Evaluation of factors that shape the development of Cannabis sativa L., and the production of its cannabinoids in the context of agroecological sustainability

dc.contributor.advisorCuervo Andrade, Jairo Leonardospa
dc.contributor.advisorPark, Sang-Hyuckspa
dc.contributor.authorCorredor Perilla, Ingrid Carolinaspa
dc.contributor.orcidCorredor-Perilla, Ingrid Carolina [0009000524527186]spa
dc.date.accessioned2024-11-26T12:47:28Z
dc.date.available2024-11-26T12:47:28Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractCannabis sativa L., as an ancient crop, is experiencing a resurgence in the modern world. Historically utilized for fiber, medicine, and grain in Europe and Asia for millennia, cannabis is now being reexamined under new regulations that permit research into its genetics and sustainable production. This has opened promising avenues for its use in the industrial, food, and medicinal sectors. Research into cannabis cultivation strategies is crucial in several domains, including standardizing genetics, understanding agronomical behavior across various settings and latitudes, integrating sustainable practices, ensuring quality control in the supply chain, developing innovative markets, and securing reliable financing and insurance options. Despite growing interest, consistent information in these areas remains scarce, and speculation has often hindered the effective development of cannabis in many countries. Recent regulatory changes have allowed several countries to utilize cannabis for scientific, industrial, medicinal, and adult-use purposes. However, cannabis cultivars display varying characteristics that significantly influence their final use. Standardizing genetics, understanding environmental effects, and optimizing agronomical management across different latitudes and geographical regions are essential for ensuring the correct production of cannabis for its intended purposes. Regulations concerning the psychoactive compound ∆9-tetrahydrocannabinol (∆9- THC) require that production levels remain below legal limits (U.S. <0.3%, Colombia <1%), yet knowledge and standardization in these areas are still limited and require further research. The main goal of this research was to evaluate agroecological factors that modulate the development and cannabinoid production of Cannabis sativa L. under agroecological sustainability. This research addresses specific defiance and opportunities at the sociocultural, economic, agronomical, and environmental levels. This doctoral thesis aims to provide trustworthy information on the understanding and development of Cannabis sativa L. by assessing its cultivation and production characteristics through the agroecological view. The research is organized into chapters as follows: Chapter One: provides a comprehensive overview of cannabis, including regulations, history, uses, biology, taxonomy, and general cultivation practices. It sets the stage by outlining the research problem, objectives, and thesis structure. Chapter Two: Reviews the development and production of Cannabis sativa L. through the lens of agroecological sustainability, using case studies from Colorado, U.S., and Colombia. It identifies the sociocultural, economic, and environmental factors influencing cannabis production in these regions and highlights the challenges and obstacles. The chapter reveals that global scientific information on cannabis remains limited, with most studies focusing on public health, policies, and psychoactive effects. Slow progress in establishing regulations, the lack of education on the plant's diverse uses, and its classification as a Schedule I substance have impeded its development, especially in the studied regions. Chapter Three: Examines the diversity and distribution of the rhizosphere microbiome, focusing on the soil bacteriome and mycobiome at different plant growth stages in a controlled environment. The study found that soil origin significantly influences microbial communities at the phylum level, with varying compositions and abundance across the vegetative and flowering stages. The persistence of essential plant growth-promoting microorganisms offers promising insights for future research to support cannabis cultivation through agroecological practices Chapter Four: Characterizes culturable cannabis rhizobacteria and investigates their functional effects on germination, phosphorus solubilization, and mycelial inhibition of Fusarium sp. under in vitro conditions. Native Bacilli strains in the cannabis rhizosphere demonstrated potential biological functions, such as phosphorus solubilization and pathogen inhibition, without negatively affecting germination. These findings highlight the potential of these microbes as native plant growth promoters, warranting further investigation under controlled and greenhouse conditions. Chapter Five: Assesses the effects of varying humidity levels on the development and cannabinoid production of Cannabis sativa L. in a controlled environment. High relative humidity (78-98% RH) at the canopy level was found to negatively impact plant morphology, biomass, and total cannabinoid content (including THC, CBC, CBG, and THCV) while positively influencing plant height and the cannabinoid content of CBD and CBDV. The study suggests that maintaining optimal vapor pressure deficit (VPD) is critical for plant fitness and performance. Future research should identify cultivars that thrive under specific humidity conditions, particularly in temperate, tropical, and subtropical regions. Chapter Six: integrates the findings from the previous chapters, emphasizing the importance of adopting an agroecological perspective in cannabis cultivation. The chapter concludes with key outcomes, research limitations, a contribution to science, recommendations, and future work. This doctoral research provides valuable insights into the sustainable cultivation of Cannabis sativa L., focusing on agroecological perspectives across different regions, the diversity and function of the rhizosphere microbiome, the role of culturable soil bacteria in plant growth, and the impact of environmental factors such as humidity on a CBD hemp variety.eng
dc.description.abstractCannabis sativa L., como un cultivo ancestral, está experimentando un resurgimiento en el mundo moderno. Históricamente utilizada durante milenios en Europa y Asia para la producción de fibra, medicina y granos, cannabis está siendo reexaminada bajo nuevas regulaciones que permiten investigar su genética y producción sostenible. Esto ha generado prometedoras oportunidades para su uso en los sectores industrial, alimentario y medicinal. La investigación sobre estrategias de cultivo de cannabis es crucial en varios ámbitos, como la estandarización de genéticas, la comprensión del comportamiento agronómico en diversos entornos y latitudes, la integración de prácticas sostenibles, el aseguramiento del control de calidad en la cadena de suministro, el desarrollo de mercados innovadores y la obtención de financiamiento e instrumentos de seguro confiables. A pesar del creciente interés, la información consistente en estas áreas sigue siendo escasa, y la especulación ha obstaculizado el desarrollo efectivo del cannabis en muchos países. Los recientes cambios regulatorios han permitido que varios países utilicen el cannabis para fines científicos, industriales, medicinales y recreativos. Sin embargo, las variedades de cannabis presentan características variables que influyen significativamente en su uso final. La estandarización de genéticas, la comprensión de los efectos ambientales y la optimización del manejo agronómico en diferentes latitudes y regiones geográficas son esenciales para garantizar una producción adecuada para sus propósitos previstos. Las regulaciones relacionadas con el compuesto psicoactivo ∆9-tetrahidrocannabinol (∆9-THC) exigen que los niveles de producción se mantengan por debajo de los límites legales (EE.UU. <0.3%, Colombia <1%). Sin embargo, el conocimiento y la estandarización en estas áreas siguen siendo limitados y requieren mayor investigación. El objetivo principal de esta investigación fue evaluar los factores agroecológicos que modulan el desarrollo y la producción de cannabinoides de Cannabis sativa L. bajo un enfoque de sostenibilidad agroecológica. Esta investigación aborda desafíos y oportunidades específicos en los niveles sociocultural, económico, agronómico y ambiental. Esta tesis doctoral tiene como objetivo proporcionar información confiable sobre la comprensión y el desarrollo de Cannabis sativa L. mediante la evaluación de sus características de cultivo y producción desde una perspectiva agroecológica. La investigación está organizada en capítulos de la siguiente manera: Capítulo Uno: Proporciona una visión general completa del cannabis, incluyendo regulaciones, historia, usos, biología, taxonomía y prácticas generales de cultivo. Establece el contexto al delinear el problema de investigación, los objetivos y la estructura de la tesis. Capítulo Dos: Revisa el desarrollo y la producción de Cannabis sativa L. desde la perspectiva de la sostenibilidad agroecológica, utilizando estudios de caso de Colorado, EE.UU., y Colombia. Identifica los factores socioculturales, económicos y ambientales que influyen en la producción de cannabis en estas regiones y destaca los desafíos y obstáculos. El capítulo revela que la información científica global sobre cannabis sigue siendo limitada, con la mayoría de los estudios enfocados en la salud pública, las políticas y los efectos psicoactivos. El lento progreso en el establecimiento de regulaciones, la falta de educación sobre los diversos usos de la planta y su clasificación como sustancia psicoactiva regulada I, han impedido su desarrollo, especialmente en las regiones estudiadas. Capítulo Tres: Examina la diversidad y distribución del microbioma rizosférico, con énfasis en el bacterioma y el micobioma del suelo en diferentes etapas de crecimiento de la planta en un entorno controlado. El estudio encontró que el origen del suelo influye significativamente en las comunidades microbianas a nivel de filo, con composiciones y abundancias variables a lo largo de las etapas vegetativa y de floración. La persistencia de microorganismos esenciales promotores del crecimiento vegetal ofrece perspectivas prometedoras para futuras investigaciones que respalden el cultivo de cannabis a través de prácticas agroecológicas. Capítulo Cuatro: Caracteriza las rizobacterias cultivables del cannabis e investiga sus efectos funcionales en la germinación, solubilización de fósforo e inhibición micelial de Fusarium sp. bajo condiciones in vitro. Las cepas nativas de Bacillus en la rizosfera de cannabis demostraron funciones biológicas potenciales, como la solubilización de fósforo y la inhibición de patógenos, sin afectar negativamente la germinación. Estos hallazgos destacan el potencial de estos microbios como promotores de crecimiento vegetal nativos, lo que justifica una mayor investigación en condiciones controladas e invernaderos. Capítulo Cinco: Evalúa los efectos de niveles variables de humedad en el desarrollo y la producción de cannabinoides de Cannabis sativa L. en un entorno controlado. Se encontró que la alta humedad relativa (78-98% HR) a nivel del dosel impactó negativamente la morfología, biomasa y contenido total de cannabinoides (incluyendo THC, CBC, CBG y THCV), mientras que influyó positivamente en la altura de la planta y el contenido de cannabinoides como CBD y CBDV. El estudio sugiere que mantener un déficit de presión de vapor (DPV) óptimo es crucial para la aptitud y el rendimiento de la planta. Investigaciones futuras deberían identificar cultivares que prosperen bajo condiciones de humedad específicas, particularmente en regiones templadas, tropicales y subtropicales. Capítulo Seis: Integra los hallazgos de los capítulos anteriores, enfatizando la importancia de adoptar una perspectiva agroecológica en el cultivo de cannabis. El capítulo concluye con resultados clave, limitaciones de investigación, contribuciones a la ciencia, recomendaciones y trabajos futuros. Esta investigación doctoral proporciona conocimientos valiosos sobre el cultivo sostenible de Cannabis sativa L., centrándose en perspectivas agroecológicas en diferentes regiones, la diversidad y función del microbioma rizosférico, el papel de las bacterias del suelo cultivables en el crecimiento de las plantas y el impacto de factores ambientales como la humedad en una variedad de cáñamo rica en CBD (Texto tomado de la fuente).spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctorado en Agroecologíaspa
dc.description.researchareaAgroecología Aplicadaspa
dc.format.extent219 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87226
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Doctorado en Agroecologíaspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAbernethy, A. (2019). Hemp production and the 2018 farm bill. US Food and Drug Administration.spa
dc.relation.referencesAdesina, I., Bhowmik, A., Sharma, H., & Shahbazi, A. (2020). A Review on the Current State of Knowledge of Growing Conditions, Agronomic Soil Health Practices and Utilities of Hemp in the United States. Agriculture, 10(4), 129. https://www.mdpi.com/2077-0472/10/4/129spa
dc.relation.referencesAtoloye, I. A., Adesina, I. S., Sharma, H., Subedi, K., Liang, C.-L., Shahbazi, A., & Bhowmik, A. (2022). Hemp biochar impacts on selected biological soil health indicators across different soil types and moisture cycles. PLoS one, 17(2), e0264620.spa
dc.relation.referencesBarcaccia, G., Palumbo, F., Scariolo, F., Vannozzi, A., Borin, M., & Bona, S. (2020). Potentials and Challenges of Genomics for Breeding Cannabis Cultivars. Front Plant Sci, 11, 573299. https://doi.org/10.3389/fpls.2020.573299spa
dc.relation.referencesBeltrán Barragán, F., & Vallejo Cuervo, L. (2021). La creación de una cadena de valor sostenible a partir del Cáñamo.spa
dc.relation.referencesBlandinières, H., & Amaducci, S. (2022). Adapting the cultivation of industrial hemp (Cannabis sativa L.) to marginal lands: A review. GCB Bioenergy, 14(9), 1004-1022. https://doi.org/https://doi.org/10.1111/gcbb.12979spa
dc.relation.referencesBloomberg Línea. (2023). Bancos no dejan despegar al cannabis en Colombia: ¿por qué no les dan créditos? (Revision January 23, 2024). https://www.bloomberglinea.com/2023/03/02/bancos-no-dejan-despegar-al-cannabis-en-colombia-por-que-no-les-dan-creditos/spa
dc.relation.referencesBonar, E. E., Chapman, L., McAfee, J., Goldstick, J. E., Bauermeister, J. A., Carter, P. M., Young, S. D., & Walton, M. A. (2021). Perceived impacts of the COVID-19 pandemic on cannabis-using emerging adults. Transl Behav Med, 11(7), 1299-1309. https://doi.org/10.1093/tbm/ibab025spa
dc.relation.referencesBridgeman, M. B., & Abazia, D. T. (2017). Medicinal Cannabis: History, Pharmacology, And Implications for the Acute Care Setting. P t, 42(3), 180-188.spa
dc.relation.referencesC.H.A.M.P. Colorado Hemp Advancement & Management Plan. (2021). Final Report 2021. https://ag.colorado.gov/plants/hemp/champ-initiative P.76 (Revision on Jan 06, 2024)spa
dc.relation.referencesCIDER (2023). Políticas de Cannabis no psicoactivo en Colombia. (Revision Febrero 20, 2024) https://cider.uniandes.edu.co/sites/default/files/publicaciones/documentos-de-politica/2023/Documentos-Politica-cannabis-no-psicoactivo-Colombia.pdfspa
dc.relation.referencesCitterio, S., Santagostino, A., Fumagalli, P., Prato, N., Ranalli, P., & Sgorbati, S. (2003). Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant and Soil, 256(2), 243-252. https://doi.org/10.1023/A:1026113905129spa
dc.relation.referencesClobes, T. A., Palmier, L. A., Gagnon, M., Klaiman, C., & Arellano, M. (2022). The impact of education on attitudes toward medical cannabis. PEC Innov, 1, 100009. https://doi.org/10.1016/j.pecinn.2021.100009spa
dc.relation.referencesColorado Department of Agriculture (CDA). (2024). Pesticides allowed for use in Cannabis (2023). https://ag.colorado.gov/plants/pesticides/pesticide-use-in-cannabis-production-information (Revision on Jan 20, 2024).spa
dc.relation.referencesColorado Department of Public Health and Environment (CDPHE). (2023). Marijuana inspection: microbial pathogens and total yeast and mold (Revision on Jan 20, 2024) https://cdphe.colorado.gov/laboratory-services/certification-of-cannabis-testing-facilities/cannabis-reference-library-0. (Revision on Jan 20, 2024).spa
dc.relation.referencesColorado Department of Agriculture “CDA” (2021). USDA approves Colorado’s State Hemp Plan, creating a Pathway to Expanded Operations and Testing. (Revision, February 13, 2024). https://ag.colorado.gov/press-release/usda-approves-colorados-state-hemp-plan-creating-a-pathway-to-expanded-operations-andspa
dc.relation.referencesCollins, J. (2020). A Brief History of Cannabis and the Drug Conventions. AJIL Unbound, 114, 279-284. https://doi.org/10.1017/aju.2020.55spa
dc.relation.referencesColombia Productiva (2023). Aprovechamiento de Productos y Sybproductos de Cannabis y Cáñamo. (Revision on March 20, 2024) https://www.colombiaproductiva.com/PTP/media/documentos/Reindustrializacion/Reporte-Avances-Soluciones-Cannabis-Canamo-Octubre2023.pdfspa
dc.relation.referencesConnelly, G. (2023). Evaluating Ecosystem and Agronomic Services Provided By Companion Cropping in Hemp (Cannabis sativa L.) UNIVERSITY OF WISCONSIN-MADISON].spa
dc.relation.referencesCrocq, M. A. (2020). History of cannabis and the endocannabinoid system
. Dialogues Clin Neurosci, 22(3), 223-228. https://doi.org/10.31887/DCNS.2020.22.3/mcrocqspa
dc.relation.referencesde Salud, S. d. S. (2017). LEY 1787 DE 2016 (JULIO 06).spa
dc.relation.referencesDuvall, C. (2017). Cannabis and Tobacco in Precolonial and Colonial Africa. In. https://doi.org/10.1093/acrefore/9780190277734.013.44spa
dc.relation.referencesElbersen, B., van Eupen, E., Mantel, S., Verzandvoort, S., Boogaard, H., Mucher, S., Cicarreli, T., Elbersen, W., Bai, Z., Iqbal, Y., von Cossel, M., McCallum, I., Carrasco, J., Ciria Ramos, C., Monti, A., Scordia, D., & Eleftheriadis, I. (2017). D2.1. Definition and classification of marginal lands suitable for industrial crops in Europe (Versión V1). Zenodo. https://doi.org/10.5281/zenodo.3539229 Style (Revision on April 2, 2024)spa
dc.relation.referencesEnvironmental Protection Agency, (EPA) (2023). Pesticide Products Registered for Use on Hemp. https://www.epa.gov/pesticide-registration/pesticide-products-registered-use-hemp (Revision on Jan 20, 2024).spa
dc.relation.referencesEržen, M., Košir, I. J., Ocvirk, M., Kreft, S., & Čerenak, A. (2021). Metabolomic Analysis of Cannabinoid and Essential Oil Profiles in Different Hemp (Cannabis sativa L.) Phenotypes. Plants (Basel), 10(5). https://doi.org/10.3390/plants10050966spa
dc.relation.referencesFederal Drug Administration (FDA). (2023). FDA and Cannabis: Research and Drug Approval Process https://www.fda.gov/news-events/public-health-focus/fda-and-cannabis-research-and-drug-approval-process. (Revision on Jan 05, 2024).spa
dc.relation.referencesFood and Agriculture Organizations of the United Nations (FAO). (2023). Multi-purpose Crops: Hemp, a Nature Based Solution Towards Sustainable Agriculture and Water Productivity. https://www.fao.org/platforms/water-scarcity/Outreach/blog-on-water-scarcity/blog-detail/sustainable-land-water-management-for-food-agriculture/2023/04/25/multi-purpose-crops-hemp-a-nature-based-solution-towards-sustainable-agriculture-and-water-productivity/en (Revision on Jan 06, 2024).spa
dc.relation.referencesFood and Drug Administration (FDA). (2020). Cannabis and Cannabis-Derived Compounds: Quality Considerations for Clinical Research Guidance for Industry https://www.fda.gov/media/140319/download (Revision on Jan 20, 2024).spa
dc.relation.referencesGill, A. R., Loveys, B. R., Cowley, J. M., Hall, T., Cavagnaro, T. R., & Burton, R. A. (2022). Physiological and morphological responses of industrial hemp (Cannabis sativa L.) to water deficit. Industrial Crops and Products, 187, 115331. https://doi.org/https://doi.org/10.1016/j.indcrop.2022.115331spa
dc.relation.referencesForbes (2023). Exportaciones de cannabis crecieron 96% entre enero y noviembre de 2022. https://forbes.co/2023/01/27/negocios/exportaciones-de-cannabis-crecieron-96-entre-enero-y-noviembre-de-2022. (Revision Jan 24, 2024)spa
dc.relation.referencesForbes (2022). Rewriting The Cannabis Narrative in Colombia: Part 2. (Revision Jan 24, 2024) https://www.forbes.com/sites/roberthoban/2022/02/28/rewriting-the-cannabis-narrative-in-colombia-part-2/?sh=5699a0b0312cspa
dc.relation.referencesGarcía, E., Zapata, F., Vanegas, A., Guerrero A, A., (2023). Documentos de política # 22 hacia la consolidación del sector de cannabis psicoactivo en Colombia: Una hoja de ruta para la acción conjunta. Centro Interdisciplinario de Estudios sobre Desarrollo -CIDER-, No. 22, ISSN2538-9491. P.44. https://cider.uniandes.edu.co/es/Documentos-politica-22-cannabis-no-psicoactivo-Colombia. (Revision on Jan 06, 2024).spa
dc.relation.referencesGoldman, S., Bramante, J., Vrdoljak, G., Guo, W., Wang, Y., Marjanovic, O., Orlowicz, S., Di Lorenzo, R., & Noestheden, M. (2021). The analytical landscape of cannabis compliance testing. Journal of Liquid Chromatography & Related Technologies, 44(9-10), 403-420. https://doi.org/10.1080/10826076.2021.1996390spa
dc.relation.referencesGóngora, A. (2019). Cannabis medicinal y arreglos farmacológicos en Colombia. Cahiers des Amériques latines(92), 115-133.spa
dc.relation.referencesGorchs, G., Lloveras, J., Serrano, L., & Cela, S. (2017). Hemp yields and its rotation effects on wheat under rainfed mediterranean conditions. Agronomy Journal, 109(4), 1551-1560.spa
dc.relation.referencesGünther, F. (2007). Carbon sequestration for everybody: decrease atmospheric carbon dioxide, earn money and improve the soil. Submitted to Energy and Environment.spa
dc.relation.referencesHill, J. A. (2021). Cannabis Banking: What Marijuana Can Learn from Hemp. BUL Rev., 101, 1043.spa
dc.relation.referencesHong, G., Sideris, A., Waldman, S., Stauffer, J., & Wu, C. L. (2024). Legal and regulatory aspects of medical cannabis in the United States. Anesthesia & Analgesia, 138(1), 31-41.spa
dc.relation.referencesHourfane, S., Mechqoq, H., Bekkali, A. Y., Rocha, J. M., & El Aouad, N. (2023). A Comprehensive Review on Cannabis sativa Ethnobotany, Phytochemistry, Molecular Docking and Biological Activities. Plants (Basel), 12(6). https://doi.org/10.3390/plants12061245spa
dc.relation.referencesHurtado Pardo, D. P. Transformación de las Narrativas de Política Pública de Drogas 2006-2019: Regulación del Cannabis en Colombia Universidad Nacional de Colombia].spa
dc.relation.referencesIngvardsen, C. R., & Brinch-Pedersen, H. (2023). Challenges and potentials of new breeding techniques in Cannabis sativa. Front Plant Sci, 14, 1154332. https://doi.org/10.3389/fpls.2023.1154332spa
dc.relation.referencesInstituto Colombiano Agropecuario (ICA) (2023a). Registro Nacional de Plaguicidas. https://www.ica.gov.co/areas/agricola/servicios/regulacion-y-control-de-plaguicidas-quimicos/estadisticas/9-bd_registros-nacionales-plaguicidas_20-de-septi.aspx. (Revision on Jan 20, 2024).spa
dc.relation.referencesInstituto Colombiano Agropecuario (ICA) (2023b) (Revision on October 6th, 2023) https://www.ica.gov.co/noticias/ica-primera-exportacion-cannabis-sativaspa
dc.relation.referencesInstituto Colombiano Agropecuario (ICA) (2021). La certificación ICA de fincas en Buenas Prácticas Agrícolas, BPA, tiene nueva norma. https://www.ica.gov.co/noticias/ica-moderniza-normatividad-en-bpa-cumplir-requisit. (Revision on Jan 20, 2024).spa
dc.relation.referencesJack K. Reed, (2021). Impacts of Marijuana Legalization. Colorado Division of Criminal Justice. Statistical Analyst Office of Research and Statistics. (Revision on Jan 05, 2024). https://cdpsdocs.state.co.us/ors/docs/reports/2021-SB13-283_Rpt.pdf.spa
dc.relation.referencesJean, T. (2023). Policy Analysis: A Case for Rescheduling Marijuana. J Med, 4(5), 1075.spa
dc.relation.referencesJohnson, L., Malone, M., Paulson, E., Swider, J., Marelius, D., Andersen, S., & Black, D. (2023). Potency and safety analysis of hemp delta-9 products: the hemp vs. cannabis demarcation problem. J Cannabis Res, 5(1), 29. https://doi.org/10.1186/s42238-023-00197-6spa
dc.relation.referencesJohnson, R. Hemp as an Agricultural Commodity. Congressional Research Service 7-5700 ww.crs.gov RL32725, 2018 June 22. https://sgp.fas.org/crs/misc/RL32725.pdfspa
dc.relation.referencesKetcherside, A., Noble, L. J., McIntyre, C. K., & Filbey, F. M. (2017). Cannabinoid Receptor 1 Gene by Cannabis Use Interaction on CB1 Receptor Density. Cannabis Cannabinoid Res, 2(1), 202-209. https://doi.org/10.1089/can.2017.0007spa
dc.relation.referencesKhanal, A., & Shah, A. (2024). Techno-Economic Analysis of Hemp Production, Logistics and Processing in the US. Biomass, 4(1), 164-179.spa
dc.relation.referencesKing, D. D., Gill, C. J., Cadieux, C. S., & Singh, N. (2024). The role of stigma in cannabis use disclosure: an exploratory study. Harm Reduct J, 21(1), 21. https://doi.org/10.1186/s12954-024-00929-8spa
dc.relation.referencesKok, C., Coenen, G., & De Heij, A. (1994). The effect of fibre hemp (Cannabis sativa L.) on selected soil-borne pathogens. Journal of the International Hemp Association, 1(1), 6-9.spa
dc.relation.referencesLapierre, É., Monthony, A. S., & Torkamaneh, D. (2023). Genomics-based taxonomy to clarify cannabis classification. Genome, 66(8), 202-211. https://doi.org/10.1139/gen-2023-0005 %M 37163765spa
dc.relation.referencesLinger, P., Ostwald, A., & Haensler, J. (2005). Cannabis sativa L. growing on heavy metal contaminated soil: growth, cadmium uptake and photosynthesis. Biologia Plantarum, 49(4), 567-576. https://doi.org/10.1007/s10535-005-0051-4spa
dc.relation.referencesLuo, X. (2024). Discussing the Legalisation of Recreational Cannabis Supply Chain: Will It Weaken Drug Trafficking Organisations? Studies in Social Science & Humanities, 3(1), 85-91.spa
dc.relation.referencesMacCallum, C. A., Lo, L. A., Pistawka, C. A., & Boivin, M. (2023). A Clinical Framework for Evaluating Cannabis Product Quality and Safety. Cannabis Cannabinoid Res, 8(3), 567-574. https://doi.org/10.1089/can.2021.0137spa
dc.relation.referencesMark, T.B., Shepherd, J., Olson, D, W., Snell, W., Proper, S., Thornsbury, S. ERS-USDA, (2020). Economic Viability of Industrial Hemp in the United States: A Review of State Pilot Programs. (Revision on March 20, 2024) https://www.ers.usda.gov/publications/pub-details/?pubid=95929spa
dc.relation.referencesMaximize Market Research (MMR). (2023) Colombia Hemp Market: Industry Analysis and Forecast (2023-2029). https://www.maximizemarketresearch.com/market-report/colombia-hemp-market/188525/ Revision Jan 23, 2024).spa
dc.relation.referencesMcPartland, J. M., Hegman, W., & Long, T. (2019). Cannabis in Asia: its center of origin and early cultivation, based on a synthesis of subfossil pollen and archaeobotanical studies. Vegetation history and archaeobotany, 28, 691-702.spa
dc.relation.referencesMead, A. (2019). Legal and regulatory issues governing cannabis and cannabis-derived products in the United States. Frontiers in plant science, 10, 433747.spa
dc.relation.referencesMeinhofer, A., & Rubli, A. (2021). Illegal drug market responses to state recreational cannabis laws. Addiction, 116(12), 3433-3443. https://doi.org/https://doi.org/10.1111/add.15517spa
dc.relation.referencesMinjusticia. (2020). Licencia de uso de semillas para siembra, licencia de cultivo de plantas de cannabis psicoactivo y licencia de cultivo de plantas de cannabis no psicoactivo. https://www.minjusticia.gov.co/programas-co/cannabis-con-fines-medicinales-y-cientificos. (Revision on Jan 05, 2024).spa
dc.relation.referencesMinsalud. (2020). Licencias de fabricación de derivados de cannabis. https://www.minsalud.gov.co/salud/MT/Paginas/cannabis-uso-medicinal.aspx. (Revision on Jan 05, 2024).spa
dc.relation.referencesMonte, A. A., Zane, R. D., & Heard, K. J. (2015). The implications of marijuana legalization in Colorado. Jama, 313(3), 241-242. https://doi.org/10.1001/jama.2014.17057spa
dc.relation.referencesMontero, L., Ballesteros-Vivas, D., Gonzalez-Barrios, A. F., & Sánchez-Camargo, A. d. P. (2023). Hemp seeds: Nutritional value, associated bioactivities and the potential food applications in the Colombian context [Review]. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.1039180spa
dc.relation.referencesMoscariello, C., Matassa, S., Esposito, G., & Papirio, S. (2021). From residue to resource: The multifaceted environmental and bioeconomy potential of industrial hemp (Cannabis sativa L.). Resources, Conservation and Recycling, 175, 105864.spa
dc.relation.referencesMorin-Crini, N.; Loiacono, S.; Placet, V.; Torri, G.; Bradu, C.; Kostić, M.; Cosentino, C.; Chanet, G.; Martel, B.; Lichtfouse, E.; Crini, G. Hemp based adsorbents for sequestration of metals: a review. Environ. Chemistry Letters, 2019, 17: 393-408.spa
dc.relation.referencesNaeem, M. Y., Corbo, F., Crupi, P., & Clodoveo, M. L. (2023). Hemp: An Alternative Source for Various Industries and an Emerging Tool for Functional Food and Pharmaceutical Sectors. Processes, 11(3), 718. https://www.mdpi.com/2227-9717/11/3/718spa
dc.relation.referencesNational Agriculture Statistics Service (NASS) of USDA. (2023). Hemp Production and Disposition Inquiry. (Revision on Jan 20,2024) https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Hemp/index.phpspa
dc.relation.referencesNational Cannabis Industry Association (NCIA). (2024). Cannabis Industry Predictions for 2024. (Revision Jan 24, 2024). https://thecannabisindustry.org/unveiling-the-future-navigating-the-cannabis-landscapein- 2024/#:~:text=Projected%20Market%20Growth%3A%20The%20U.S.,to%20this%20growth%E2%80%8B%E2%80%8B.spa
dc.relation.referencesNavarro, C. E. (2023). Cannabis-based magistral formulation is highly effective as an adjuvant treatment in drug-resistant focal epilepsy in adult patients: an open-label prospective cohort study. Neurological Sciences, 44(1), 297-304. https://doi.org/10.1007/s10072-022-06393-1spa
dc.relation.referencesOrganización de Las Naciones Unidas (ONU). (2023.) Colombia avanza en el acuerdo de paz, pero debe cumplir con las víctimas. Noticias ONU. https://news.un.org/es/story/2023/10/1524652 (Revision on Jan 06, 2024).spa
dc.relation.referencesOsterberger, E., Lohwasser, U., Jovanovic, D., Ruzicka, J., & Novak, J. (2022). The origin of the genus Cannabis. Genetic Resources and Crop Evolution, 69(4), 1439-1449.spa
dc.relation.referencesParker, K. A., Di Mattia, A., Shaik, F., Cerón Ortega, J. C., & Whittle, R. (2019). Risk management within the cannabis industry: Building a framework for the cannabis industry. Financial Markets, Institutions & Instruments, 28(1), 3-55.spa
dc.relation.referencesPerera, K. Y., Jaiswal, A. K., & Jaiswal, S. (2023). Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications. Foods, 12(12), 2422. https://www.mdpi.com/2304-8158/12/12/2422spa
dc.relation.referencesPromhuad, K., Srisa, A., San, H., Laorenza, Y., Wongphan, P., Sodsai, J., Tansin, K., Phromphen, P., Chartvivatpornchai, N., Ngoenchai, P., & Harnkarnsujarit, N. (2022). Applications of Hemp Polymers and Extracts in Food, Textile and Packaging: A Review. Polymers (Basel), 14(20). https://doi.org/10.3390/polym14204274spa
dc.relation.referencesRafei, P., Englund, A., Lorenzetti, V., Elkholy, H., Potenza, M., & Baldacchino, A. (2023). Transcultural Aspects of Cannabis Use: a Descriptive Overview of Cannabis Use across Cultures. Current Addiction Reports, 10, 1-14. https://doi.org/10.1007/s40429-023-00500-8spa
dc.relation.referencesRaihan, A., & Bijoy, T. R. (2023). A review of the industrial use and global sustainability of Cannabis sativa. Global Sustainability Research, 2(4), 1-29.spa
dc.relation.referencesRamirez-Hassan, A., Gomez, C., Velásquez, S., & Tangarife, K. (2023). Marijuana on Main Streets? The Story Continues in Colombia: An Endogenous Three-part Model. arXiv preprint arXiv:2306.10031.spa
dc.relation.referencesReid, M. (2023). Cannabis stigmas: A narrative of features. In Cannabis Use, Neurobiology, Psychology, and Treatment (pp. 171-179). Elsevier.spa
dc.relation.referencesReyes Barreto, M. S. Fundamentos sociopolíticos y culturales de la criminalización de la marihuana recreativa en Colombia: una mirada desde el contexto geopolítico contemporáneo Universidad Nacional de Colombia].spa
dc.relation.referencesRiboulet-Zemouli, K. (2021). Cannabis Sostenible: Manual de Políticas Públicas – Alinear las políticas del Cannabis y del cáñamo con la Agenda 2030 de desarrollo sostenible.spa
dc.relation.referencesRizzo, G., Storz, M. A., & Calapai, G. (2023). The Role of Hemp (Cannabis sativa L.) as a Functional Food in Vegetarian Nutrition. Foods, 12(18). https://doi.org/10.3390/foods12183505spa
dc.relation.referencesRink Grace & Cannabis Sustainability Workgroup (CSWG). (2021). Cannabis environmental best management practices guide. (Revision on Jan 20, 2024). https://www.denvergov.org/files/assets/public/v/1/climate-action/documents/2021_cannabis-bmp-guide_rev-11-23.pdfspa
dc.relation.referencesRull, V. (2022). Origin, early expansion, domestication and anthropogenic diffusion of Cannabis, with emphasis on Europe and the Iberian Peninsula. Perspectives in Plant Ecology, Evolution and Systematics, 55, 125670. https://doi.org/https://doi.org/10.1016/j.ppees.2022.125670spa
dc.relation.referencesSandoval, B., Bowen, J. K., Richards, T., Chaparro, J. M., Lee, M., Uchanski, M., Cranshaw, W., & Prenni, J. E. (2024). Impact of Defoliation Stress on Phytocannabinoid Content in Industrial Hemp. Industrial Crops and Products, 211, 118226. https://doi.org/https://doi.org/10.1016/j.indcrop.2024.118226spa
dc.relation.referencesSchilling, S., Melzer, R., Dowling, C. A., Shi, J., Muldoon, S., & McCabe, P. F. (2023). A protocol for rapid generation cycling (speed breeding) of hemp (Cannabis sativa) for research and agriculture. The Plant Journal, 113(3), 437-445. https://doi.org/https://doi.org/10.1111/tpj.16051spa
dc.relation.referencesShen, Z., Tiruta-Barna, L., & Hamelin, L. (2022). From hemp grown on carbon-vulnerable lands to long-lasting bio-based products: Uncovering trade-offs between overall environmental impacts, sequestration in soil, and dynamic influences on global temperature. Sci Total Environ, 846, 157331. https://doi.org/10.1016/j.scitotenv.2022.157331spa
dc.relation.referencesShikanai, A., & Gage, K. L. (2022). Allelopathic Potential of Hemp: Implications for Integrated Weed Management [Original Research]. Frontiers in Agronomy, 4. https://doi.org/10.3389/fagro.2022.832471spa
dc.relation.referencesSiddiqui, S. A., Singh, P., Khan, S., Fernando, I., Baklanov, I. S., Ambartsumov, T. G., & Ibrahim, S. A. (2022). Cultural, Social and Psychological Factors of the Conservative Consumer towards Legal Cannabis Use&mdash;A Review since 2013. Sustainability, 14(17), 10993. https://www.mdpi.com/2071-1050/14/17/10993spa
dc.relation.referencesSilver, R. J. (2019). The Endocannabinoid System of Animals. Animals (Basel), 9(9). https://doi.org/10.3390/ani9090686spa
dc.relation.referencesSiracusa, L., Ruberto, G., & Cristino, L. (2023). Recent Research on Cannabis sativa L.: Phytochemistry, New Matrices, Cultivation Techniques, and Recent Updates on Its Brain-Related Effects (2018-2023). Molecules, 28(8). https://doi.org/10.3390/molecules28083387spa
dc.relation.referencesSkorbiansky, S. R., Thornsbury, S., & Camp, K. M. (2021). Legal Risk Exposure Heightens Uncertainty in Developing US Hemp Markets. Choices, 36(1), 1-10.spa
dc.relation.referencesSmall, E. (2015). Evolution and classification of Cannabis sativa (marijuana, hemp) in relation to human utilization. The botanical review, 81, 189-294.spa
dc.relation.referencesSmith, C. J., Vergara, D., Keegan, B., & Jikomes, N. (2022). The phytochemical diversity of commercial cannabis in the United States. PLoS one, 17(5), e0267498.spa
dc.relation.referencesSteinberg, J. (2022). Cannabis legalization: an ethnography of the global movement and market forces University of Oxford].spa
dc.relation.referencesStonehouse, G. C., McCarron, B. J., Guignardi, Z. S., El Mehdawi, A. F., Lima, L. W., Fakra, S. C., & Pilon-Smits, E. A. H. (2020). Selenium Metabolism in Hemp (Cannabis sativa L.)-Potential for Phytoremediation and Biofortification. Environ Sci Technol, 54(7), 4221-4230. https://doi.org/10.1021/acs.est.9b07747spa
dc.relation.referencesSukpiriyagul, A., Chartchaiyarerk, R., Tabtipwon, P., Smanchat, B., Prommas, S., Bhamarapravatana, K., & Suwannarurk, K. (2023). Oral Tetrahydrocannabinol (THC): Cannabinoid (CBD) Cannabis Extract Adjuvant for Reducing Chemotherapy-Induced Nausea and Vomiting (CINV): A Randomized, Double-Blinded, Placebo-Controlled, Crossover Trial. International Journal of Women's Health, 1345-1352.spa
dc.relation.referencesTang, L., Fan, C., Yuan, H., Wu, G., Sun, J., & Zhang, S. (2022). The Effect of Rotational Cropping of Industrial Hemp (Cannabis sativa L.) on Rhizosphere Soil Microbial Communities. Agronomy, 12(10), 2293.spa
dc.relation.referencesTanney, C. A. S., Backer, R., Geitmann, A., & Smith, D. L. (2021). Cannabis Glandular Trichomes: A Cellular Metabolite Factory [Mini Review]. Frontiers in plant science, 12. https://doi.org/10.3389/fpls.2021.721986spa
dc.relation.referencesTedeshi, A., (2023). Multi-purpose Crops: Hemp, a Nature Based Solution Towards Sustainable Agriculture and Water Productivity. (Revision Jan 25, 2024) https://www.fao.org/platforms/water-scarcity/Outreach/blog-on-water-scarcity/blog-detail/sustainable-land-water-management-for-food-agriculture/2023/04/25/multi-purpose-crops-hemp-a-nature-based-solution-towards-sustainable-agriculture-and-water-productivity/enspa
dc.relation.referencesTedeschi, A., Cerrato, D., & Menenti, M. (2022). Is the Potential for Multi-Functional Use of Industrial Hemp Greater than Maize under Saline Conditions? Sustainability, 14(23), 15646. https://www.mdpi.com/2071-1050/14/23/15646spa
dc.relation.referencesUSDA, United States Department of Agriculture. (2023). Hemp National Report. https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Hemp/index.php (Revision Jan 24, 2024)spa
dc.relation.referencesUSDA, United States Department of Agriculture. (2021). USDA Improves, Strengthens Crop Insurance for Hemp Producers.https://rma.usda.gov/News-Room/Press/National-News-Archive/2021-News/2021-News/USDA-Improves-Strengthens-Crop-Insurance-for-Hemp-Producers (Revision on Jan 20, 2024).spa
dc.relation.referencesU.S. Food and Drug Administration (FDA). (2018). FDA Responds to Three GRAS Notices for Hemp Seed-Derived Ingredients for Use in Human Food. Washington, DC: U.S. Food and Drug Administration. https://www.fda.gov/food/cfsan-constituent-updates/fda-responds-three-gras-notices-hemp-seed-derivedingredients-use-human-food (Revision on Jan 20, 2024).spa
dc.relation.referencesU.S Congress (2023). Secure and Fair Enforcement Banking Act of 2023 or the SAFE Banking Act of 2023-2024 (SAFE Banking Act) (https://www.congress.gov/bill/118th-congress/house-bill/2891#:~:text=This%20bill%20provides%20protections%20for,a%20Schedule%20I%20controlled%20substance (Revision Jan 23, 2024).spa
dc.relation.referencesVélez-Torres, I., Hurtado, D., & Bueno, B. (2021). Medicinal Marijuana, Inc.: A Critique on the Market-led Legalization of Cannabis and the Criminalization of Rural Livelihoods in Colombia. Critical Criminology, 29(3), 505-526. https://doi.org/10.1007/s10612-021-09589-7spa
dc.relation.referencesVerma, R., Hoda, F., Arshad, M., Iqubal, A., Siddiqui, A. N., Khan, M. A., Haque, S. E., Akhtar, M., & Najmi, A. K. (2021). Cannabis, a Miracle Drug with Polyvalent Therapeutic Utility: Preclinical and Clinical-Based Evidence. Med Cannabis Cannabinoids, 4(1), 43-60. https://doi.org/10.1159/000515042spa
dc.relation.referencesVesga Rendón, J. E. (2022). El uso de Cannabis sativa como especie fitorremediadora de cadmio: una alternativa para revivir el suelo. Caso de estudio finca La Chuqua, Guasca-Cundinamarca.spa
dc.relation.referencesVisković, J., Zheljazkov, V. D., Sikora, V., Noller, J., Latković, D., Ocamb, C. M., & Koren, A. (2023). Industrial Hemp (Cannabis sativa L.) Agronomy and Utilization: A Review. Agronomy, 13(3), 931. https://www.mdpi.com/2073-4395/13/3/931spa
dc.relation.referencesVulfsons, S., Minerbi, A., & Sahar, T. (2020). Cannabis and Pain Treatment-A Review of the Clinical Utility and a Practical Approach in Light of Uncertainty. Rambam Maimonides Med J, 11(1). https://doi.org/10.5041/rmmj.10385spa
dc.relation.referencesWatts, S., McElroy, M., Migicovsky, Z., Maassen, H., van Velzen, R., & Myles, S. (2021). Cannabis labelling is associated with genetic variation in terpene synthase genes. Nature Plants, 7(10), 1330-1334. https://doi.org/10.1038/s41477-021-01003-yspa
dc.relation.referencesYano, H., & Fu, W. (2023). Hemp: A Sustainable Plant with High Industrial Value in Food Processing. Foods, 12(3). https://doi.org/10.3390/foods12030651spa
dc.relation.referencesZhang, J., Yan, J., Huang, S., Pan, G., Chang, L., Li, J., Zhang, C., Tang, H., Chen, A., Peng, D., Biswas, A., Zhang, C., Zhao, L., & Li, D. (2020). Genetic Diversity and Population Structure of Cannabis Based on the Genome-Wide Development of Simple Sequence Repeat Markers. Front Genet, 11, 958. https://doi.org/10.3389/fgene.2020.00958spa
dc.relation.referencesZhao, J., Xu, Y., Wang, W., Griffin, J., Roozeboom, K., & Wang, D. (2020). Bioconversion of industrial hemp biomass for bioethanol production: A review. Fuel, 281, 118725. https://doi.org/https://doi.org/10.1016/j.fuel.2020.118725spa
dc.relation.referencesAbarenkov, K., Zirk, A., Piirmann, T., Pöhönen, R., Ivanov, F., Nilsson, R. H., & Kõljalg, U. (2021). UNITE general FASTA release for Fungi UNITE Community. U. Community. doi, 10.spa
dc.relation.referencesAbellan-Schneyder, I., Matchado, M., Reitmeier, S., Sommer, A., Sewald, Z., Baumbach, J., List, M., & Neuhaus, K. (2021). Primer, Pipelines, Parameters: Issues in 16S rRNA Gene Sequencing. mSphere, 6. https://doi.org/10.1128/mSphere.01202-20spa
dc.relation.referencesAhmed, B., & Hijri, M. (2021). Potential impacts of soil microbiota manipulation on secondary metabolites production in cannabis. Journal of Cannabis Research, 3(1), 25. https://doi.org/10.1186/s42238-021-00082-0spa
dc.relation.referencesAhmed, B., Smart, L. B., & Hijri, M. (2021). Microbiome of Field Grown Hemp Reveals Potential Microbial Interactions With Root and Rhizosphere Soil [Original Research]. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.741597spa
dc.relation.referencesAmaducci, S., Zatta, A., Raffanini, M., & Venturi, G. (2008). Characterisation of hemp (Cannabis sativa L.) roots under different growing conditions. Plant and Soil, 313, 227-235. https://doi.org/10.1007/s11104-008-9695-0spa
dc.relation.referencesBalthazar, C., Novinscak, A., Cantin, G., Joly, D. L., & Filion, M. (2022). Biocontrol Activity of Bacillus spp. and Pseudomonas spp. Against Botrytis cinerea and Other Cannabis Fungal Pathogens. Phytopathology®, 112(3), 549-560. https://doi.org/10.1094/phyto-03-21-0128-rspa
dc.relation.referencesBarcaccia, G., Palumbo, F., Scariolo, F., Vannozzi, A., Borin, M., & Bona, S. (2020). Potentials and Challenges of Genomics for Breeding Cannabis Cultivars. Front Plant Sci, 11, 573299. https://doi.org/10.3389/fpls.2020.573299spa
dc.relation.referencesBargaz, A., Lyamlouli, K., Chtouki, M., Zeroual, Y., & Dhiba, D. (2018). Soil Microbial Resources for Improving Fertilizers Efficiency in an Integrated Plant Nutrient Management System [Review]. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01606spa
dc.relation.referencesBarnett, S. E., Cala, A. R., Hansen, J. L., Crawford, J., Viands, D. R., Smart, L. B., Smart, C. D., & Buckley, D. H. (2020). Evaluating the microbiome of hemp. Phytobiomes Journal, 4(4), 351-363.spa
dc.relation.referencesChaparro, J. M., Badri, D. V., & Vivanco, J. M. (2014). Rhizosphere microbiome assemblage is affected by plant development. Isme j, 8(4), 790-803. https://doi.org/10.1038/ismej.2013.196spa
dc.relation.referencesChong, J., Liu, P., Zhou, G., & Xia, J. (2020). Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc, 15(3), 799-821. https://doi.org/10.1038/s41596-019-0264-1spa
dc.relation.referencesComeau, D., Balthazar, C., Novinscak, A., Bouhamdani, N., Joly, D. L., & Filion, M. (2021). Interactions Between Bacillus Spp., Pseudomonas Spp. and Cannabis sativa Promote Plant Growth. Front Microbiol, 12, 715758. https://doi.org/10.3389/fmicb.2021.715758spa
dc.relation.referencesComeau, D., Novinscak, A., Joly, D. L., & Filion, M. (2020). Spatio-Temporal and Cultivar-Dependent Variations in the Cannabis Microbiome [Original Research]. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00491spa
dc.relation.referencesDhariwal, A., Chong, J., Habib, S., King, I. L., Agellon, L. B., & Xia, J. (2017). MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res, 45(W1), W180-w188. https://doi.org/10.1093/nar/gkx295spa
dc.relation.referencesElhendawy, M. A., Wanas, A. S., Radwan, M. M., Azzaz, N. A., Toson, E. S., & ElSohly, M. A. (2019). Chemical and Biological Studies of Cannabis sativa Roots. Med Cannabis Cannabinoids, 1(2), 104-111. https://doi.org/10.1159/000495582spa
dc.relation.referencesFordjour, E., Manful, C. F., Sey, A. A., Javed, R., Pham, T. H., Thomas, R., & Cheema, M. (2023). Cannabis: a multifaceted plant with endless potentials. Front Pharmacol, 14, 1200269. https://doi.org/10.3389/fphar.2023.1200269spa
dc.relation.referencesGinnan, N. A., De Anda, N. I., Campos Freitas Vieira, F., Rolshausen, P. E., & Roper, M. C. (2022). Microbial Turnover and Dispersal Events Occur in Synchrony with Plant Phenology in the Perennial Evergreen Tree Crop Citrus sinensis. mBio, 13(3), e0034322. https://doi.org/10.1128/mbio.00343-22spa
dc.relation.referencesGogoi, A. (2020). Domestication of Cannabis and Its Future Prospects. Cannabis, 36.spa
dc.relation.referencesHartman, K., Schmid, M. W., Bodenhausen, N., Bender, S. F., Valzano-Held, A. Y., Schlaeppi, K., & van der Heijden, M. G. A. (2023). A symbiotic footprint in the plant root microbiome. Environmental Microbiome, 18(1), 65. https://doi.org/10.1186/s40793-023-00521-wspa
dc.relation.referencesHiruma, K., Gerlach, N., Sacristán, S., Nakano, R. T., Hacquard, S., Kracher, B., Neumann, U., Ramírez, D., Bucher, M., O'Connell, R. J., & Schulze-Lefert, P. (2016). Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits that Are Phosphate Status Dependent. Cell, 165(2), 464-474. https://doi.org/10.1016/j.cell.2016.02.028spa
dc.relation.referencesIngvardsen, C. R., & Brinch-Pedersen, H. (2023). Challenges and potentials of new breeding techniques in Cannabis sativa. Front Plant Sci, 14, 1154332. https://doi.org/10.3389/fpls.2023.1154332spa
dc.relation.referencesJastrząb, A., Jarocka-Karpowicz, I., & Skrzydlewska, E. (2022). The Origin and Biomedical Relevance of Cannabigerol. Int J Mol Sci, 23(14). https://doi.org/10.3390/ijms23147929spa
dc.relation.referencesJiao, S., Chen, W., Wang, J., Du, N., Li, Q., & Wei, G. (2018). Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome, 6(1), 146. https://doi.org/10.1186/s40168-018-0526-0spa
dc.relation.referencesJin, D., Dai, K., Xie, Z., & Chen, J. (2020). Secondary Metabolites Profiled in Cannabis Inflorescences, Leaves, Stem Barks, and Roots for Medicinal Purposes. Scientific Reports, 10(1), 3309. https://doi.org/10.1038/s41598-020-60172-6spa
dc.relation.referencesJin, D., Henry, P., Shan, J., & Chen, J. (2021). Identification of Chemotypic Markers in Three Chemotype Categories of Cannabis Using Secondary Metabolites Profiled in Inflorescences, Leaves, Stem Bark, and Roots [Original Research]. Frontiers in plant science, 12. https://doi.org/10.3389/fpls.2021.699530spa
dc.relation.referencesJin, D., Jin, S., & Chen, J. (2019). Cannabis indoor growing conditions, management practices, and post-harvest treatment: a review. American Journal of Plant Sciences, 10(06), 925.spa
dc.relation.referencesLi, L., Yang, X., Tong, B., Wang, D., Tian, X., Liu, J., Chen, J., Xiao, X., & Wang, S. (2023). Rhizobacterial compositions and their relationships with soil properties and medicinal bioactive ingredients in Cinnamomum migao [Original Research]. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1078886spa
dc.relation.referencesLing, N., Wang, T., & Kuzyakov, Y. (2022). Rhizosphere bacteriome structure and functions. Nature Communications, 13(1), 836. https://doi.org/10.1038/s41467-022-28448-9spa
dc.relation.referencesLlewellyn, D., Golem, S., Foley, E., Dinka, S., Jones, A. M. P., & Zheng, Y. (2022). Indoor grown cannabis yield increased proportionally with light intensity, but ultraviolet radiation did not affect yield or cannabinoid content. Front Plant Sci, 13, 974018. https://doi.org/10.3389/fpls.2022.974018spa
dc.relation.referencesLu, Y., Zhou, G., Ewald, J., Pang, Z., Shiri, T., & Xia, J. (2023). MicrobiomeAnalyst 2.0: comprehensive statistical, functional and integrative analysis of microbiome data. Nucleic Acids Res, 51(W1), W310-w318. https://doi.org/10.1093/nar/gkad407spa
dc.relation.referencesLyu, D., Backer, R., Berrué, F., Martinez-Farina, C., Hui, J. P. M., & Smith, D. L. (2023). Plant Growth-Promoting Rhizobacteria (PGPR) with Microbial Growth Broth Improve Biomass and Secondary Metabolite Accumulation of Cannabis sativa L. Journal of Agricultural and Food Chemistry, 71(19), 7268-7277. https://doi.org/10.1021/acs.jafc.2c06961spa
dc.relation.referencesLyu, D., Backer, R., & Smith, D. L. (2022). Three plant growth-promoting rhizobacteria alter morphological development, physiology, and flower yield of Cannabis sativa L. Industrial Crops and Products, 178, 114583.spa
dc.relation.referencesMartínez, V., Iriondo De-Hond, A., Borrelli, F., Capasso, R., Del Castillo, M. D., & Abalo, R. (2020). Cannabidiol and Other Non-Psychoactive Cannabinoids for Prevention and Treatment of Gastrointestinal Disorders: Useful Nutraceuticals? Int J Mol Sci, 21(9). https://doi.org/10.3390/ijms21093067spa
dc.relation.referencesMcKernan, K., Spangler, J., Helbert, Y., Lynch, R. C., Devitt-Lee, A., Zhang, L., Orphe, W., Warner, J., Foss, T., & Hudalla, C. J. (2016). Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests. F1000Research, 5.spa
dc.relation.referencesMcLaughlin, S., Zhalnina, K., Kosina, S., Northen, T. R., & Sasse, J. (2023). The core metabolome and root exudation dynamics of three phylogenetically distinct plant species. Nat Commun, 14(1), 1649. https://doi.org/10.1038/s41467-023-37164-xspa
dc.relation.referencesMcPartland, J. M., & McKernan, K. J. (2017). Contaminants of Concern in Cannabis: Microbes, Heavy Metals and Pesticides. In S. Chandra, H. Lata, & M. A. ElSohly (Eds.), Cannabis sativa L. - Botany and Biotechnology (pp. 457-474). Springer International Publishing. https://doi.org/10.1007/978-3-319-54564-6_22spa
dc.relation.referencesMcPartland, J. M., & Small, E. (2020). A classification of endangered high-THC cannabis (Cannabis sativa subsp. indica) domesticates and their wild relatives. PhytoKeys, 144, 81-112. https://doi.org/10.3897/phytokeys.144.46700spa
dc.relation.referencesMelzer, R., McCabe, P. F., & Schilling, S. (2022). Evolution, genetics and biochemistry of plant cannabinoid synthesis: a challenge for biotechnology in the years ahead. Current Opinion in Biotechnology, 75, 102684. https://doi.org/https://doi.org/10.1016/j.copbio.2022.102684spa
dc.relation.referencesMeyer, W., Irinyi, L., Hoang, M. T. V., Robert, V., Garcia-Hermoso, D., Desnos-Ollivier, M., Yurayart, C., Tsang, C.-C., Lee, C.-Y., Woo, P. C. Y., Pchelin, I. M., Uhrlaß, S., Nenoff, P., Chindamporn, A., Chen, S., Hebert, P. D. N., & Sorrell, T. C. (2018). Database establishment for the secondary fungal DNA barcode translational elongation factor 1α (TEF1α). Genome, 62(3), 160-169. https://doi.org/10.1139/gen-2018-0083spa
dc.relation.referencesPark, I., Seo, Y. S., & Mannaa, M. (2023). Recruitment of the rhizo-microbiome army: assembly determinants and engineering of the rhizosphere microbiome as a key to unlocking plant potential. Front Microbiol, 14, 1163832. https://doi.org/10.3389/fmicb.2023.1163832spa
dc.relation.referencesPark, S.-H., Pauli, C. S., Gostin, E. L., Staples, S. K., Seifried, D., Kinney, C., & Vanden Heuvel, B. D. (2022). Effects of short-term environmental stresses on the onset of cannabinoid production in young immature flowers of industrial hemp (Cannabis sativa L.). Journal of Cannabis Research, 4(1), 1-13.spa
dc.relation.referencesPérez-Bermúdez, P., & Rognoni Martínez, A. (2023). Chapter 3 - Strategies to improve Cannabis cultivation: optimizing plant growth and phytocannabinoid biosynthesis. In I. F. García-Tejero & V. H. Durán-Zuazo (Eds.), Current Applications, Approaches, and Potential Perspectives for Hemp (pp. 77-108). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-323-89867-6.00008-1spa
dc.relation.referencesRegas, T., Han, J. H., Pauli, C. S., & Park, S. H. (2021). Employing Aeroponic Systems for the Clonal Propagation of Cannabis. J Vis Exp(178). https://doi.org/10.3791/63117spa
dc.relation.referencesRitter, S., Zadik-Weiss, L., Almogi-Hazan, O., & Or, R. (2020). Cannabis, One Health, and Veterinary Medicine: Cannabinoids' Role in Public Health, Food Safety, and Translational Medicine. Rambam Maimonides Med J, 11(1). https://doi.org/10.5041/rmmj.10388spa
dc.relation.referencesRull, V. (2022). Origin, early expansion, domestication and anthropogenic diffusion of Cannabis, with emphasis on Europe and the Iberian Peninsula. Perspectives in Plant Ecology, Evolution and Systematics, 55, 125670. https://doi.org/https://doi.org/10.1016/j.ppees.2022.125670spa
dc.relation.referencesSasse, J., Martinoia, E., & Northen, T. (2018). Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? Trends Plant Sci, 23(1), 25-41. https://doi.org/10.1016/j.tplants.2017.09.003spa
dc.relation.referencesSmall, E. (2015). Evolution and classification of Cannabis sativa (marijuana, hemp) in relation to human utilization. The botanical review, 81, 189-294.spa
dc.relation.referencesTaghinasab, M., & Jabaji, S. (2020). Cannabis Microbiome and the Role of Endophytes in Modulating the Production of Secondary Metabolites: An Overview. Microorganisms, 8(3), 355. https://www.mdpi.com/2076-2607/8/3/355spa
dc.relation.referencesToth, J. A., Smart, L. B., Smart, C. D., Stack, G. M., Carlson, C. H., Philippe, G., & Rose, J. K. C. (2021). Limited effect of environmental stress on cannabinoid profiles in high-cannabidiol hemp (Cannabis sativa L.). GCB Bioenergy, 13(10), 1666-1674. https://doi.org/https://doi.org/10.1111/gcbb.12880 Wei, G., Ning, K., Zhang, G., Yu, H., Yang, S., Dai, F., Dong, L.spa
dc.relation.referencesWei, G., Ning, K., Zhang, G., Yu, H., Yang, S., Dai, F., Dong, L., & Chen, S. (2021). Compartment Niche Shapes the Assembly and Network of Cannabis sativa-Associated Microbiome [Original Research]. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.714993spa
dc.relation.referencesWinston, M. E., Hampton-Marcell, J., Zarraonaindia, I., Owens, S. M., Moreau, C. S., Gilbert, J. A., Hartsel, J., Kennedy, S. J., & Gibbons, S. M. (2014). Understanding cultivar-specificity and soil determinants of the cannabis microbiome. PLoS one, 9(6), e99641.spa
dc.relation.referencesXie, Z., Mi, Y., Kong, L., Gao, M., Chen, S., Chen, W., Meng, X., Sun, W., Chen, S., & Xu, Z. (2023). Cannabis sativa: origin and history, glandular trichome development, and cannabinoid biosynthesis. Horticulture Research, 10(9). https://doi.org/10.1093/hr/uhad150spa
dc.relation.referencesAdesina, I., Bhowmik, A., Sharma, H., & Shahbazi, A. 2020. A review on the current state of knowledge of growing conditions, agronomic soil health practices and utilities of hemp in the united states. Agriculture. 10 (4), 129. https://www.mdpi.com/2077-0472/10/4/129spa
dc.relation.referencesAfzal, A., & Bano, A. 2008. Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). Int. J. Agri. Biol. 10, 1560-8530.spa
dc.relation.referencesAhmed, B., & Hijri, M. 2021. Potential impacts of soil microbiota manipulation on secondary metabolites production in cannabis. J. Can. Res. 3 (1), 25. https://doi.org/10.1186/s42238-021-00082-0spa
dc.relation.referencesAlexopoulos, C. J., Mims, C. W., & Blackwell, M. 1996. Introductory mycology. John Wiley and Sons.spa
dc.relation.referencesAlía, Afzal, A., Khokhar, S. N., Jabeen, B., & Asad, S. A. 2013. Phosphate solubilizing bacteria associated with vegetables roots in different ecologies. Pak. J. Bot. 45, 535-544.spa
dc.relation.referencesBattley, E. H. 1992. Yeasts: Characteristics and identification. J. A. Barnett , R. W. Payne , D. Yarrow. Q. Rev.Biol, 67 (3), 369-369. https://doi.org/10.1086/417697spa
dc.relation.referencesBen-Jabeur, M., Kthiri, Z., Djebali, N., Karmous, C., & Hamada, W. 2022. A case study of seed biopriming and chemical priming: seed coating with two types of bioactive compounds improves the physiological state of germinating seeds in durum wheat. Cer. Res. Com. https://doi.org/10.1007/s42976-022-00294-xspa
dc.relation.referencesBeneduzi, A., Ambrosini, A., & Passaglia, L. M. 2012. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol, 35(4 (suppl)), 1044-1051. https://doi.org/10.1590/s1415-47572012000600020spa
dc.relation.referencesBergey, D. H., & Holt, J. G. (1994). Bergey's manual of determinative bacteriology. Williams & Wilkins. https://books.google.com/books?id=jtMLzaa5ONcCspa
dc.relation.referencesBerlanga-Clavero, M. V., Molina-Santiago, C., Caraballo-Rodríguez, A. M., Petras, D., Díaz-Martínez, L., Pérez-García, A., de Vicente, A., Carrión, V. J., Dorrestein, P. C., &spa
dc.relation.referencesRomero, D. 2022. Bacillus subtilis biofilm matrix components target seed oil bodies to promote growth and anti-fungal resistance in melon. Nat. Microbiol. 7 (7), 1001-1015. https://doi.org/10.1038/s41564-022-01134-8spa
dc.relation.referencesCaplan, D., Dixon, M., & Zheng, Y. 2017. Optimal rate of organic fertilizer during the vegetative-stage for cannabis grown in two coir-based substrates. Hortic.Sci. 52, 1307-1312. https://doi.org/10.21273/HORTSCI11903-17spa
dc.relation.referencesCardarelli, M., Woo, S. L., Rouphael, Y., & Colla, G. 2022. Seed treatments with microorganisms can have a biostimulant effect by influencing germination and seedling growth of crops. Plants, 11(3), 259. https://www.mdpi.com/2223-7747/11/3/259spa
dc.relation.referencesChandra, S., Lata, H., & ElSohly, M. A. 2017. Cannabis sativa L.-botany and biotechnology. Springer.spa
dc.relation.referencesCole, J. C., Smith, M. W., Penn, C. J., Cheary, B. S., & Conaghan, K. J. 2016. Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants. Sci Hortic. 211, 420-430. https://doi.org/https://doi.org/10.1016/j.scienta.2016.09.028spa
dc.relation.referencesComeau, D., Balthazar, C., Novinscak, A., Bouhamdani, N., Joly, D. L., & Filion, M. 2021. Interactions between bacillus spp., pseudomonas spp. and Cannabis sativa promote plant growth. Front. Microbiol. 12, 715758. https://doi.org/10.3389/fmicb.2021.715758spa
dc.relation.referencesComeau, D., Novinscak, A., Joly, D. L., & Filion, M. 2020. Spatio-temporal and cultivar-dependent variations in the cannabis microbiome [original research]. Front. Microbiol. 11. https://doi.org/10.3389/fmicb.2020.00491spa
dc.relation.referencesConant, R., Walsh, R., Walsh, M., Bell, C., & Wallenstein, M. 2017. Effects of a microbial biostimulant, Mammoth PTM, on Cannabis sativa bud yield. J. Hortic. 4 (191), 2376-0354.1000191.spa
dc.relation.referencesDahlgren, R. A., Saigusa, M., & Ugolini, F. C. 2004. The nature, properties and management of volcanic soils. Adv. Agron. 82, 113-182.spa
dc.relation.referencesDeng, C., Liang, X., Zhang, N., Li, B., Wang, X., & Zeng, N. 2022. Molecular mechanisms of plant growth promotion for methylotrophic Bacillus aryabhattai LAD [Original Research]. Front. Microbiol. 13. https://doi.org/10.3389/fmicb.2022.917382spa
dc.relation.referencesElias, S. G., Wu, Y.-c., & Stimpson, D. C. 2020. Seed quality and dormancy of hemp (Cannabis sativa L.). J. Agric. Hem. Res. 2 (1), 2.spa
dc.relation.referencesGarcia, A., Polonio, J., Polli, A., Santos, C., Rhoden, S., Quecine, M., Azevedo, J., & Pamphile, J. 2016. Rhizosphere bacteriome of the medicinal plant Sapindus saponaria L. revealed by pyrosequencing. Genet Mol Res, 15, 1-9.spa
dc.relation.referencesGarcia-Lemos, A. M., Großkinsky, D. K., Saleem Akhtar, S., Nicolaisen, M. H., Roitsch, T., Nybroe, O., & Veierskov, B. 2020. Identification of root-associated bacteria that influence plant physiology, increase seed germination, or promote growth of the christmas tree species abies nordmanniana. Front Microbiol, 11, 566613. https://doi.org/10.3389/fmicb.2020.566613spa
dc.relation.referencesGohil, R. B., Raval, V. H., Panchal, R. R., & Rajput, K. N. 2022. Plant growth-promoting activity of Bacillus sp. PG-8 isolated from fermented panchagavya and its effect on the growth of Arachis hypogea [original research]. Front. Agron. 4. https://doi.org/10.3389/fagro.2022.805454spa
dc.relation.referencesGwinn, K. D., Hansen, Z., Kelly, H., & Ownley, B. H. 2022. diseases of cannabis sativa caused by diverse Fusarium species [Review]. Front. Agron. 3. https://doi.org/10.3389/fagro.2021.796062spa
dc.relation.referencesIevinsh, G., Vikmane, M., Ķirse, A., & Karlsons, A. 2017. Effect of vermicompost extract and vermicompost-derived humic acids on seed germination and seedling growth of hemp. Proc. Lat.Acad.Sci. Section B. Nat. Ex. Appl. Sci. 71 (4), 286-292. https://doi.org/doi:10.1515/prolas-2017-0048spa
dc.relation.referencesJacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. 2017. The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions. Front Plant. Sci. 8, 1617-1617. https://doi.org/10.3389/fpls.2017.01617spa
dc.relation.referencesJoe, M. M., Deivaraj, S., Benson, A., Henry, A. J., & Narendrakumar, G. 2018. Soil extract calcium phosphate media for screening of phosphate-solubilizing bacteria. Agric. Nat. Res. 52(3), 305-308. https://doi.org/https://doi.org/10.1016/j.anres.2018.09.014spa
dc.relation.referencesJovičić, D., Nikolic, Z., Sikora, V., Tamindzic, G., Petrović, G., Ignjatov, M., & Milošević, D. 2019. Comparison of methods for germination testing of Cannabis sativa seed. Rat. povr. 56, 71-75. https://doi.org/10.5937/ratpov56-21105spa
dc.relation.referencesKalayu, G. 2019. Phosphate solubilizing microorganisms: promising approach as biofertilizers. Int. J. Agron. 4917256. https://doi.org/10.1155/2019/4917256spa
dc.relation.referencesKöhl, J., Kolnaar, R., & Ravensberg, W. J. 2019. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy [Review]. Front. Plant. Sci. 10. https://doi.org/10.3389/fpls.2019.00845spa
dc.relation.referencesKusari, P., Kusari, S., Spiteller, M., & Kayser, O. (2017). Cannabis endophytes and their application in breeding and physiological fitness. In S. Chandra, H. Lata, & M. A. ElSohly (Eds.), Cannabis sativa L. - Bot. Biotech. (pp. 419-437). Springer International Publishing. https://doi.org/10.1007/978-3-319-54564-6_20spa
dc.relation.referencesLi, H., Yue, H., Li, L., Liu, Y., Zhang, H., Wang, J., & Jiang, X. 2021. Seed biostimulant Bacillus sp. MGW9 improves the salt tolerance of maize during seed germination. AMB Express, 11 (1), 74. https://doi.org/10.1186/s13568-021-01237-1spa
dc.relation.referencesLi, Y. J., & Hu, Q. P. 2020. Studying of the promotion mechanism of Bacillus subtilis QM3 on wheat seed germination based on β-amylase. Open. Life. Sci. 15 (1), 553-560. https://doi.org/10.1515/biol-2020-0062spa
dc.relation.referencesLyu, D., Backer, R., & Smith, D. L. 2022. Three plant growth-promoting rhizobacteria alter morphological development, physiology, and flower yield of Cannabis sativa L. Ind. Crops.Prod. 178, 114583.spa
dc.relation.referencesMahmood, A., Turgay, O. C., Farooq, M., & Hayat, R. 2016. Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol. Ecol. 92 (8). https://doi.org/10.1093/femsec/fiw112spa
dc.relation.referencesMayton, H., Amirkhani, M., Loos, M., Johnson, B., Fike, J., Johnson, C., Myers, K., Starr, J., Bergstrom, G. C., & Taylor, A. 2022. Evaluation of industrial hemp seed treatments for management of damping-off for enhanced stand establishment. Agriculture. 12 (5), 591. https://www.mdpi.com/2077-0472/12/5/591spa
dc.relation.referencesMcPartland, J. M., & Hillig, K. W. 2004. Cannabis clinic Fusarium wilt. J. Ind. Hemp. 9 (2), 67-77.spa
dc.relation.referencesMeisner, A., & de Boer, W. 2018. Strategies to maintain natural biocontrol of soil-borne crop diseases during severe drought and rainfall events [Perspective]. Front. Microbiol. 9. https://doi.org/10.3389/fmicb.2018.02279spa
dc.relation.referencesMüller, T., & Behrendt, U. 2021. Exploiting the biocontrol potential of plant-associated pseudomonads – A step towards pesticide-free agriculture? Biol. Control. 155, 104538. https://doi.org/https://doi.org/10.1016/j.biocontrol.2021.104538spa
dc.relation.referencesPagnani, G., Pellegrini, M., Galieni, A., D’Egidio, S., Matteucci, F., Ricci, A., Stagnari, F., Sergi, M., Sterzo, C. L., & Pisante, M. 2018. Plant growth-promoting rhizobacteria (PGPR) in Cannabis sativa ‘Finola’cultivation: An alternative fertilization strategy to improve plant growth and quality characteristics. Ind. Crops. Prod. 123, 75-83.spa
dc.relation.referencesPepe, M., Hesami, M., & Jones, A. M. P. 2021. Machine learning-mediated development and optimization of disinfection protocol and scarification method for improved in vitro germination of cannabis seeds. plants.(Basel). 10 (11). https://doi.org/10.3390/plants10112397spa
dc.relation.referencesPeterson, S. B., Bertolli, S. K., & Mougous, J. D. 2020. The central role of interbacterial antagonism in bacterial life. Curr. Biol. 30 (19), R1203-r1214. https://doi.org/10.1016/j.cub.2020.06.103spa
dc.relation.referencesPromwee, A., Issarakraisila, M., Intana, W., Chiradej, C., & Yenjit, P. 2014. Phosphate solubilization and growth promotion of rubber tree (hevea brasiliensis muell. arg.) by Trichoderma strains. J. Agric. Sci. 6. https://doi.org/10.5539/jas.v6n9p8spa
dc.relation.referencesPunja, Z. K. 2021. Emerging diseases of Cannabis sativa and sustainable management. Pest. Manag. Sci, 77 (9), 3857-3870. https://doi.org/10.1002/ps.6307spa
dc.relation.referencesPunja, Z. K., Collyer, D., Scott, C., Lung, S., Holmes, J., & Sutton, D. 2019. Pathogens and molds affecting production and quality of Cannabis sativa L. Front. Plant. Sci. 10, 1120.spa
dc.relation.referencesPunja, Z. K., & Rodriguez, G. 2018. Fusarium and Pythium species infecting roots of hydroponically grown marijuana (Cannabis sativa L.) plants. Can. J. Plant. Pathol. 40 (4), 498-513.spa
dc.relation.referencesRadhakrishnan, R., Hashem, A., & Abd_Allah, E. F. 2017. Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments [Review]. Front. Physiol. 8. https://doi.org/10.3389/fphys.2017.00667spa
dc.relation.referencesSánchez Espinosa, J. A. 2013. Aspectos genéticos y funcionales de los suelos de alta montaña en Colombia.spa
dc.relation.referencesSattley, W. M., & Madigan, M. T. Microbiology. In eLS (pp. 1-10). https://doi.org/https://doi.org/10.1002/9780470015902.a0000459.pub2spa
dc.relation.referencesSattley, W. M., & Madigan, M. T. 2015. Microbiology. eLS, 1-10.spa
dc.relation.referencesScott, M., Rani, M., Samsatly, J., Charron, J.-B., & Jabaji, S. 2018. Endophytes of industrial hemp (Cannabis sativa L.) cultivars: identification of culturable bacteria and fungi in leaves, petioles, and seeds. Can. J. Microbiol., 64 (10), 664-680. https://doi.org/10.1139/cjm-2018-0108spa
dc.relation.referencesSharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus. 2 (1), 587. https://doi.org/10.1186/2193-1801-2-587spa
dc.relation.referencesSingh, G., Singh, O. P., De Lampasona, M. P., & Catalán, C. A. N. 2003. Studies on essential oils. Part 35: chemical and biocidal investigations on Tagetes erecta leaf volatile oil. Flavour. Fragran. J. 18 (1), 62-65. https://doi.org/https://doi.org/10.1002/ffj.1158spa
dc.relation.referencesSingh, S. K., Wu, X., Shao, C., & Zhang, H. 2022. Microbial enhancement of plant nutrient acquisition. Stress Biol. 2 (1), 3. https://doi.org/10.1007/s44154-021-00027-wspa
dc.relation.referencesSorokin, A., Yadav, N., Gaudet, D., & Kovalchuk, I. 2020. Transient expression of the β-glucuronidase gene in Cannabis sativa varieties. Plant. signal. behav. 15. https://doi.org/10.1080/15592324.2020.1780037spa
dc.relation.referencesSun, J., Peng, M., Wang, Y., Zhao, P., & Xia, Q. 2011. Isolation and characterization of antagonistic bacteria against Fusarium wilt and induction of defense related enzymes in banana. African. J. Microbiol. Res. 5 (5), 509-515.spa
dc.relation.referencesTaghinasab, M., & Jabaji, S. 2020. Cannabis Microbiome and the role of endophytes in modulating the production of secondary metabolites:An overview. Microorganisms, 8 ( 3), 355. https://www.mdpi.com/2076-2607/8/3/355spa
dc.relation.referencesTettey, J. N. A., Crean, C., Rodrigues, J., Angeline Yap, T. W., Lee Wendy Lim, J., Shirley Lee, H. Z., & Ching, M. 2021. United Nations Office on Drugs and Crime: Recommended methods for the identification and analysis of synthetic cannabinoid receptor agonists in seized materials. Forens. Sci. Int. Synerg. 3, 100129. https://doi.org/10.1016/j.fsisyn.2020.11.003spa
dc.relation.referencesUgoji, E. O., Laing, M. D., & Hunter, C. H. 2005. Colonization of Bacillus spp. on seeds and in plant rhizoplane. J Environ. Biol. 26( 3), 459-466.spa
dc.relation.referencesUSDA, United States Department of Agriculture & National Agricultural Statistics Service, 2022. National Hemp Report. Released February 17, 2022. https://search.usa.gov/search?utf8=%E2%9C%93&affiliate=usda-nass&query=HEMP (accessed 1 March 2023).spa
dc.relation.referencesWan, W., Qin, Y., Wu, H., Zuo, W., He, H., Tan, J., Wang, Y., & He, D. 2020. Isolation and characterization of phosphorus solubilizing bacteria with multiple phosphorus sources utilizing capability and their potential for lead immobilization in soil [Original Research]. Front. Microbiol. 11. https://doi.org/10.3389/fmicb.2020.00752spa
dc.relation.referencesWang, H., Liu, R., You, M. P., Barbetti, M. J., & Chen, Y. 2021. Pathogen biocontrol using plant growth-promoting bacteria (PGPR): role of bacterial diversity. Microorganisms. 9 (9), 1988. https://www.mdpi.com/2076-2607/9/9/1988spa
dc.relation.referencesWei, Y., Zhao, Y., Shi, M., Cao, Z., Lu, Q., Yang, T., Fan, Y., & Wei, Z. 2018. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. Bioresour. Technol. 247, 190-199. https://doi.org/10.1016/j.biortech.2017.09.092spa
dc.relation.referencesWeil, R., & Brady, N. 2017. The nature and properties of soils. 15th edition.spa
dc.relation.referencesWinston, M. E., Hampton-Marcell, J., Zarraonaindia, I., Owens, S. M., Moreau, C. S., Gilbert, J. A., Hartsel, J., Kennedy, S. J., & Gibbons, S. M. 2014. Understanding cultivar-specificity and soil determinants of the cannabis microbiome. PLoS. one. 9 (6), e99641.spa
dc.relation.referencesYousefi, A. A., Khavazi, K., Moezzi, A., Rejali, F., & Nadian, H. A. 2011. Phosphate solubilizing bacteria and arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat growth. World Appl. Sci. J. 15, 1310-1318.spa
dc.relation.referencesZhang, J. X., Xue, A. G., & Tambong, J. T. 2009. Evaluation of seed and soil treatments with novel Bacillus subtilis strains for control of soybean root rot caused by Fusarium oxysporum and F. graminearum. Plant. Dis. 93 (12), 1317-1323. https://doi.org/10.1094/pdis-93-12-1317spa
dc.relation.referencesZhao, M., Liu, Z., Zhang, H., Wang, Y., & Yan, H. 2021. Germination characteristics is more associated with phylogeny-related traits of species in a salinized grassland of northeastern china [Original Research]. Front. Ecol. Evol. 9. https://doi.org/10.3389/fevo.2021.748038spa
dc.relation.referencesZverev, A., Pershina, E., Shapkin, V., Kichko, A., Mitrofanova, O., Kobylyanskii, V., Yuzikhin, O., Belimov, A., & Andronov, E. 2020. Molecular analysis of the rhizosphere microbial communities from gramineous plants grown on contrasting soils. Microbiology. 89 (2), 231-241.spa
dc.relation.referencesAbarenkov, K., Zirk, A., Piirmann, T., Pöhönen, R., Ivanov, F., Nilsson, R. H., & Kõljalg, U. (2021). UNITE general FASTA release for Fungi UNITE Community. U. Community. doi, 10.spa
dc.relation.referencesAbellan-Schneyder, I., Matchado, M., Reitmeier, S., Sommer, A., Sewald, Z., Baumbach, J., List, M., & Neuhaus, K. (2021). Primer, Pipelines, Parameters: Issues in 16S rRNA Gene Sequencing. mSphere, 6. https://doi.org/10.1128/mSphere.01202-20spa
dc.relation.referencesAbellan-Schneyder, I., Matchado, M., Reitmeier, S., Sommer, A., Sewald, Z., Baumbach, J., List, M., & Neuhaus, K. (2021). Primer, Pipelines, Parameters: Issues in 16S rRNA Gene Sequencing. mSphere, 6. https://doi.org/10.1128/mSphere.01202-20spa
dc.relation.referencesAbernethy, A. (2019). Hemp production and the 2018 farm bill. US Food and Drug Administration.spa
dc.relation.referencesAdesina, I., Bhowmik, A., Sharma, H., & Shahbazi, A. (2020). A Review on the Current State of Knowledge of Growing Conditions, Agronomic Soil Health Practices and Utilities of Hemp in the United States. Agriculture, 10(4), 129. https://www.mdpi.com/2077-0472/10/4/129spa
dc.relation.referencesAfzal, A., & Bano, A. (2008). Rhizobium and Phosphate Solubilizing Bacteria Improve the Yield and Phosphorus Uptake in Wheat (Triticum aestivum). Int. J. Agri. Biol, 10, 1560-8530.spa
dc.relation.referencesAhmed, B., Beneš, F., Hajslova, J., Fišarová, L., Vosátka, M., & Hijri, M. (2023). Enhanced production of select phytocannabinoids in medical Cannabis cultivars using microbial consortia. Frontiers in plant science, 14. https://doi.org/10.3389/fpls.2023.1219836spa
dc.relation.referencesAhmed, B., & Hijri, M. (2021). Potential impacts of soil microbiota manipulation on secondary metabolites production in cannabis. Journal of Cannabis Research, 3(1), 25. https://doi.org/10.1186/s42238-021-00082-0spa
dc.relation.referencesAhmed, B., Smart, L. B., & Hijri, M. (2021). Microbiome of Field Grown Hemp Reveals Potential Microbial Interactions With Root and Rhizosphere Soil [Original Research]. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.741597spa
dc.relation.referencesAhrens, A., Llewellyn, D., & Zheng, Y. (2024). Longer Photoperiod Substantially Increases Indoor-Grown Cannabis' Yield and Quality: A Study of Two High-THC Cultivars Grown under 12 h vs. 13 h Days. Plants (Basel), 13(3). https://doi.org/10.3390/plants13030433spa
dc.relation.referencesAlexopoulos, C. J., Mims, C. W., & Blackwell, M. (1996). Introductory mycology. John Wiley and Sons.spa
dc.relation.referencesAltieri, M. (2015). Agroecology: key concepts, principles and practices.spa
dc.relation.referencesAltieri, M. Á., & Rosset, P. (2020). Agroecología: ciencia y politica. Icaria.spa
dc.relation.referencesAmaducci, S., Zatta, A., Raffanini, M., & Venturi, G. (2008). Characterisation of hemp (Cannabis sativa L.) roots under different growing conditions. Plant and Soil, 313, 227-235. https://doi.org/10.1007/s11104-008-9695-0spa
dc.relation.referencesAtoloye, I. A., Adesina, I. S., Sharma, H., Subedi, K., Liang, C.-L., Shahbazi, A., & Bhowmik, A. (2022). Hemp biochar impacts on selected biological soil health indicators across different soil types and moisture cycles. PLoS one, 17(2), e0264620.spa
dc.relation.referencesBalthazar, C., Novinscak, A., Cantin, G., Joly, D. L., & Filion, M. (2022). Biocontrol Activity of Bacillus spp. and Pseudomonas spp. Against Botrytis cinerea and Other Cannabis Fungal Pathogens. Phytopathology®, 112(3), 549-560. https://doi.org/10.1094/phyto-03-21-0128-rspa
dc.relation.referencesBarcaccia, G., Palumbo, F., Scariolo, F., Vannozzi, A., Borin, M., & Bona, S. (2020). Potentials and Challenges of Genomics for Breeding Cannabis Cultivars. Front Plant Sci, 11, 573299. https://doi.org/10.3389/fpls.2020.573299spa
dc.relation.referencesBargaz, A., Lyamlouli, K., Chtouki, M., Zeroual, Y., & Dhiba, D. (2018). Soil Microbial Resources for Improving Fertilizers Efficiency in an Integrated Plant Nutrient Management System [Review]. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01606spa
dc.relation.referencesBarnett, S. E., Cala, A. R., Hansen, J. L., Crawford, J., Viands, D. R., Smart, L. B., Smart, C. D., & Buckley, D. H. (2020). Evaluating the microbiome of hemp. Phytobiomes Journal, 4(4), 351-363.spa
dc.relation.referencesBattley, E. H. (1992). Yeasts: Characteristics and Identification. J. A. Barnett , R. W. Payne , D. Yarrow. The Quarterly Review of Biology, 67(3), 369-369. https://doi.org/10.1086/417697spa
dc.relation.referencesBeltrán Barragán, F., & Vallejo Cuervo, L. (2021). La creación de una cadena de valor sostenible a partir del Cáñamo.spa
dc.relation.referencesBeneduzi, A., Ambrosini, A., & Passaglia, L. M. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet Mol Biol, 35(4 (suppl)), 1044-1051. https://doi.org/10.1590/s1415-47572012000600020spa
dc.relation.referencesBergey, D. H., & Holt, J. G. (1994). Bergey's Manual of Determinative Bacteriology. Williams & Wilkins. https://books.google.com/books?id=jtMLzaa5ONcCspa
dc.relation.referencesBerlanga-Clavero, M. V., Molina-Santiago, C., Caraballo-Rodríguez, A. M., Petras, D., Díaz-Martínez, L., Pérez-García, A., de Vicente, A., Carrión, V. J., Dorrestein, P. C., & Romero, D. (2022). Bacillus subtilis biofilm matrix components target seed oil bodies to promote growth and anti-fungal resistance in melon. Nature Microbiology, 7(7), 1001-1015. https://doi.org/10.1038/s41564-022-01134-8spa
dc.relation.referencesBlandinières, H., & Amaducci, S. (2022a). Adapting the cultivation of industrial hemp (Cannabis sativa L.) to marginal lands: A review. GCB Bioenergy, 14(9), 1004-1022. https://doi.org/https://doi.org/10.1111/gcbb.12979spa
dc.relation.referencesBlandinières, H., & Amaducci, S. (2022b). Agronomy and ecophysiology of hemp cultivation. In Cannabis/Hemp for Sustainable Agriculture and Materials (pp. 89-125). Springer.spa
dc.relation.referencesBok, G., Hahm, S., Shin, J., & Park, J. (2023). Optimizing Indoor Hemp Cultivation Efficiency through Differential Day&ndash;Night Temperature Treatment. Agronomy, 13(10), 2636. https://www.mdpi.com/2073-4395/13/10/2636spa
dc.relation.referencesBonar, E. E., Chapman, L., McAfee, J., Goldstick, J. E., Bauermeister, J. A., Carter, P. M., Young, S. D., & Walton, M. A. (2021). Perceived impacts of the COVID-19 pandemic on cannabis-using emerging adults. Transl Behav Med, 11(7), 1299-1309. https://doi.org/10.1093/tbm/ibab025spa
dc.relation.referencesBreit, L., Leavitt, M., & Boyd, A. (2019). Understanding VPD and transpiration rates for cannabis cultivation operations. Cannabis Science and Technology, 2(2), 52-61.spa
dc.relation.referencesBridgeman, M. B., & Abazia, D. T. (2017). Medicinal Cannabis: History, Pharmacology, And Implications for the Acute Care Setting. P t, 42(3), 180-188.spa
dc.relation.referencesCardarelli, M., Woo, S. L., Rouphael, Y., & Colla, G. (2022). Seed Treatments with Microorganisms Can Have a Biostimulant Effect by Influencing Germination and Seedling Growth of Crops. Plants, 11(3), 259. https://www.mdpi.com/2223-7747/11/3/259spa
dc.relation.referencesChandra, S., Lata, H., & ElSohly, M. A. (2017). Cannabis sativa L.-botany and biotechnology. Springer.spa
dc.relation.referencesChandra, S., Lata, H., Mehmedic, Z., Khan, I. A., & ElSohly, M. A. (2015). Light dependence of photosynthesis and water vapor exchange characteristics in different high Δ9-THC yielding varieties of Cannabis sativa L. Journal of Applied Research on Medicinal and Aromatic Plants, 2(2), 39-47. https://doi.org/https://doi.org/10.1016/j.jarmap.2015.03.002spa
dc.relation.referencesChaparro, J. M., Badri, D. V., & Vivanco, J. M. (2014). Rhizosphere microbiome assemblage is affected by plant development. Isme j, 8(4), 790-803. https://doi.org/10.1038/ismej.2013.196spa
dc.relation.referencesChiluwal, A., Sandhu, S. S., Sandhu, H., Irey, M., Johns, F., & Sanchez, R. (2023). Cannabidiol industrial hemp growth, biomass, and temporal cannabinoids accumulation under different planting dates in southern Florida. Agrosystems, Geosciences & Environment, 6(1), e20347. https://doi.org/https://doi.org/10.1002/agg2.20347spa
dc.relation.referencesChong, J., Liu, P., Zhou, G., & Xia, J. (2020). Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc, 15(3), 799-821. https://doi.org/10.1038/s41596-019-0264-1spa
dc.relation.referencesCitterio, S., Santagostino, A., Fumagalli, P., Prato, N., Ranalli, P., & Sgorbati, S. (2003). Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant and Soil, 256(2), 243-252. https://doi.org/10.1023/A:1026113905129spa
dc.relation.referencesClobes, T. A., Palmier, L. A., Gagnon, M., Klaiman, C., & Arellano, M. (2022). The impact of education on attitudes toward medical cannabis. PEC Innov, 1, 100009. https://doi.org/10.1016/j.pecinn.2021.100009spa
dc.relation.referencesCole, J. C., Smith, M. W., Penn, C. J., Cheary, B. S., & Conaghan, K. J. (2016). Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants. Scientia Horticulturae, 211, 420-430. https://doi.org/https://doi.org/10.1016/j.scienta.2016.09.028spa
dc.relation.referencesCollins, J. (2020). A Brief History of Cannabis and the Drug Conventions. AJIL Unbound, 114, 279-284. https://doi.org/10.1017/aju.2020.55spa
dc.relation.referencesComeau, D., Balthazar, C., Novinscak, A., Bouhamdani, N., Joly, D. L., & Filion, M. (2021). Interactions Between Bacillus Spp., Pseudomonas Spp. and Cannabis sativa Promote Plant Growth. Front Microbiol, 12, 715758. https://doi.org/10.3389/fmicb.2021.715758spa
dc.relation.referencesComeau, D., Novinscak, A., Joly, D. L., & Filion, M. (2020). Spatio-Temporal and Cultivar-Dependent Variations in the Cannabis Microbiome [Original Research]. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00491spa
dc.relation.referencesConant, R., Walsh, R., Walsh, M., Bell, C., & Wallenstein, M. (2017). Effects of a microbial biostimulant, Mammoth PTM, on Cannabis sativa bud yield. J. Hortic, 4(191), 2376-0354.1000191.spa
dc.relation.referencesConnelly, G. (2023). Evaluating Ecosystem and Agronomic Services Provided By Companion Cropping in Hemp (Cannabis sativa L.) UNIVERSITY OF WISCONSIN-MADISON].spa
dc.relation.referencesCorredor-Perilla, I. C., Cuervo Andrade, J. L., Olejar, K. J., & Park, S.-H. (2023). Beneficial properties of soil bacteria from Cannabis sativa L.: Seed germination, phosphorus solubilization and mycelial growth inhibition of Fusarium sp. Rhizosphere, 27, 100780. https://doi.org/https://doi.org/10.1016/j.rhisph.2023.100780spa
dc.relation.referencesCrocq, M. A. (2020). History of cannabis and the endocannabinoid system
. Dialogues Clin Neurosci, 22(3), 223-228. https://doi.org/10.31887/DCNS.2020.22.3/mcrocqspa
dc.relation.referencesDahlgren, R. A., Saigusa, M., & Ugolini, F. C. (2004). The Nature, Properties and Management of Volcanic Soils. Advances in Agronomy, 82, 113-182.spa
dc.relation.referencesDarby, H., Bruce, J., Krezinski, I., & Ziegler, S. (2019). Hemp Flower Indoor/Outdoor Cultivation Trial.spa
dc.relation.referencesDas, P. C., Vista, A. R., Tabil, L. G., & Baik, O. D. (2022). Postharvest Operations of Cannabis and Their Effect on Cannabinoid Content: A Review. Bioengineering (Basel), 9(8). https://doi.org/10.3390/bioengineering9080364spa
dc.relation.referencesDe Prato, L., Ansari, O., Hardy, G. E. S. J., Howieson, J., O’Hara, G., & Ruthrof, K. X. (2022). Morpho-physiology and cannabinoid concentrations of hemp (Cannabis sativa L.) are affected by potassium fertilisers and microbes under tropical conditions. Industrial Crops and Products, 182, 114907. https://doi.org/https://doi.org/10.1016/j.indcrop.2022.114907spa
dc.relation.referencesde Salud, S. d. S. (2017). LEY 1787 DE 2016 (JULIO 06).spa
dc.relation.referencesDeng, C., Liang, X., Zhang, N., Li, B., Wang, X., & Zeng, N. (2022). Molecular mechanisms of plant growth promotion for methylotrophic Bacillus aryabhattai LAD [Original Research]. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.917382spa
dc.relation.referencesDeynzer, K. M. (2022). An Evaluation of Hemp Cultivation Practices and Cannabinoid Analysis in South Louisiana Louisiana State University and Agricultural & Mechanical College].spa
dc.relation.referencesDhariwal, A., Chong, J., Habib, S., King, I. L., Agellon, L. B., & Xia, J. (2017). MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res, 45(W1), W180-w188. https://doi.org/10.1093/nar/gkx295spa
dc.relation.referencesDing, J., Jiao, X., Bai, P., Hu, Y., Zhang, J., & Li, J. (2022). Effect of vapor pressure deficit on the photosynthesis, growth, and nutrient absorption of tomato seedlings. Scientia Horticulturae, 293, 110736. https://doi.org/https://doi.org/10.1016/j.scienta.2021.110736spa
dc.relation.referencesDrugs, U. N. O. o. (2009). Recommended methods for the identification and analysis of cannabis and cannabis products: manual for use by National Drug Testing Laboratories. United Nations Publications.spa
dc.relation.referencesDumigan, C. R., & Deyholos, M. K. (2024). Soil and seed both influence bacterial diversity in the microbiome of the Cannabis sativa seedling endosphere. Front Plant Sci, 15, 1326294. https://doi.org/10.3389/fpls.2024.1326294spa
dc.relation.referencesDuong, H., Pearson, B., Anderson, S., Berthold, E., & Kjelgren, R. (2023). Variation in Hydric Response of Two Industrial Hemp Varieties (Cannabis sativa) to Induced Water Stress. Horticulturae, 9(4), 431. https://www.mdpi.com/2311-7524/9/4/431spa
dc.relation.referencesDuvall, C. (2017). Cannabis and Tobacco in Precolonial and Colonial Africa. In. https://doi.org/10.1093/acrefore/9780190277734.013.44spa
dc.relation.referencesElhendawy, M. A., Wanas, A. S., Radwan, M. M., Azzaz, N. A., Toson, E. S., & ElSohly, M. A. (2019). Chemical and Biological Studies of Cannabis sativa Roots. Med Cannabis Cannabinoids, 1(2), 104-111. https://doi.org/10.1159/000495582spa
dc.relation.referencesElias, S. G., Wu, Y.-c., & Stimpson, D. C. (2020). Seed Quality and Dormancy of Hemp (Cannabis sativa L.). Journal of Agricultural Hemp Research, 2(1), 2.spa
dc.relation.referencesEržen, M., Košir, I. J., Ocvirk, M., Kreft, S., & Čerenak, A. (2021). Metabolomic Analysis of Cannabinoid and Essential Oil Profiles in Different Hemp (Cannabis sativa L.) Phenotypes. Plants (Basel), 10(5). https://doi.org/10.3390/plants10050966spa
dc.relation.referencesFleming, H., Chamberlain, Z., Zager, J. J., & Lange, B. M. (2023). Controlled environments for cannabis cultivation to support "omics" research studies and production. Methods Enzymol, 680, 353-380. https://doi.org/10.1016/bs.mie.2022.07.028spa
dc.relation.referencesFordjour, E., Manful, C. F., Sey, A. A., Javed, R., Pham, T. H., Thomas, R., & Cheema, M. (2023). Cannabis: a multifaceted plant with endless potentials. Front Pharmacol, 14, 1200269. https://doi.org/10.3389/fphar.2023.1200269spa
dc.relation.referencesGalindo, J., Uribe, P., & González, L. (2022). Analysis of environmental monitoring in greenhouse for the cultivation of mother plants of Cannabis sativa in the Colombian Andes. XXXI International Horticultural Congress (IHC2022): III International Symposium on Mechanization, Precision Horticulture,1360.spa
dc.relation.referencesGarcia, A., Polonio, J., Polli, A., Santos, C., Rhoden, S., Quecine, M., Azevedo, J., & Pamphile, J. (2016). Rhizosphere bacteriome of the medicinal plant Sapindus saponaria L. revealed by pyrosequencing. Genet Mol Res, 15, 1-9.spa
dc.relation.referencesGarcia-Lemos, A. M., Großkinsky, D. K., Saleem Akhtar, S., Nicolaisen, M. H., Roitsch, T., Nybroe, O., & Veierskov, B. (2020). Identification of Root-Associated Bacteria That Influence Plant Physiology, Increase Seed Germination, or Promote Growth of the Christmas Tree Species Abies nordmanniana. Front Microbiol, 11, 566613. https://doi.org/10.3389/fmicb.2020.566613spa
dc.relation.referencesGill, A. R., Loveys, B. R., Cowley, J. M., Hall, T., Cavagnaro, T. R., & Burton, R. A. (2022). Physiological and morphological responses of industrial hemp (Cannabis sativa L.) to water deficit. Industrial Crops and Products, 187, 115331. https://doi.org/https://doi.org/10.1016/j.indcrop.2022.115331spa
dc.relation.referencesGinnan, N. A., De Anda, N. I., Campos Freitas Vieira, F., Rolshausen, P. E., & Roper, M. C. (2022). Microbial Turnover and Dispersal Events Occur in Synchrony with Plant Phenology in the Perennial Evergreen Tree Crop Citrus sinensis. mBio, 13(3), e0034322. https://doi.org/10.1128/mbio.00343-22spa
dc.relation.referencesGogoi, A. (2020). Domestication of Cannabis and Its Future Prospects. Cannabis, 36.spa
dc.relation.referencesGohil, R. B., Raval, V. H., Panchal, R. R., & Rajput, K. N. (2022). Plant Growth-Promoting Activity of Bacillus sp. PG-8 Isolated From Fermented Panchagavya and Its Effect on the Growth of Arachis hypogea [Original Research]. Frontiers in Agronomy, 4. https://doi.org/10.3389/fagro.2022.805454spa
dc.relation.referencesGoldman, S., Bramante, J., Vrdoljak, G., Guo, W., Wang, Y., Marjanovic, O., Orlowicz, S., Di Lorenzo, R., & Noestheden, M. (2021). The analytical landscape of cannabis compliance testing. Journal of Liquid Chromatography & Related Technologies, 44(9-10), 403-420. https://doi.org/10.1080/10826076.2021.1996390spa
dc.relation.referencesGóngora, A. (2019). Cannabis medicinal y arreglos farmacológicos en Colombia. Cahiers des Amériques latines(92), 115-133.spa
dc.relation.referencesGorchs, G., Lloveras, J., Serrano, L., & Cela, S. (2017). Hemp yields and its rotation effects on wheat under rainfed mediterranean conditions. Agronomy Journal, 109(4), 1551-1560.spa
dc.relation.referencesGrossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T., Sperry, J. S., & McDowell, N. G. (2020). Plant responses to rising vapor pressure deficit. New Phytologist, 226(6), 1550-1566.spa
dc.relation.referencesGünther, F. (2007). Carbon sequestration for everybody: decrease atmospheric carbon dioxide, earn money and improve the soil. Submitted to Energy and Environment.spa
dc.relation.referencesGwinn, K. D., Hansen, Z., Kelly, H., & Ownley, B. H. (2022). Diseases of Cannabis sativa Caused by Diverse Fusarium Species [Review]. Frontiers in Agronomy, 3. https://doi.org/10.3389/fagro.2021.796062spa
dc.relation.referencesHartman, K., Schmid, M. W., Bodenhausen, N., Bender, S. F., Valzano-Held, A. Y., Schlaeppi, K., & van der Heijden, M. G. A. (2023). A symbiotic footprint in the plant root microbiome. Environmental Microbiome, 18(1), 65. https://doi.org/10.1186/s40793-023-00521-wspa
dc.relation.referencesHerppich, W. B., Gusovius, H.-J., Flemming, I., & Drastig, K. (2020). Effects of Drought and Heat on Photosynthetic Performance, Water Use and Yield of Two Selected Fiber Hemp Cultivars at a Poor-Soil Site in Brandenburg (Germany). Agronomy, 10(9), 1361. https://www.mdpi.com/2073-4395/10/9/1361spa
dc.relation.referencesHill, J. A. (2021). Cannabis Banking: What Marijuana Can Learn from Hemp. BUL Rev., 101, 1043.spa
dc.relation.referencesHiruma, K., Gerlach, N., Sacristán, S., Nakano, R. T., Hacquard, S., Kracher, B., Neumann, U., Ramírez, D., Bucher, M., O'Connell, R. J., & Schulze-Lefert, P. (2016). Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits that Are Phosphate Status Dependent. Cell, 165(2), 464-474. https://doi.org/10.1016/j.cell.2016.02.028spa
dc.relation.referencesHong, G., Sideris, A., Waldman, S., Stauffer, J., & Wu, C. L. (2024). Legal and regulatory aspects of medical cannabis in the United States. Anesthesia & Analgesia, 138(1), 31-41.spa
dc.relation.referencesHourfane, S., Mechqoq, H., Bekkali, A. Y., Rocha, J. M., & El Aouad, N. (2023). A Comprehensive Review on Cannabis sativa Ethnobotany, Phytochemistry, Molecular Docking and Biological Activities. Plants (Basel), 12(6). https://doi.org/10.3390/plants12061245spa
dc.relation.referencesHurtado Pardo, D. P. Transformación de las Narrativas de Política Pública de Drogas 2006-2019: Regulación del Cannabis en Colombia Universidad Nacional de Colombia].spa
dc.relation.referencesIevinsh, G., Vikmane, M., Ķirse, A., & Karlsons, A. (2017). Effect of Vermicompost Extract and Vermicompost-Derived Humic Acids on Seed Germination and Seedling Growth of Hemp. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences., 71(4), 286-292. https://doi.org/doi:10.1515/prolas-2017-0048spa
dc.relation.referencesInnes, P. A., & Vergara, D. (2023). Genomic description of critical cannabinoid biosynthesis genes. Botany, 101(7), 270-283. https://doi.org/10.1139/cjb-2022-0140spa
dc.relation.referencesJacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The Role of Soil Microorganisms in Plant Mineral Nutrition-Current Knowledge and Future Directions. Frontiers in plant science, 8, 1617-1617. https://doi.org/10.3389/fpls.2017.01617spa
dc.relation.referencesJastrząb, A., Jarocka-Karpowicz, I., & Skrzydlewska, E. (2022). The Origin and Biomedical Relevance of Cannabigerol. Int J Mol Sci, 23(14). https://doi.org/10.3390/ijms23147929spa
dc.relation.referencesJean, T. (2023). Policy Analysis: A Case for Rescheduling Marijuana. J Med, 4(5), 1075.spa
dc.relation.referencesJiao, S., Chen, W., Wang, J., Du, N., Li, Q., & Wei, G. (2018). Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome, 6(1), 146. https://doi.org/10.1186/s40168-018-0526-0spa
dc.relation.referencesJoe, M. M., Deivaraj, S., Benson, A., Henry, A. J., & Narendrakumar, G. (2018). Soil extract calcium phosphate media for screening of phosphate-solubilizing bacteria. Agriculture and Natural Resources, 52(3), 305-308. https://doi.org/https://doi.org/10.1016/j.anres.2018.09.014spa
dc.relation.referencesJohnson, L., Malone, M., Paulson, E., Swider, J., Marelius, D., Andersen, S., & Black, D. (2023). Potency and safety analysis of hemp delta-9 products: the hemp vs. cannabis demarcation problem. J Cannabis Res, 5(1), 29. https://doi.org/10.1186/s42238-023-00197-6spa
dc.relation.referencesKalayu, G. (2019). Phosphate Solubilizing Microorganisms: Promising Approach as Biofertilizers. International Journal of Agronomy, 2019, 4917256. https://doi.org/10.1155/2019/4917256spa
dc.relation.referencesKetcherside, A., Noble, L. J., McIntyre, C. K., & Filbey, F. M. (2017). Cannabinoid Receptor 1 Gene by Cannabis Use Interaction on CB1 Receptor Density. Cannabis Cannabinoid Res, 2(1), 202-209. https://doi.org/10.1089/can.2017.0007spa
dc.relation.referencesKhanal, A., & Shah, A. (2024). Techno-Economic Analysis of Hemp Production, Logistics and Processing in the US. Biomass, 4(1), 164-179.spa
dc.relation.referencesKing, D. D., Gill, C. J., Cadieux, C. S., & Singh, N. (2024). The role of stigma in cannabis use disclosure: an exploratory study. Harm Reduct J, 21(1), 21. https://doi.org/10.1186/s12954-024-00929-8spa
dc.relation.referencesKöhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy [Review]. Frontiers in plant science, 10. https://doi.org/10.3389/fpls.2019.00845spa
dc.relation.referencesKok, C., Coenen, G., & De Heij, A. (1994). The effect of fibre hemp (Cannabis sativa L.) on selected soil-borne pathogens. Journal of the International Hemp Association, 1(1), 6-9.spa
dc.relation.referencesKusari, P., Kusari, S., Spiteller, M., & Kayser, O. (2017). Cannabis Endophytes and Their Application in Breeding and Physiological Fitness. In S. Chandra, H. Lata, & M. A. ElSohly (Eds.), Cannabis sativa L. - Botany and Biotechnology (pp. 419-437). Springer International Publishing. https://doi.org/10.1007/978-3-319-54564-6_20spa
dc.relation.referencesLapierre, É., Monthony, A. S., & Torkamaneh, D. (2023). Genomics-based taxonomy to clarify cannabis classification. Genome, 66(8), 202-211. https://doi.org/10.1139/gen-2023-0005 %M 37163765spa
dc.relation.referencesLeuschner, C. (2002). Air humidity as an ecological factor for woodland herbs: leaf water status, nutrient uptake, leaf anatomy, and productivity of eight species grown at low or high vpd levels. Flora - Morphology, Distribution, Functional Ecology of Plants, 197(4), 262-274. https://doi.org/https://doi.org/10.1078/0367-2530-00040spa
dc.relation.referencesLi, H., Yue, H., Li, L., Liu, Y., Zhang, H., Wang, J., & Jiang, X. (2021). Seed biostimulant Bacillus sp. MGW9 improves the salt tolerance of maize during seed germination. AMB Express, 11(1), 74. https://doi.org/10.1186/s13568-021-01237-1spa
dc.relation.referencesLi, L., Yang, X., Tong, B., Wang, D., Tian, X., Liu, J., Chen, J., Xiao, X., & Wang, S. (2023). Rhizobacterial compositions and their relationships with soil properties and medicinal bioactive ingredients in Cinnamomum migao [Original Research]. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1078886spa
dc.relation.referencesLi, Y. J., & Hu, Q. P. (2020). Studying of the promotion mechanism of Bacillus subtilis QM3 on wheat seed germination based on β-amylase. Open Life Sci, 15(1), 553-560. https://doi.org/10.1515/biol-2020-0062spa
dc.relation.referencesLinger, P., Ostwald, A., & Haensler, J. (2005). Cannabis sativa L. growing on heavy metal contaminated soil: growth, cadmium uptake and photosynthesis. Biologia Plantarum, 49(4), 567-576. https://doi.org/10.1007/s10535-005-0051-4spa
dc.relation.referencesLlewellyn, D., Golem, S., Foley, E., Dinka, S., Jones, A. M. P., & Zheng, Y. (2022). Indoor grown cannabis yield increased proportionally with light intensity, but ultraviolet radiation did not affect yield or cannabinoid content. Front Plant Sci, 13, 974018. https://doi.org/10.3389/fpls.2022.974018spa
dc.relation.referencesLópez, J., Way, D. A., & Sadok, W. (2021). Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Global Change Biology, 27(9), 1704-1720. https://doi.org/https://doi.org/10.1111/gcb.15548spa
dc.relation.referencesLu, Y., Zhou, G., Ewald, J., Pang, Z., Shiri, T., & Xia, J. (2023). MicrobiomeAnalyst 2.0: comprehensive statistical, functional and integrative analysis of microbiome data. Nucleic Acids Res, 51(W1), W310-w318. https://doi.org/10.1093/nar/gkad407spa
dc.relation.referencesLuo, X. (2024). Discussing the Legalisation of Recreational Cannabis Supply Chain: Will It Weaken Drug Trafficking Organisations? Studies in Social Science & Humanities, 3(1), 85-91.spa
dc.relation.referencesLyu, D., Backer, R., Berrué, F., Martinez-Farina, C., Hui, J. P. M., & Smith, D. L. (2023). Plant Growth-Promoting Rhizobacteria (PGPR) with Microbial Growth Broth Improve Biomass and Secondary Metabolite Accumulation of Cannabis sativa L. Journal of Agricultural and Food Chemistry, 71(19), 7268-7277. https://doi.org/10.1021/acs.jafc.2c06961spa
dc.relation.referencesLyu, D., Backer, R., & Smith, D. L. (2022). Three plant growth-promoting rhizobacteria alter morphological development, physiology, and flower yield of Cannabis sativa L. Industrial Crops and Products, 178, 114583.spa
dc.relation.referencesMacCallum, C. A., Lo, L. A., Pistawka, C. A., & Boivin, M. (2023). A Clinical Framework for Evaluating Cannabis Product Quality and Safety. Cannabis Cannabinoid Res, 8(3), 567-574. https://doi.org/10.1089/can.2021.0137spa
dc.relation.referencesMagagnini, G., Grassi, G., & Kotiranta, S. (2018). The Effect of Light Spectrum on the Morphology and Cannabinoid Content of Cannabis sativa L. Med Cannabis Cannabinoids, 1(1), 19-27. https://doi.org/10.1159/000489030spa
dc.relation.referencesMahmood, A., Turgay, O. C., Farooq, M., & Hayat, R. (2016). Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiology Ecology, 92(8). https://doi.org/10.1093/femsec/fiw112spa
dc.relation.referencesMartínez, V., Iriondo De-Hond, A., Borrelli, F., Capasso, R., Del Castillo, M. D., & Abalo, R. (2020). Cannabidiol and Other Non-Psychoactive Cannabinoids for Prevention and Treatment of Gastrointestinal Disorders: Useful Nutraceuticals? Int J Mol Sci, 21(9). https://doi.org/10.3390/ijms21093067spa
dc.relation.referencesMayton, H., Amirkhani, M., Loos, M., Johnson, B., Fike, J., Johnson, C., Myers, K., Starr, J., Bergstrom, G. C., & Taylor, A. (2022). Evaluation of Industrial Hemp Seed Treatments for Management of Damping-Off for Enhanced Stand Establishment. Agriculture, 12(5), 591. https://www.mdpi.com/2077-0472/12/5/591spa
dc.relation.referencesMcKernan, K., Spangler, J., Helbert, Y., Lynch, R. C., Devitt-Lee, A., Zhang, L., Orphe, W., Warner, J., Foss, T., & Hudalla, C. J. (2016). Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests. F1000Research, 5.spa
dc.relation.referencesMcLaughlin, S., Zhalnina, K., Kosina, S., Northen, T. R., & Sasse, J. (2023). The core metabolome and root exudation dynamics of three phylogenetically distinct plant species. Nat Commun, 14(1), 1649. https://doi.org/10.1038/s41467-023-37164-xspa
dc.relation.referencesMcPartland, J. M., Hegman, W., & Long, T. (2019). Cannabis in Asia: its center of origin and early cultivation, based on a synthesis of subfossil pollen and archaeobotanical studies. Vegetation history and archaeobotany, 28, 691-702.spa
dc.relation.referencesMcPartland, J. M., & Hillig, K. W. (2004). Cannabis clinic Fusarium wilt. Journal of Industrial Hemp, 9(2), 67-77.spa
dc.relation.referencesMcPartland, J. M., & McKernan, K. J. (2017). Contaminants of Concern in Cannabis: Microbes, Heavy Metals and Pesticides. In S. Chandra, H. Lata, & M. A. ElSohly (Eds.), Cannabis sativa L. - Botany and Biotechnology (pp. 457-474). Springer International Publishing. https://doi.org/10.1007/978-3-319-54564-6_22spa
dc.relation.referencesMcPartland, J. M., & Small, E. (2020). A classification of endangered high-THC cannabis (Cannabis sativa subsp. indica) domesticates and their wild relatives. PhytoKeys, 144, 81-112. https://doi.org/10.3897/phytokeys.144.46700spa
dc.relation.referencesMead, A. (2019). Legal and regulatory issues governing cannabis and cannabis-derived products in the United States. Frontiers in plant science, 10, 433747.spa
dc.relation.referencesMeinhofer, A., & Rubli, A. (2021). Illegal drug market responses to state recreational cannabis laws. Addiction, 116(12), 3433-3443. https://doi.org/https://doi.org/10.1111/add.15517spa
dc.relation.referencesMeisner, A., & de Boer, W. (2018). Strategies to Maintain Natural Biocontrol of Soil-Borne Crop Diseases During Severe Drought and Rainfall Events [Perspective]. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02279spa
dc.relation.referencesMelzer, R., McCabe, P. F., & Schilling, S. (2022). Evolution, genetics and biochemistry of plant cannabinoid synthesis: a challenge for biotechnology in the years ahead. Current Opinion in Biotechnology, 75, 102684. https://doi.org/https://doi.org/10.1016/j.copbio.2022.102684spa
dc.relation.referencesMeyer, W., Irinyi, L., Hoang, M. T. V., Robert, V., Garcia-Hermoso, D., Desnos-Ollivier, M., Yurayart, C., Tsang, C.-C., Lee, C.-Y., Woo, P. C. Y., Pchelin, I. M., Uhrlaß, S., Nenoff, P., Chindamporn, A., Chen, S., Hebert, P. D. N., & Sorrell, T. C. (2018). Database establishment for the secondary fungal DNA barcode translational elongation factor 1α (TEF1α). Genome, 62(3), 160-169. https://doi.org/10.1139/gen-2018-0083spa
dc.relation.referencesMonte, A. A., Zane, R. D., & Heard, K. J. (2015). The implications of marijuana legalization in Colorado. Jama, 313(3), 241-242. https://doi.org/10.1001/jama.2014.17057spa
dc.relation.referencesMorad, D., & Bernstein, N. (2023). Response of Medical Cannabis to Magnesium (Mg) Supply at the Vegetative Growth Phase. Plants (Basel), 12(14). https://doi.org/10.3390/plants12142676spa
dc.relation.referencesMortensen, L. M. (1986). Effect of relative humidity on growth and flowering of some greenhouse plants. Scientia Horticulturae, 29(4), 301-307. https://doi.org/https://doi.org/10.1016/0304-4238(86)90013-0spa
dc.relation.referencesMortensen, L. M. (2000). Effects of air humidity on growth, flowering, keeping quality and water relations of four short-day greenhouse species. Scientia Horticulturae, 86(4), 299-310. https://doi.org/https://doi.org/10.1016/S0304-4238(00)00155-2spa
dc.relation.referencesMoscariello, C., Matassa, S., Esposito, G., & Papirio, S. (2021). From residue to resource: The multifaceted environmental and bioeconomy potential of industrial hemp (Cannabis sativa L.). Resources, Conservation and Recycling, 175, 105864.spa
dc.relation.referencesMüller, T., & Behrendt, U. (2021). Exploiting the biocontrol potential of plant-associated pseudomonads – A step towards pesticide-free agriculture? Biological Control, 155, 104538. https://doi.org/https://doi.org/10.1016/j.biocontrol.2021.104538spa
dc.relation.referencesNaeem, M. Y., Corbo, F., Crupi, P., & Clodoveo, M. L. (2023). Hemp: An Alternative Source for Various Industries and an Emerging Tool for Functional Food and Pharmaceutical Sectors. Processes, 11(3), 718. https://www.mdpi.com/2227-9717/11/3/718spa
dc.relation.referencesNaim-Feil, E., Elkins, A. C., Malmberg, M. M., Ram, D., Tran, J., Spangenberg, G. C., Rochfort, S. J., & Cogan, N. O. (2023). The Cannabis Plant as a Complex System: Interrelationships between Cannabinoid Compositions, Morphological, Physio-Logical and Phenological Traits. Plants, 12(3), 493.spa
dc.relation.referencesNavarro, C. E. (2023). Cannabis-based magistral formulation is highly effective as an adjuvant treatment in drug-resistant focal epilepsy in adult patients: an open-label prospective cohort study. Neurological Sciences, 44(1), 297-304. https://doi.org/10.1007/s10072-022-06393-1spa
dc.relation.referencesNicholls, C. I., & Altieri, M. A. (2015). Agroecology. AGROECOLOGY FOR FOOD SECURITY AND NUTRITION, 271.spa
dc.relation.referencesOlejar, K. J., Hatfield, J., Arellano, C. J., Gurau, A. T., Seifried, D., Heuvel, B. V., & Kinney, C. A. (2021). Thermo-chemical conversion of cannabis biomass and extraction by pressurized liquid extraction for the isolation of cannabidiol. Industrial Crops and Products, 170, 113771. https://doi.org/https://doi.org/10.1016/j.indcrop.2021.113771spa
dc.relation.referencesOrenstein, D. G., & Glantz, S. A. (2020). CANNABIS LEGALIZATION IN STATE LEGISLATURES: PUBLIC HEALTH OPPORTUNITY AND RISK. Marquette Law Rev, 103(4), 1313-1400.spa
dc.relation.referencesOsterberger, E., Lohwasser, U., Jovanovic, D., Ruzicka, J., & Novak, J. (2022). The origin of the genus Cannabis. Genetic Resources and Crop Evolution, 69(4), 1439-1449.spa
dc.relation.referencesPagnani, G., Pellegrini, M., Galieni, A., D’Egidio, S., Matteucci, F., Ricci, A., Stagnari, F., Sergi, M., Sterzo, C. L., & Pisante, M. (2018). Plant growth-promoting rhizobacteria (PGPR) in Cannabis sativa ‘Finola’cultivation: An alternative fertilization strategy to improve plant growth and quality characteristics. Industrial Crops and Products, 123, 75-83.spa
dc.relation.referencesPark, I., Seo, Y. S., & Mannaa, M. (2023). Recruitment of the rhizo-microbiome army: assembly determinants and engineering of the rhizosphere microbiome as a key to unlocking plant potential. Front Microbiol, 14, 1163832. https://doi.org/10.3389/fmicb.2023.1163832spa
dc.relation.referencesPark, S.-H., Pauli, C. S., Gostin, E. L., Staples, S. K., Seifried, D., Kinney, C., & Vanden Heuvel, B. D. (2022). Effects of short-term environmental stresses on the onset of cannabinoid production in young immature flowers of industrial hemp (Cannabis sativa L.). Journal of Cannabis Research, 4(1), 1-13.spa
dc.relation.referencesParker, K. A., Di Mattia, A., Shaik, F., Cerón Ortega, J. C., & Whittle, R. (2019). Risk management within the cannabis industry: Building a framework for the cannabis industry. Financial Markets, Institutions & Instruments, 28(1), 3-55.spa
dc.relation.referencesPerea, K. R. (2019). Determining the Influence of Cultivar and Proximity to Plant Roots on the Resulting Cannabis Soil Microbiome Using Microbial Community Analysis (Publication Number 13860652) [M.S., New Mexico Institute of Mining and Technology]. ProQuest Dissertations & Theses Global. United States -- New Mexico. https://login.ezproxy.csupueblo.edu/login?url=https://www.proquest.com/dissertations-theses/determining-influence-cultivar-proximity-plant/docview/2241820349/se-2?accountid=130464 http://csupueblo-primo.hosted.exlibrisgroup.com/openurl/01COLSU_PUEBLO/01COLSU_PUEBLO_SP?genre=dissertations&atitle=&author=Perea%2C+Katheryn+R.&volume=&issue=&spage=&date=2019&rft.btitle=&rft.jtitle=&issn=&isbn=978-1-392-25460-8&sid=ProQuest+Dissertations+%26+Theses+Global_spa
dc.relation.referencesPerera, K. Y., Jaiswal, A. K., & Jaiswal, S. (2023). Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications. Foods, 12(12), 2422. https://www.mdpi.com/2304-8158/12/12/2422spa
dc.relation.referencesPérez-Bermúdez, P., & Rognoni Martínez, A. (2023). Chapter 3 - Strategies to improve Cannabis cultivation: optimizing plant growth and phytocannabinoid biosynthesis. In I. F. García-Tejero & V. H. Durán-Zuazo (Eds.), Current Applications, Approaches, and Potential Perspectives for Hemp (pp. 77-108). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-323-89867-6.00008-1 Petersospa
dc.relation.referencesPeterson, S. B., Bertolli, S. K., & Mougous, J. D. (2020). The Central Role of Interbacterial Antagonism in Bacterial Life. Curr Biol, 30(19), R1203-r1214. https://doi.org/10.1016/j.cub.2020.06.103spa
dc.relation.referencesPromhuad, K., Srisa, A., San, H., Laorenza, Y., Wongphan, P., Sodsai, J., Tansin, K., Phromphen, P., Chartvivatpornchai, N., Ngoenchai, P., & Harnkarnsujarit, N. (2022). Applications of Hemp Polymers and Extracts in Food, Textile and Packaging: A Review. Polymers (Basel), 14(20). https://doi.org/10.3390/polym14204274spa
dc.relation.referencesPromwee, A., Issarakraisila, M., Intana, W., Chiradej, C., & Yenjit, P. (2014). Phosphate Solubilization and Growth Promotion of Rubber Tree (Hevea brasiliensis Muell. Arg.) by Trichoderma Strains. Journal of Agricultural Science, 6. https://doi.org/10.5539/jas.v6n9p8spa
dc.relation.referencesPunja, Z. K. (2021). Emerging diseases of Cannabis sativa and sustainable management. Pest Manag Sci, 77(9), 3857-3870. https://doi.org/10.1002/ps.6307spa
dc.relation.referencesPunja, Z. K., Collyer, D., Scott, C., Lung, S., Holmes, J., & Sutton, D. (2019). Pathogens and molds affecting production and quality of Cannabis sativa L. Frontiers in plant science, 10, 1120.spa
dc.relation.referencesPunja, Z. K., Collyer, D., Scott, C., Lung, S., Holmes, J., & Sutton, D. (2019). Pathogens and molds affecting production and quality of Cannabis sativa L. Frontiers in plant science, 10, 1120.spa
dc.relation.referencesPunja, Z. K., & Rodriguez, G. (2018). Fusarium and Pythium species infecting roots of hydroponically grown marijuana (Cannabis sativa L.) plants. Canadian Journal of Plant Pathology, 40(4), 498-513.spa
dc.relation.referencesRadhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2017). Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments [Review]. Frontiers in Physiology, 8. https://doi.org/10.3389/fphys.2017.00667spa
dc.relation.referencesRafei, P., Englund, A., Lorenzetti, V., Elkholy, H., Potenza, M., & Baldacchino, A. (2023). Transcultural Aspects of Cannabis Use: a Descriptive Overview of Cannabis Use across Cultures. Current Addiction Reports, 10, 1-14. https://doi.org/10.1007/s40429-023-00500-8spa
dc.relation.referencesRaihan, A., & Bijoy, T. R. (2023). A review of the industrial use and global sustainability of Cannabis sativa. Global Sustainability Research, 2(4), 1-29.spa
dc.relation.referencesRamirez-Hassan, A., Gomez, C., Velásquez, S., & Tangarife, K. (2023). Marijuana on Main Streets? The Story Continues in Colombia: An Endogenous Three-part Model. arXiv preprint arXiv:2306.10031.spa
dc.relation.referencesRansing, R., de la Rosa, P. A., Pereira-Sanchez, V., Handuleh, J. I. M., Jerotic, S., Gupta, A. K., Karaliuniene, R., de Filippis, R., Peyron, E., Sönmez Güngör, E., Boujraf, S., Yee, A., Vahdani, B., Shoib, S., Stowe, M. J., Jaguga, F., Dannatt, L., da Silva, A. K., Grandinetti, P., & Jatchavala, C. (2022). Current state of cannabis use, policies, and research across sixteen countries: cross-country comparisons and international perspectives. Trends Psychiatry Psychother, 44(Suppl 1), e20210263. https://doi.org/10.47626/2237-6089-2021-0263spa
dc.relation.referencesRegas, T., Han, J. H., Pauli, C. S., & Park, S. H. (2021). Employing Aeroponic Systems for the Clonal Propagation of Cannabis. J Vis Exp(178). https://doi.org/10.3791/63117spa
dc.relation.referencesReid, M. (2023). Cannabis stigmas: A narrative of features. In Cannabis Use, Neurobiology, Psychology, and Treatment (pp. 171-179). Elsevier.spa
dc.relation.referencesRen, G., Zhang, X., Li, Y., Ridout, K., Serrano-Serrano, M. L., Yang, Y., Liu, A., Ravikanth, G., Nawaz, M. A., Mumtaz, A. S., Salamin, N., & Fumagalli, L. (2021). Large-scale whole-genome resequencing unravels the domestication history of Cannabis sativa. Sci Adv, 7(29). https://doi.org/10.1126/sciadv.abg2286spa
dc.relation.referencesReyes Barreto, M. S. Fundamentos sociopolíticos y culturales de la criminalización de la marihuana recreativa en Colombia: una mirada desde el contexto geopolítico contemporáneo Universidad Nacional de Colombia].spa
dc.relation.referencesRiboulet-Zemouli, K. (2021). Cannabis Sostenible: Manual de Políticas Públicas – Alinear las políticas del Cannabis y del cáñamo con la Agenda 2030 de desarrollo sostenible.spa
dc.relation.referencesRitter, S., Zadik-Weiss, L., Almogi-Hazan, O., & Or, R. (2020). Cannabis, One Health, and Veterinary Medicine: Cannabinoids' Role in Public Health, Food Safety, and Translational Medicine. Rambam Maimonides Med J, 11(1). https://doi.org/10.5041/rmmj.10388spa
dc.relation.referencesRizzo, G., Storz, M. A., & Calapai, G. (2023). The Role of Hemp (Cannabis sativa L.) as a Functional Food in Vegetarian Nutrition. Foods, 12(18). https://doi.org/10.3390/foods12183505spa
dc.relation.referencesRodriguez-Morrison, V., Llewellyn, D., & Zheng, Y. (2021). Cannabis Yield, Potency, and Leaf Photosynthesis Respond Differently to Increasing Light Levels in an Indoor Environment [Original Research]. Frontiers in plant science, 12(456). https://doi.org/10.3389/fpls.2021.646020spa
dc.relation.referencesRomero Betancourt, J. D. Caracterización morfológica, bioquímica y molecular de cuatro accesiones de Cannabis sativa L Universidad Nacional de Colombia].spa
dc.relation.referencesRull, V. (2022). Origin, early expansion, domestication and anthropogenic diffusion of Cannabis, with emphasis on Europe and the Iberian Peninsula. Perspectives in Plant Ecology, Evolution and Systematics, 55, 125670. https://doi.org/https://doi.org/10.1016/j.ppees.2022.125670spa
dc.relation.referencesSaloner, A., & Bernstein, N. (2021). Nitrogen supply affects cannabinoid and terpenoid profile in medical cannabis (Cannabis sativa L.). Industrial Crops and Products, 167, 113516. https://doi.org/https://doi.org/10.1016/j.indcrop.2021.113516spa
dc.relation.referencesSaloner, A., & Bernstein, N. (2022). Effect of Potassium (K) Supply on Cannabinoids, Terpenoids and Plant Function in Medical Cannabis. Agronomy, 12(5), 1242. https://www.mdpi.com/2073-4395/12/5/1242spa
dc.relation.referencesSánchez Espinosa, J. A. (2013). Aspectos genéticos y funcionales de los suelos de alta montaña en Colombia.spa
dc.relation.referencesSandoval, B., Bowen, J. K., Richards, T., Chaparro, J. M., Lee, M., Uchanski, M., Cranshaw, W., & Prenni, J. E. (2024). Impact of Defoliation Stress on Phytocannabinoid Content in Industrial Hemp. Industrial Crops and Products, 211, 118226. https://doi.org/https://doi.org/10.1016/j.indcrop.2024.118226spa
dc.relation.referencesSasse, J., Martinoia, E., & Northen, T. (2018). Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? Trends Plant Sci, 23(1), 25-41. https://doi.org/10.1016/j.tplants.2017.09.003spa
dc.relation.referencesSchilling, S., Melzer, R., Dowling, C. A., Shi, J., Muldoon, S., & McCabe, P. F. (2023). A protocol for rapid generation cycling (speed breeding) of hemp (Cannabis sativa) for research and agriculture. The Plant Journal, 113(3), 437-445. https://doi.org/https://doi.org/10.1111/tpj.16051spa
dc.relation.referencesScott, M., Rani, M., Samsatly, J., Charron, J.-B., & Jabaji, S. (2018). Endophytes of industrial hemp (Cannabis sativa L.) cultivars: identification of culturable bacteria and fungi in leaves, petioles, and seeds. Canadian Journal of Microbiology, 64(10), 664-680. https://doi.org/10.1139/cjm-2018-0108spa
dc.relation.referencesSellin, A., Rosenvald, K., Õunapuu-Pikas, E., Tullus, A., Ostonen, I., & Lõhmus, K. (2015). Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula) [Original Research]. Frontiers in plant science, 6. https://doi.org/10.3389/fpls.2015.00860spa
dc.relation.referencesSharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1), 587. https://doi.org/10.1186/2193-1801-2-587spa
dc.relation.referencesSheldon, K., Shekoofa, A., Walker, E., & Kelly, H. (2021). Physiological screening for drought-tolerance traits among hemp (Cannabis sativa L.) cultivars in controlled environments and in field. Journal of Crop Improvement, 35(6), 816-831. https://doi.org/10.1080/15427528.2021.1883175spa
dc.relation.referencesShen, Z., Tiruta-Barna, L., & Hamelin, L. (2022). From hemp grown on carbon-vulnerable lands to long-lasting bio-based products: Uncovering trade-offs between overall environmental impacts, sequestration in soil, and dynamic influences on global temperature. Sci Total Environ, 846, 157331. https://doi.org/10.1016/j.scitotenv.2022.157331spa
dc.relation.referencesShikanai, A., & Gage, K. L. (2022). Allelopathic Potential of Hemp: Implications for Integrated Weed Management [Original Research]. Frontiers in Agronomy, 4. https://doi.org/10.3389/fagro.2022.832471spa
dc.relation.referencesShiponi, S., & Bernstein, N. (2021). The Highs and Lows of P Supply in Medical Cannabis: Effects on Cannabinoids, the Ionome, and Morpho-Physiology. Front Plant Sci, 12, 657323. https://doi.org/10.3389/fpls.2021.657323spa
dc.relation.referencesSiddiqui, S. A., Singh, P., Khan, S., Fernando, I., Baklanov, I. S., Ambartsumov, T. G., & Ibrahim, S. A. (2022). Cultural, Social and Psychological Factors of the Conservative Consumer towards Legal Cannabis Use&mdash;A Review since 2013. Sustainability, 14(17), 10993. https://www.mdpi.com/2071-1050/14/17/10993spa
dc.relation.referencesSikora, V., Berenji, J., & Latković, D. (2011). Influence of agroclimatic conditions on content of main cannabinoids in industrial hemp (Cannabis sativa L.). Genetika, 43(3), 449-456.spa
dc.relation.referencesSilver, R. J. (2019). The Endocannabinoid System of Animals. Animals (Basel), 9(9). https://doi.org/10.3390/ani9090686spa
dc.relation.referencesSingh, G., Singh, O. P., De Lampasona, M. P., & Catalán, C. A. N. (2003). Studies on essential oils. Part 35: chemical and biocidal investigations on Tagetes erecta leaf volatile oil. Flavour and Fragrance Journal, 18(1), 62-65. https://doi.org/https://doi.org/10.1002/ffj.1158spa
dc.relation.referencesSingh, S. K., Wu, X., Shao, C., & Zhang, H. (2022). Microbial enhancement of plant nutrient acquisition. Stress Biology, 2(1), 3. https://doi.org/10.1007/s44154-021-00027-wspa
dc.relation.referencesSiracusa, L., Ruberto, G., & Cristino, L. (2023). Recent Research on Cannabis sativa L.: Phytochemistry, New Matrices, Cultivation Techniques, and Recent Updates on Its Brain-Related Effects (2018-2023). Molecules, 28(8). https://doi.org/10.3390/molecules28083387spa
dc.relation.referencesSkorbiansky, S. R., Thornsbury, S., & Camp, K. M. (2021). Legal Risk Exposure Heightens Uncertainty in Developing US Hemp Markets. Choices, 36(1), 1-10.spa
dc.relation.referencesSmall, E. (2015). Evolution and classification of Cannabis sativa (marijuana, hemp) in relation to human utilization. The botanical review, 81, 189-294.spa
dc.relation.referencesSmith, C. J., Vergara, D., Keegan, B., & Jikomes, N. (2022). The phytochemical diversity of commercial cannabis in the United States. PLoS one, 17(5), e0267498.spa
dc.relation.referencesSorokin, A., Yadav, N., Gaudet, D., & Kovalchuk, I. (2020). Transient expression of the β-glucuronidase gene in Cannabis sativa varieties. Plant signaling & behavior, 15. https://doi.org/10.1080/15592324.2020.1780037spa
dc.relation.referencesSteinberg, J. (2022). Cannabis legalization: an ethnography of the global movement and market forces University of Oxford].spa
dc.relation.referencesStonehouse, G. C., McCarron, B. J., Guignardi, Z. S., El Mehdawi, A. F., Lima, L. W., Fakra, S. C., & Pilon-Smits, E. A. H. (2020). Selenium Metabolism in Hemp (Cannabis sativa L.)-Potential for Phytoremediation and Biofortification. Environ Sci Technol, 54(7), 4221-4230. https://doi.org/10.1021/acs.est.9b07747spa
dc.relation.referencesSukpiriyagul, A., Chartchaiyarerk, R., Tabtipwon, P., Smanchat, B., Prommas, S., Bhamarapravatana, K., & Suwannarurk, K. (2023). Oral Tetrahydrocannabinol (THC): Cannabinoid (CBD) Cannabis Extract Adjuvant for Reducing Chemotherapy-Induced Nausea and Vomiting (CINV): A Randomized, Double-Blinded, Placebo-Controlled, Crossover Trial. International Journal of Women's Health, 1345-1352.spa
dc.relation.referencesSun, J., Peng, M., Wang, Y., Zhao, P., & Xia, Q. (2011). Isolation and characterization of antagonistic bacteria against fusarium wilt and induction of defense related enzymes in banana. African Journal of Microbiology Research, 5(5), 509-515.spa
dc.relation.referencesSuzuki, M., Umeda, H., Matsuo, S., Kawasaki, Y., Ahn, D., Hamamoto, H., & Iwasaki, Y. (2015). Effects of relative humidity and nutrient supply on growth and nutrient uptake in greenhouse tomato production. Scientia Horticulturae, 187, 44-49. https://doi.org/https://doi.org/10.1016/j.scienta.2015.02.035spa
dc.relation.referencesTang, L., Fan, C., Yuan, H., Wu, G., Sun, J., & Zhang, S. (2022). The Effect of Rotational Cropping of Industrial Hemp (Cannabis sativa L.) on Rhizosphere Soil Microbial Communities. Agronomy, 12(10), 2293.spa
dc.relation.referencesTanney, C. A. S., Backer, R., Geitmann, A., & Smith, D. L. (2021). Cannabis Glandular Trichomes: A Cellular Metabolite Factory [Mini Review]. Frontiers in plant science, 12. https://doi.org/10.3389/fpls.2021.721986spa
dc.relation.referencesTedeschi, A., Cerrato, D., & Menenti, M. (2022). Is the Potential for Multi-Functional Use of Industrial Hemp Greater than Maize under Saline Conditions? Sustainability, 14(23), 15646. https://www.mdpi.com/2071-1050/14/23/15646spa
dc.relation.referencesTettey, J. N. A., Crean, C., Rodrigues, J., Angeline Yap, T. W., Lee Wendy Lim, J., Shirley Lee, H. Z., & Ching, M. (2021). United Nations Office on Drugs and Crime: Recommended methods for the Identification and Analysis of Synthetic Cannabinoid Receptor Agonists in Seized Materials. Forensic Sci Int Synerg, 3, 100129. https://doi.org/10.1016/j.fsisyn.2020.11.003spa
dc.relation.referencesToth, J. A., Smart, L. B., Smart, C. D., Stack, G. M., Carlson, C. H., Philippe, G., & Rose, J. K. C. (2021). Limited effect of environmental stress on cannabinoid profiles in high-cannabidiol hemp (Cannabis sativa L.). GCB Bioenergy, 13(10), 1666-1674. https://doi.org/https://doi.org/10.1111/gcbb.12880spa
dc.relation.referencesTrancoso, I., de Souza, G. A. R., dos Santos, P. R., dos Santos, K. D., de Miranda, R. M. d. S. N., da Silva, A. L. P. M., Santos, D. Z., García-Tejero, I. F., & Campostrini, E. (2022). Cannabis sativa L.: Crop Management and Abiotic Factors That Affect Phytocannabinoid Production. Agronomy, 12(7), 1492. https://www.mdpi.com/2073-4395/12/7/1492spa
dc.relation.referencesUgoji, E. O., Laing, M. D., & Hunter, C. H. (2005). Colonization of Bacillus spp. on seeds and in plant rhizoplane. J Environ Biol, 26(3), 459-466.spa
dc.relation.referencesVanhove, W., Surmont, T., Van Damme, P., & De Ruyver, B. (2012). Yield and turnover of illicit indoor cannabis (Cannabis spp.) plantations in Belgium. Forensic Science International, 220(1), 265-270. https://doi.org/https://doi.org/10.1016/j.forsciint.2012.03.013spa
dc.relation.referencesVélez-Torres, I., Hurtado, D., & Bueno, B. (2021). Medicinal Marijuana, Inc.: A Critique on the Market-led Legalization of Cannabis and the Criminalization of Rural Livelihoods in Colombia. Critical Criminology, 29(3), 505-526. https://doi.org/10.1007/s10612-021-09589-7spa
dc.relation.referencesVergara, D., Feathers, C., Huscher, E. L., Holmes, B., Haas, J. A., & Kane, N. C. (2021). Widely assumed phenotypic associations in Cannabis sativa lack a shared genetic basis. PeerJ, 9, e10672.spa
dc.relation.referencesVerma, R., Hoda, F., Arshad, M., Iqubal, A., Siddiqui, A. N., Khan, M. A., Haque, S. E., Akhtar, M., & Najmi, A. K. (2021). Cannabis, a Miracle Drug with Polyvalent Therapeutic Utility: Preclinical and Clinical-Based Evidence. Med Cannabis Cannabinoids, 4(1), 43-60. https://doi.org/10.1159/000515042spa
dc.relation.referencesVernon, M., Kouzani, A. Z., Webb, L. D., & Adams, S. D. (2023). A Survey of Modern Greenhouse Technologies and Practices for Commercial Cannabis Cultivation. IEEE Access.spa
dc.relation.referencesVesga Rendón, J. E. (2022). El uso de Cannabis sativa como especie fitorremediadora de cadmio: una alternativa para revivir el suelo. Caso de estudio finca La Chuqua, Guasca-Cundinamarca.spa
dc.relation.referencesVisković, J., Zheljazkov, V. D., Sikora, V., Noller, J., Latković, D., Ocamb, C. M., & Koren, A. (2023). Industrial Hemp (Cannabis sativa L.) Agronomy and Utilization: A Review. Agronomy, 13(3), 931. https://www.mdpi.com/2073-4395/13/3/931spa
dc.relation.referencesVives-Peris, V., de Ollas, C., Gómez-Cadenas, A., & Pérez-Clemente, R. M. (2020). Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep, 39(1), 3-17. https://doi.org/10.1007/s00299-019-02447-5spa
dc.relation.referencesVulfsons, S., Minerbi, A., & Sahar, T. (2020). Cannabis and Pain Treatment-A Review of the Clinical Utility and a Practical Approach in Light of Uncertainty. Rambam Maimonides Med J, 11(1). https://doi.org/10.5041/rmmj.10385spa
dc.relation.referencesWaadt, R., Seller, C. A., Hsu, P. K., Takahashi, Y., Munemasa, S., & Schroeder, J. I. (2022). Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol, 23(10), 680-694. https://doi.org/10.1038/s41580-022-00479-6spa
dc.relation.referencesWan, W., Qin, Y., Wu, H., Zuo, W., He, H., Tan, J., Wang, Y., & He, D. (2020). Isolation and Characterization of Phosphorus Solubilizing Bacteria With Multiple Phosphorus Sources Utilizing Capability and Their Potential for Lead Immobilization in Soil [Original Research]. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00752spa
dc.relation.referencesWang, H., Liu, R., You, M. P., Barbetti, M. J., & Chen, Y. (2021). Pathogen Biocontrol Using Plant Growth-Promoting Bacteria (PGPR): Role of Bacterial Diversity. Microorganisms, 9(9), 1988. https://www.mdpi.com/2076-2607/9/9/1988spa
dc.relation.referencesWatts, S., McElroy, M., Migicovsky, Z., Maassen, H., van Velzen, R., & Myles, S. (2021). Cannabis labelling is associated with genetic variation in terpene synthase genes. Nature Plants, 7(10), 1330-1334. https://doi.org/10.1038/s41477-021-01003-yspa
dc.relation.referencesWei, G., Ning, K., Zhang, G., Yu, H., Yang, S., Dai, F., Dong, L., & Chen, S. (2021). Compartment Niche Shapes the Assembly and Network of Cannabis sativa-Associated Microbiome [Original Research]. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.714993spa
dc.relation.referencesWei, Y., Zhao, Y., Shi, M., Cao, Z., Lu, Q., Yang, T., Fan, Y., & Wei, Z. (2018). Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. Bioresour Technol, 247, 190-199. https://doi.org/10.1016/j.biortech.2017.09.092spa
dc.relation.referencesWeil, R., & Brady, N. (2017). The Nature and Properties of Soils. 15th edition.spa
dc.relation.referencesWinston, M. E., Hampton-Marcell, J., Zarraonaindia, I., Owens, S. M., Moreau, C. S., Gilbert, J. A., Hartsel, J., Kennedy, S. J., & Gibbons, S. M. (2014). Understanding cultivar-specificity and soil determinants of the cannabis microbiome. PLoS one, 9(6), e99641.spa
dc.relation.referencesXie, Z., Mi, Y., Kong, L., Gao, M., Chen, S., Chen, W., Meng, X., Sun, W., Chen, S., & Xu, Z. (2023). Cannabis sativa: origin and history, glandular trichome development, and cannabinoid biosynthesis. Horticulture Research, 10(9). https://doi.org/10.1093/hr/uhad150spa
dc.relation.referencesYano, H., & Fu, W. (2023). Hemp: A Sustainable Plant with High Industrial Value in Food Processing. Foods, 12(3). https://doi.org/10.3390/foods12030651spa
dc.relation.referencesYousefi, A. A., Khavazi, K., Moezzi, A., Rejali, F., & Nadian, H. A. (2011). Phosphate solubilizing bacteria and arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat growth. World Applied Sciences Journal, 15, 1310-1318.spa
dc.relation.referencesZhang, J., Yan, J., Huang, S., Pan, G., Chang, L., Li, J., Zhang, C., Tang, H., Chen, A., Peng, D., Biswas, A., Zhang, C., Zhao, L., & Li, D. (2020). Genetic Diversity and Population Structure of Cannabis Based on the Genome-Wide Development of Simple Sequence Repeat Markers. Front Genet, 11, 958. https://doi.org/10.3389/fgene.2020.00958spa
dc.relation.referencesZhang, J. X., Xue, A. G., & Tambong, J. T. (2009). Evaluation of Seed and Soil Treatments with Novel Bacillus subtilis Strains for Control of Soybean Root Rot Caused by Fusarium oxysporum and F. graminearum. Plant Dis, 93(12), 1317-1323. https://doi.org/10.1094/pdis-93-12-1317spa
dc.relation.referencesZhao, J., Xu, Y., Wang, W., Griffin, J., Roozeboom, K., & Wang, D. (2020). Bioconversion of industrial hemp biomass for bioethanol production: A review. Fuel, 281, 118725. https://doi.org/https://doi.org/10.1016/j.fuel.2020.118725spa
dc.relation.referencesZhao, M., Liu, Z., Zhang, H., Wang, Y., & Yan, H. (2021). Germination Characteristics Is More Associated With Phylogeny-Related Traits of Species in a Salinized Grassland of Northeastern China [Original Research]. Frontiers in Ecology and Evolution, 9. https://doi.org/10.3389/fevo.2021.748038spa
dc.relation.referencesZheng, Z., Fiddes, K., & Yang, L. (2021). A narrative review on environmental impacts of cannabis cultivation. Journal of Cannabis Research, 3(1), 35. https://doi.org/10.1186/s42238-021-00090-0spa
dc.relation.referencesŽydelis, R., Herbst, M., Weihermüller, L., Ruzgas, R., Volungevičius, J., Barčauskaitė, K., & Tilvikienė, V. (2022). Yield potential and factor influencing yield gap in industrial hemp cultivation under nemoral climate conditions. European Journal of Agronomy, 139, 126576. https://doi.org/https://doi.org/10.1016/j.eja.2022.126576spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc580 - Plantasspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónspa
dc.subject.ddc570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantasspa
dc.subject.lembFIBRAS VEGETALESspa
dc.subject.lembPlant fiberseng
dc.subject.lembFIBRAS CELULOSASspa
dc.subject.lembCellulose fiberseng
dc.subject.lembCAÑAMOspa
dc.subject.lembHempeng
dc.subject.lembCULTIVOS EXTENSIVOSspa
dc.subject.lembField cropseng
dc.subject.lembPRODUCTOS VEGETALESspa
dc.subject.lembPlant productseng
dc.subject.proposalAgroecologíaspa
dc.subject.proposalSostenibilidadspa
dc.subject.proposalCannabisspa
dc.subject.proposalMicrobiomaspa
dc.subject.proposalMicroorganismosspa
dc.subject.proposalBenéficosspa
dc.subject.proposalCáñamospa
dc.subject.proposalPromotores de Crecimientospa
dc.subject.proposalHumedad del Dosel Aéreospa
dc.subject.proposalCannabinoidesspa
dc.subject.proposalAgroecologyeng
dc.subject.proposalSustainabilityeng
dc.subject.proposalCannabiseng
dc.subject.proposalMicrobiomeeng
dc.subject.proposalBeneficial Microbeseng
dc.subject.proposalHempeng
dc.subject.proposalBeneficial Growth promoterseng
dc.subject.proposalAir Canopy Humidityeng
dc.subject.proposalCannabinoidseng
dc.titleEvaluation of factors that shape the development of Cannabis sativa L., and the production of its cannabinoids in the context of agroecological sustainabilityeng
dc.title.translatedEvaluación de factores que condicionan el desarrollo de Cannabis sativa L., y la producción de sus cannabinoides en un contexto de sostenibilidad agroecológicaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
52429019.2024.pdf
Tamaño:
23.41 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Agroecología

Bloque de licencias

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
52429019.2024.licenciaconfidencialidad.pdf
Tamaño:
143.35 KB
Formato:
Adobe Portable Document Format
Descripción: