G. Van den Eede, Application of the modular approach to an in-house validation study of real-time PCR methods for the detection and serogroup determination of verocytotoxigenic Escherichia coli, Appl. Environ. Microbiol. 77 (2011) 6954–6963. https://doi.org/10.1128/AEM.05357-11.spa
dc.relation.referencesWHO, Diarrhoeal disease, Ginebra, 2017. https://www.who.int/news-room/fact-sheets/detail/diarrhoeal-disease (accessed May 21, 2019).spa
dc.relation.referencesL.W. Riley, R.S. Remis, S.D. Helgerson, H.B. McGee, J.G. Wells, B.R. Davis, R.J. Hebert, E.S. Olcott, L.M. Johnson, N.T. Hargrett, P.A. Blake, M.L. Cohen, Hemorrhagic Colitis Associated with a Rare Escherichia coli Serotype, N. Engl. J. Med. 308 (1983) 681–685. https://doi.org/10.1056/NEJM198303243081203.spa
dc.relation.referencesM.A. Karmali, M. Petric, C. Lim, P.C. Fleming, G.S. Arbus, H. Lior, The Association Between Idiopathic Hemolytic Uremic Syndrome and Infection by Verotoxin-Producing Escherichia coli, J. Infect. Dis. 151 (1985) 775–782. https://doi.org/10.1093/infdis/151.5.775.spa
dc.relation.referencesO.M. Bouvet, S. Pernoud, P.A. Grimont, Temperature-dependent fermentation of D-sorbitol in Escherichia coli O157:H7, Appl. Environ. Microbiol. 65 (1999) 4245–57. http://www.ncbi.nlm.nih.gov/pubmed/10473445 (accessed May 22, 2019).spa
dc.relation.referencesN.T. Perna, G. Plunkett, V. Burland, B. Mau, J.D. Glasner, D.J. Rose, G.F. Mayhew, P.S. Evans, J. Gregor, H.A. Kirkpatrick, G. Pósfai, J. Hackett, S. Klink, A. Boutin, Y. Shao, L. Miller, E.J. Grotbeck, N.W. Davis, A. Lim, E.T. Dimalanta, K.D. Potamousis, J. Apodaca, T.S. Anantharaman, J. Lin, G. Yen, D.C. Schwartz, R.A. Welch, F.R. Blattner, Genome sequence of enterohaemorrhagic Escherichia coli O157:H7, Nature. 409 (2001) 529–533. https://doi.org/10.1038/35054089.spa
dc.relation.referencesC. Putonti, Y. Luo, C. Katili, S. Chumakov, G.E. Fox, D. Graur, Y. Fofanov, A Computational Tool for the Genomic Identification of Regions of Unusual Compositional Properties and Its Utilization in the Detection of Horizontally Transferred Sequences, Mol. Biol. Evol. 23 (2006) 1863–1868. https://doi.org/10.1093/molbev/msl053.spa
dc.relation.referencesP.S. Mead, P.M. Griffin, Escherichia coli O157:H7, Lancet. 352 (1998) 1207–1212. https://doi.org/10.1016/S0140-6736(98)01267-7.spa
dc.relation.referencesM.A. Karmali, V. Gannon, J.M. Sargeant, Verocytotoxin-producing Escherichia coli (VTEC), Vet. Microbiol. 140 (2010) 360–370. https://doi.org/10.1016/J.VETMIC.2009.04.011.spa
dc.relation.referencesF.M. Franzin, M.P. Sircili, Locus of enterocyte effacement: a pathogenicity island involved in the virulence of enteropathogenic and enterohemorragic Escherichia coli subjected to a complex network of gene regulation., Biomed Res. Int. 2015 (2015) 534738. https://doi.org/10.1155/2015/534738.spa
dc.relation.referencesR. Bertrand, B. Roig, Evaluation of enrichment-free PCR-based detection on the rfbE gene of Escherichia coli O157-Application to municipal wastewater, Water Res. 41 (2007) 1280–1286. https://doi.org/10.1016/j.watres.2006.11.027.spa
dc.relation.referencesP. Reeves, Role of O-antigen variation in the immune response., Trends Microbiol. 3 (1995) 381–6. http://www.ncbi.nlm.nih.gov/pubmed/8564356 (accessed May 22, 2019).spa
dc.relation.referencesL. Wang, P.R. Reeves, Organization of Escherichia coli O157 O antigen gene cluster and identification of its specific genes., Infect. Immun. 66 (1998) 3545–3551.spa
dc.relation.referencesT. Zangari, A.R. Melton-Celsa, A. Panda, M.A. Smith, I. Tatarov, L. De Tolla, A.D. O’Brien, Enhanced virulence of the Escherichia coli O157:H7 spinach-associated outbreak strain in two animal models is associated with higher levels of Stx2 production after induction with ciprofloxacin., Infect. Immun. 82 (2014) 4968–77. https://doi.org/10.1128/IAI.02361-14.spa
dc.relation.referencesM. Ellin Doyle, J. Archer, C.W. Kaspar, R. Weiss, Human Illness Caused by E. coli O157:H7 from Food and Non-food Sources, Wisconsin, 2006. www.cdc.gov/foodnet/annual/2004/report.pdf (accessed May 22, 2019).spa
dc.relation.referencesT.H. Pennington, E. coli O157 outbreaks in the United Kingdom: past, present, and future., Infect. Drug Resist. 7 (2014) 211–22. https://doi.org/10.2147/IDR.S49081.spa
dc.relation.referencesEuropean Centre for Disease Prevention and Control, Risk related to the use of ‘do-it-yourself’ CRISPR-associated gene engineering kit contaminated with pathogenic bacteria, Estocolmo, 2017. https://ecdc.europa.eu/sites/portal/files/documents/2-May-2017-RRA_CRISPR-kit-w-pathogenic-bacteria_2.pdf (accessed May 22, 2019).spa
dc.relation.referencesInstituto Nacional de Salud, Evaluación de riesgos e inocuidad de alimentos, Bogotá, 2015. https://www.ins.gov.co/Direcciones/Vigilancia/Publicaciones ERIA y Plaguicidas/PERFIL E. COLI.pdf (accessed May 22, 2019).spa
dc.relation.referencesP.A.F. Anaya, L.M.R. Medina, M.E.O. Ugarriza, L.A.L. Gutiérrez, Determinación de Escherichia coli e identificación del serotipo O157: H7 en carne de cerdo comercializada en los principales supermercados de la ciudad de Cartagena, Rev. Lasallista Investig. 10 (2013) 91–100.spa
dc.relation.referencesS. Suresh, P. Kolhe, M. Gupta, O. Kumar, V.K. Rao, Comparison of Self Assembled Molecules for the Detection of Ricin by Using Label-Free Immunosensor Based on Quartz Crystal Microbalance, Sens. Lett. 16 (2018) 334–340. https://doi.org/10.1166/sl.2018.3963.spa
dc.relation.referencesJ.-Y. Kim, S.-H. Kim, N.-H. Kwon, W.-K. Bae, J.-Y. Lim, H.-C. Koo, J.-M. Kim, K.-M. Noh, W.-K. Jung, K.-T. Park, Y.-H. Park, Isolation and identification of Escherichia coli O157:H7 using different detection methods and molecular determination by multiplex PCR and RAPD., J. Vet. Sci. 6 (2005) 7–19. http://www.ncbi.nlm.nih.gov/pubmed/15785118 (accessed May 26, 2019).spa
dc.relation.referencesL. Anfossi, Immunoassays, Food applications, in: P. Worsfold, A. Townshend, C. Poole (Eds.), Encycl. Anal. Sci., 3rd editio, Elsevier Inc., Torino, 2017: pp. 324–329. https://doi.org/https://doi.org/10.1016/B978-0-12-409547-2.14312-4.spa
dc.relation.referencesZ. Fu, S. Rogelj, T.L. Kieft, Rapid detection of Escherichia coli O157:H7 by immunomagnetic separation and real-time PCR, Int. J. Food Microbiol. 99 (2005) 47–57. https://doi.org/10.1016/j.ijfoodmicro.2004.07.013.spa
dc.relation.referencesS. Shan, D. Liu, Q. Guo, S. Wu, R. Chen, K. Luo, L. Hu, Y. Xiong, W. Lai, Sensitive detection of Escherichia coli O157:H7 based on cascade signal amplification in ELISA, J. Dairy Sci. 99 (2016) 7025–7032. https://doi.org/10.3168/jds.2016-11320.spa
dc.relation.referencesJ. Wang, R. Katani, L. Li, N. Hegde, E.L. Roberts, V. Kapur, C. DebRoy, Rapid Detection of Escherichia coli O157 and Shiga Toxins by Lateral Flow Immunoassays., Toxins (Basel). 8 (2016) 92. https://doi.org/10.3390/toxins8040092.spa
dc.relation.referencesS. Sommerfeld, J. Strube, Challenges in biotechnology production—generic processes and process optimization for monoclonal antibodies, Chem. Eng. Process. Process Intensif. 44 (2005) 1123–1137. https://doi.org/10.1016/J.CEP.2005.03.006.spa
dc.relation.referencesJ. Meng, S. Zhao, M.P. Doyle, S.E. Mitchell, S. Kresovich, Polymerase chain reaction for detecting Escherichia coli O157:H7, Int. J. Food Microbiol. 32 (1996) 103–113. https://doi.org/10.1016/0168-1605(96)01110-5.spa
dc.relation.referencesB. Li, H. Liu, W. Wang, Multiplex real-time PCR assay for detection of Escherichia coli O157:H7 and screening for non-O157 Shiga toxin-producing E. coli, BMC Microbiol. 17 (2017) 215. https://doi.org/10.1186/s12866-017-1123-2.spa
dc.relation.referencesR. Oliveira, Development and optimization of a biological protocol for DNA detection of Escherichia coli O157:H7 by Quartz Crystal Microbalance with Dissipation ( QCM-D), Instituto Politécnico de Bragança, 2012.spa
dc.relation.referencesD.J. Bopp, B.D. Sauders, A.L. Waring, J. Ackelsberg, N. Dumas, E. Braun-Howland, D. Dziewulski, B.J. Wallace, M. Kelly, T. Halse, K.A. Musser, P.F. Smith, D.L. Morse, R.J. Limberger, Detection, isolation, and molecular subtyping of Escherichia coli O157:H7 and Campylobacter jejuni associated with a large waterborne outbreak., J. Clin. Microbiol. 41 (2003) 174–80. https://doi.org/10.1128/jcm.41.1.174-180.2003.spa
dc.relation.referencesN.T. Vo, H.D. Ngo, D.L. Vu, A.P. Duong, Q. V. Lam, Conjugation of E. coli O157:H7 Antibody to CdSe/ZnS Quantum Dots, J. Nanomater. 2015 (2015) 1–7. https://doi.org/10.1155/2015/265315.spa
dc.relation.referencesH. Xu, F. Tang, J. Dai, C. Wang, X. Zhou, Ultrasensitive and rapid count of Escherichia coli using magnetic nanoparticle probe under dark-field microscope, BMC Microbiol. 18 (2018) 100. https://doi.org/10.1186/s12866-018-1241-5.spa
dc.relation.referencesH. Zhu, U. Sikora, A. Ozcan, Quantum dot enabled detection of Escherichia coli using a cell-phone., Analyst. 137 (2012) 2541–4. https://doi.org/10.1039/c2an35071h.spa
dc.relation.referencesLijiang Wang, Qingshan Wei, Chunsheng Wu, Jian Ji, Qingjun Liu, Mo Yang, Ping Wang, Detection of E. coli O157:H7 DNA by a novel QCM biosensor coupled with gold nanoparticles amplification, in: 2007 7th IEEE Conf. Nanotechnol. (IEEE NANO), IEEE, 2007: pp. 330–333. https://doi.org/10.1109/NANO.2007.4601201.spa
dc.relation.referencesM. Xu, R. Wang, Y. Li, Electrochemical biosensors for rapid detection of Escherichia coli O157:H7, Talanta. 162 (2017) 511–522. https://doi.org/10.1016/j.talanta.2016.10.050.spa
dc.relation.referencesC. Zhou, H. Zou, M. Li, C. Sun, D. Ren, Y. Li, Fiber optic surface plasmon resonance sensor for detection of E. coli O157:H7 based on antimicrobial peptides and AgNPs-rGO, Biosens. Bioelectron. 117 (2018) 347–353. https://doi.org/10.1016/j.bios.2018.06.005.spa
dc.relation.referencesB. Smith, ed., Synthetic Receptors for Biomolecules, Royal Society of Chemistry, Cambridge, 2015. https://doi.org/10.1039/9781782622062.spa
dc.relation.referencesL.C. Clark, C. Lyons, Electrode systems for Continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci. 102 (1962) 29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x.spa
dc.relation.referencesA.H. Kadish, D.A. Hall, A new method for the continuous monitoring of blood glucose by measurement of dissolved oxygen., Clin. Chem. 11 (1965) 869–75. http://www.ncbi.nlm.nih.gov/pubmed/5835655 (accessed June 5, 2019).spa
dc.relation.referencesS.J. Updike, G.P. Hicks, The Enzyme Electrode, Nature. 214 (1967) 986–988. https://doi.org/10.1038/214986a0.spa
dc.relation.referencesN. Bhalla, P. Jolly, N. Formisano, P. Estrela, Introduction to biosensors., Essays Biochem. 60 (2016) 1–8. https://doi.org/10.1042/EBC20150001.spa
dc.relation.referencesD. Rodríguez-Lázaro, M. Hernández, Future directions for molecular microbial diagnostic methods for the food industry, in: N. Cook, M. D’Agostino, K.C. Thompson (Eds.), Mol. Microb. Diagnostic Methods, Academic Press, Inc., 2016: pp. 19–37. https://doi.org/10.1016/B978-0-12-416999-9.00002-2.spa
dc.relation.referencesS. Patel, R. Nanda, S. Sahoo, E. Mohapatra, Biosensors in Health Care: The Milestones Achieved in Their Development towards Lab-on-Chip-Analysis, Biochem. Res. Int. 2016 (2016) 1–12. https://doi.org/10.1155/2016/3130469.spa
dc.relation.referencesP. Mehrotra, Biosensors and their applications - A review, J. Oral Biol. Craniofacial Res. 6 (2016) 153–159. https://doi.org/10.1016/j.jobcr.2015.12.002.spa
dc.relation.referencesR. Thompson, Fluorescence sensors and biosensors, in: Fluoresc. Sensors Biosens., Taylor & F, Florida, 2005: p. 377. https://books.google.com/books?hl=es&lr=&id=2-_KBQAAQBAJ&pgis=1 (accessed February 21, 2015).spa
dc.relation.referencesM. Jaramillo, K. Barrientos, M.E. Londoño, Y. Montoya, C.E. Echeverri, Y.J. Montagut, J.E. Betancur, P.G. Molina, Desarrollo de Biosensores para detección de biomarcadores, Universidad EIA, Medellín, 2018.spa
dc.relation.referencesE. Feduchi, Bioquímica: Conceptos esenciales, Ed. Médica Panamericana, 2014. https://books.google.com/books?id=DhDxOpmcIfIC&pgis=1 (accessed March 10, 2016).spa
dc.relation.referencesM. Zourob, Chapter 2: Surface Sensitization Techniques and Recognition Receptors Immobalization, in: Recognit. Recept. Biosens., 2010: pp. 47–134.spa
dc.relation.referencesUniversity of Tokyo, Life Science, (n.d.). http://csls-text.c.u-tokyo.ac.jp/index.html (accessed July 11, 2019).spa
dc.relation.referencesUniversity of Newfoundland, DNA, Chromosomes & the Nucleus, (n.d.). https://www.mun.ca/biology/desmid/brian/BIOL2060/BIOL2060-18/CB18.html (accessed July 11, 2019).spa
dc.relation.referencesJ.M. Tejión, M.D. Blanco, C. Agrasal, R. Olmo, Bioquímica Estructural, Casa Editorial Mares, S.L., 2009.spa
dc.relation.referencesL. García, Desarrollo de un multibiosensor de ADN para el diagnóstico temprano de cáncer de mama, Universidad Autónoma de Madrid, 2008.spa
dc.relation.referencesJ. Curie, P. Curie, Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées, Bull. La Société Minéralogique Fr. 3 (1880) 90–93. https://doi.org/10.3406/bulmi.1880.1564.spa
dc.relation.referencesA. Arnau, Piezoelectric Transducers and Applications, Springer Science & Business Media, 2008. https://books.google.com/books?id=az1RYaJr5HsC&pgis=1 (accessed May 29, 2015).spa
dc.relation.referencesW.G. Cady, The Piezo-Electric Resonator, Proc. IRE. 10 (1922) 83–114. https://doi.org/10.1109/JRPROC.1922.219800.spa
dc.relation.referencesJ. Fernández, Desarrollo y optimización de técnicas de inmovilización basadas en monocapas autoensambladas mixtas (MSAMs) para su uso en inmunosensores piezoeléctricos, Valencia, 2011.spa
dc.relation.referencesR. Vaughan, G. Guilbault, Piezoelectric Immunosensors, Springer Verlag. 5 (2007) 237–280.spa
dc.relation.referencesJ.C. Love, L.A. Estroff, J.J. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-Assembled Monolayers of Thiolates on Methals as a Form of Nanotechnology, Chem. Rev. 4 (2005) 1103–1169.spa
dc.relation.referencesG. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung, Zeitschrift Für Phys. 155 (1959) 206–222. https://doi.org/10.1007/BF01337937.spa
dc.relation.referencesC.D. Stockbridge, A.W. Warner, A Vacuum System for Mass and Thermal Measurement with Resonating Crystalline Quartz, in: Vac. Microbalance Tech., Springer US, Boston, MA, 1962: pp. 93–114. https://doi.org/10.1007/978-1-4899-6285-0_8.spa
dc.relation.referencesV. Mecea, J. Carlsson, R. Bucur, Extensions of the quartz-crystal-microbalance technique, Sensors Actuators A Phys. 53 (1996) 371–378. https://doi.org/10.1016/0924-4247(96)80161-0.spa
dc.relation.referencesK. Kanazawa, J.G. Gordon, The oscillation frequency of a quartz resonator in contact with liquid, Anal. Chim. Acta. 175 (1985) 99–105. https://doi.org/10.1016/S0003-2670(00)82721-X.spa
dc.relation.referencesS. Tombelli, M. Minunni, M. Mascini, Piezoelectric biosensors: strategies for coupling nucleic acids to piezoelectric devices., Methods. 37 (2005) 48–56. https://doi.org/10.1016/j.ymeth.2005.05.005.spa
dc.relation.referencesL. Cervera-Chiner, M. Juan-Borrás, C. March, A. Arnau, I. Escriche, Á. Montoya, Y. Jiménez, High Fundamental Frequency Quartz Crystal Microbalance (HFF-QCM) immunosensor for pesticide detection in honey, Food Control. 92 (2018) 1–6. https://doi.org/10.1016/J.FOODCONT.2018.04.026.spa
dc.relation.referencesA. Tsortos, G. Papadakis, E. Gizeli, Shear acoustic wave biosensor for detecting DNA intrinsic viscosity and conformation: A study with QCM-D, Biosens. Bioelectron. 24 (2008) 836–841. https://doi.org/10.1016/j.bios.2008.07.006.spa
dc.relation.referencesM.C. Dixon, Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions., J. Biomol. Tech. 19 (2008) 151–8. http://www.ncbi.nlm.nih.gov/pubmed/19137101 (accessed July 9, 2019).spa
dc.relation.referencesY.J. Montagut, J.V. García Narbon, Y. Jiménez Jiménez, C. March Iborra, A. Montoya Baides, R.A. Torres Villa, A. Arnau Vives, Oscilador para biosensores basado en microbalanza de cristal de cuarzo (QCM), Rev. Fac. Ing. (2011) 114–122. http://aprendeenlinea.udea.edu.co/revistas/index.php/ingenieria/article/view/13543 (accessed April 5, 2015).spa
dc.relation.referencesE. Uttenthaler, M. Schräml, J. Mandel, S. Drost, Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids, Biosens. Bioelectron. 16 (2001) 735–743. https://doi.org/10.1016/S0956-5663(01)00220-2.spa
dc.relation.referencesC. March, J. V García, A. Sánchez, A. Arnau, Y. Jiménez, P. García, J.J. Manclús, A. Montoya, High-frequency phase shift measurement greatly enhances the sensitivity of QCM immunosensors., Biosens. Bioelectron. 65C (2014) 1–8. https://doi.org/10.1016/j.bios.2014.10.001.spa
dc.relation.referencesP. Abdul Rasheed, N. Sandhyarani, Quartz crystal microbalance genosensor for sequence specific detection of attomolar DNA targets, Anal. Chim. Acta. 905 (2016) 134–139. https://doi.org/10.1016/j.aca.2015.11.033.spa
dc.relation.referencesS. Gupta, A. Venkatesh, S. Ray, S. Srivastava, Challenges and prospects for biomarker research: a current perspective from the developing world., Biochim. Biophys. Acta. 1844 (2014) 899–908. https://doi.org/10.1016/j.bbapap.2013.12.020.spa
dc.relation.referencesA. Ziegler, A. Koch, K. Krockenberger, A. Großhennig, Personalized medicine using DNA biomarkers: A review, Hum. Genet. 131 (2012) 1627–1638. https://doi.org/10.1007/s00439-012-1188-9.spa
dc.relation.referencesW. Göpel, P. Heiduschka, Interface analysis in biosensor design, Biosens. Bioelectron. 10 (1995) 853–883. https://doi.org/10.1016/0956-5663(95)99225-A.spa
dc.relation.referencesA. Dupont-Filliard, M. Billon, G. Bidan, S. Guillerez, Investigation by QCM of the Specific and Nonspecific Avidin Interaction onto a Biotinylated Polypyrrole Film, Electroanalysis. 16 (2004) 667–673. https://doi.org/10.1002/elan.200302867.spa
dc.relation.referencesR. Singh, G. Sumana, R. Verma, S. Sood, M.K. Pandey, R.K. Gupta, B.D. Malhotra, DNA biosensor for detection of Neisseria gonorrhoeae causing sexually transmitted disease, J. Biotechnol. 150 (2010) 357–365. https://doi.org/10.1016/J.JBIOTEC.2010.09.935.spa
dc.relation.referencesA. Benvidi, A. Dehghani Firouzabadi, M. Dehghan Tezerjani, S.M. Moshtaghiun, M. Mazloum-Ardakani, A. Ansarin, A highly sensitive and selective electrochemical DNA biosensor to diagnose breast cancer, J. Electroanal. Chem. 750 (2015) 57–64. https://doi.org/10.1016/J.JELECHEM.2015.05.002.spa
dc.relation.referencesM.. Pividori, A. Merkoçi, S. Alegret, Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods, Biosens. Bioelectron. 15 (2000) 291–303. https://doi.org/10.1016/S0956-5663(00)00071-3.spa
dc.relation.referencesX. Ding, Y. Yan, S. Li, Y. Zhang, W. Cheng, Q. Cheng, S. Ding, Surface plasmon resonance biosensor for highly sensitive detection of microRNA based on DNA super-sandwich assemblies and streptavidin signal amplification, Anal. Chim. Acta. 874 (2015) 59–65. https://doi.org/10.1016/J.ACA.2015.03.021.spa
dc.relation.referencesY.Q. Fu, J.K. Luo, N.T. Nguyen, A.J. Walton, A.J. Flewitt, X.. Zu, Y. Li, G. McHale, A. Matthews, E. Iborra, H. Du, W.I. Milne, Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications, Prog. Mater. Sci. 89 (2017) 31–91. https://doi.org/10.1016/J.PMATSCI.2017.04.006.spa
dc.relation.referencesA. Correia, Development of a piezoelectric biosensor based on PVDF films, Universidade Nova de Lisboa, 2011. https://pdfs.semanticscholar.org/c625/9711997c335d4b863990c21dfbbff93fade9.pdf (accessed June 9, 2019).spa
dc.relation.referencesJ.I.A. Rashid, N.A. Yusof, The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review, Sens. Bio-Sensing Res. 16 (2017) 19–31. https://doi.org/10.1016/j.sbsr.2017.09.001.spa
dc.relation.referencesM. Pohanka, Overview of Piezoelectric Biosensors, Immunosensors and DNA Sensors and Their Applications., Mater. (Basel, Switzerland). 11 (2018). https://doi.org/10.3390/ma11030448.spa
dc.relation.referencesM. Datta, D. Desai, A. Kumar, Gene Specific DNA Sensors for Diagnosis of Pathogenic Infections., Indian J. Microbiol. 57 (2017) 139–147. https://doi.org/10.1007/s12088-017-0650-8.spa
dc.relation.referencesB. Ratner, A. Hoffman, Physicochemical Surface Modification of Materials Used in Medicine, in: Biomater. Sci., Academic Press, 2013: pp. 259–276. https://doi.org/10.1016/B978-0-08-087780-8.00027-9.spa
dc.relation.referencesS. Casalini, C.A. Bortolotti, F. Leonardi, F. Biscarini, Self-assembled monolayers in organic electronics, Chem. Soc. Rev. 46 (2017) 40–71. https://doi.org/10.1039/C6CS00509H.spa
dc.relation.referencesT. Wink, S.J. van Zuilen, a Bult, W.P. van Bennkom, Self-assembled monolayers for biosensors., Analyst. 122 (1997) 43R-50R. https://doi.org/10.1039/a606964i.spa
dc.relation.referencesM.A. Daza, Monocapas auto-organizadas sobre metales : adsorción no específica de moléculas bioactivas y su aplicación en el desarrollo de biosensores, Universidad Nacional de la Plata, 2006.spa
dc.relation.referencesL.A. Godínez, Substratos modificados con monocapas autoensambladas: dispositivos parafabricar sensores y estudiar procesos químicos y fisicoquímicos interfaciales, J. Mex. Chem. Soc. 43 (1999) 219–229. http://www.redalyc.org/resumen.oa?id=47543608 (accessed May 11, 2015).spa
dc.relation.referencesC. Moldovan, C. Mihailescu, D. Stan, L. Ruta, R. Iosub, R. Gavrila, M. Purica, S. Vasilica, Characterization of self-assembled monolayers (SAMs) on silicon substrate comparative with polymer substrate for Escherichia coli O157:H7 detection, Appl. Surf. Sci. 255 (2009) 8953–8959. https://doi.org/10.1016/j.apsusc.2009.06.113.spa
dc.relation.referencesL. Zhang, Z. Li, X. Xu, G. Yang, X. Zhou, Effect of mixed thiols on the adsorption , capacitive and hybridization performance of DNA self-assembled monolayers on gold, J. Solid State Electrochem. (2016). https://doi.org/10.1007/s10008-016-3220-9.spa
dc.relation.referencesE. Briand, M. Salmain, J.-M. Herry, H. Perrot, C. Compère, C.-M. Pradier, Building of an immunosensor: how can the composition and structure of the thiol attachment layer affect the immunosensor efficiency?, Biosens. Bioelectron. 22 (2006) 440–8. https://doi.org/10.1016/j.bios.2006.05.018.spa
dc.relation.referencesD.G. Castner, B.D. Ratner, Proteins Controlled With Precision at Organic, Polymeric, and Biopolymer Interfaces for Tissue Engineering and Regenerative Medicine, Princ. Regen. Med. (2019) 523–534. https://doi.org/10.1016/B978-0-12-809880-6.00031-X.spa
dc.relation.referencesR.C. Ebersole, J.A. Miller, J.R. Moran, M.D. Ward, Spontaneously Formed Functionally Active Avidin Monolayers on Metal Surfaces: A Strategy for Immobilizing Biological Reagents and Design of Piezoelectric Biosensors, J. Am. Chem. Soc. (1990). https://doi.org/10.1021/ja00164a070.spa
dc.relation.referencesL. Chaiet, F.J. Wolf, The properties of streptavidin, a biotin-binding protein produced by Streptomycetes, Arch. Biochem. Biophys. 106 (1964) 1–5. https://doi.org/10.1016/0003-9861(64)90150-X.spa
dc.relation.referencesC.M. Dundas, D. Demonte, S. Park, Streptavidin-biotin technology: improvements and innovations in chemical and biological applications, Appl Microbiol Biotechnol. (2013) 9343–9353. https://doi.org/10.1007/s00253-013-5232-z.spa
dc.relation.referencesK.H. Lim, H. Huang, A. Pralle, S. Park, Engineered Streptavidin Monomer and Dimer with Improved Stability and Function, Biochemistry. 50 (2011) 8682–8691. https://doi.org/10.1021/bi2010366.spa
dc.relation.referencesJ. Luong, K. Male, J. Glennon, Biotin interference in immunoassays based on biotin-strept(avidin) chemistry: An emerging threat, Biotechnol. Adv. (2019). https://doi.org/10.1016/J.BIOTECHADV.2019.03.007.spa
dc.relation.referencesM. Obermayer, F. Lynen, Structure of biotin enzymes, Trends Biochem. Sci. 1 (1976) 169–171. https://doi.org/10.1016/0968-0004(76)90198-5.spa
dc.relation.referencesJ. Gómez Oliver, Resonadores Piezoeléctricos Como Plataforma para el Desarrollo de Inmunosensores, Universidad de Castilla La Mancha, 2013.spa
dc.relation.referencesA. Garrido, M.-J. Chapela, B. Román, P. Fajardo, J.M. Vieites, A.G. Cabado, In-house validation of a multiplex real-time PCR method for simultaneous detection of Salmonella spp., Escherichia coli O157 and Listeria monocytogenes, Int. J. Food Microbiol. 164 (2013) 92–98. https://doi.org/10.1016/j.ijfoodmicro.2013.03.024.spa
dc.relation.referencesN. Paniel, J. Baudart, A. Hayat, L. Barthelmebs, Aptasensor and genosensor methods for detection of microbes in real world samples., Methods. 64 (2013) 229–40. https://doi.org/10.1016/j.ymeth.2013.07.001.spa
dc.relation.referencesM. Aquino de Muro, Probe design, production and applications, in: J.. Walker, R. Rapley (Eds.), Med. Biomethods Handb., 1st ed., Humana Press, 2005: pp. 41–53. https://doi.org/https://doi.org/10.1385/1-59259-870-6:013.spa
dc.relation.referencesK.T. Ulrich, S.D. Epinger, R.V. Madrigal Alvarez, Diseño y desarrollo de productos : enfoque multidisciplinario, McGraw-Hill, 2004. https://books.google.com.co/books?id=z_5MOgAACAAJ&dq=Diseño+y+desarrollo+de+productos.+Enfoque+multidisciplinario&hl=es-419&sa=X&ved=0ahUKEwi2m72v4rziAhUqneAKHe78DDcQ6AEIKTAA (accessed May 27, 2019).spa
dc.relation.referencesA. Yuryev, PCR primer design, 1st ed., Humana Press, Totowa, NJ, United States, 2007.spa
dc.relation.referencesA.B. Steel, R.L. Levicky, T.M. Herne, M.J. Tarlov, Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly., Biophys. J. 79 (2000) 975–81. https://doi.org/10.1016/S0006-3495(00)76351-X.spa
dc.relation.referencesF. Teles, L. Fonseca, Trends in DNA biosensors, Talanta. 77 (2008) 606–623. https://doi.org/10.1016/j.talanta.2008.07.024.spa
dc.relation.referencesN. Fortin, A. Mulchandani, W. Chen, Use of real-time polymerase chain reaction and molecular beacons for the detection of Escherichia coli O157:H7., Anal. Biochem. 289 (2001) 281–288. https://doi.org/10.1006/abio.2000.4935.spa
dc.relation.referencesW. Yanko, Development of practical methods to assess the presence of bacterial pathogens in water, 1st ed., Water Environment Research Foundation, 2004.spa
dc.relation.referencesV.K. Sharma, Real-time reverse transcription-multiplex PCR for simultaneous and specific detection of rfbE and eae genes of Escherichia coli O157:H7, Mol. Cell. Probes. 20 (2006) 298–306. https://doi.org/10.1016/j.mcp.2006.03.001.spa
dc.relation.referencesB. Mull, V.R. Hill, Recovery and Detection of Escherichia coli O157:H7 in Surface Water, Using Ultrafiltration and Real-Time PCR, Appl. Environ. Microbiol. 75 (2009) 3593–3597. https://doi.org/10.1128/AEM.02750-08.spa
dc.relation.referencesE. Omiccioli, G. Amagliani, G. Brandi, M. Magnani, A new platform for Real-Time PCR detection of Salmonella spp., Listeria monocytogenes and Escherichia coli O157 in milk, Food Microbiol. 26 (2009) 615–622. https://doi.org/10.1016/j.fm.2009.04.008.spa
dc.relation.referencesB. Suo, Y. Wang, Evaluation of a multiplex selective enrichment broth SEL for simultaneous detection of injured Salmonella, Escherichia coli O157:H7 and Listeria monocytogenes., Braz. J. Microbiol. 44 (2013) 737–42. https://doi.org/10.1590/s1517-83822013000300011.spa
dc.relation.referencesR. Gordillo, A. Rodríguez, M.L. Werning, E. Bermúdez, M. Rodríguez, Quantification of viable Escherichia coli O157:H7 in meat products by duplex real-time PCR assays, Meat Sci. 96 (2014) 964–970. https://doi.org/10.1016/j.meatsci.2013.10.018.spa
dc.relation.referencesJ.A. Ordóñez, F. Jiménez, J. Arnau, Avances en la producción de elaborados cárnicos seguros y saludables, Consolider, Barcelona, 2013.spa
dc.relation.referencesS. Perelle, F. Dilasser, J. Grout, P. Fach, Detection by 5′-nuclease PCR of Shiga-toxin producing Escherichia coli O26, O55, O91, O103, O111, O113, O145 and O157:H7, associated with the world’s most frequent clinical cases, Mol. Cell. Probes. 18 (2004) 185–192. https://doi.org/10.1016/j.mcp.2003.12.004.spa
dc.relation.referencesJ. Ye, G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen, T.L. Madden, Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction., BMC Bioinformatics. 13 (2012) 134. https://doi.org/10.1186/1471-2105-13-134.spa
dc.relation.referencesV. Chan, D.J. Graves, S.E. Mckenzie, The Biophysics of DNA Hybridization with Immobilized Oligonucleotide Probes, Biophys. J. 69 (1995) 2243–2255.spa
dc.relation.referencesS. Stamm, C.W.J. Smith, R. Lührmann, Alternative Pre-mRNA Splicing : Theory and Protocols, Wiley-Blackwell, 2012.spa
dc.relation.referencesE. van Pelt-Verkuil, A. van Belkum, J.P. Hays, Principles and Technical Aspects of PCR Amplification, Springer Science & Business Media, 2008.spa
dc.relation.referencesM. Sam, E.M. Boon, J.K. Barton, M.G. Hill, E.M. Spain, Morphology of 15-mer duplexes tethered to Au(111) probed using scanning probe microscopy, Langmuir. 17 (2001) 5727–5730. https://doi.org/10.1021/la010496d.spa
dc.relation.referencesM. Piliarik, H. Vaisocherová, J. Homola, Towards parallelized surface plasmon resonance sensor platform for sensitive detection of oligonucleotides, Sensors Actuators, B Chem. 121 (2007) 187–193. https://doi.org/10.1016/j.snb.2006.09.009.spa
dc.relation.referencesL. Dyadyusha, H. Yin, S. Jaiswal, T. Brown, J.J. Baumberg, F.P. Booy, T. Melvin, Quenching of CdSe quantum dot emission, a new approach for biosensing, Chem. Commun. (2005) 3201–3203. https://doi.org/10.1039/b500664c.spa
dc.relation.referencesD.-J. Chung, K.-C. Kim, S.-H. Choi, Electrochemical DNA biosensor based on avidin–biotin conjugation for influenza virus (type A) detection, Appl. Surf. Sci. 257 (2011) 9390–9396. https://doi.org/10.1016/J.APSUSC.2011.06.015.spa
dc.relation.referencesR.-Z. Hao, H.-B. Song, G.-M. Zuo, R.-F. Yang, H.-P. Wei, D.-B. Wang, Z.-Q. Cui, Z. Zhang, Z.-X. Cheng, X.-E. Zhang, DNA probe functionalized QCM biosensor based on gold nanoparticle amplification for Bacillus anthracis detection., Biosens. Bioelectron. 26 (2011) 3398–404. https://doi.org/10.1016/j.bios.2011.01.010.spa
dc.relation.referencesT. Ito, N. Aoki, A. Tsuchiya, S. Kaneko, K. Akiyama, K. Uetake, K. Suzuki, Detection of Stress Hormone in the Milk for Animal Welfare Using QCM Method, J. Sensors. 2017 (2017) 1–7. https://doi.org/10.1155/2017/6486891.spa
dc.relation.referencesF.N. Dultsev, E.A. Kolosovsky, M.A. Cooper, A.A. Lomzov, D.V. Pyshnyi, QCM-based rapid analysis of DNA, Sens. Bio-Sensing Res. 4 (2015). https://doi.org/10.1016/j.sbsr.2014.10.004.spa
dc.relation.referencesA.A. Moosavi-Movahedi, Thermodynamics of protein denaturation by sodium dodecyl sulfate, J. Iran. Chem. Soc. 2 (2005) 189–196. https://doi.org/10.1007/BF03245921.spa
dc.relation.referencesX. Wang, H.J. Lim, A. Son, Characterization of denaturation and renaturation of DNA for DNA hybridization., Environ. Health Toxicol. 29 (2014) e2014007. https://doi.org/10.5620/eht.2014.29.e2014007.spa
dc.relation.referencesD. García, Monocapas autoensambladas (SAMs) y nanopartículas metálicas (MPCs) como elementos en la arquitectura de interfases funcionales, Universidad de Córdoba, 2009.spa
dc.relation.referencesL.M. Fischer, M. Tenje, A.R. Heiskanen, N. Masuda, J. Castillo, A. Bentien, J. Émneus, M.H. Jakobsen, A. Boisen, Gold cleaning methods for electrochemical detection applications, Microelectron. Eng. 86 (2009) 1282–1285. https://doi.org/10.1016/j.mee.2008.11.045.spa
dc.relation.referencesThree Bond Technical News, Ultraviolet-Ozone Surface Treatment, 1987. https://www.threebond.co.jp/en/technical/technicalnews/pdf/tech17.pdf (accessed June 14, 2019).spa
dc.relation.referencesC. Bamdad, A DNA Self-Assembled Monolayer for the Specific Attachment of Unmodified Double- or Single-Stranded DNA, Biophys. J. 75 (1998) 1997–2003. https://doi.org/10.1016/S0006-3495(98)77641-6.spa
dc.relation.referencesA. Germishuizen, C. Wälti, R. Wirtz, DNA self-assembly-driven positioning of molecular components on nanopatterned surfaces Related content Selective dielectrophoretic manipulation of surface-immobilized DNAmolecules, Nanotechnology. 27 (2016) 395301. https://doi.org/10.1088/0957-4484/27/39/395301.spa
dc.relation.referencesC. March, J. V García, Á. Sánchez, A. Arnau, Y. Jiménez, P. García, J.J. Manclús, Á. Montoya, Biosensors and Bioelectronics High-frequency phase shift measurement greatly enhances the sensitivity of QCM immunosensors, Biosens. Bioelectron. 65 (2015) 1–8. https://doi.org/10.1016/j.bios.2014.10.001.spa
dc.relation.referencesJ.J. Gooding, D.B. Hibbert, The application of alkanethiol self-assembled monolayers to enzyme electrodes, TrAC Trends Anal. Chem. 18 (1999) 525–533. https://doi.org/10.1016/S0165-9936(99)00133-8.spa
dc.relation.referencesK.B. Urdinola, P.A.M. Munoz, P.A. Marin, M.J. Grajales, In-Silico Prediction on the MSAMs-Assisted Immobilization of Bovine Serum Albumin on 10 MHz Piezoelectric Immunosensors, J. Mol. Eng. Mater. 7 (2019). https://doi.org/10.1142/s2251237319500011.spa
dc.relation.referencesN. Nakajima, Y. Ikada, Mechanism of Amide Formation by Carbodiimide for Bioconjugation in Aqueous Media, Bioconjug. Chem. 6 (1995) 123–130. https://doi.org/10.1021/bc00031a015.spa
dc.relation.referencesT. Kaewphinit, S. Santiwatanakul, C. Promptmas, K. Chansiri, Detection of non-amplified Mycobacterium tuberculosis genomic DNA using piezoelectric DNA-based biosensors., Sensors (Basel). 10 (2010) 1846–58. https://doi.org/10.3390/s100301846.spa
dc.relation.referencesM. Ozsoz, Electrochemical DNA biosensors, 1st ed., Pan Stanford Publishing, Singapur, 2012.spa
dc.relation.referencesS.C.B. Gopinath, T. Lakshmipriya, Nanobiosensors for biomolecular targeting, 1st ed., Elsevier Inc., India, 2019.spa
dc.relation.referencesP. Wang, X. Wang, L. Wang, X. Hou, W. Liu, C. Chen, Interaction of gold nanoparticles with proteins and cells., Sci. Technol. Adv. Mater. 16 (2015) 034610. https://doi.org/10.1088/1468-6996/16/3/034610.spa
dc.relation.referencesR. D’agata, P. Palladino, G. Spoto, Streptavidin-coated gold nanoparticles: critical role of oligonucleotides on stability and fractal aggregation, Beilstein J. Nanotechnol. 8 (2017) 1–11. https://doi.org/10.3762/bjnano.8.1.spa
dc.relation.referencesY.M. Tseytlin, DNA molecule elastic nonlinearity: A functional helicoidal model, ZAMM Zeitschrift Fur Angew. Math. Und Mech. 94 (2014) 505–508. https://doi.org/10.1002/zamm.201300008.spa
dc.relation.referencesS.B. Smith, Y. Cui, C. Bustamante, Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules, Science (80-. ). 271 (1996) 795–799.spa
dc.relation.referencesK.P.C. Vollhardt, N.E. Schore, Organic chemistry: structure and function., 7th ed., W. H Freeman and Company, New York, 2014.spa
dc.relation.referencesP.M. Kosaka, S. González, C.M. Domínguez, A. Cebollada, A. San Paulo, M. Calleja, J. Tamayo, Atomic force microscopy reveals two phases in single stranded DNA self-assembled monolayers, Nanoscale. 5 (2013) 7425–32. https://doi.org/10.1039/c3nr01186k.spa
dc.relation.referencesT.M. Uehara, H.B. De Aguiar, K. Bergamaski, P.B. Miranda, Adsorption of alkylthiol self-assembled monolayers on gold and the effect of substrate roughness: A comparative study using scanning tunneling microscopy, cyclic voltammetry, second-harmonic generation, and sum-frequency generation, J. Phys. Chem. C. 118 (2014) 20374–20382. https://doi.org/10.1021/jp5054919.spa
dc.relation.referencesL.K. Wolf, D.E. Fullenkamp, R.M. Georgiadis, Quantitative angle-resolved SPR imaging of DNA-DNA and DNA-drug kinetics, J. Am. Chem. Soc. 127 (2005) 17453–17459. https://doi.org/10.1021/ja056422w.spa
dc.relation.referencesC.-L. Ren, D. Carvajal, K.R. Shull, I. Szleifer, Streptavidin-biotin binding in the presence of a polymer spacer. A theoretical description., Langmuir ACS J. Surfaces Colloids. 25 (2009) 12283–92. https://doi.org/10.1021/la901735d.spa
dc.relation.referencesC.J. Van Oss, R.F. Giese, P.M. Bronson, A. Docoslis, P. Edwards, W.T. Ruyechan, Macroscopic-scale surface properties of streptavidin and their influence on aspecific interactions between streptavidin and dissolved biopolymers, Colloids Surfaces B Biointerfaces. 30 (2003) 25–36. https://doi.org/10.1016/S0927-7765(03)00025-0.spa
dc.relation.referencesB.A. Katz, Binding of biotin to streptavidin stabilizes intersubunit salt bridges between Asp61 and His87 at low pH, J. Mol. Biol. 274 (1997) 776–800. https://doi.org/10.1006/jmbi.1997.1444.spa
dc.relation.referencesP.C. Weber, M.J. Cox, F.R. Salemme, D.H. Ohlendorf, Crystallographic data for Streptomyces avidinii streptavidin., J. Biol. Chem. 262 (1987) 12728–9. http://www.ncbi.nlm.nih.gov/pubmed/3624275 (accessed July 11, 2019).spa
dc.relation.referencesA. Rodes, M. Rueda, F. Prieto, C. Prado, J.M. Feliu, A. Aldaz, Adenine Adsorption at Single Crystal and Thin-Film Gold Electrodes: An In Situ Infrared Spectroscopy Study, J. Phys. Chem. C. 111 (2009) 18784–18794.spa
dc.relation.referencesE. De La Llave, R. Clarenc, D.J. Schiffrin, F.J. Williams, Organization of alkane amines on a gold surface: Structure, surface dipole, and electron transfer, J. Phys. Chem. C. 118 (2014) 468–475. https://doi.org/10.1021/jp410086b.spa
dc.relation.referencesC.E. Argaraña, I.D. Kuntz, S. Birken, R. Axel, C.R. Cantor, Molecular cloning and nucleotide sequence of the streptavidin gene., Nucleic Acids Res. 14 (1986) 1871–82. https://doi.org/10.1093/nar/14.4.1871.spa
dc.relation.referencesR. Karlsson, R. Ståhlberg, Surface plasmon resonance detection and multispot sensing for direct monitoring of interactions involving low-molecular-weight analytes and for determination of low affinities, Anal. Biochem. (1995). https://doi.org/10.1006/abio.1995.1350.spa
dc.relation.referencesE. Williams, M.I. Pividori, A. Merkoçi, R.J. Forster, S. Alegret, Rapid electrochemical genosensor assay using a streptavidin carbon-polymer biocomposite electrode., Biosens. Bioelectron. 19 (2003) 165–75. http://www.ncbi.nlm.nih.gov/pubmed/14611751 (accessed June 11, 2019).spa
dc.relation.referencesR.C. Hoft, M.J. Ford, A.M. McDonagh, M.B. Cortie, Adsorption of amine compounds on the Au(111) surface: A density functional study, J. Phys. Chem. C. (2007). https://doi.org/10.1021/jp072494t.spa
dc.relation.referencesDolatshahi-Pirouz, K. Rechendorff, M.B. Hovgaard, M. Foss, J. Chevallier, F. Besenbacher, Bovine serum albumin adsorption on nano-rough platinum surfaces studied by QCM-D, Colloids Surfaces B Biointerfaces. 66 (2008) 53–59. https://doi.org/10.1016/j.colsurfb.2008.05.010.spa
dc.relation.referencesK. Rechendorff, The influence of surface roughness on protein adsorption, Universidad de Aarhus, 2006.spa
dc.relation.referencesP.M. Wolny, J.P. Spatz, R.P. Richter, On the Adsorption Behavior of Biotin-Binding Proteins on Gold and Silica, Langmuir. 26 (2009) 1029–1034. https://doi.org/10.1021/la902226b.spa
dc.relation.referencesF. Rusmini, Z. Zhong, J. Feijen, Protein immobilization strategies for protein biochips, Biomacromolecules. 8 (2007) 1775–1789. https://doi.org/10.1021/bm061197b.spa
dc.relation.referencesC.M. Pandey, R. Singh, G. Sumana, M.K. Pandey, B.D. Malhotra, Electrochemical genosensor based on modified octadecanethiol self-assembled monolayer for Escherichia coli detection, Sensors Actuators, B Chem. 151 (2011) 333–340. https://doi.org/10.1016/j.snb.2010.07.046.spa
dc.relation.referencesÓ. a. Loaiza, S. Campuzano, M. Pedrero, J.M. Pingarrón, DNA sensor based on an Escherichia coli lac Z gene probe immobilization at self-assembled monolayers-modified gold electrodes, Talanta. 73 (2007) 838–844. https://doi.org/10.1016/j.talanta.2007.04.059.spa
dc.relation.referencesT.M. Herne, M.J. Tarlov, Characterization of DNA Probes Immobilized on Gold Surfaces, J. Am. Chem. Soc. 119 (1997) 8916–8920. https://doi.org/10.1021/ja9719586.spa
dc.relation.referencesR. Levicky, T.M. Herne, M.J. Tarlov, S.K. Satija, Using Self-Assembly To Control the Structure of DNA Monolayers on Gold: A Neutron Reflectivity Study, J. Am. Chem. Soc. 120 (1998) 9787–9792. https://doi.org/10.1021/ja981897r.spa
dc.relation.referencesD.Y. Petrovykh, H. Kimura-Suda, L.J. Whitman, M.J. Tarlov, Quantitative Analysis and Characterization of DNA Immobilized on Gold, J. Am. Chem. Soc. 125 (2003) 5219–5226. https://doi.org/10.1021/ja029450c.spa
dc.relation.referencesJ.W. Park, H.Y. Lee, J.M. Kim, R. Yamasaki, T. Kanno, H. Tanaka, H. Tanaka, T. Kawai, Electrochemical Detection of Nonlabeled Oligonucleotide DNA Using Biotin-Modified DNA(ss) on a Streptavidin-Modified Gold Electrode, J. Biosci. Bioeng. (2004). https://doi.org/10.1016/S1389-1723(04)70161-9.spa
dc.relation.referencesY. Portuondo, J. Portuondo, La repetibilidad y reproducibilidad en el aseguramiento de la calidad de los procesos de medición, Tecnol. Química. XXX (2010) 117–121. http://www.redalyc.org/articulo.oa?id=445543770014.spa
dc.relation.referencesJ. Treviño, Desarrollo de un biosensor de resonancia de plasmón superficial para la determinación de hormonas pituitarias en muestra biológicas, Universidad Autonóma de Madrid, 2009.spa
dc.relation.referencesB. Martín, Determinación indirecta de gluten mediante métodos basados en la detección de ADN: PCR y genosensores electroquímicos, Universidad Complutense de Madrid, 2015. https://doi.org/ISBN: 978-84-693-1123-3.spa
dc.relation.referencesN. Wrobel, Optimization of Interfaces for Genosensors Based on Thiol Layers on Gold Films, Universität Regensburg, 2001.spa
dc.relation.referencesD. Johannsmann, Piezoelectric Stiffening, in: 1st (Ed.), Quartz Cryst. Microbalance Soft Matter Res., Springer, Cham, 2015: p. 387. https://doi.org/10.1007/978-3-319-07836-6_5.spa
dc.relation.referencesS. Trajkovic, X. Zhang, S. Daunert, Y. Cai, Atomic force microscopy study of the conformational change in immobilized calmodulin., Langmuir. 27 (2011) 10793–9. https://doi.org/10.1021/la2016885.spa
dc.relation.referencesT. Matsumoto, DNA Molecular Electronics, in: 2017: pp. 95–109. https://doi.org/10.1007/978-3-319-57096-9_5.spa
dc.relation.referencesJ. Escorihuela, M.Á. González-Martínez, J.L. López-Paz, R. Puchades, Á. Maquieira, D. Gimenez-Romero, Dual-polarization interferometry: a novel technique to light up the nanomolecular world., Chem. Rev. 115 (2015) 265–94. https://doi.org/10.1021/cr5002063.spa
dc.relation.referencesD. Milioni, A. Tsortos, M. Velez, E. Gizeli, Extracting the Shape and Size of Biomolecules Attached to a Surface as Suspended Discrete Nanoparticles, Anal. Chem. 89 (2017) 4198–4203. https://doi.org/10.1021/acs.analchem.7b00206.spa
dc.relation.referencesS.K. Vashist, P. Vashist, Recent Advances in Quartz Crystal Microbalance-Based Sensors, J. Sensors. 2011 (2011) 1–13. https://doi.org/10.1155/2011/571405.spa
dc.relation.referencesBiolin Scientific Q-Sense, Q-Sense E4 Operator Manual, 2009. https://doi.org/10.1016/j.jacr.2004.05.021.spa
dc.relation.referencesS.T. Ten, U. Hashim, S.C.B. Gopinath, W.W. Liu, K.. Foo, S.. Sam, C.. Rahman, A.. Nordin, Highly sensitive Escherichia coli shear horizontal surface acoustic wave biosensor with silicon dioxide nanostructures, Biosens. Bioelectron. 93 (2017) 146–154. https://doi.org/10.1016/J.BIOS.2016.09.035.spa
dc.relation.referencesS. Brosel-Oliu, R. Ferreira, N. Uria, N. Abramova, R. Gargallo, F. Muñoz, A. Bratoc, Novel impedimetric aptasensor for label-free detection of Escherichia coli O157:H7, Sensors Actuators B Chem. 255 (2018) 2988–2995. https://doi.org/10.1016/J.SNB.2017.09.121.spa
dc.relation.referencesS. Xu, Y. Zhang, K. Dong, J. Wen, C. Zheng, S. Zhao, Electrochemical DNA Biosensor Based on Graphene Oxide-Chitosan Hybrid Nanocomposites for Detection of Escherichia Coli O157:H7, Int. J. Electrochem. Sci. 12 (2017) 3443–3458. https://doi.org/10.20964/2017.04.16.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalADNspa
dc.subject.proposalDNAeng
dc.subject.proposalEscherichia coli O157:H7eng
dc.subject.proposalEscherichia coli O157:H7spa
dc.subject.proposalGenosensorspa
dc.subject.proposalGenosensoreng
dc.subject.proposalInmovilizaciónspa
dc.subject.proposalImmobilizationeng
dc.subject.proposalHibridaciónspa
dc.subject.proposalHybridizationeng
dc.subject.proposalQuartz cristal microbalanceeng
dc.subject.proposalMicrobalanza de cristal de cuarzospa
dc.subject.proposalHFF-QCMspa
dc.subject.proposalHFF-QCMeng
dc.titleDesarrollo de un genosensor piezoeléctricospa
dc.title.alternativePiezoelectric Genosensorspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152198174.2020.pdf
Tamaño:
7.86 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: