Evaluation of factors that shape the development of Cannabis sativa L., and the production of its cannabinoids in the context of agroecological sustainability
dc.contributor.advisor | Cuervo Andrade, Jairo Leonardo | spa |
dc.contributor.advisor | Park, Sang-Hyuck | spa |
dc.contributor.author | Corredor Perilla, Ingrid Carolina | spa |
dc.contributor.orcid | Corredor-Perilla, Ingrid Carolina [0009000524527186] | spa |
dc.date.accessioned | 2024-11-26T12:47:28Z | |
dc.date.available | 2024-11-26T12:47:28Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, tablas | spa |
dc.description.abstract | Cannabis sativa L., as an ancient crop, is experiencing a resurgence in the modern world. Historically utilized for fiber, medicine, and grain in Europe and Asia for millennia, cannabis is now being reexamined under new regulations that permit research into its genetics and sustainable production. This has opened promising avenues for its use in the industrial, food, and medicinal sectors. Research into cannabis cultivation strategies is crucial in several domains, including standardizing genetics, understanding agronomical behavior across various settings and latitudes, integrating sustainable practices, ensuring quality control in the supply chain, developing innovative markets, and securing reliable financing and insurance options. Despite growing interest, consistent information in these areas remains scarce, and speculation has often hindered the effective development of cannabis in many countries. Recent regulatory changes have allowed several countries to utilize cannabis for scientific, industrial, medicinal, and adult-use purposes. However, cannabis cultivars display varying characteristics that significantly influence their final use. Standardizing genetics, understanding environmental effects, and optimizing agronomical management across different latitudes and geographical regions are essential for ensuring the correct production of cannabis for its intended purposes. Regulations concerning the psychoactive compound ∆9-tetrahydrocannabinol (∆9- THC) require that production levels remain below legal limits (U.S. <0.3%, Colombia <1%), yet knowledge and standardization in these areas are still limited and require further research. The main goal of this research was to evaluate agroecological factors that modulate the development and cannabinoid production of Cannabis sativa L. under agroecological sustainability. This research addresses specific defiance and opportunities at the sociocultural, economic, agronomical, and environmental levels. This doctoral thesis aims to provide trustworthy information on the understanding and development of Cannabis sativa L. by assessing its cultivation and production characteristics through the agroecological view. The research is organized into chapters as follows: Chapter One: provides a comprehensive overview of cannabis, including regulations, history, uses, biology, taxonomy, and general cultivation practices. It sets the stage by outlining the research problem, objectives, and thesis structure. Chapter Two: Reviews the development and production of Cannabis sativa L. through the lens of agroecological sustainability, using case studies from Colorado, U.S., and Colombia. It identifies the sociocultural, economic, and environmental factors influencing cannabis production in these regions and highlights the challenges and obstacles. The chapter reveals that global scientific information on cannabis remains limited, with most studies focusing on public health, policies, and psychoactive effects. Slow progress in establishing regulations, the lack of education on the plant's diverse uses, and its classification as a Schedule I substance have impeded its development, especially in the studied regions. Chapter Three: Examines the diversity and distribution of the rhizosphere microbiome, focusing on the soil bacteriome and mycobiome at different plant growth stages in a controlled environment. The study found that soil origin significantly influences microbial communities at the phylum level, with varying compositions and abundance across the vegetative and flowering stages. The persistence of essential plant growth-promoting microorganisms offers promising insights for future research to support cannabis cultivation through agroecological practices Chapter Four: Characterizes culturable cannabis rhizobacteria and investigates their functional effects on germination, phosphorus solubilization, and mycelial inhibition of Fusarium sp. under in vitro conditions. Native Bacilli strains in the cannabis rhizosphere demonstrated potential biological functions, such as phosphorus solubilization and pathogen inhibition, without negatively affecting germination. These findings highlight the potential of these microbes as native plant growth promoters, warranting further investigation under controlled and greenhouse conditions. Chapter Five: Assesses the effects of varying humidity levels on the development and cannabinoid production of Cannabis sativa L. in a controlled environment. High relative humidity (78-98% RH) at the canopy level was found to negatively impact plant morphology, biomass, and total cannabinoid content (including THC, CBC, CBG, and THCV) while positively influencing plant height and the cannabinoid content of CBD and CBDV. The study suggests that maintaining optimal vapor pressure deficit (VPD) is critical for plant fitness and performance. Future research should identify cultivars that thrive under specific humidity conditions, particularly in temperate, tropical, and subtropical regions. Chapter Six: integrates the findings from the previous chapters, emphasizing the importance of adopting an agroecological perspective in cannabis cultivation. The chapter concludes with key outcomes, research limitations, a contribution to science, recommendations, and future work. This doctoral research provides valuable insights into the sustainable cultivation of Cannabis sativa L., focusing on agroecological perspectives across different regions, the diversity and function of the rhizosphere microbiome, the role of culturable soil bacteria in plant growth, and the impact of environmental factors such as humidity on a CBD hemp variety. | eng |
dc.description.abstract | Cannabis sativa L., como un cultivo ancestral, está experimentando un resurgimiento en el mundo moderno. Históricamente utilizada durante milenios en Europa y Asia para la producción de fibra, medicina y granos, cannabis está siendo reexaminada bajo nuevas regulaciones que permiten investigar su genética y producción sostenible. Esto ha generado prometedoras oportunidades para su uso en los sectores industrial, alimentario y medicinal. La investigación sobre estrategias de cultivo de cannabis es crucial en varios ámbitos, como la estandarización de genéticas, la comprensión del comportamiento agronómico en diversos entornos y latitudes, la integración de prácticas sostenibles, el aseguramiento del control de calidad en la cadena de suministro, el desarrollo de mercados innovadores y la obtención de financiamiento e instrumentos de seguro confiables. A pesar del creciente interés, la información consistente en estas áreas sigue siendo escasa, y la especulación ha obstaculizado el desarrollo efectivo del cannabis en muchos países. Los recientes cambios regulatorios han permitido que varios países utilicen el cannabis para fines científicos, industriales, medicinales y recreativos. Sin embargo, las variedades de cannabis presentan características variables que influyen significativamente en su uso final. La estandarización de genéticas, la comprensión de los efectos ambientales y la optimización del manejo agronómico en diferentes latitudes y regiones geográficas son esenciales para garantizar una producción adecuada para sus propósitos previstos. Las regulaciones relacionadas con el compuesto psicoactivo ∆9-tetrahidrocannabinol (∆9-THC) exigen que los niveles de producción se mantengan por debajo de los límites legales (EE.UU. <0.3%, Colombia <1%). Sin embargo, el conocimiento y la estandarización en estas áreas siguen siendo limitados y requieren mayor investigación. El objetivo principal de esta investigación fue evaluar los factores agroecológicos que modulan el desarrollo y la producción de cannabinoides de Cannabis sativa L. bajo un enfoque de sostenibilidad agroecológica. Esta investigación aborda desafíos y oportunidades específicos en los niveles sociocultural, económico, agronómico y ambiental. Esta tesis doctoral tiene como objetivo proporcionar información confiable sobre la comprensión y el desarrollo de Cannabis sativa L. mediante la evaluación de sus características de cultivo y producción desde una perspectiva agroecológica. La investigación está organizada en capítulos de la siguiente manera: Capítulo Uno: Proporciona una visión general completa del cannabis, incluyendo regulaciones, historia, usos, biología, taxonomía y prácticas generales de cultivo. Establece el contexto al delinear el problema de investigación, los objetivos y la estructura de la tesis. Capítulo Dos: Revisa el desarrollo y la producción de Cannabis sativa L. desde la perspectiva de la sostenibilidad agroecológica, utilizando estudios de caso de Colorado, EE.UU., y Colombia. Identifica los factores socioculturales, económicos y ambientales que influyen en la producción de cannabis en estas regiones y destaca los desafíos y obstáculos. El capítulo revela que la información científica global sobre cannabis sigue siendo limitada, con la mayoría de los estudios enfocados en la salud pública, las políticas y los efectos psicoactivos. El lento progreso en el establecimiento de regulaciones, la falta de educación sobre los diversos usos de la planta y su clasificación como sustancia psicoactiva regulada I, han impedido su desarrollo, especialmente en las regiones estudiadas. Capítulo Tres: Examina la diversidad y distribución del microbioma rizosférico, con énfasis en el bacterioma y el micobioma del suelo en diferentes etapas de crecimiento de la planta en un entorno controlado. El estudio encontró que el origen del suelo influye significativamente en las comunidades microbianas a nivel de filo, con composiciones y abundancias variables a lo largo de las etapas vegetativa y de floración. La persistencia de microorganismos esenciales promotores del crecimiento vegetal ofrece perspectivas prometedoras para futuras investigaciones que respalden el cultivo de cannabis a través de prácticas agroecológicas. Capítulo Cuatro: Caracteriza las rizobacterias cultivables del cannabis e investiga sus efectos funcionales en la germinación, solubilización de fósforo e inhibición micelial de Fusarium sp. bajo condiciones in vitro. Las cepas nativas de Bacillus en la rizosfera de cannabis demostraron funciones biológicas potenciales, como la solubilización de fósforo y la inhibición de patógenos, sin afectar negativamente la germinación. Estos hallazgos destacan el potencial de estos microbios como promotores de crecimiento vegetal nativos, lo que justifica una mayor investigación en condiciones controladas e invernaderos. Capítulo Cinco: Evalúa los efectos de niveles variables de humedad en el desarrollo y la producción de cannabinoides de Cannabis sativa L. en un entorno controlado. Se encontró que la alta humedad relativa (78-98% HR) a nivel del dosel impactó negativamente la morfología, biomasa y contenido total de cannabinoides (incluyendo THC, CBC, CBG y THCV), mientras que influyó positivamente en la altura de la planta y el contenido de cannabinoides como CBD y CBDV. El estudio sugiere que mantener un déficit de presión de vapor (DPV) óptimo es crucial para la aptitud y el rendimiento de la planta. Investigaciones futuras deberían identificar cultivares que prosperen bajo condiciones de humedad específicas, particularmente en regiones templadas, tropicales y subtropicales. Capítulo Seis: Integra los hallazgos de los capítulos anteriores, enfatizando la importancia de adoptar una perspectiva agroecológica en el cultivo de cannabis. El capítulo concluye con resultados clave, limitaciones de investigación, contribuciones a la ciencia, recomendaciones y trabajos futuros. Esta investigación doctoral proporciona conocimientos valiosos sobre el cultivo sostenible de Cannabis sativa L., centrándose en perspectivas agroecológicas en diferentes regiones, la diversidad y función del microbioma rizosférico, el papel de las bacterias del suelo cultivables en el crecimiento de las plantas y el impacto de factores ambientales como la humedad en una variedad de cáñamo rica en CBD (Texto tomado de la fuente). | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctorado en Agroecología | spa |
dc.description.researcharea | Agroecología Aplicada | spa |
dc.format.extent | 219 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87226 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias Agrarias - Doctorado en Agroecología | spa |
dc.relation.indexed | Agrosavia | spa |
dc.relation.indexed | Agrovoc | spa |
dc.relation.references | Abernethy, A. (2019). Hemp production and the 2018 farm bill. US Food and Drug Administration. | spa |
dc.relation.references | Adesina, I., Bhowmik, A., Sharma, H., & Shahbazi, A. (2020). A Review on the Current State of Knowledge of Growing Conditions, Agronomic Soil Health Practices and Utilities of Hemp in the United States. Agriculture, 10(4), 129. https://www.mdpi.com/2077-0472/10/4/129 | spa |
dc.relation.references | Atoloye, I. A., Adesina, I. S., Sharma, H., Subedi, K., Liang, C.-L., Shahbazi, A., & Bhowmik, A. (2022). Hemp biochar impacts on selected biological soil health indicators across different soil types and moisture cycles. PLoS one, 17(2), e0264620. | spa |
dc.relation.references | Barcaccia, G., Palumbo, F., Scariolo, F., Vannozzi, A., Borin, M., & Bona, S. (2020). Potentials and Challenges of Genomics for Breeding Cannabis Cultivars. Front Plant Sci, 11, 573299. https://doi.org/10.3389/fpls.2020.573299 | spa |
dc.relation.references | Beltrán Barragán, F., & Vallejo Cuervo, L. (2021). La creación de una cadena de valor sostenible a partir del Cáñamo. | spa |
dc.relation.references | Blandinières, H., & Amaducci, S. (2022). Adapting the cultivation of industrial hemp (Cannabis sativa L.) to marginal lands: A review. GCB Bioenergy, 14(9), 1004-1022. https://doi.org/https://doi.org/10.1111/gcbb.12979 | spa |
dc.relation.references | Bloomberg Línea. (2023). Bancos no dejan despegar al cannabis en Colombia: ¿por qué no les dan créditos? (Revision January 23, 2024). https://www.bloomberglinea.com/2023/03/02/bancos-no-dejan-despegar-al-cannabis-en-colombia-por-que-no-les-dan-creditos/ | spa |
dc.relation.references | Bonar, E. E., Chapman, L., McAfee, J., Goldstick, J. E., Bauermeister, J. A., Carter, P. M., Young, S. D., & Walton, M. A. (2021). Perceived impacts of the COVID-19 pandemic on cannabis-using emerging adults. Transl Behav Med, 11(7), 1299-1309. https://doi.org/10.1093/tbm/ibab025 | spa |
dc.relation.references | Bridgeman, M. B., & Abazia, D. T. (2017). Medicinal Cannabis: History, Pharmacology, And Implications for the Acute Care Setting. P t, 42(3), 180-188. | spa |
dc.relation.references | C.H.A.M.P. Colorado Hemp Advancement & Management Plan. (2021). Final Report 2021. https://ag.colorado.gov/plants/hemp/champ-initiative P.76 (Revision on Jan 06, 2024) | spa |
dc.relation.references | CIDER (2023). Políticas de Cannabis no psicoactivo en Colombia. (Revision Febrero 20, 2024) https://cider.uniandes.edu.co/sites/default/files/publicaciones/documentos-de-politica/2023/Documentos-Politica-cannabis-no-psicoactivo-Colombia.pdf | spa |
dc.relation.references | Citterio, S., Santagostino, A., Fumagalli, P., Prato, N., Ranalli, P., & Sgorbati, S. (2003). Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant and Soil, 256(2), 243-252. https://doi.org/10.1023/A:1026113905129 | spa |
dc.relation.references | Clobes, T. A., Palmier, L. A., Gagnon, M., Klaiman, C., & Arellano, M. (2022). The impact of education on attitudes toward medical cannabis. PEC Innov, 1, 100009. https://doi.org/10.1016/j.pecinn.2021.100009 | spa |
dc.relation.references | Colorado Department of Agriculture (CDA). (2024). Pesticides allowed for use in Cannabis (2023). https://ag.colorado.gov/plants/pesticides/pesticide-use-in-cannabis-production-information (Revision on Jan 20, 2024). | spa |
dc.relation.references | Colorado Department of Public Health and Environment (CDPHE). (2023). Marijuana inspection: microbial pathogens and total yeast and mold (Revision on Jan 20, 2024) https://cdphe.colorado.gov/laboratory-services/certification-of-cannabis-testing-facilities/cannabis-reference-library-0. (Revision on Jan 20, 2024). | spa |
dc.relation.references | Colorado Department of Agriculture “CDA” (2021). USDA approves Colorado’s State Hemp Plan, creating a Pathway to Expanded Operations and Testing. (Revision, February 13, 2024). https://ag.colorado.gov/press-release/usda-approves-colorados-state-hemp-plan-creating-a-pathway-to-expanded-operations-and | spa |
dc.relation.references | Collins, J. (2020). A Brief History of Cannabis and the Drug Conventions. AJIL Unbound, 114, 279-284. https://doi.org/10.1017/aju.2020.55 | spa |
dc.relation.references | Colombia Productiva (2023). Aprovechamiento de Productos y Sybproductos de Cannabis y Cáñamo. (Revision on March 20, 2024) https://www.colombiaproductiva.com/PTP/media/documentos/Reindustrializacion/Reporte-Avances-Soluciones-Cannabis-Canamo-Octubre2023.pdf | spa |
dc.relation.references | Connelly, G. (2023). Evaluating Ecosystem and Agronomic Services Provided By Companion Cropping in Hemp (Cannabis sativa L.) UNIVERSITY OF WISCONSIN-MADISON]. | spa |
dc.relation.references | Crocq, M. A. (2020). History of cannabis and the endocannabinoid system . Dialogues Clin Neurosci, 22(3), 223-228. https://doi.org/10.31887/DCNS.2020.22.3/mcrocq | spa |
dc.relation.references | de Salud, S. d. S. (2017). LEY 1787 DE 2016 (JULIO 06). | spa |
dc.relation.references | Duvall, C. (2017). Cannabis and Tobacco in Precolonial and Colonial Africa. In. https://doi.org/10.1093/acrefore/9780190277734.013.44 | spa |
dc.relation.references | Elbersen, B., van Eupen, E., Mantel, S., Verzandvoort, S., Boogaard, H., Mucher, S., Cicarreli, T., Elbersen, W., Bai, Z., Iqbal, Y., von Cossel, M., McCallum, I., Carrasco, J., Ciria Ramos, C., Monti, A., Scordia, D., & Eleftheriadis, I. (2017). D2.1. Definition and classification of marginal lands suitable for industrial crops in Europe (Versión V1). Zenodo. https://doi.org/10.5281/zenodo.3539229 Style (Revision on April 2, 2024) | spa |
dc.relation.references | Environmental Protection Agency, (EPA) (2023). Pesticide Products Registered for Use on Hemp. https://www.epa.gov/pesticide-registration/pesticide-products-registered-use-hemp (Revision on Jan 20, 2024). | spa |
dc.relation.references | Eržen, M., Košir, I. J., Ocvirk, M., Kreft, S., & Čerenak, A. (2021). Metabolomic Analysis of Cannabinoid and Essential Oil Profiles in Different Hemp (Cannabis sativa L.) Phenotypes. Plants (Basel), 10(5). https://doi.org/10.3390/plants10050966 | spa |
dc.relation.references | Federal Drug Administration (FDA). (2023). FDA and Cannabis: Research and Drug Approval Process https://www.fda.gov/news-events/public-health-focus/fda-and-cannabis-research-and-drug-approval-process. (Revision on Jan 05, 2024). | spa |
dc.relation.references | Food and Agriculture Organizations of the United Nations (FAO). (2023). Multi-purpose Crops: Hemp, a Nature Based Solution Towards Sustainable Agriculture and Water Productivity. https://www.fao.org/platforms/water-scarcity/Outreach/blog-on-water-scarcity/blog-detail/sustainable-land-water-management-for-food-agriculture/2023/04/25/multi-purpose-crops-hemp-a-nature-based-solution-towards-sustainable-agriculture-and-water-productivity/en (Revision on Jan 06, 2024). | spa |
dc.relation.references | Food and Drug Administration (FDA). (2020). Cannabis and Cannabis-Derived Compounds: Quality Considerations for Clinical Research Guidance for Industry https://www.fda.gov/media/140319/download (Revision on Jan 20, 2024). | spa |
dc.relation.references | Gill, A. R., Loveys, B. R., Cowley, J. M., Hall, T., Cavagnaro, T. R., & Burton, R. A. (2022). Physiological and morphological responses of industrial hemp (Cannabis sativa L.) to water deficit. Industrial Crops and Products, 187, 115331. https://doi.org/https://doi.org/10.1016/j.indcrop.2022.115331 | spa |
dc.relation.references | Forbes (2023). Exportaciones de cannabis crecieron 96% entre enero y noviembre de 2022. https://forbes.co/2023/01/27/negocios/exportaciones-de-cannabis-crecieron-96-entre-enero-y-noviembre-de-2022. (Revision Jan 24, 2024) | spa |
dc.relation.references | Forbes (2022). Rewriting The Cannabis Narrative in Colombia: Part 2. (Revision Jan 24, 2024) https://www.forbes.com/sites/roberthoban/2022/02/28/rewriting-the-cannabis-narrative-in-colombia-part-2/?sh=5699a0b0312c | spa |
dc.relation.references | García, E., Zapata, F., Vanegas, A., Guerrero A, A., (2023). Documentos de política # 22 hacia la consolidación del sector de cannabis psicoactivo en Colombia: Una hoja de ruta para la acción conjunta. Centro Interdisciplinario de Estudios sobre Desarrollo -CIDER-, No. 22, ISSN2538-9491. P.44. https://cider.uniandes.edu.co/es/Documentos-politica-22-cannabis-no-psicoactivo-Colombia. (Revision on Jan 06, 2024). | spa |
dc.relation.references | Goldman, S., Bramante, J., Vrdoljak, G., Guo, W., Wang, Y., Marjanovic, O., Orlowicz, S., Di Lorenzo, R., & Noestheden, M. (2021). The analytical landscape of cannabis compliance testing. Journal of Liquid Chromatography & Related Technologies, 44(9-10), 403-420. https://doi.org/10.1080/10826076.2021.1996390 | spa |
dc.relation.references | Góngora, A. (2019). Cannabis medicinal y arreglos farmacológicos en Colombia. Cahiers des Amériques latines(92), 115-133. | spa |
dc.relation.references | Gorchs, G., Lloveras, J., Serrano, L., & Cela, S. (2017). Hemp yields and its rotation effects on wheat under rainfed mediterranean conditions. Agronomy Journal, 109(4), 1551-1560. | spa |
dc.relation.references | Günther, F. (2007). Carbon sequestration for everybody: decrease atmospheric carbon dioxide, earn money and improve the soil. Submitted to Energy and Environment. | spa |
dc.relation.references | Hill, J. A. (2021). Cannabis Banking: What Marijuana Can Learn from Hemp. BUL Rev., 101, 1043. | spa |
dc.relation.references | Hong, G., Sideris, A., Waldman, S., Stauffer, J., & Wu, C. L. (2024). Legal and regulatory aspects of medical cannabis in the United States. Anesthesia & Analgesia, 138(1), 31-41. | spa |
dc.relation.references | Hourfane, S., Mechqoq, H., Bekkali, A. Y., Rocha, J. M., & El Aouad, N. (2023). A Comprehensive Review on Cannabis sativa Ethnobotany, Phytochemistry, Molecular Docking and Biological Activities. Plants (Basel), 12(6). https://doi.org/10.3390/plants12061245 | spa |
dc.relation.references | Hurtado Pardo, D. P. Transformación de las Narrativas de Política Pública de Drogas 2006-2019: Regulación del Cannabis en Colombia Universidad Nacional de Colombia]. | spa |
dc.relation.references | Ingvardsen, C. R., & Brinch-Pedersen, H. (2023). Challenges and potentials of new breeding techniques in Cannabis sativa. Front Plant Sci, 14, 1154332. https://doi.org/10.3389/fpls.2023.1154332 | spa |
dc.relation.references | Instituto Colombiano Agropecuario (ICA) (2023a). Registro Nacional de Plaguicidas. https://www.ica.gov.co/areas/agricola/servicios/regulacion-y-control-de-plaguicidas-quimicos/estadisticas/9-bd_registros-nacionales-plaguicidas_20-de-septi.aspx. (Revision on Jan 20, 2024). | spa |
dc.relation.references | Instituto Colombiano Agropecuario (ICA) (2023b) (Revision on October 6th, 2023) https://www.ica.gov.co/noticias/ica-primera-exportacion-cannabis-sativa | spa |
dc.relation.references | Instituto Colombiano Agropecuario (ICA) (2021). La certificación ICA de fincas en Buenas Prácticas Agrícolas, BPA, tiene nueva norma. https://www.ica.gov.co/noticias/ica-moderniza-normatividad-en-bpa-cumplir-requisit. (Revision on Jan 20, 2024). | spa |
dc.relation.references | Jack K. Reed, (2021). Impacts of Marijuana Legalization. Colorado Division of Criminal Justice. Statistical Analyst Office of Research and Statistics. (Revision on Jan 05, 2024). https://cdpsdocs.state.co.us/ors/docs/reports/2021-SB13-283_Rpt.pdf. | spa |
dc.relation.references | Jean, T. (2023). Policy Analysis: A Case for Rescheduling Marijuana. J Med, 4(5), 1075. | spa |
dc.relation.references | Johnson, L., Malone, M., Paulson, E., Swider, J., Marelius, D., Andersen, S., & Black, D. (2023). Potency and safety analysis of hemp delta-9 products: the hemp vs. cannabis demarcation problem. J Cannabis Res, 5(1), 29. https://doi.org/10.1186/s42238-023-00197-6 | spa |
dc.relation.references | Johnson, R. Hemp as an Agricultural Commodity. Congressional Research Service 7-5700 ww.crs.gov RL32725, 2018 June 22. https://sgp.fas.org/crs/misc/RL32725.pdf | spa |
dc.relation.references | Ketcherside, A., Noble, L. J., McIntyre, C. K., & Filbey, F. M. (2017). Cannabinoid Receptor 1 Gene by Cannabis Use Interaction on CB1 Receptor Density. Cannabis Cannabinoid Res, 2(1), 202-209. https://doi.org/10.1089/can.2017.0007 | spa |
dc.relation.references | Khanal, A., & Shah, A. (2024). Techno-Economic Analysis of Hemp Production, Logistics and Processing in the US. Biomass, 4(1), 164-179. | spa |
dc.relation.references | King, D. D., Gill, C. J., Cadieux, C. S., & Singh, N. (2024). The role of stigma in cannabis use disclosure: an exploratory study. Harm Reduct J, 21(1), 21. https://doi.org/10.1186/s12954-024-00929-8 | spa |
dc.relation.references | Kok, C., Coenen, G., & De Heij, A. (1994). The effect of fibre hemp (Cannabis sativa L.) on selected soil-borne pathogens. Journal of the International Hemp Association, 1(1), 6-9. | spa |
dc.relation.references | Lapierre, É., Monthony, A. S., & Torkamaneh, D. (2023). Genomics-based taxonomy to clarify cannabis classification. Genome, 66(8), 202-211. https://doi.org/10.1139/gen-2023-0005 %M 37163765 | spa |
dc.relation.references | Linger, P., Ostwald, A., & Haensler, J. (2005). Cannabis sativa L. growing on heavy metal contaminated soil: growth, cadmium uptake and photosynthesis. Biologia Plantarum, 49(4), 567-576. https://doi.org/10.1007/s10535-005-0051-4 | spa |
dc.relation.references | Luo, X. (2024). Discussing the Legalisation of Recreational Cannabis Supply Chain: Will It Weaken Drug Trafficking Organisations? Studies in Social Science & Humanities, 3(1), 85-91. | spa |
dc.relation.references | MacCallum, C. A., Lo, L. A., Pistawka, C. A., & Boivin, M. (2023). A Clinical Framework for Evaluating Cannabis Product Quality and Safety. Cannabis Cannabinoid Res, 8(3), 567-574. https://doi.org/10.1089/can.2021.0137 | spa |
dc.relation.references | Mark, T.B., Shepherd, J., Olson, D, W., Snell, W., Proper, S., Thornsbury, S. ERS-USDA, (2020). Economic Viability of Industrial Hemp in the United States: A Review of State Pilot Programs. (Revision on March 20, 2024) https://www.ers.usda.gov/publications/pub-details/?pubid=95929 | spa |
dc.relation.references | Maximize Market Research (MMR). (2023) Colombia Hemp Market: Industry Analysis and Forecast (2023-2029). https://www.maximizemarketresearch.com/market-report/colombia-hemp-market/188525/ Revision Jan 23, 2024). | spa |
dc.relation.references | McPartland, J. M., Hegman, W., & Long, T. (2019). Cannabis in Asia: its center of origin and early cultivation, based on a synthesis of subfossil pollen and archaeobotanical studies. Vegetation history and archaeobotany, 28, 691-702. | spa |
dc.relation.references | Mead, A. (2019). Legal and regulatory issues governing cannabis and cannabis-derived products in the United States. Frontiers in plant science, 10, 433747. | spa |
dc.relation.references | Meinhofer, A., & Rubli, A. (2021). Illegal drug market responses to state recreational cannabis laws. Addiction, 116(12), 3433-3443. https://doi.org/https://doi.org/10.1111/add.15517 | spa |
dc.relation.references | Minjusticia. (2020). Licencia de uso de semillas para siembra, licencia de cultivo de plantas de cannabis psicoactivo y licencia de cultivo de plantas de cannabis no psicoactivo. https://www.minjusticia.gov.co/programas-co/cannabis-con-fines-medicinales-y-cientificos. (Revision on Jan 05, 2024). | spa |
dc.relation.references | Minsalud. (2020). Licencias de fabricación de derivados de cannabis. https://www.minsalud.gov.co/salud/MT/Paginas/cannabis-uso-medicinal.aspx. (Revision on Jan 05, 2024). | spa |
dc.relation.references | Monte, A. A., Zane, R. D., & Heard, K. J. (2015). The implications of marijuana legalization in Colorado. Jama, 313(3), 241-242. https://doi.org/10.1001/jama.2014.17057 | spa |
dc.relation.references | Montero, L., Ballesteros-Vivas, D., Gonzalez-Barrios, A. F., & Sánchez-Camargo, A. d. P. (2023). Hemp seeds: Nutritional value, associated bioactivities and the potential food applications in the Colombian context [Review]. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.1039180 | spa |
dc.relation.references | Moscariello, C., Matassa, S., Esposito, G., & Papirio, S. (2021). From residue to resource: The multifaceted environmental and bioeconomy potential of industrial hemp (Cannabis sativa L.). Resources, Conservation and Recycling, 175, 105864. | spa |
dc.relation.references | Morin-Crini, N.; Loiacono, S.; Placet, V.; Torri, G.; Bradu, C.; Kostić, M.; Cosentino, C.; Chanet, G.; Martel, B.; Lichtfouse, E.; Crini, G. Hemp based adsorbents for sequestration of metals: a review. Environ. Chemistry Letters, 2019, 17: 393-408. | spa |
dc.relation.references | Naeem, M. Y., Corbo, F., Crupi, P., & Clodoveo, M. L. (2023). Hemp: An Alternative Source for Various Industries and an Emerging Tool for Functional Food and Pharmaceutical Sectors. Processes, 11(3), 718. https://www.mdpi.com/2227-9717/11/3/718 | spa |
dc.relation.references | National Agriculture Statistics Service (NASS) of USDA. (2023). Hemp Production and Disposition Inquiry. (Revision on Jan 20,2024) https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Hemp/index.php | spa |
dc.relation.references | National Cannabis Industry Association (NCIA). (2024). Cannabis Industry Predictions for 2024. (Revision Jan 24, 2024). https://thecannabisindustry.org/unveiling-the-future-navigating-the-cannabis-landscapein- 2024/#:~:text=Projected%20Market%20Growth%3A%20The%20U.S.,to%20this%20growth%E2%80%8B%E2%80%8B. | spa |
dc.relation.references | Navarro, C. E. (2023). Cannabis-based magistral formulation is highly effective as an adjuvant treatment in drug-resistant focal epilepsy in adult patients: an open-label prospective cohort study. Neurological Sciences, 44(1), 297-304. https://doi.org/10.1007/s10072-022-06393-1 | spa |
dc.relation.references | Organización de Las Naciones Unidas (ONU). (2023.) Colombia avanza en el acuerdo de paz, pero debe cumplir con las víctimas. Noticias ONU. https://news.un.org/es/story/2023/10/1524652 (Revision on Jan 06, 2024). | spa |
dc.relation.references | Osterberger, E., Lohwasser, U., Jovanovic, D., Ruzicka, J., & Novak, J. (2022). The origin of the genus Cannabis. Genetic Resources and Crop Evolution, 69(4), 1439-1449. | spa |
dc.relation.references | Parker, K. A., Di Mattia, A., Shaik, F., Cerón Ortega, J. C., & Whittle, R. (2019). Risk management within the cannabis industry: Building a framework for the cannabis industry. Financial Markets, Institutions & Instruments, 28(1), 3-55. | spa |
dc.relation.references | Perera, K. Y., Jaiswal, A. K., & Jaiswal, S. (2023). Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications. Foods, 12(12), 2422. https://www.mdpi.com/2304-8158/12/12/2422 | spa |
dc.relation.references | Promhuad, K., Srisa, A., San, H., Laorenza, Y., Wongphan, P., Sodsai, J., Tansin, K., Phromphen, P., Chartvivatpornchai, N., Ngoenchai, P., & Harnkarnsujarit, N. (2022). Applications of Hemp Polymers and Extracts in Food, Textile and Packaging: A Review. Polymers (Basel), 14(20). https://doi.org/10.3390/polym14204274 | spa |
dc.relation.references | Rafei, P., Englund, A., Lorenzetti, V., Elkholy, H., Potenza, M., & Baldacchino, A. (2023). Transcultural Aspects of Cannabis Use: a Descriptive Overview of Cannabis Use across Cultures. Current Addiction Reports, 10, 1-14. https://doi.org/10.1007/s40429-023-00500-8 | spa |
dc.relation.references | Raihan, A., & Bijoy, T. R. (2023). A review of the industrial use and global sustainability of Cannabis sativa. Global Sustainability Research, 2(4), 1-29. | spa |
dc.relation.references | Ramirez-Hassan, A., Gomez, C., Velásquez, S., & Tangarife, K. (2023). Marijuana on Main Streets? The Story Continues in Colombia: An Endogenous Three-part Model. arXiv preprint arXiv:2306.10031. | spa |
dc.relation.references | Reid, M. (2023). Cannabis stigmas: A narrative of features. In Cannabis Use, Neurobiology, Psychology, and Treatment (pp. 171-179). Elsevier. | spa |
dc.relation.references | Reyes Barreto, M. S. Fundamentos sociopolíticos y culturales de la criminalización de la marihuana recreativa en Colombia: una mirada desde el contexto geopolítico contemporáneo Universidad Nacional de Colombia]. | spa |
dc.relation.references | Riboulet-Zemouli, K. (2021). Cannabis Sostenible: Manual de Políticas Públicas – Alinear las políticas del Cannabis y del cáñamo con la Agenda 2030 de desarrollo sostenible. | spa |
dc.relation.references | Rizzo, G., Storz, M. A., & Calapai, G. (2023). The Role of Hemp (Cannabis sativa L.) as a Functional Food in Vegetarian Nutrition. Foods, 12(18). https://doi.org/10.3390/foods12183505 | spa |
dc.relation.references | Rink Grace & Cannabis Sustainability Workgroup (CSWG). (2021). Cannabis environmental best management practices guide. (Revision on Jan 20, 2024). https://www.denvergov.org/files/assets/public/v/1/climate-action/documents/2021_cannabis-bmp-guide_rev-11-23.pdf | spa |
dc.relation.references | Rull, V. (2022). Origin, early expansion, domestication and anthropogenic diffusion of Cannabis, with emphasis on Europe and the Iberian Peninsula. Perspectives in Plant Ecology, Evolution and Systematics, 55, 125670. https://doi.org/https://doi.org/10.1016/j.ppees.2022.125670 | spa |
dc.relation.references | Sandoval, B., Bowen, J. K., Richards, T., Chaparro, J. M., Lee, M., Uchanski, M., Cranshaw, W., & Prenni, J. E. (2024). Impact of Defoliation Stress on Phytocannabinoid Content in Industrial Hemp. Industrial Crops and Products, 211, 118226. https://doi.org/https://doi.org/10.1016/j.indcrop.2024.118226 | spa |
dc.relation.references | Schilling, S., Melzer, R., Dowling, C. A., Shi, J., Muldoon, S., & McCabe, P. F. (2023). A protocol for rapid generation cycling (speed breeding) of hemp (Cannabis sativa) for research and agriculture. The Plant Journal, 113(3), 437-445. https://doi.org/https://doi.org/10.1111/tpj.16051 | spa |
dc.relation.references | Shen, Z., Tiruta-Barna, L., & Hamelin, L. (2022). From hemp grown on carbon-vulnerable lands to long-lasting bio-based products: Uncovering trade-offs between overall environmental impacts, sequestration in soil, and dynamic influences on global temperature. Sci Total Environ, 846, 157331. https://doi.org/10.1016/j.scitotenv.2022.157331 | spa |
dc.relation.references | Shikanai, A., & Gage, K. L. (2022). Allelopathic Potential of Hemp: Implications for Integrated Weed Management [Original Research]. Frontiers in Agronomy, 4. https://doi.org/10.3389/fagro.2022.832471 | spa |
dc.relation.references | Siddiqui, S. A., Singh, P., Khan, S., Fernando, I., Baklanov, I. S., Ambartsumov, T. G., & Ibrahim, S. A. (2022). Cultural, Social and Psychological Factors of the Conservative Consumer towards Legal Cannabis Use—A Review since 2013. Sustainability, 14(17), 10993. https://www.mdpi.com/2071-1050/14/17/10993 | spa |
dc.relation.references | Silver, R. J. (2019). The Endocannabinoid System of Animals. Animals (Basel), 9(9). https://doi.org/10.3390/ani9090686 | spa |
dc.relation.references | Siracusa, L., Ruberto, G., & Cristino, L. (2023). Recent Research on Cannabis sativa L.: Phytochemistry, New Matrices, Cultivation Techniques, and Recent Updates on Its Brain-Related Effects (2018-2023). Molecules, 28(8). https://doi.org/10.3390/molecules28083387 | spa |
dc.relation.references | Skorbiansky, S. R., Thornsbury, S., & Camp, K. M. (2021). Legal Risk Exposure Heightens Uncertainty in Developing US Hemp Markets. Choices, 36(1), 1-10. | spa |
dc.relation.references | Small, E. (2015). Evolution and classification of Cannabis sativa (marijuana, hemp) in relation to human utilization. The botanical review, 81, 189-294. | spa |
dc.relation.references | Smith, C. J., Vergara, D., Keegan, B., & Jikomes, N. (2022). The phytochemical diversity of commercial cannabis in the United States. PLoS one, 17(5), e0267498. | spa |
dc.relation.references | Steinberg, J. (2022). Cannabis legalization: an ethnography of the global movement and market forces University of Oxford]. | spa |
dc.relation.references | Stonehouse, G. C., McCarron, B. J., Guignardi, Z. S., El Mehdawi, A. F., Lima, L. W., Fakra, S. C., & Pilon-Smits, E. A. H. (2020). Selenium Metabolism in Hemp (Cannabis sativa L.)-Potential for Phytoremediation and Biofortification. Environ Sci Technol, 54(7), 4221-4230. https://doi.org/10.1021/acs.est.9b07747 | spa |
dc.relation.references | Sukpiriyagul, A., Chartchaiyarerk, R., Tabtipwon, P., Smanchat, B., Prommas, S., Bhamarapravatana, K., & Suwannarurk, K. (2023). Oral Tetrahydrocannabinol (THC): Cannabinoid (CBD) Cannabis Extract Adjuvant for Reducing Chemotherapy-Induced Nausea and Vomiting (CINV): A Randomized, Double-Blinded, Placebo-Controlled, Crossover Trial. International Journal of Women's Health, 1345-1352. | spa |
dc.relation.references | Tang, L., Fan, C., Yuan, H., Wu, G., Sun, J., & Zhang, S. (2022). The Effect of Rotational Cropping of Industrial Hemp (Cannabis sativa L.) on Rhizosphere Soil Microbial Communities. Agronomy, 12(10), 2293. | spa |
dc.relation.references | Tanney, C. A. S., Backer, R., Geitmann, A., & Smith, D. L. (2021). Cannabis Glandular Trichomes: A Cellular Metabolite Factory [Mini Review]. Frontiers in plant science, 12. https://doi.org/10.3389/fpls.2021.721986 | spa |
dc.relation.references | Tedeshi, A., (2023). Multi-purpose Crops: Hemp, a Nature Based Solution Towards Sustainable Agriculture and Water Productivity. (Revision Jan 25, 2024) https://www.fao.org/platforms/water-scarcity/Outreach/blog-on-water-scarcity/blog-detail/sustainable-land-water-management-for-food-agriculture/2023/04/25/multi-purpose-crops-hemp-a-nature-based-solution-towards-sustainable-agriculture-and-water-productivity/en | spa |
dc.relation.references | Tedeschi, A., Cerrato, D., & Menenti, M. (2022). Is the Potential for Multi-Functional Use of Industrial Hemp Greater than Maize under Saline Conditions? Sustainability, 14(23), 15646. https://www.mdpi.com/2071-1050/14/23/15646 | spa |
dc.relation.references | USDA, United States Department of Agriculture. (2023). Hemp National Report. https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Hemp/index.php (Revision Jan 24, 2024) | spa |
dc.relation.references | USDA, United States Department of Agriculture. (2021). USDA Improves, Strengthens Crop Insurance for Hemp Producers.https://rma.usda.gov/News-Room/Press/National-News-Archive/2021-News/2021-News/USDA-Improves-Strengthens-Crop-Insurance-for-Hemp-Producers (Revision on Jan 20, 2024). | spa |
dc.relation.references | U.S. Food and Drug Administration (FDA). (2018). FDA Responds to Three GRAS Notices for Hemp Seed-Derived Ingredients for Use in Human Food. Washington, DC: U.S. Food and Drug Administration. https://www.fda.gov/food/cfsan-constituent-updates/fda-responds-three-gras-notices-hemp-seed-derivedingredients-use-human-food (Revision on Jan 20, 2024). | spa |
dc.relation.references | U.S Congress (2023). Secure and Fair Enforcement Banking Act of 2023 or the SAFE Banking Act of 2023-2024 (SAFE Banking Act) (https://www.congress.gov/bill/118th-congress/house-bill/2891#:~:text=This%20bill%20provides%20protections%20for,a%20Schedule%20I%20controlled%20substance (Revision Jan 23, 2024). | spa |
dc.relation.references | Vélez-Torres, I., Hurtado, D., & Bueno, B. (2021). Medicinal Marijuana, Inc.: A Critique on the Market-led Legalization of Cannabis and the Criminalization of Rural Livelihoods in Colombia. Critical Criminology, 29(3), 505-526. https://doi.org/10.1007/s10612-021-09589-7 | spa |
dc.relation.references | Verma, R., Hoda, F., Arshad, M., Iqubal, A., Siddiqui, A. N., Khan, M. A., Haque, S. E., Akhtar, M., & Najmi, A. K. (2021). Cannabis, a Miracle Drug with Polyvalent Therapeutic Utility: Preclinical and Clinical-Based Evidence. Med Cannabis Cannabinoids, 4(1), 43-60. https://doi.org/10.1159/000515042 | spa |
dc.relation.references | Vesga Rendón, J. E. (2022). El uso de Cannabis sativa como especie fitorremediadora de cadmio: una alternativa para revivir el suelo. Caso de estudio finca La Chuqua, Guasca-Cundinamarca. | spa |
dc.relation.references | Visković, J., Zheljazkov, V. D., Sikora, V., Noller, J., Latković, D., Ocamb, C. M., & Koren, A. (2023). Industrial Hemp (Cannabis sativa L.) Agronomy and Utilization: A Review. Agronomy, 13(3), 931. https://www.mdpi.com/2073-4395/13/3/931 | spa |
dc.relation.references | Vulfsons, S., Minerbi, A., & Sahar, T. (2020). Cannabis and Pain Treatment-A Review of the Clinical Utility and a Practical Approach in Light of Uncertainty. Rambam Maimonides Med J, 11(1). https://doi.org/10.5041/rmmj.10385 | spa |
dc.relation.references | Watts, S., McElroy, M., Migicovsky, Z., Maassen, H., van Velzen, R., & Myles, S. (2021). Cannabis labelling is associated with genetic variation in terpene synthase genes. Nature Plants, 7(10), 1330-1334. https://doi.org/10.1038/s41477-021-01003-y | spa |
dc.relation.references | Yano, H., & Fu, W. (2023). Hemp: A Sustainable Plant with High Industrial Value in Food Processing. Foods, 12(3). https://doi.org/10.3390/foods12030651 | spa |
dc.relation.references | Zhang, J., Yan, J., Huang, S., Pan, G., Chang, L., Li, J., Zhang, C., Tang, H., Chen, A., Peng, D., Biswas, A., Zhang, C., Zhao, L., & Li, D. (2020). Genetic Diversity and Population Structure of Cannabis Based on the Genome-Wide Development of Simple Sequence Repeat Markers. Front Genet, 11, 958. https://doi.org/10.3389/fgene.2020.00958 | spa |
dc.relation.references | Zhao, J., Xu, Y., Wang, W., Griffin, J., Roozeboom, K., & Wang, D. (2020). Bioconversion of industrial hemp biomass for bioethanol production: A review. Fuel, 281, 118725. https://doi.org/https://doi.org/10.1016/j.fuel.2020.118725 | spa |
dc.relation.references | Abarenkov, K., Zirk, A., Piirmann, T., Pöhönen, R., Ivanov, F., Nilsson, R. H., & Kõljalg, U. (2021). UNITE general FASTA release for Fungi UNITE Community. U. Community. doi, 10. | spa |
dc.relation.references | Abellan-Schneyder, I., Matchado, M., Reitmeier, S., Sommer, A., Sewald, Z., Baumbach, J., List, M., & Neuhaus, K. (2021). Primer, Pipelines, Parameters: Issues in 16S rRNA Gene Sequencing. mSphere, 6. https://doi.org/10.1128/mSphere.01202-20 | spa |
dc.relation.references | Ahmed, B., & Hijri, M. (2021). Potential impacts of soil microbiota manipulation on secondary metabolites production in cannabis. Journal of Cannabis Research, 3(1), 25. https://doi.org/10.1186/s42238-021-00082-0 | spa |
dc.relation.references | Ahmed, B., Smart, L. B., & Hijri, M. (2021). Microbiome of Field Grown Hemp Reveals Potential Microbial Interactions With Root and Rhizosphere Soil [Original Research]. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.741597 | spa |
dc.relation.references | Amaducci, S., Zatta, A., Raffanini, M., & Venturi, G. (2008). Characterisation of hemp (Cannabis sativa L.) roots under different growing conditions. Plant and Soil, 313, 227-235. https://doi.org/10.1007/s11104-008-9695-0 | spa |
dc.relation.references | Balthazar, C., Novinscak, A., Cantin, G., Joly, D. L., & Filion, M. (2022). Biocontrol Activity of Bacillus spp. and Pseudomonas spp. Against Botrytis cinerea and Other Cannabis Fungal Pathogens. Phytopathology®, 112(3), 549-560. https://doi.org/10.1094/phyto-03-21-0128-r | spa |
dc.relation.references | Barcaccia, G., Palumbo, F., Scariolo, F., Vannozzi, A., Borin, M., & Bona, S. (2020). Potentials and Challenges of Genomics for Breeding Cannabis Cultivars. Front Plant Sci, 11, 573299. https://doi.org/10.3389/fpls.2020.573299 | spa |
dc.relation.references | Bargaz, A., Lyamlouli, K., Chtouki, M., Zeroual, Y., & Dhiba, D. (2018). Soil Microbial Resources for Improving Fertilizers Efficiency in an Integrated Plant Nutrient Management System [Review]. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01606 | spa |
dc.relation.references | Barnett, S. E., Cala, A. R., Hansen, J. L., Crawford, J., Viands, D. R., Smart, L. B., Smart, C. D., & Buckley, D. H. (2020). Evaluating the microbiome of hemp. Phytobiomes Journal, 4(4), 351-363. | spa |
dc.relation.references | Chaparro, J. M., Badri, D. V., & Vivanco, J. M. (2014). Rhizosphere microbiome assemblage is affected by plant development. Isme j, 8(4), 790-803. https://doi.org/10.1038/ismej.2013.196 | spa |
dc.relation.references | Chong, J., Liu, P., Zhou, G., & Xia, J. (2020). Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc, 15(3), 799-821. https://doi.org/10.1038/s41596-019-0264-1 | spa |
dc.relation.references | Comeau, D., Balthazar, C., Novinscak, A., Bouhamdani, N., Joly, D. L., & Filion, M. (2021). Interactions Between Bacillus Spp., Pseudomonas Spp. and Cannabis sativa Promote Plant Growth. Front Microbiol, 12, 715758. https://doi.org/10.3389/fmicb.2021.715758 | spa |
dc.relation.references | Comeau, D., Novinscak, A., Joly, D. L., & Filion, M. (2020). Spatio-Temporal and Cultivar-Dependent Variations in the Cannabis Microbiome [Original Research]. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00491 | spa |
dc.relation.references | Dhariwal, A., Chong, J., Habib, S., King, I. L., Agellon, L. B., & Xia, J. (2017). MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res, 45(W1), W180-w188. https://doi.org/10.1093/nar/gkx295 | spa |
dc.relation.references | Elhendawy, M. A., Wanas, A. S., Radwan, M. M., Azzaz, N. A., Toson, E. S., & ElSohly, M. A. (2019). Chemical and Biological Studies of Cannabis sativa Roots. Med Cannabis Cannabinoids, 1(2), 104-111. https://doi.org/10.1159/000495582 | spa |
dc.relation.references | Fordjour, E., Manful, C. F., Sey, A. A., Javed, R., Pham, T. H., Thomas, R., & Cheema, M. (2023). Cannabis: a multifaceted plant with endless potentials. Front Pharmacol, 14, 1200269. https://doi.org/10.3389/fphar.2023.1200269 | spa |
dc.relation.references | Ginnan, N. A., De Anda, N. I., Campos Freitas Vieira, F., Rolshausen, P. E., & Roper, M. C. (2022). Microbial Turnover and Dispersal Events Occur in Synchrony with Plant Phenology in the Perennial Evergreen Tree Crop Citrus sinensis. mBio, 13(3), e0034322. https://doi.org/10.1128/mbio.00343-22 | spa |
dc.relation.references | Gogoi, A. (2020). Domestication of Cannabis and Its Future Prospects. Cannabis, 36. | spa |
dc.relation.references | Hartman, K., Schmid, M. W., Bodenhausen, N., Bender, S. F., Valzano-Held, A. Y., Schlaeppi, K., & van der Heijden, M. G. A. (2023). A symbiotic footprint in the plant root microbiome. Environmental Microbiome, 18(1), 65. https://doi.org/10.1186/s40793-023-00521-w | spa |
dc.relation.references | Hiruma, K., Gerlach, N., Sacristán, S., Nakano, R. T., Hacquard, S., Kracher, B., Neumann, U., Ramírez, D., Bucher, M., O'Connell, R. J., & Schulze-Lefert, P. (2016). Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits that Are Phosphate Status Dependent. Cell, 165(2), 464-474. https://doi.org/10.1016/j.cell.2016.02.028 | spa |
dc.relation.references | Ingvardsen, C. R., & Brinch-Pedersen, H. (2023). Challenges and potentials of new breeding techniques in Cannabis sativa. Front Plant Sci, 14, 1154332. https://doi.org/10.3389/fpls.2023.1154332 | spa |
dc.relation.references | Jastrząb, A., Jarocka-Karpowicz, I., & Skrzydlewska, E. (2022). The Origin and Biomedical Relevance of Cannabigerol. Int J Mol Sci, 23(14). https://doi.org/10.3390/ijms23147929 | spa |
dc.relation.references | Jiao, S., Chen, W., Wang, J., Du, N., Li, Q., & Wei, G. (2018). Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome, 6(1), 146. https://doi.org/10.1186/s40168-018-0526-0 | spa |
dc.relation.references | Jin, D., Dai, K., Xie, Z., & Chen, J. (2020). Secondary Metabolites Profiled in Cannabis Inflorescences, Leaves, Stem Barks, and Roots for Medicinal Purposes. Scientific Reports, 10(1), 3309. https://doi.org/10.1038/s41598-020-60172-6 | spa |
dc.relation.references | Jin, D., Henry, P., Shan, J., & Chen, J. (2021). Identification of Chemotypic Markers in Three Chemotype Categories of Cannabis Using Secondary Metabolites Profiled in Inflorescences, Leaves, Stem Bark, and Roots [Original Research]. Frontiers in plant science, 12. https://doi.org/10.3389/fpls.2021.699530 | spa |
dc.relation.references | Jin, D., Jin, S., & Chen, J. (2019). Cannabis indoor growing conditions, management practices, and post-harvest treatment: a review. American Journal of Plant Sciences, 10(06), 925. | spa |
dc.relation.references | Li, L., Yang, X., Tong, B., Wang, D., Tian, X., Liu, J., Chen, J., Xiao, X., & Wang, S. (2023). Rhizobacterial compositions and their relationships with soil properties and medicinal bioactive ingredients in Cinnamomum migao [Original Research]. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1078886 | spa |
dc.relation.references | Ling, N., Wang, T., & Kuzyakov, Y. (2022). Rhizosphere bacteriome structure and functions. Nature Communications, 13(1), 836. https://doi.org/10.1038/s41467-022-28448-9 | spa |
dc.relation.references | Llewellyn, D., Golem, S., Foley, E., Dinka, S., Jones, A. M. P., & Zheng, Y. (2022). Indoor grown cannabis yield increased proportionally with light intensity, but ultraviolet radiation did not affect yield or cannabinoid content. Front Plant Sci, 13, 974018. https://doi.org/10.3389/fpls.2022.974018 | spa |
dc.relation.references | Lu, Y., Zhou, G., Ewald, J., Pang, Z., Shiri, T., & Xia, J. (2023). MicrobiomeAnalyst 2.0: comprehensive statistical, functional and integrative analysis of microbiome data. Nucleic Acids Res, 51(W1), W310-w318. https://doi.org/10.1093/nar/gkad407 | spa |
dc.relation.references | Lyu, D., Backer, R., Berrué, F., Martinez-Farina, C., Hui, J. P. M., & Smith, D. L. (2023). Plant Growth-Promoting Rhizobacteria (PGPR) with Microbial Growth Broth Improve Biomass and Secondary Metabolite Accumulation of Cannabis sativa L. Journal of Agricultural and Food Chemistry, 71(19), 7268-7277. https://doi.org/10.1021/acs.jafc.2c06961 | spa |
dc.relation.references | Lyu, D., Backer, R., & Smith, D. L. (2022). Three plant growth-promoting rhizobacteria alter morphological development, physiology, and flower yield of Cannabis sativa L. Industrial Crops and Products, 178, 114583. | spa |
dc.relation.references | Martínez, V., Iriondo De-Hond, A., Borrelli, F., Capasso, R., Del Castillo, M. D., & Abalo, R. (2020). Cannabidiol and Other Non-Psychoactive Cannabinoids for Prevention and Treatment of Gastrointestinal Disorders: Useful Nutraceuticals? Int J Mol Sci, 21(9). https://doi.org/10.3390/ijms21093067 | spa |
dc.relation.references | McKernan, K., Spangler, J., Helbert, Y., Lynch, R. C., Devitt-Lee, A., Zhang, L., Orphe, W., Warner, J., Foss, T., & Hudalla, C. J. (2016). Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests. F1000Research, 5. | spa |
dc.relation.references | McLaughlin, S., Zhalnina, K., Kosina, S., Northen, T. R., & Sasse, J. (2023). The core metabolome and root exudation dynamics of three phylogenetically distinct plant species. Nat Commun, 14(1), 1649. https://doi.org/10.1038/s41467-023-37164-x | spa |
dc.relation.references | McPartland, J. M., & McKernan, K. J. (2017). Contaminants of Concern in Cannabis: Microbes, Heavy Metals and Pesticides. In S. Chandra, H. Lata, & M. A. ElSohly (Eds.), Cannabis sativa L. - Botany and Biotechnology (pp. 457-474). Springer International Publishing. https://doi.org/10.1007/978-3-319-54564-6_22 | spa |
dc.relation.references | McPartland, J. M., & Small, E. (2020). A classification of endangered high-THC cannabis (Cannabis sativa subsp. indica) domesticates and their wild relatives. PhytoKeys, 144, 81-112. https://doi.org/10.3897/phytokeys.144.46700 | spa |
dc.relation.references | Melzer, R., McCabe, P. F., & Schilling, S. (2022). Evolution, genetics and biochemistry of plant cannabinoid synthesis: a challenge for biotechnology in the years ahead. Current Opinion in Biotechnology, 75, 102684. https://doi.org/https://doi.org/10.1016/j.copbio.2022.102684 | spa |
dc.relation.references | Meyer, W., Irinyi, L., Hoang, M. T. V., Robert, V., Garcia-Hermoso, D., Desnos-Ollivier, M., Yurayart, C., Tsang, C.-C., Lee, C.-Y., Woo, P. C. Y., Pchelin, I. M., Uhrlaß, S., Nenoff, P., Chindamporn, A., Chen, S., Hebert, P. D. N., & Sorrell, T. C. (2018). Database establishment for the secondary fungal DNA barcode translational elongation factor 1α (TEF1α). Genome, 62(3), 160-169. https://doi.org/10.1139/gen-2018-0083 | spa |
dc.relation.references | Park, I., Seo, Y. S., & Mannaa, M. (2023). Recruitment of the rhizo-microbiome army: assembly determinants and engineering of the rhizosphere microbiome as a key to unlocking plant potential. Front Microbiol, 14, 1163832. https://doi.org/10.3389/fmicb.2023.1163832 | spa |
dc.relation.references | Park, S.-H., Pauli, C. S., Gostin, E. L., Staples, S. K., Seifried, D., Kinney, C., & Vanden Heuvel, B. D. (2022). Effects of short-term environmental stresses on the onset of cannabinoid production in young immature flowers of industrial hemp (Cannabis sativa L.). Journal of Cannabis Research, 4(1), 1-13. | spa |
dc.relation.references | Pérez-Bermúdez, P., & Rognoni Martínez, A. (2023). Chapter 3 - Strategies to improve Cannabis cultivation: optimizing plant growth and phytocannabinoid biosynthesis. In I. F. García-Tejero & V. H. Durán-Zuazo (Eds.), Current Applications, Approaches, and Potential Perspectives for Hemp (pp. 77-108). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-323-89867-6.00008-1 | spa |
dc.relation.references | Regas, T., Han, J. H., Pauli, C. S., & Park, S. H. (2021). Employing Aeroponic Systems for the Clonal Propagation of Cannabis. J Vis Exp(178). https://doi.org/10.3791/63117 | spa |
dc.relation.references | Ritter, S., Zadik-Weiss, L., Almogi-Hazan, O., & Or, R. (2020). Cannabis, One Health, and Veterinary Medicine: Cannabinoids' Role in Public Health, Food Safety, and Translational Medicine. Rambam Maimonides Med J, 11(1). https://doi.org/10.5041/rmmj.10388 | spa |
dc.relation.references | Rull, V. (2022). Origin, early expansion, domestication and anthropogenic diffusion of Cannabis, with emphasis on Europe and the Iberian Peninsula. Perspectives in Plant Ecology, Evolution and Systematics, 55, 125670. https://doi.org/https://doi.org/10.1016/j.ppees.2022.125670 | spa |
dc.relation.references | Sasse, J., Martinoia, E., & Northen, T. (2018). Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? Trends Plant Sci, 23(1), 25-41. https://doi.org/10.1016/j.tplants.2017.09.003 | spa |
dc.relation.references | Small, E. (2015). Evolution and classification of Cannabis sativa (marijuana, hemp) in relation to human utilization. The botanical review, 81, 189-294. | spa |
dc.relation.references | Taghinasab, M., & Jabaji, S. (2020). Cannabis Microbiome and the Role of Endophytes in Modulating the Production of Secondary Metabolites: An Overview. Microorganisms, 8(3), 355. https://www.mdpi.com/2076-2607/8/3/355 | spa |
dc.relation.references | Toth, J. A., Smart, L. B., Smart, C. D., Stack, G. M., Carlson, C. H., Philippe, G., & Rose, J. K. C. (2021). Limited effect of environmental stress on cannabinoid profiles in high-cannabidiol hemp (Cannabis sativa L.). GCB Bioenergy, 13(10), 1666-1674. https://doi.org/https://doi.org/10.1111/gcbb.12880 Wei, G., Ning, K., Zhang, G., Yu, H., Yang, S., Dai, F., Dong, L. | spa |
dc.relation.references | Wei, G., Ning, K., Zhang, G., Yu, H., Yang, S., Dai, F., Dong, L., & Chen, S. (2021). Compartment Niche Shapes the Assembly and Network of Cannabis sativa-Associated Microbiome [Original Research]. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.714993 | spa |
dc.relation.references | Winston, M. E., Hampton-Marcell, J., Zarraonaindia, I., Owens, S. M., Moreau, C. S., Gilbert, J. A., Hartsel, J., Kennedy, S. J., & Gibbons, S. M. (2014). Understanding cultivar-specificity and soil determinants of the cannabis microbiome. PLoS one, 9(6), e99641. | spa |
dc.relation.references | Xie, Z., Mi, Y., Kong, L., Gao, M., Chen, S., Chen, W., Meng, X., Sun, W., Chen, S., & Xu, Z. (2023). Cannabis sativa: origin and history, glandular trichome development, and cannabinoid biosynthesis. Horticulture Research, 10(9). https://doi.org/10.1093/hr/uhad150 | spa |
dc.relation.references | Adesina, I., Bhowmik, A., Sharma, H., & Shahbazi, A. 2020. A review on the current state of knowledge of growing conditions, agronomic soil health practices and utilities of hemp in the united states. Agriculture. 10 (4), 129. https://www.mdpi.com/2077-0472/10/4/129 | spa |
dc.relation.references | Afzal, A., & Bano, A. 2008. Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). Int. J. Agri. Biol. 10, 1560-8530. | spa |
dc.relation.references | Ahmed, B., & Hijri, M. 2021. Potential impacts of soil microbiota manipulation on secondary metabolites production in cannabis. J. Can. Res. 3 (1), 25. https://doi.org/10.1186/s42238-021-00082-0 | spa |
dc.relation.references | Alexopoulos, C. J., Mims, C. W., & Blackwell, M. 1996. Introductory mycology. John Wiley and Sons. | spa |
dc.relation.references | Alía, Afzal, A., Khokhar, S. N., Jabeen, B., & Asad, S. A. 2013. Phosphate solubilizing bacteria associated with vegetables roots in different ecologies. Pak. J. Bot. 45, 535-544. | spa |
dc.relation.references | Battley, E. H. 1992. Yeasts: Characteristics and identification. J. A. Barnett , R. W. Payne , D. Yarrow. Q. Rev.Biol, 67 (3), 369-369. https://doi.org/10.1086/417697 | spa |
dc.relation.references | Ben-Jabeur, M., Kthiri, Z., Djebali, N., Karmous, C., & Hamada, W. 2022. A case study of seed biopriming and chemical priming: seed coating with two types of bioactive compounds improves the physiological state of germinating seeds in durum wheat. Cer. Res. Com. https://doi.org/10.1007/s42976-022-00294-x | spa |
dc.relation.references | Beneduzi, A., Ambrosini, A., & Passaglia, L. M. 2012. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol, 35(4 (suppl)), 1044-1051. https://doi.org/10.1590/s1415-47572012000600020 | spa |
dc.relation.references | Bergey, D. H., & Holt, J. G. (1994). Bergey's manual of determinative bacteriology. Williams & Wilkins. https://books.google.com/books?id=jtMLzaa5ONcC | spa |
dc.relation.references | Berlanga-Clavero, M. V., Molina-Santiago, C., Caraballo-Rodríguez, A. M., Petras, D., Díaz-Martínez, L., Pérez-García, A., de Vicente, A., Carrión, V. J., Dorrestein, P. C., & | spa |
dc.relation.references | Romero, D. 2022. Bacillus subtilis biofilm matrix components target seed oil bodies to promote growth and anti-fungal resistance in melon. Nat. Microbiol. 7 (7), 1001-1015. https://doi.org/10.1038/s41564-022-01134-8 | spa |
dc.relation.references | Caplan, D., Dixon, M., & Zheng, Y. 2017. Optimal rate of organic fertilizer during the vegetative-stage for cannabis grown in two coir-based substrates. Hortic.Sci. 52, 1307-1312. https://doi.org/10.21273/HORTSCI11903-17 | spa |
dc.relation.references | Cardarelli, M., Woo, S. L., Rouphael, Y., & Colla, G. 2022. Seed treatments with microorganisms can have a biostimulant effect by influencing germination and seedling growth of crops. Plants, 11(3), 259. https://www.mdpi.com/2223-7747/11/3/259 | spa |
dc.relation.references | Chandra, S., Lata, H., & ElSohly, M. A. 2017. Cannabis sativa L.-botany and biotechnology. Springer. | spa |
dc.relation.references | Cole, J. C., Smith, M. W., Penn, C. J., Cheary, B. S., & Conaghan, K. J. 2016. Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants. Sci Hortic. 211, 420-430. https://doi.org/https://doi.org/10.1016/j.scienta.2016.09.028 | spa |
dc.relation.references | Comeau, D., Balthazar, C., Novinscak, A., Bouhamdani, N., Joly, D. L., & Filion, M. 2021. Interactions between bacillus spp., pseudomonas spp. and Cannabis sativa promote plant growth. Front. Microbiol. 12, 715758. https://doi.org/10.3389/fmicb.2021.715758 | spa |
dc.relation.references | Comeau, D., Novinscak, A., Joly, D. L., & Filion, M. 2020. Spatio-temporal and cultivar-dependent variations in the cannabis microbiome [original research]. Front. Microbiol. 11. https://doi.org/10.3389/fmicb.2020.00491 | spa |
dc.relation.references | Conant, R., Walsh, R., Walsh, M., Bell, C., & Wallenstein, M. 2017. Effects of a microbial biostimulant, Mammoth PTM, on Cannabis sativa bud yield. J. Hortic. 4 (191), 2376-0354.1000191. | spa |
dc.relation.references | Dahlgren, R. A., Saigusa, M., & Ugolini, F. C. 2004. The nature, properties and management of volcanic soils. Adv. Agron. 82, 113-182. | spa |
dc.relation.references | Deng, C., Liang, X., Zhang, N., Li, B., Wang, X., & Zeng, N. 2022. Molecular mechanisms of plant growth promotion for methylotrophic Bacillus aryabhattai LAD [Original Research]. Front. Microbiol. 13. https://doi.org/10.3389/fmicb.2022.917382 | spa |
dc.relation.references | Elias, S. G., Wu, Y.-c., & Stimpson, D. C. 2020. Seed quality and dormancy of hemp (Cannabis sativa L.). J. Agric. Hem. Res. 2 (1), 2. | spa |
dc.relation.references | Garcia, A., Polonio, J., Polli, A., Santos, C., Rhoden, S., Quecine, M., Azevedo, J., & Pamphile, J. 2016. Rhizosphere bacteriome of the medicinal plant Sapindus saponaria L. revealed by pyrosequencing. Genet Mol Res, 15, 1-9. | spa |
dc.relation.references | Garcia-Lemos, A. M., Großkinsky, D. K., Saleem Akhtar, S., Nicolaisen, M. H., Roitsch, T., Nybroe, O., & Veierskov, B. 2020. Identification of root-associated bacteria that influence plant physiology, increase seed germination, or promote growth of the christmas tree species abies nordmanniana. Front Microbiol, 11, 566613. https://doi.org/10.3389/fmicb.2020.566613 | spa |
dc.relation.references | Gohil, R. B., Raval, V. H., Panchal, R. R., & Rajput, K. N. 2022. Plant growth-promoting activity of Bacillus sp. PG-8 isolated from fermented panchagavya and its effect on the growth of Arachis hypogea [original research]. Front. Agron. 4. https://doi.org/10.3389/fagro.2022.805454 | spa |
dc.relation.references | Gwinn, K. D., Hansen, Z., Kelly, H., & Ownley, B. H. 2022. diseases of cannabis sativa caused by diverse Fusarium species [Review]. Front. Agron. 3. https://doi.org/10.3389/fagro.2021.796062 | spa |
dc.relation.references | Ievinsh, G., Vikmane, M., Ķirse, A., & Karlsons, A. 2017. Effect of vermicompost extract and vermicompost-derived humic acids on seed germination and seedling growth of hemp. Proc. Lat.Acad.Sci. Section B. Nat. Ex. Appl. Sci. 71 (4), 286-292. https://doi.org/doi:10.1515/prolas-2017-0048 | spa |
dc.relation.references | Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. 2017. The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions. Front Plant. Sci. 8, 1617-1617. https://doi.org/10.3389/fpls.2017.01617 | spa |
dc.relation.references | Joe, M. M., Deivaraj, S., Benson, A., Henry, A. J., & Narendrakumar, G. 2018. Soil extract calcium phosphate media for screening of phosphate-solubilizing bacteria. Agric. Nat. Res. 52(3), 305-308. https://doi.org/https://doi.org/10.1016/j.anres.2018.09.014 | spa |
dc.relation.references | Jovičić, D., Nikolic, Z., Sikora, V., Tamindzic, G., Petrović, G., Ignjatov, M., & Milošević, D. 2019. Comparison of methods for germination testing of Cannabis sativa seed. Rat. povr. 56, 71-75. https://doi.org/10.5937/ratpov56-21105 | spa |
dc.relation.references | Kalayu, G. 2019. Phosphate solubilizing microorganisms: promising approach as biofertilizers. Int. J. Agron. 4917256. https://doi.org/10.1155/2019/4917256 | spa |
dc.relation.references | Köhl, J., Kolnaar, R., & Ravensberg, W. J. 2019. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy [Review]. Front. Plant. Sci. 10. https://doi.org/10.3389/fpls.2019.00845 | spa |
dc.relation.references | Kusari, P., Kusari, S., Spiteller, M., & Kayser, O. (2017). Cannabis endophytes and their application in breeding and physiological fitness. In S. Chandra, H. Lata, & M. A. ElSohly (Eds.), Cannabis sativa L. - Bot. Biotech. (pp. 419-437). Springer International Publishing. https://doi.org/10.1007/978-3-319-54564-6_20 | spa |
dc.relation.references | Li, H., Yue, H., Li, L., Liu, Y., Zhang, H., Wang, J., & Jiang, X. 2021. Seed biostimulant Bacillus sp. MGW9 improves the salt tolerance of maize during seed germination. AMB Express, 11 (1), 74. https://doi.org/10.1186/s13568-021-01237-1 | spa |
dc.relation.references | Li, Y. J., & Hu, Q. P. 2020. Studying of the promotion mechanism of Bacillus subtilis QM3 on wheat seed germination based on β-amylase. Open. Life. Sci. 15 (1), 553-560. https://doi.org/10.1515/biol-2020-0062 | spa |
dc.relation.references | Lyu, D., Backer, R., & Smith, D. L. 2022. Three plant growth-promoting rhizobacteria alter morphological development, physiology, and flower yield of Cannabis sativa L. Ind. Crops.Prod. 178, 114583. | spa |
dc.relation.references | Mahmood, A., Turgay, O. C., Farooq, M., & Hayat, R. 2016. Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol. Ecol. 92 (8). https://doi.org/10.1093/femsec/fiw112 | spa |
dc.relation.references | Mayton, H., Amirkhani, M., Loos, M., Johnson, B., Fike, J., Johnson, C., Myers, K., Starr, J., Bergstrom, G. C., & Taylor, A. 2022. Evaluation of industrial hemp seed treatments for management of damping-off for enhanced stand establishment. Agriculture. 12 (5), 591. https://www.mdpi.com/2077-0472/12/5/591 | spa |
dc.relation.references | McPartland, J. M., & Hillig, K. W. 2004. Cannabis clinic Fusarium wilt. J. Ind. Hemp. 9 (2), 67-77. | spa |
dc.relation.references | Meisner, A., & de Boer, W. 2018. Strategies to maintain natural biocontrol of soil-borne crop diseases during severe drought and rainfall events [Perspective]. Front. Microbiol. 9. https://doi.org/10.3389/fmicb.2018.02279 | spa |
dc.relation.references | Müller, T., & Behrendt, U. 2021. Exploiting the biocontrol potential of plant-associated pseudomonads – A step towards pesticide-free agriculture? Biol. Control. 155, 104538. https://doi.org/https://doi.org/10.1016/j.biocontrol.2021.104538 | spa |
dc.relation.references | Pagnani, G., Pellegrini, M., Galieni, A., D’Egidio, S., Matteucci, F., Ricci, A., Stagnari, F., Sergi, M., Sterzo, C. L., & Pisante, M. 2018. Plant growth-promoting rhizobacteria (PGPR) in Cannabis sativa ‘Finola’cultivation: An alternative fertilization strategy to improve plant growth and quality characteristics. Ind. Crops. Prod. 123, 75-83. | spa |
dc.relation.references | Pepe, M., Hesami, M., & Jones, A. M. P. 2021. Machine learning-mediated development and optimization of disinfection protocol and scarification method for improved in vitro germination of cannabis seeds. plants.(Basel). 10 (11). https://doi.org/10.3390/plants10112397 | spa |
dc.relation.references | Peterson, S. B., Bertolli, S. K., & Mougous, J. D. 2020. The central role of interbacterial antagonism in bacterial life. Curr. Biol. 30 (19), R1203-r1214. https://doi.org/10.1016/j.cub.2020.06.103 | spa |
dc.relation.references | Promwee, A., Issarakraisila, M., Intana, W., Chiradej, C., & Yenjit, P. 2014. Phosphate solubilization and growth promotion of rubber tree (hevea brasiliensis muell. arg.) by Trichoderma strains. J. Agric. Sci. 6. https://doi.org/10.5539/jas.v6n9p8 | spa |
dc.relation.references | Punja, Z. K. 2021. Emerging diseases of Cannabis sativa and sustainable management. Pest. Manag. Sci, 77 (9), 3857-3870. https://doi.org/10.1002/ps.6307 | spa |
dc.relation.references | Punja, Z. K., Collyer, D., Scott, C., Lung, S., Holmes, J., & Sutton, D. 2019. Pathogens and molds affecting production and quality of Cannabis sativa L. Front. Plant. Sci. 10, 1120. | spa |
dc.relation.references | Punja, Z. K., & Rodriguez, G. 2018. Fusarium and Pythium species infecting roots of hydroponically grown marijuana (Cannabis sativa L.) plants. Can. J. Plant. Pathol. 40 (4), 498-513. | spa |
dc.relation.references | Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. 2017. Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments [Review]. Front. Physiol. 8. https://doi.org/10.3389/fphys.2017.00667 | spa |
dc.relation.references | Sánchez Espinosa, J. A. 2013. Aspectos genéticos y funcionales de los suelos de alta montaña en Colombia. | spa |
dc.relation.references | Sattley, W. M., & Madigan, M. T. Microbiology. In eLS (pp. 1-10). https://doi.org/https://doi.org/10.1002/9780470015902.a0000459.pub2 | spa |
dc.relation.references | Sattley, W. M., & Madigan, M. T. 2015. Microbiology. eLS, 1-10. | spa |
dc.relation.references | Scott, M., Rani, M., Samsatly, J., Charron, J.-B., & Jabaji, S. 2018. Endophytes of industrial hemp (Cannabis sativa L.) cultivars: identification of culturable bacteria and fungi in leaves, petioles, and seeds. Can. J. Microbiol., 64 (10), 664-680. https://doi.org/10.1139/cjm-2018-0108 | spa |
dc.relation.references | Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus. 2 (1), 587. https://doi.org/10.1186/2193-1801-2-587 | spa |
dc.relation.references | Singh, G., Singh, O. P., De Lampasona, M. P., & Catalán, C. A. N. 2003. Studies on essential oils. Part 35: chemical and biocidal investigations on Tagetes erecta leaf volatile oil. Flavour. Fragran. J. 18 (1), 62-65. https://doi.org/https://doi.org/10.1002/ffj.1158 | spa |
dc.relation.references | Singh, S. K., Wu, X., Shao, C., & Zhang, H. 2022. Microbial enhancement of plant nutrient acquisition. Stress Biol. 2 (1), 3. https://doi.org/10.1007/s44154-021-00027-w | spa |
dc.relation.references | Sorokin, A., Yadav, N., Gaudet, D., & Kovalchuk, I. 2020. Transient expression of the β-glucuronidase gene in Cannabis sativa varieties. Plant. signal. behav. 15. https://doi.org/10.1080/15592324.2020.1780037 | spa |
dc.relation.references | Sun, J., Peng, M., Wang, Y., Zhao, P., & Xia, Q. 2011. Isolation and characterization of antagonistic bacteria against Fusarium wilt and induction of defense related enzymes in banana. African. J. Microbiol. Res. 5 (5), 509-515. | spa |
dc.relation.references | Taghinasab, M., & Jabaji, S. 2020. Cannabis Microbiome and the role of endophytes in modulating the production of secondary metabolites:An overview. Microorganisms, 8 ( 3), 355. https://www.mdpi.com/2076-2607/8/3/355 | spa |
dc.relation.references | Tettey, J. N. A., Crean, C., Rodrigues, J., Angeline Yap, T. W., Lee Wendy Lim, J., Shirley Lee, H. Z., & Ching, M. 2021. United Nations Office on Drugs and Crime: Recommended methods for the identification and analysis of synthetic cannabinoid receptor agonists in seized materials. Forens. Sci. Int. Synerg. 3, 100129. https://doi.org/10.1016/j.fsisyn.2020.11.003 | spa |
dc.relation.references | Ugoji, E. O., Laing, M. D., & Hunter, C. H. 2005. Colonization of Bacillus spp. on seeds and in plant rhizoplane. J Environ. Biol. 26( 3), 459-466. | spa |
dc.relation.references | USDA, United States Department of Agriculture & National Agricultural Statistics Service, 2022. National Hemp Report. Released February 17, 2022. https://search.usa.gov/search?utf8=%E2%9C%93&affiliate=usda-nass&query=HEMP (accessed 1 March 2023). | spa |
dc.relation.references | Wan, W., Qin, Y., Wu, H., Zuo, W., He, H., Tan, J., Wang, Y., & He, D. 2020. Isolation and characterization of phosphorus solubilizing bacteria with multiple phosphorus sources utilizing capability and their potential for lead immobilization in soil [Original Research]. Front. Microbiol. 11. https://doi.org/10.3389/fmicb.2020.00752 | spa |
dc.relation.references | Wang, H., Liu, R., You, M. P., Barbetti, M. J., & Chen, Y. 2021. Pathogen biocontrol using plant growth-promoting bacteria (PGPR): role of bacterial diversity. Microorganisms. 9 (9), 1988. https://www.mdpi.com/2076-2607/9/9/1988 | spa |
dc.relation.references | Wei, Y., Zhao, Y., Shi, M., Cao, Z., Lu, Q., Yang, T., Fan, Y., & Wei, Z. 2018. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. Bioresour. Technol. 247, 190-199. https://doi.org/10.1016/j.biortech.2017.09.092 | spa |
dc.relation.references | Weil, R., & Brady, N. 2017. The nature and properties of soils. 15th edition. | spa |
dc.relation.references | Winston, M. E., Hampton-Marcell, J., Zarraonaindia, I., Owens, S. M., Moreau, C. S., Gilbert, J. A., Hartsel, J., Kennedy, S. J., & Gibbons, S. M. 2014. Understanding cultivar-specificity and soil determinants of the cannabis microbiome. PLoS. one. 9 (6), e99641. | spa |
dc.relation.references | Yousefi, A. A., Khavazi, K., Moezzi, A., Rejali, F., & Nadian, H. A. 2011. Phosphate solubilizing bacteria and arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat growth. World Appl. Sci. J. 15, 1310-1318. | spa |
dc.relation.references | Zhang, J. X., Xue, A. G., & Tambong, J. T. 2009. Evaluation of seed and soil treatments with novel Bacillus subtilis strains for control of soybean root rot caused by Fusarium oxysporum and F. graminearum. Plant. Dis. 93 (12), 1317-1323. https://doi.org/10.1094/pdis-93-12-1317 | spa |
dc.relation.references | Zhao, M., Liu, Z., Zhang, H., Wang, Y., & Yan, H. 2021. Germination characteristics is more associated with phylogeny-related traits of species in a salinized grassland of northeastern china [Original Research]. Front. Ecol. Evol. 9. https://doi.org/10.3389/fevo.2021.748038 | spa |
dc.relation.references | Zverev, A., Pershina, E., Shapkin, V., Kichko, A., Mitrofanova, O., Kobylyanskii, V., Yuzikhin, O., Belimov, A., & Andronov, E. 2020. Molecular analysis of the rhizosphere microbial communities from gramineous plants grown on contrasting soils. Microbiology. 89 (2), 231-241. | spa |
dc.relation.references | Abarenkov, K., Zirk, A., Piirmann, T., Pöhönen, R., Ivanov, F., Nilsson, R. H., & Kõljalg, U. (2021). UNITE general FASTA release for Fungi UNITE Community. U. Community. doi, 10. | spa |
dc.relation.references | Abellan-Schneyder, I., Matchado, M., Reitmeier, S., Sommer, A., Sewald, Z., Baumbach, J., List, M., & Neuhaus, K. (2021). Primer, Pipelines, Parameters: Issues in 16S rRNA Gene Sequencing. mSphere, 6. https://doi.org/10.1128/mSphere.01202-20 | spa |
dc.relation.references | Abellan-Schneyder, I., Matchado, M., Reitmeier, S., Sommer, A., Sewald, Z., Baumbach, J., List, M., & Neuhaus, K. (2021). Primer, Pipelines, Parameters: Issues in 16S rRNA Gene Sequencing. mSphere, 6. https://doi.org/10.1128/mSphere.01202-20 | spa |
dc.relation.references | Abernethy, A. (2019). Hemp production and the 2018 farm bill. US Food and Drug Administration. | spa |
dc.relation.references | Adesina, I., Bhowmik, A., Sharma, H., & Shahbazi, A. (2020). A Review on the Current State of Knowledge of Growing Conditions, Agronomic Soil Health Practices and Utilities of Hemp in the United States. Agriculture, 10(4), 129. https://www.mdpi.com/2077-0472/10/4/129 | spa |
dc.relation.references | Afzal, A., & Bano, A. (2008). Rhizobium and Phosphate Solubilizing Bacteria Improve the Yield and Phosphorus Uptake in Wheat (Triticum aestivum). Int. J. Agri. Biol, 10, 1560-8530. | spa |
dc.relation.references | Ahmed, B., Beneš, F., Hajslova, J., Fišarová, L., Vosátka, M., & Hijri, M. (2023). Enhanced production of select phytocannabinoids in medical Cannabis cultivars using microbial consortia. Frontiers in plant science, 14. https://doi.org/10.3389/fpls.2023.1219836 | spa |
dc.relation.references | Ahmed, B., & Hijri, M. (2021). Potential impacts of soil microbiota manipulation on secondary metabolites production in cannabis. Journal of Cannabis Research, 3(1), 25. https://doi.org/10.1186/s42238-021-00082-0 | spa |
dc.relation.references | Ahmed, B., Smart, L. B., & Hijri, M. (2021). Microbiome of Field Grown Hemp Reveals Potential Microbial Interactions With Root and Rhizosphere Soil [Original Research]. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.741597 | spa |
dc.relation.references | Ahrens, A., Llewellyn, D., & Zheng, Y. (2024). Longer Photoperiod Substantially Increases Indoor-Grown Cannabis' Yield and Quality: A Study of Two High-THC Cultivars Grown under 12 h vs. 13 h Days. Plants (Basel), 13(3). https://doi.org/10.3390/plants13030433 | spa |
dc.relation.references | Alexopoulos, C. J., Mims, C. W., & Blackwell, M. (1996). Introductory mycology. John Wiley and Sons. | spa |
dc.relation.references | Altieri, M. (2015). Agroecology: key concepts, principles and practices. | spa |
dc.relation.references | Altieri, M. Á., & Rosset, P. (2020). Agroecología: ciencia y politica. Icaria. | spa |
dc.relation.references | Amaducci, S., Zatta, A., Raffanini, M., & Venturi, G. (2008). Characterisation of hemp (Cannabis sativa L.) roots under different growing conditions. Plant and Soil, 313, 227-235. https://doi.org/10.1007/s11104-008-9695-0 | spa |
dc.relation.references | Atoloye, I. A., Adesina, I. S., Sharma, H., Subedi, K., Liang, C.-L., Shahbazi, A., & Bhowmik, A. (2022). Hemp biochar impacts on selected biological soil health indicators across different soil types and moisture cycles. PLoS one, 17(2), e0264620. | spa |
dc.relation.references | Balthazar, C., Novinscak, A., Cantin, G., Joly, D. L., & Filion, M. (2022). Biocontrol Activity of Bacillus spp. and Pseudomonas spp. Against Botrytis cinerea and Other Cannabis Fungal Pathogens. Phytopathology®, 112(3), 549-560. https://doi.org/10.1094/phyto-03-21-0128-r | spa |
dc.relation.references | Barcaccia, G., Palumbo, F., Scariolo, F., Vannozzi, A., Borin, M., & Bona, S. (2020). Potentials and Challenges of Genomics for Breeding Cannabis Cultivars. Front Plant Sci, 11, 573299. https://doi.org/10.3389/fpls.2020.573299 | spa |
dc.relation.references | Bargaz, A., Lyamlouli, K., Chtouki, M., Zeroual, Y., & Dhiba, D. (2018). Soil Microbial Resources for Improving Fertilizers Efficiency in an Integrated Plant Nutrient Management System [Review]. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01606 | spa |
dc.relation.references | Barnett, S. E., Cala, A. R., Hansen, J. L., Crawford, J., Viands, D. R., Smart, L. B., Smart, C. D., & Buckley, D. H. (2020). Evaluating the microbiome of hemp. Phytobiomes Journal, 4(4), 351-363. | spa |
dc.relation.references | Battley, E. H. (1992). Yeasts: Characteristics and Identification. J. A. Barnett , R. W. Payne , D. Yarrow. The Quarterly Review of Biology, 67(3), 369-369. https://doi.org/10.1086/417697 | spa |
dc.relation.references | Beltrán Barragán, F., & Vallejo Cuervo, L. (2021). La creación de una cadena de valor sostenible a partir del Cáñamo. | spa |
dc.relation.references | Beneduzi, A., Ambrosini, A., & Passaglia, L. M. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet Mol Biol, 35(4 (suppl)), 1044-1051. https://doi.org/10.1590/s1415-47572012000600020 | spa |
dc.relation.references | Bergey, D. H., & Holt, J. G. (1994). Bergey's Manual of Determinative Bacteriology. Williams & Wilkins. https://books.google.com/books?id=jtMLzaa5ONcC | spa |
dc.relation.references | Berlanga-Clavero, M. V., Molina-Santiago, C., Caraballo-Rodríguez, A. M., Petras, D., Díaz-Martínez, L., Pérez-García, A., de Vicente, A., Carrión, V. J., Dorrestein, P. C., & Romero, D. (2022). Bacillus subtilis biofilm matrix components target seed oil bodies to promote growth and anti-fungal resistance in melon. Nature Microbiology, 7(7), 1001-1015. https://doi.org/10.1038/s41564-022-01134-8 | spa |
dc.relation.references | Blandinières, H., & Amaducci, S. (2022a). Adapting the cultivation of industrial hemp (Cannabis sativa L.) to marginal lands: A review. GCB Bioenergy, 14(9), 1004-1022. https://doi.org/https://doi.org/10.1111/gcbb.12979 | spa |
dc.relation.references | Blandinières, H., & Amaducci, S. (2022b). Agronomy and ecophysiology of hemp cultivation. In Cannabis/Hemp for Sustainable Agriculture and Materials (pp. 89-125). Springer. | spa |
dc.relation.references | Bok, G., Hahm, S., Shin, J., & Park, J. (2023). Optimizing Indoor Hemp Cultivation Efficiency through Differential Day–Night Temperature Treatment. Agronomy, 13(10), 2636. https://www.mdpi.com/2073-4395/13/10/2636 | spa |
dc.relation.references | Bonar, E. E., Chapman, L., McAfee, J., Goldstick, J. E., Bauermeister, J. A., Carter, P. M., Young, S. D., & Walton, M. A. (2021). Perceived impacts of the COVID-19 pandemic on cannabis-using emerging adults. Transl Behav Med, 11(7), 1299-1309. https://doi.org/10.1093/tbm/ibab025 | spa |
dc.relation.references | Breit, L., Leavitt, M., & Boyd, A. (2019). Understanding VPD and transpiration rates for cannabis cultivation operations. Cannabis Science and Technology, 2(2), 52-61. | spa |
dc.relation.references | Bridgeman, M. B., & Abazia, D. T. (2017). Medicinal Cannabis: History, Pharmacology, And Implications for the Acute Care Setting. P t, 42(3), 180-188. | spa |
dc.relation.references | Cardarelli, M., Woo, S. L., Rouphael, Y., & Colla, G. (2022). Seed Treatments with Microorganisms Can Have a Biostimulant Effect by Influencing Germination and Seedling Growth of Crops. Plants, 11(3), 259. https://www.mdpi.com/2223-7747/11/3/259 | spa |
dc.relation.references | Chandra, S., Lata, H., & ElSohly, M. A. (2017). Cannabis sativa L.-botany and biotechnology. Springer. | spa |
dc.relation.references | Chandra, S., Lata, H., Mehmedic, Z., Khan, I. A., & ElSohly, M. A. (2015). Light dependence of photosynthesis and water vapor exchange characteristics in different high Δ9-THC yielding varieties of Cannabis sativa L. Journal of Applied Research on Medicinal and Aromatic Plants, 2(2), 39-47. https://doi.org/https://doi.org/10.1016/j.jarmap.2015.03.002 | spa |
dc.relation.references | Chaparro, J. M., Badri, D. V., & Vivanco, J. M. (2014). Rhizosphere microbiome assemblage is affected by plant development. Isme j, 8(4), 790-803. https://doi.org/10.1038/ismej.2013.196 | spa |
dc.relation.references | Chiluwal, A., Sandhu, S. S., Sandhu, H., Irey, M., Johns, F., & Sanchez, R. (2023). Cannabidiol industrial hemp growth, biomass, and temporal cannabinoids accumulation under different planting dates in southern Florida. Agrosystems, Geosciences & Environment, 6(1), e20347. https://doi.org/https://doi.org/10.1002/agg2.20347 | spa |
dc.relation.references | Chong, J., Liu, P., Zhou, G., & Xia, J. (2020). Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc, 15(3), 799-821. https://doi.org/10.1038/s41596-019-0264-1 | spa |
dc.relation.references | Citterio, S., Santagostino, A., Fumagalli, P., Prato, N., Ranalli, P., & Sgorbati, S. (2003). Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant and Soil, 256(2), 243-252. https://doi.org/10.1023/A:1026113905129 | spa |
dc.relation.references | Clobes, T. A., Palmier, L. A., Gagnon, M., Klaiman, C., & Arellano, M. (2022). The impact of education on attitudes toward medical cannabis. PEC Innov, 1, 100009. https://doi.org/10.1016/j.pecinn.2021.100009 | spa |
dc.relation.references | Cole, J. C., Smith, M. W., Penn, C. J., Cheary, B. S., & Conaghan, K. J. (2016). Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants. Scientia Horticulturae, 211, 420-430. https://doi.org/https://doi.org/10.1016/j.scienta.2016.09.028 | spa |
dc.relation.references | Collins, J. (2020). A Brief History of Cannabis and the Drug Conventions. AJIL Unbound, 114, 279-284. https://doi.org/10.1017/aju.2020.55 | spa |
dc.relation.references | Comeau, D., Balthazar, C., Novinscak, A., Bouhamdani, N., Joly, D. L., & Filion, M. (2021). Interactions Between Bacillus Spp., Pseudomonas Spp. and Cannabis sativa Promote Plant Growth. Front Microbiol, 12, 715758. https://doi.org/10.3389/fmicb.2021.715758 | spa |
dc.relation.references | Comeau, D., Novinscak, A., Joly, D. L., & Filion, M. (2020). Spatio-Temporal and Cultivar-Dependent Variations in the Cannabis Microbiome [Original Research]. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00491 | spa |
dc.relation.references | Conant, R., Walsh, R., Walsh, M., Bell, C., & Wallenstein, M. (2017). Effects of a microbial biostimulant, Mammoth PTM, on Cannabis sativa bud yield. J. Hortic, 4(191), 2376-0354.1000191. | spa |
dc.relation.references | Connelly, G. (2023). Evaluating Ecosystem and Agronomic Services Provided By Companion Cropping in Hemp (Cannabis sativa L.) UNIVERSITY OF WISCONSIN-MADISON]. | spa |
dc.relation.references | Corredor-Perilla, I. C., Cuervo Andrade, J. L., Olejar, K. J., & Park, S.-H. (2023). Beneficial properties of soil bacteria from Cannabis sativa L.: Seed germination, phosphorus solubilization and mycelial growth inhibition of Fusarium sp. Rhizosphere, 27, 100780. https://doi.org/https://doi.org/10.1016/j.rhisph.2023.100780 | spa |
dc.relation.references | Crocq, M. A. (2020). History of cannabis and the endocannabinoid system . Dialogues Clin Neurosci, 22(3), 223-228. https://doi.org/10.31887/DCNS.2020.22.3/mcrocq | spa |
dc.relation.references | Dahlgren, R. A., Saigusa, M., & Ugolini, F. C. (2004). The Nature, Properties and Management of Volcanic Soils. Advances in Agronomy, 82, 113-182. | spa |
dc.relation.references | Darby, H., Bruce, J., Krezinski, I., & Ziegler, S. (2019). Hemp Flower Indoor/Outdoor Cultivation Trial. | spa |
dc.relation.references | Das, P. C., Vista, A. R., Tabil, L. G., & Baik, O. D. (2022). Postharvest Operations of Cannabis and Their Effect on Cannabinoid Content: A Review. Bioengineering (Basel), 9(8). https://doi.org/10.3390/bioengineering9080364 | spa |
dc.relation.references | De Prato, L., Ansari, O., Hardy, G. E. S. J., Howieson, J., O’Hara, G., & Ruthrof, K. X. (2022). Morpho-physiology and cannabinoid concentrations of hemp (Cannabis sativa L.) are affected by potassium fertilisers and microbes under tropical conditions. Industrial Crops and Products, 182, 114907. https://doi.org/https://doi.org/10.1016/j.indcrop.2022.114907 | spa |
dc.relation.references | de Salud, S. d. S. (2017). LEY 1787 DE 2016 (JULIO 06). | spa |
dc.relation.references | Deng, C., Liang, X., Zhang, N., Li, B., Wang, X., & Zeng, N. (2022). Molecular mechanisms of plant growth promotion for methylotrophic Bacillus aryabhattai LAD [Original Research]. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.917382 | spa |
dc.relation.references | Deynzer, K. M. (2022). An Evaluation of Hemp Cultivation Practices and Cannabinoid Analysis in South Louisiana Louisiana State University and Agricultural & Mechanical College]. | spa |
dc.relation.references | Dhariwal, A., Chong, J., Habib, S., King, I. L., Agellon, L. B., & Xia, J. (2017). MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res, 45(W1), W180-w188. https://doi.org/10.1093/nar/gkx295 | spa |
dc.relation.references | Ding, J., Jiao, X., Bai, P., Hu, Y., Zhang, J., & Li, J. (2022). Effect of vapor pressure deficit on the photosynthesis, growth, and nutrient absorption of tomato seedlings. Scientia Horticulturae, 293, 110736. https://doi.org/https://doi.org/10.1016/j.scienta.2021.110736 | spa |
dc.relation.references | Drugs, U. N. O. o. (2009). Recommended methods for the identification and analysis of cannabis and cannabis products: manual for use by National Drug Testing Laboratories. United Nations Publications. | spa |
dc.relation.references | Dumigan, C. R., & Deyholos, M. K. (2024). Soil and seed both influence bacterial diversity in the microbiome of the Cannabis sativa seedling endosphere. Front Plant Sci, 15, 1326294. https://doi.org/10.3389/fpls.2024.1326294 | spa |
dc.relation.references | Duong, H., Pearson, B., Anderson, S., Berthold, E., & Kjelgren, R. (2023). Variation in Hydric Response of Two Industrial Hemp Varieties (Cannabis sativa) to Induced Water Stress. Horticulturae, 9(4), 431. https://www.mdpi.com/2311-7524/9/4/431 | spa |
dc.relation.references | Duvall, C. (2017). Cannabis and Tobacco in Precolonial and Colonial Africa. In. https://doi.org/10.1093/acrefore/9780190277734.013.44 | spa |
dc.relation.references | Elhendawy, M. A., Wanas, A. S., Radwan, M. M., Azzaz, N. A., Toson, E. S., & ElSohly, M. A. (2019). Chemical and Biological Studies of Cannabis sativa Roots. Med Cannabis Cannabinoids, 1(2), 104-111. https://doi.org/10.1159/000495582 | spa |
dc.relation.references | Elias, S. G., Wu, Y.-c., & Stimpson, D. C. (2020). Seed Quality and Dormancy of Hemp (Cannabis sativa L.). Journal of Agricultural Hemp Research, 2(1), 2. | spa |
dc.relation.references | Eržen, M., Košir, I. J., Ocvirk, M., Kreft, S., & Čerenak, A. (2021). Metabolomic Analysis of Cannabinoid and Essential Oil Profiles in Different Hemp (Cannabis sativa L.) Phenotypes. Plants (Basel), 10(5). https://doi.org/10.3390/plants10050966 | spa |
dc.relation.references | Fleming, H., Chamberlain, Z., Zager, J. J., & Lange, B. M. (2023). Controlled environments for cannabis cultivation to support "omics" research studies and production. Methods Enzymol, 680, 353-380. https://doi.org/10.1016/bs.mie.2022.07.028 | spa |
dc.relation.references | Fordjour, E., Manful, C. F., Sey, A. A., Javed, R., Pham, T. H., Thomas, R., & Cheema, M. (2023). Cannabis: a multifaceted plant with endless potentials. Front Pharmacol, 14, 1200269. https://doi.org/10.3389/fphar.2023.1200269 | spa |
dc.relation.references | Galindo, J., Uribe, P., & González, L. (2022). Analysis of environmental monitoring in greenhouse for the cultivation of mother plants of Cannabis sativa in the Colombian Andes. XXXI International Horticultural Congress (IHC2022): III International Symposium on Mechanization, Precision Horticulture,1360. | spa |
dc.relation.references | Garcia, A., Polonio, J., Polli, A., Santos, C., Rhoden, S., Quecine, M., Azevedo, J., & Pamphile, J. (2016). Rhizosphere bacteriome of the medicinal plant Sapindus saponaria L. revealed by pyrosequencing. Genet Mol Res, 15, 1-9. | spa |
dc.relation.references | Garcia-Lemos, A. M., Großkinsky, D. K., Saleem Akhtar, S., Nicolaisen, M. H., Roitsch, T., Nybroe, O., & Veierskov, B. (2020). Identification of Root-Associated Bacteria That Influence Plant Physiology, Increase Seed Germination, or Promote Growth of the Christmas Tree Species Abies nordmanniana. Front Microbiol, 11, 566613. https://doi.org/10.3389/fmicb.2020.566613 | spa |
dc.relation.references | Gill, A. R., Loveys, B. R., Cowley, J. M., Hall, T., Cavagnaro, T. R., & Burton, R. A. (2022). Physiological and morphological responses of industrial hemp (Cannabis sativa L.) to water deficit. Industrial Crops and Products, 187, 115331. https://doi.org/https://doi.org/10.1016/j.indcrop.2022.115331 | spa |
dc.relation.references | Ginnan, N. A., De Anda, N. I., Campos Freitas Vieira, F., Rolshausen, P. E., & Roper, M. C. (2022). Microbial Turnover and Dispersal Events Occur in Synchrony with Plant Phenology in the Perennial Evergreen Tree Crop Citrus sinensis. mBio, 13(3), e0034322. https://doi.org/10.1128/mbio.00343-22 | spa |
dc.relation.references | Gogoi, A. (2020). Domestication of Cannabis and Its Future Prospects. Cannabis, 36. | spa |
dc.relation.references | Gohil, R. B., Raval, V. H., Panchal, R. R., & Rajput, K. N. (2022). Plant Growth-Promoting Activity of Bacillus sp. PG-8 Isolated From Fermented Panchagavya and Its Effect on the Growth of Arachis hypogea [Original Research]. Frontiers in Agronomy, 4. https://doi.org/10.3389/fagro.2022.805454 | spa |
dc.relation.references | Goldman, S., Bramante, J., Vrdoljak, G., Guo, W., Wang, Y., Marjanovic, O., Orlowicz, S., Di Lorenzo, R., & Noestheden, M. (2021). The analytical landscape of cannabis compliance testing. Journal of Liquid Chromatography & Related Technologies, 44(9-10), 403-420. https://doi.org/10.1080/10826076.2021.1996390 | spa |
dc.relation.references | Góngora, A. (2019). Cannabis medicinal y arreglos farmacológicos en Colombia. Cahiers des Amériques latines(92), 115-133. | spa |
dc.relation.references | Gorchs, G., Lloveras, J., Serrano, L., & Cela, S. (2017). Hemp yields and its rotation effects on wheat under rainfed mediterranean conditions. Agronomy Journal, 109(4), 1551-1560. | spa |
dc.relation.references | Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T., Sperry, J. S., & McDowell, N. G. (2020). Plant responses to rising vapor pressure deficit. New Phytologist, 226(6), 1550-1566. | spa |
dc.relation.references | Günther, F. (2007). Carbon sequestration for everybody: decrease atmospheric carbon dioxide, earn money and improve the soil. Submitted to Energy and Environment. | spa |
dc.relation.references | Gwinn, K. D., Hansen, Z., Kelly, H., & Ownley, B. H. (2022). Diseases of Cannabis sativa Caused by Diverse Fusarium Species [Review]. Frontiers in Agronomy, 3. https://doi.org/10.3389/fagro.2021.796062 | spa |
dc.relation.references | Hartman, K., Schmid, M. W., Bodenhausen, N., Bender, S. F., Valzano-Held, A. Y., Schlaeppi, K., & van der Heijden, M. G. A. (2023). A symbiotic footprint in the plant root microbiome. Environmental Microbiome, 18(1), 65. https://doi.org/10.1186/s40793-023-00521-w | spa |
dc.relation.references | Herppich, W. B., Gusovius, H.-J., Flemming, I., & Drastig, K. (2020). Effects of Drought and Heat on Photosynthetic Performance, Water Use and Yield of Two Selected Fiber Hemp Cultivars at a Poor-Soil Site in Brandenburg (Germany). Agronomy, 10(9), 1361. https://www.mdpi.com/2073-4395/10/9/1361 | spa |
dc.relation.references | Hill, J. A. (2021). Cannabis Banking: What Marijuana Can Learn from Hemp. BUL Rev., 101, 1043. | spa |
dc.relation.references | Hiruma, K., Gerlach, N., Sacristán, S., Nakano, R. T., Hacquard, S., Kracher, B., Neumann, U., Ramírez, D., Bucher, M., O'Connell, R. J., & Schulze-Lefert, P. (2016). Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits that Are Phosphate Status Dependent. Cell, 165(2), 464-474. https://doi.org/10.1016/j.cell.2016.02.028 | spa |
dc.relation.references | Hong, G., Sideris, A., Waldman, S., Stauffer, J., & Wu, C. L. (2024). Legal and regulatory aspects of medical cannabis in the United States. Anesthesia & Analgesia, 138(1), 31-41. | spa |
dc.relation.references | Hourfane, S., Mechqoq, H., Bekkali, A. Y., Rocha, J. M., & El Aouad, N. (2023). A Comprehensive Review on Cannabis sativa Ethnobotany, Phytochemistry, Molecular Docking and Biological Activities. Plants (Basel), 12(6). https://doi.org/10.3390/plants12061245 | spa |
dc.relation.references | Hurtado Pardo, D. P. Transformación de las Narrativas de Política Pública de Drogas 2006-2019: Regulación del Cannabis en Colombia Universidad Nacional de Colombia]. | spa |
dc.relation.references | Ievinsh, G., Vikmane, M., Ķirse, A., & Karlsons, A. (2017). Effect of Vermicompost Extract and Vermicompost-Derived Humic Acids on Seed Germination and Seedling Growth of Hemp. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences., 71(4), 286-292. https://doi.org/doi:10.1515/prolas-2017-0048 | spa |
dc.relation.references | Innes, P. A., & Vergara, D. (2023). Genomic description of critical cannabinoid biosynthesis genes. Botany, 101(7), 270-283. https://doi.org/10.1139/cjb-2022-0140 | spa |
dc.relation.references | Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The Role of Soil Microorganisms in Plant Mineral Nutrition-Current Knowledge and Future Directions. Frontiers in plant science, 8, 1617-1617. https://doi.org/10.3389/fpls.2017.01617 | spa |
dc.relation.references | Jastrząb, A., Jarocka-Karpowicz, I., & Skrzydlewska, E. (2022). The Origin and Biomedical Relevance of Cannabigerol. Int J Mol Sci, 23(14). https://doi.org/10.3390/ijms23147929 | spa |
dc.relation.references | Jean, T. (2023). Policy Analysis: A Case for Rescheduling Marijuana. J Med, 4(5), 1075. | spa |
dc.relation.references | Jiao, S., Chen, W., Wang, J., Du, N., Li, Q., & Wei, G. (2018). Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome, 6(1), 146. https://doi.org/10.1186/s40168-018-0526-0 | spa |
dc.relation.references | Joe, M. M., Deivaraj, S., Benson, A., Henry, A. J., & Narendrakumar, G. (2018). Soil extract calcium phosphate media for screening of phosphate-solubilizing bacteria. Agriculture and Natural Resources, 52(3), 305-308. https://doi.org/https://doi.org/10.1016/j.anres.2018.09.014 | spa |
dc.relation.references | Johnson, L., Malone, M., Paulson, E., Swider, J., Marelius, D., Andersen, S., & Black, D. (2023). Potency and safety analysis of hemp delta-9 products: the hemp vs. cannabis demarcation problem. J Cannabis Res, 5(1), 29. https://doi.org/10.1186/s42238-023-00197-6 | spa |
dc.relation.references | Kalayu, G. (2019). Phosphate Solubilizing Microorganisms: Promising Approach as Biofertilizers. International Journal of Agronomy, 2019, 4917256. https://doi.org/10.1155/2019/4917256 | spa |
dc.relation.references | Ketcherside, A., Noble, L. J., McIntyre, C. K., & Filbey, F. M. (2017). Cannabinoid Receptor 1 Gene by Cannabis Use Interaction on CB1 Receptor Density. Cannabis Cannabinoid Res, 2(1), 202-209. https://doi.org/10.1089/can.2017.0007 | spa |
dc.relation.references | Khanal, A., & Shah, A. (2024). Techno-Economic Analysis of Hemp Production, Logistics and Processing in the US. Biomass, 4(1), 164-179. | spa |
dc.relation.references | King, D. D., Gill, C. J., Cadieux, C. S., & Singh, N. (2024). The role of stigma in cannabis use disclosure: an exploratory study. Harm Reduct J, 21(1), 21. https://doi.org/10.1186/s12954-024-00929-8 | spa |
dc.relation.references | Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy [Review]. Frontiers in plant science, 10. https://doi.org/10.3389/fpls.2019.00845 | spa |
dc.relation.references | Kok, C., Coenen, G., & De Heij, A. (1994). The effect of fibre hemp (Cannabis sativa L.) on selected soil-borne pathogens. Journal of the International Hemp Association, 1(1), 6-9. | spa |
dc.relation.references | Kusari, P., Kusari, S., Spiteller, M., & Kayser, O. (2017). Cannabis Endophytes and Their Application in Breeding and Physiological Fitness. In S. Chandra, H. Lata, & M. A. ElSohly (Eds.), Cannabis sativa L. - Botany and Biotechnology (pp. 419-437). Springer International Publishing. https://doi.org/10.1007/978-3-319-54564-6_20 | spa |
dc.relation.references | Lapierre, É., Monthony, A. S., & Torkamaneh, D. (2023). Genomics-based taxonomy to clarify cannabis classification. Genome, 66(8), 202-211. https://doi.org/10.1139/gen-2023-0005 %M 37163765 | spa |
dc.relation.references | Leuschner, C. (2002). Air humidity as an ecological factor for woodland herbs: leaf water status, nutrient uptake, leaf anatomy, and productivity of eight species grown at low or high vpd levels. Flora - Morphology, Distribution, Functional Ecology of Plants, 197(4), 262-274. https://doi.org/https://doi.org/10.1078/0367-2530-00040 | spa |
dc.relation.references | Li, H., Yue, H., Li, L., Liu, Y., Zhang, H., Wang, J., & Jiang, X. (2021). Seed biostimulant Bacillus sp. MGW9 improves the salt tolerance of maize during seed germination. AMB Express, 11(1), 74. https://doi.org/10.1186/s13568-021-01237-1 | spa |
dc.relation.references | Li, L., Yang, X., Tong, B., Wang, D., Tian, X., Liu, J., Chen, J., Xiao, X., & Wang, S. (2023). Rhizobacterial compositions and their relationships with soil properties and medicinal bioactive ingredients in Cinnamomum migao [Original Research]. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1078886 | spa |
dc.relation.references | Li, Y. J., & Hu, Q. P. (2020). Studying of the promotion mechanism of Bacillus subtilis QM3 on wheat seed germination based on β-amylase. Open Life Sci, 15(1), 553-560. https://doi.org/10.1515/biol-2020-0062 | spa |
dc.relation.references | Linger, P., Ostwald, A., & Haensler, J. (2005). Cannabis sativa L. growing on heavy metal contaminated soil: growth, cadmium uptake and photosynthesis. Biologia Plantarum, 49(4), 567-576. https://doi.org/10.1007/s10535-005-0051-4 | spa |
dc.relation.references | Llewellyn, D., Golem, S., Foley, E., Dinka, S., Jones, A. M. P., & Zheng, Y. (2022). Indoor grown cannabis yield increased proportionally with light intensity, but ultraviolet radiation did not affect yield or cannabinoid content. Front Plant Sci, 13, 974018. https://doi.org/10.3389/fpls.2022.974018 | spa |
dc.relation.references | López, J., Way, D. A., & Sadok, W. (2021). Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Global Change Biology, 27(9), 1704-1720. https://doi.org/https://doi.org/10.1111/gcb.15548 | spa |
dc.relation.references | Lu, Y., Zhou, G., Ewald, J., Pang, Z., Shiri, T., & Xia, J. (2023). MicrobiomeAnalyst 2.0: comprehensive statistical, functional and integrative analysis of microbiome data. Nucleic Acids Res, 51(W1), W310-w318. https://doi.org/10.1093/nar/gkad407 | spa |
dc.relation.references | Luo, X. (2024). Discussing the Legalisation of Recreational Cannabis Supply Chain: Will It Weaken Drug Trafficking Organisations? Studies in Social Science & Humanities, 3(1), 85-91. | spa |
dc.relation.references | Lyu, D., Backer, R., Berrué, F., Martinez-Farina, C., Hui, J. P. M., & Smith, D. L. (2023). Plant Growth-Promoting Rhizobacteria (PGPR) with Microbial Growth Broth Improve Biomass and Secondary Metabolite Accumulation of Cannabis sativa L. Journal of Agricultural and Food Chemistry, 71(19), 7268-7277. https://doi.org/10.1021/acs.jafc.2c06961 | spa |
dc.relation.references | Lyu, D., Backer, R., & Smith, D. L. (2022). Three plant growth-promoting rhizobacteria alter morphological development, physiology, and flower yield of Cannabis sativa L. Industrial Crops and Products, 178, 114583. | spa |
dc.relation.references | MacCallum, C. A., Lo, L. A., Pistawka, C. A., & Boivin, M. (2023). A Clinical Framework for Evaluating Cannabis Product Quality and Safety. Cannabis Cannabinoid Res, 8(3), 567-574. https://doi.org/10.1089/can.2021.0137 | spa |
dc.relation.references | Magagnini, G., Grassi, G., & Kotiranta, S. (2018). The Effect of Light Spectrum on the Morphology and Cannabinoid Content of Cannabis sativa L. Med Cannabis Cannabinoids, 1(1), 19-27. https://doi.org/10.1159/000489030 | spa |
dc.relation.references | Mahmood, A., Turgay, O. C., Farooq, M., & Hayat, R. (2016). Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiology Ecology, 92(8). https://doi.org/10.1093/femsec/fiw112 | spa |
dc.relation.references | Martínez, V., Iriondo De-Hond, A., Borrelli, F., Capasso, R., Del Castillo, M. D., & Abalo, R. (2020). Cannabidiol and Other Non-Psychoactive Cannabinoids for Prevention and Treatment of Gastrointestinal Disorders: Useful Nutraceuticals? Int J Mol Sci, 21(9). https://doi.org/10.3390/ijms21093067 | spa |
dc.relation.references | Mayton, H., Amirkhani, M., Loos, M., Johnson, B., Fike, J., Johnson, C., Myers, K., Starr, J., Bergstrom, G. C., & Taylor, A. (2022). Evaluation of Industrial Hemp Seed Treatments for Management of Damping-Off for Enhanced Stand Establishment. Agriculture, 12(5), 591. https://www.mdpi.com/2077-0472/12/5/591 | spa |
dc.relation.references | McKernan, K., Spangler, J., Helbert, Y., Lynch, R. C., Devitt-Lee, A., Zhang, L., Orphe, W., Warner, J., Foss, T., & Hudalla, C. J. (2016). Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests. F1000Research, 5. | spa |
dc.relation.references | McLaughlin, S., Zhalnina, K., Kosina, S., Northen, T. R., & Sasse, J. (2023). The core metabolome and root exudation dynamics of three phylogenetically distinct plant species. Nat Commun, 14(1), 1649. https://doi.org/10.1038/s41467-023-37164-x | spa |
dc.relation.references | McPartland, J. M., Hegman, W., & Long, T. (2019). Cannabis in Asia: its center of origin and early cultivation, based on a synthesis of subfossil pollen and archaeobotanical studies. Vegetation history and archaeobotany, 28, 691-702. | spa |
dc.relation.references | McPartland, J. M., & Hillig, K. W. (2004). Cannabis clinic Fusarium wilt. Journal of Industrial Hemp, 9(2), 67-77. | spa |
dc.relation.references | McPartland, J. M., & McKernan, K. J. (2017). Contaminants of Concern in Cannabis: Microbes, Heavy Metals and Pesticides. In S. Chandra, H. Lata, & M. A. ElSohly (Eds.), Cannabis sativa L. - Botany and Biotechnology (pp. 457-474). Springer International Publishing. https://doi.org/10.1007/978-3-319-54564-6_22 | spa |
dc.relation.references | McPartland, J. M., & Small, E. (2020). A classification of endangered high-THC cannabis (Cannabis sativa subsp. indica) domesticates and their wild relatives. PhytoKeys, 144, 81-112. https://doi.org/10.3897/phytokeys.144.46700 | spa |
dc.relation.references | Mead, A. (2019). Legal and regulatory issues governing cannabis and cannabis-derived products in the United States. Frontiers in plant science, 10, 433747. | spa |
dc.relation.references | Meinhofer, A., & Rubli, A. (2021). Illegal drug market responses to state recreational cannabis laws. Addiction, 116(12), 3433-3443. https://doi.org/https://doi.org/10.1111/add.15517 | spa |
dc.relation.references | Meisner, A., & de Boer, W. (2018). Strategies to Maintain Natural Biocontrol of Soil-Borne Crop Diseases During Severe Drought and Rainfall Events [Perspective]. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02279 | spa |
dc.relation.references | Melzer, R., McCabe, P. F., & Schilling, S. (2022). Evolution, genetics and biochemistry of plant cannabinoid synthesis: a challenge for biotechnology in the years ahead. Current Opinion in Biotechnology, 75, 102684. https://doi.org/https://doi.org/10.1016/j.copbio.2022.102684 | spa |
dc.relation.references | Meyer, W., Irinyi, L., Hoang, M. T. V., Robert, V., Garcia-Hermoso, D., Desnos-Ollivier, M., Yurayart, C., Tsang, C.-C., Lee, C.-Y., Woo, P. C. Y., Pchelin, I. M., Uhrlaß, S., Nenoff, P., Chindamporn, A., Chen, S., Hebert, P. D. N., & Sorrell, T. C. (2018). Database establishment for the secondary fungal DNA barcode translational elongation factor 1α (TEF1α). Genome, 62(3), 160-169. https://doi.org/10.1139/gen-2018-0083 | spa |
dc.relation.references | Monte, A. A., Zane, R. D., & Heard, K. J. (2015). The implications of marijuana legalization in Colorado. Jama, 313(3), 241-242. https://doi.org/10.1001/jama.2014.17057 | spa |
dc.relation.references | Morad, D., & Bernstein, N. (2023). Response of Medical Cannabis to Magnesium (Mg) Supply at the Vegetative Growth Phase. Plants (Basel), 12(14). https://doi.org/10.3390/plants12142676 | spa |
dc.relation.references | Mortensen, L. M. (1986). Effect of relative humidity on growth and flowering of some greenhouse plants. Scientia Horticulturae, 29(4), 301-307. https://doi.org/https://doi.org/10.1016/0304-4238(86)90013-0 | spa |
dc.relation.references | Mortensen, L. M. (2000). Effects of air humidity on growth, flowering, keeping quality and water relations of four short-day greenhouse species. Scientia Horticulturae, 86(4), 299-310. https://doi.org/https://doi.org/10.1016/S0304-4238(00)00155-2 | spa |
dc.relation.references | Moscariello, C., Matassa, S., Esposito, G., & Papirio, S. (2021). From residue to resource: The multifaceted environmental and bioeconomy potential of industrial hemp (Cannabis sativa L.). Resources, Conservation and Recycling, 175, 105864. | spa |
dc.relation.references | Müller, T., & Behrendt, U. (2021). Exploiting the biocontrol potential of plant-associated pseudomonads – A step towards pesticide-free agriculture? Biological Control, 155, 104538. https://doi.org/https://doi.org/10.1016/j.biocontrol.2021.104538 | spa |
dc.relation.references | Naeem, M. Y., Corbo, F., Crupi, P., & Clodoveo, M. L. (2023). Hemp: An Alternative Source for Various Industries and an Emerging Tool for Functional Food and Pharmaceutical Sectors. Processes, 11(3), 718. https://www.mdpi.com/2227-9717/11/3/718 | spa |
dc.relation.references | Naim-Feil, E., Elkins, A. C., Malmberg, M. M., Ram, D., Tran, J., Spangenberg, G. C., Rochfort, S. J., & Cogan, N. O. (2023). The Cannabis Plant as a Complex System: Interrelationships between Cannabinoid Compositions, Morphological, Physio-Logical and Phenological Traits. Plants, 12(3), 493. | spa |
dc.relation.references | Navarro, C. E. (2023). Cannabis-based magistral formulation is highly effective as an adjuvant treatment in drug-resistant focal epilepsy in adult patients: an open-label prospective cohort study. Neurological Sciences, 44(1), 297-304. https://doi.org/10.1007/s10072-022-06393-1 | spa |
dc.relation.references | Nicholls, C. I., & Altieri, M. A. (2015). Agroecology. AGROECOLOGY FOR FOOD SECURITY AND NUTRITION, 271. | spa |
dc.relation.references | Olejar, K. J., Hatfield, J., Arellano, C. J., Gurau, A. T., Seifried, D., Heuvel, B. V., & Kinney, C. A. (2021). Thermo-chemical conversion of cannabis biomass and extraction by pressurized liquid extraction for the isolation of cannabidiol. Industrial Crops and Products, 170, 113771. https://doi.org/https://doi.org/10.1016/j.indcrop.2021.113771 | spa |
dc.relation.references | Orenstein, D. G., & Glantz, S. A. (2020). CANNABIS LEGALIZATION IN STATE LEGISLATURES: PUBLIC HEALTH OPPORTUNITY AND RISK. Marquette Law Rev, 103(4), 1313-1400. | spa |
dc.relation.references | Osterberger, E., Lohwasser, U., Jovanovic, D., Ruzicka, J., & Novak, J. (2022). The origin of the genus Cannabis. Genetic Resources and Crop Evolution, 69(4), 1439-1449. | spa |
dc.relation.references | Pagnani, G., Pellegrini, M., Galieni, A., D’Egidio, S., Matteucci, F., Ricci, A., Stagnari, F., Sergi, M., Sterzo, C. L., & Pisante, M. (2018). Plant growth-promoting rhizobacteria (PGPR) in Cannabis sativa ‘Finola’cultivation: An alternative fertilization strategy to improve plant growth and quality characteristics. Industrial Crops and Products, 123, 75-83. | spa |
dc.relation.references | Park, I., Seo, Y. S., & Mannaa, M. (2023). Recruitment of the rhizo-microbiome army: assembly determinants and engineering of the rhizosphere microbiome as a key to unlocking plant potential. Front Microbiol, 14, 1163832. https://doi.org/10.3389/fmicb.2023.1163832 | spa |
dc.relation.references | Park, S.-H., Pauli, C. S., Gostin, E. L., Staples, S. K., Seifried, D., Kinney, C., & Vanden Heuvel, B. D. (2022). Effects of short-term environmental stresses on the onset of cannabinoid production in young immature flowers of industrial hemp (Cannabis sativa L.). Journal of Cannabis Research, 4(1), 1-13. | spa |
dc.relation.references | Parker, K. A., Di Mattia, A., Shaik, F., Cerón Ortega, J. C., & Whittle, R. (2019). Risk management within the cannabis industry: Building a framework for the cannabis industry. Financial Markets, Institutions & Instruments, 28(1), 3-55. | spa |
dc.relation.references | Perea, K. R. (2019). Determining the Influence of Cultivar and Proximity to Plant Roots on the Resulting Cannabis Soil Microbiome Using Microbial Community Analysis (Publication Number 13860652) [M.S., New Mexico Institute of Mining and Technology]. ProQuest Dissertations & Theses Global. United States -- New Mexico. https://login.ezproxy.csupueblo.edu/login?url=https://www.proquest.com/dissertations-theses/determining-influence-cultivar-proximity-plant/docview/2241820349/se-2?accountid=130464 http://csupueblo-primo.hosted.exlibrisgroup.com/openurl/01COLSU_PUEBLO/01COLSU_PUEBLO_SP?genre=dissertations&atitle=&author=Perea%2C+Katheryn+R.&volume=&issue=&spage=&date=2019&rft.btitle=&rft.jtitle=&issn=&isbn=978-1-392-25460-8&sid=ProQuest+Dissertations+%26+Theses+Global_ | spa |
dc.relation.references | Perera, K. Y., Jaiswal, A. K., & Jaiswal, S. (2023). Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications. Foods, 12(12), 2422. https://www.mdpi.com/2304-8158/12/12/2422 | spa |
dc.relation.references | Pérez-Bermúdez, P., & Rognoni Martínez, A. (2023). Chapter 3 - Strategies to improve Cannabis cultivation: optimizing plant growth and phytocannabinoid biosynthesis. In I. F. García-Tejero & V. H. Durán-Zuazo (Eds.), Current Applications, Approaches, and Potential Perspectives for Hemp (pp. 77-108). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-323-89867-6.00008-1 Peterso | spa |
dc.relation.references | Peterson, S. B., Bertolli, S. K., & Mougous, J. D. (2020). The Central Role of Interbacterial Antagonism in Bacterial Life. Curr Biol, 30(19), R1203-r1214. https://doi.org/10.1016/j.cub.2020.06.103 | spa |
dc.relation.references | Promhuad, K., Srisa, A., San, H., Laorenza, Y., Wongphan, P., Sodsai, J., Tansin, K., Phromphen, P., Chartvivatpornchai, N., Ngoenchai, P., & Harnkarnsujarit, N. (2022). Applications of Hemp Polymers and Extracts in Food, Textile and Packaging: A Review. Polymers (Basel), 14(20). https://doi.org/10.3390/polym14204274 | spa |
dc.relation.references | Promwee, A., Issarakraisila, M., Intana, W., Chiradej, C., & Yenjit, P. (2014). Phosphate Solubilization and Growth Promotion of Rubber Tree (Hevea brasiliensis Muell. Arg.) by Trichoderma Strains. Journal of Agricultural Science, 6. https://doi.org/10.5539/jas.v6n9p8 | spa |
dc.relation.references | Punja, Z. K. (2021). Emerging diseases of Cannabis sativa and sustainable management. Pest Manag Sci, 77(9), 3857-3870. https://doi.org/10.1002/ps.6307 | spa |
dc.relation.references | Punja, Z. K., Collyer, D., Scott, C., Lung, S., Holmes, J., & Sutton, D. (2019). Pathogens and molds affecting production and quality of Cannabis sativa L. Frontiers in plant science, 10, 1120. | spa |
dc.relation.references | Punja, Z. K., Collyer, D., Scott, C., Lung, S., Holmes, J., & Sutton, D. (2019). Pathogens and molds affecting production and quality of Cannabis sativa L. Frontiers in plant science, 10, 1120. | spa |
dc.relation.references | Punja, Z. K., & Rodriguez, G. (2018). Fusarium and Pythium species infecting roots of hydroponically grown marijuana (Cannabis sativa L.) plants. Canadian Journal of Plant Pathology, 40(4), 498-513. | spa |
dc.relation.references | Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2017). Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments [Review]. Frontiers in Physiology, 8. https://doi.org/10.3389/fphys.2017.00667 | spa |
dc.relation.references | Rafei, P., Englund, A., Lorenzetti, V., Elkholy, H., Potenza, M., & Baldacchino, A. (2023). Transcultural Aspects of Cannabis Use: a Descriptive Overview of Cannabis Use across Cultures. Current Addiction Reports, 10, 1-14. https://doi.org/10.1007/s40429-023-00500-8 | spa |
dc.relation.references | Raihan, A., & Bijoy, T. R. (2023). A review of the industrial use and global sustainability of Cannabis sativa. Global Sustainability Research, 2(4), 1-29. | spa |
dc.relation.references | Ramirez-Hassan, A., Gomez, C., Velásquez, S., & Tangarife, K. (2023). Marijuana on Main Streets? The Story Continues in Colombia: An Endogenous Three-part Model. arXiv preprint arXiv:2306.10031. | spa |
dc.relation.references | Ransing, R., de la Rosa, P. A., Pereira-Sanchez, V., Handuleh, J. I. M., Jerotic, S., Gupta, A. K., Karaliuniene, R., de Filippis, R., Peyron, E., Sönmez Güngör, E., Boujraf, S., Yee, A., Vahdani, B., Shoib, S., Stowe, M. J., Jaguga, F., Dannatt, L., da Silva, A. K., Grandinetti, P., & Jatchavala, C. (2022). Current state of cannabis use, policies, and research across sixteen countries: cross-country comparisons and international perspectives. Trends Psychiatry Psychother, 44(Suppl 1), e20210263. https://doi.org/10.47626/2237-6089-2021-0263 | spa |
dc.relation.references | Regas, T., Han, J. H., Pauli, C. S., & Park, S. H. (2021). Employing Aeroponic Systems for the Clonal Propagation of Cannabis. J Vis Exp(178). https://doi.org/10.3791/63117 | spa |
dc.relation.references | Reid, M. (2023). Cannabis stigmas: A narrative of features. In Cannabis Use, Neurobiology, Psychology, and Treatment (pp. 171-179). Elsevier. | spa |
dc.relation.references | Ren, G., Zhang, X., Li, Y., Ridout, K., Serrano-Serrano, M. L., Yang, Y., Liu, A., Ravikanth, G., Nawaz, M. A., Mumtaz, A. S., Salamin, N., & Fumagalli, L. (2021). Large-scale whole-genome resequencing unravels the domestication history of Cannabis sativa. Sci Adv, 7(29). https://doi.org/10.1126/sciadv.abg2286 | spa |
dc.relation.references | Reyes Barreto, M. S. Fundamentos sociopolíticos y culturales de la criminalización de la marihuana recreativa en Colombia: una mirada desde el contexto geopolítico contemporáneo Universidad Nacional de Colombia]. | spa |
dc.relation.references | Riboulet-Zemouli, K. (2021). Cannabis Sostenible: Manual de Políticas Públicas – Alinear las políticas del Cannabis y del cáñamo con la Agenda 2030 de desarrollo sostenible. | spa |
dc.relation.references | Ritter, S., Zadik-Weiss, L., Almogi-Hazan, O., & Or, R. (2020). Cannabis, One Health, and Veterinary Medicine: Cannabinoids' Role in Public Health, Food Safety, and Translational Medicine. Rambam Maimonides Med J, 11(1). https://doi.org/10.5041/rmmj.10388 | spa |
dc.relation.references | Rizzo, G., Storz, M. A., & Calapai, G. (2023). The Role of Hemp (Cannabis sativa L.) as a Functional Food in Vegetarian Nutrition. Foods, 12(18). https://doi.org/10.3390/foods12183505 | spa |
dc.relation.references | Rodriguez-Morrison, V., Llewellyn, D., & Zheng, Y. (2021). Cannabis Yield, Potency, and Leaf Photosynthesis Respond Differently to Increasing Light Levels in an Indoor Environment [Original Research]. Frontiers in plant science, 12(456). https://doi.org/10.3389/fpls.2021.646020 | spa |
dc.relation.references | Romero Betancourt, J. D. Caracterización morfológica, bioquímica y molecular de cuatro accesiones de Cannabis sativa L Universidad Nacional de Colombia]. | spa |
dc.relation.references | Rull, V. (2022). Origin, early expansion, domestication and anthropogenic diffusion of Cannabis, with emphasis on Europe and the Iberian Peninsula. Perspectives in Plant Ecology, Evolution and Systematics, 55, 125670. https://doi.org/https://doi.org/10.1016/j.ppees.2022.125670 | spa |
dc.relation.references | Saloner, A., & Bernstein, N. (2021). Nitrogen supply affects cannabinoid and terpenoid profile in medical cannabis (Cannabis sativa L.). Industrial Crops and Products, 167, 113516. https://doi.org/https://doi.org/10.1016/j.indcrop.2021.113516 | spa |
dc.relation.references | Saloner, A., & Bernstein, N. (2022). Effect of Potassium (K) Supply on Cannabinoids, Terpenoids and Plant Function in Medical Cannabis. Agronomy, 12(5), 1242. https://www.mdpi.com/2073-4395/12/5/1242 | spa |
dc.relation.references | Sánchez Espinosa, J. A. (2013). Aspectos genéticos y funcionales de los suelos de alta montaña en Colombia. | spa |
dc.relation.references | Sandoval, B., Bowen, J. K., Richards, T., Chaparro, J. M., Lee, M., Uchanski, M., Cranshaw, W., & Prenni, J. E. (2024). Impact of Defoliation Stress on Phytocannabinoid Content in Industrial Hemp. Industrial Crops and Products, 211, 118226. https://doi.org/https://doi.org/10.1016/j.indcrop.2024.118226 | spa |
dc.relation.references | Sasse, J., Martinoia, E., & Northen, T. (2018). Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? Trends Plant Sci, 23(1), 25-41. https://doi.org/10.1016/j.tplants.2017.09.003 | spa |
dc.relation.references | Schilling, S., Melzer, R., Dowling, C. A., Shi, J., Muldoon, S., & McCabe, P. F. (2023). A protocol for rapid generation cycling (speed breeding) of hemp (Cannabis sativa) for research and agriculture. The Plant Journal, 113(3), 437-445. https://doi.org/https://doi.org/10.1111/tpj.16051 | spa |
dc.relation.references | Scott, M., Rani, M., Samsatly, J., Charron, J.-B., & Jabaji, S. (2018). Endophytes of industrial hemp (Cannabis sativa L.) cultivars: identification of culturable bacteria and fungi in leaves, petioles, and seeds. Canadian Journal of Microbiology, 64(10), 664-680. https://doi.org/10.1139/cjm-2018-0108 | spa |
dc.relation.references | Sellin, A., Rosenvald, K., Õunapuu-Pikas, E., Tullus, A., Ostonen, I., & Lõhmus, K. (2015). Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula) [Original Research]. Frontiers in plant science, 6. https://doi.org/10.3389/fpls.2015.00860 | spa |
dc.relation.references | Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1), 587. https://doi.org/10.1186/2193-1801-2-587 | spa |
dc.relation.references | Sheldon, K., Shekoofa, A., Walker, E., & Kelly, H. (2021). Physiological screening for drought-tolerance traits among hemp (Cannabis sativa L.) cultivars in controlled environments and in field. Journal of Crop Improvement, 35(6), 816-831. https://doi.org/10.1080/15427528.2021.1883175 | spa |
dc.relation.references | Shen, Z., Tiruta-Barna, L., & Hamelin, L. (2022). From hemp grown on carbon-vulnerable lands to long-lasting bio-based products: Uncovering trade-offs between overall environmental impacts, sequestration in soil, and dynamic influences on global temperature. Sci Total Environ, 846, 157331. https://doi.org/10.1016/j.scitotenv.2022.157331 | spa |
dc.relation.references | Shikanai, A., & Gage, K. L. (2022). Allelopathic Potential of Hemp: Implications for Integrated Weed Management [Original Research]. Frontiers in Agronomy, 4. https://doi.org/10.3389/fagro.2022.832471 | spa |
dc.relation.references | Shiponi, S., & Bernstein, N. (2021). The Highs and Lows of P Supply in Medical Cannabis: Effects on Cannabinoids, the Ionome, and Morpho-Physiology. Front Plant Sci, 12, 657323. https://doi.org/10.3389/fpls.2021.657323 | spa |
dc.relation.references | Siddiqui, S. A., Singh, P., Khan, S., Fernando, I., Baklanov, I. S., Ambartsumov, T. G., & Ibrahim, S. A. (2022). Cultural, Social and Psychological Factors of the Conservative Consumer towards Legal Cannabis Use—A Review since 2013. Sustainability, 14(17), 10993. https://www.mdpi.com/2071-1050/14/17/10993 | spa |
dc.relation.references | Sikora, V., Berenji, J., & Latković, D. (2011). Influence of agroclimatic conditions on content of main cannabinoids in industrial hemp (Cannabis sativa L.). Genetika, 43(3), 449-456. | spa |
dc.relation.references | Silver, R. J. (2019). The Endocannabinoid System of Animals. Animals (Basel), 9(9). https://doi.org/10.3390/ani9090686 | spa |
dc.relation.references | Singh, G., Singh, O. P., De Lampasona, M. P., & Catalán, C. A. N. (2003). Studies on essential oils. Part 35: chemical and biocidal investigations on Tagetes erecta leaf volatile oil. Flavour and Fragrance Journal, 18(1), 62-65. https://doi.org/https://doi.org/10.1002/ffj.1158 | spa |
dc.relation.references | Singh, S. K., Wu, X., Shao, C., & Zhang, H. (2022). Microbial enhancement of plant nutrient acquisition. Stress Biology, 2(1), 3. https://doi.org/10.1007/s44154-021-00027-w | spa |
dc.relation.references | Siracusa, L., Ruberto, G., & Cristino, L. (2023). Recent Research on Cannabis sativa L.: Phytochemistry, New Matrices, Cultivation Techniques, and Recent Updates on Its Brain-Related Effects (2018-2023). Molecules, 28(8). https://doi.org/10.3390/molecules28083387 | spa |
dc.relation.references | Skorbiansky, S. R., Thornsbury, S., & Camp, K. M. (2021). Legal Risk Exposure Heightens Uncertainty in Developing US Hemp Markets. Choices, 36(1), 1-10. | spa |
dc.relation.references | Small, E. (2015). Evolution and classification of Cannabis sativa (marijuana, hemp) in relation to human utilization. The botanical review, 81, 189-294. | spa |
dc.relation.references | Smith, C. J., Vergara, D., Keegan, B., & Jikomes, N. (2022). The phytochemical diversity of commercial cannabis in the United States. PLoS one, 17(5), e0267498. | spa |
dc.relation.references | Sorokin, A., Yadav, N., Gaudet, D., & Kovalchuk, I. (2020). Transient expression of the β-glucuronidase gene in Cannabis sativa varieties. Plant signaling & behavior, 15. https://doi.org/10.1080/15592324.2020.1780037 | spa |
dc.relation.references | Steinberg, J. (2022). Cannabis legalization: an ethnography of the global movement and market forces University of Oxford]. | spa |
dc.relation.references | Stonehouse, G. C., McCarron, B. J., Guignardi, Z. S., El Mehdawi, A. F., Lima, L. W., Fakra, S. C., & Pilon-Smits, E. A. H. (2020). Selenium Metabolism in Hemp (Cannabis sativa L.)-Potential for Phytoremediation and Biofortification. Environ Sci Technol, 54(7), 4221-4230. https://doi.org/10.1021/acs.est.9b07747 | spa |
dc.relation.references | Sukpiriyagul, A., Chartchaiyarerk, R., Tabtipwon, P., Smanchat, B., Prommas, S., Bhamarapravatana, K., & Suwannarurk, K. (2023). Oral Tetrahydrocannabinol (THC): Cannabinoid (CBD) Cannabis Extract Adjuvant for Reducing Chemotherapy-Induced Nausea and Vomiting (CINV): A Randomized, Double-Blinded, Placebo-Controlled, Crossover Trial. International Journal of Women's Health, 1345-1352. | spa |
dc.relation.references | Sun, J., Peng, M., Wang, Y., Zhao, P., & Xia, Q. (2011). Isolation and characterization of antagonistic bacteria against fusarium wilt and induction of defense related enzymes in banana. African Journal of Microbiology Research, 5(5), 509-515. | spa |
dc.relation.references | Suzuki, M., Umeda, H., Matsuo, S., Kawasaki, Y., Ahn, D., Hamamoto, H., & Iwasaki, Y. (2015). Effects of relative humidity and nutrient supply on growth and nutrient uptake in greenhouse tomato production. Scientia Horticulturae, 187, 44-49. https://doi.org/https://doi.org/10.1016/j.scienta.2015.02.035 | spa |
dc.relation.references | Tang, L., Fan, C., Yuan, H., Wu, G., Sun, J., & Zhang, S. (2022). The Effect of Rotational Cropping of Industrial Hemp (Cannabis sativa L.) on Rhizosphere Soil Microbial Communities. Agronomy, 12(10), 2293. | spa |
dc.relation.references | Tanney, C. A. S., Backer, R., Geitmann, A., & Smith, D. L. (2021). Cannabis Glandular Trichomes: A Cellular Metabolite Factory [Mini Review]. Frontiers in plant science, 12. https://doi.org/10.3389/fpls.2021.721986 | spa |
dc.relation.references | Tedeschi, A., Cerrato, D., & Menenti, M. (2022). Is the Potential for Multi-Functional Use of Industrial Hemp Greater than Maize under Saline Conditions? Sustainability, 14(23), 15646. https://www.mdpi.com/2071-1050/14/23/15646 | spa |
dc.relation.references | Tettey, J. N. A., Crean, C., Rodrigues, J., Angeline Yap, T. W., Lee Wendy Lim, J., Shirley Lee, H. Z., & Ching, M. (2021). United Nations Office on Drugs and Crime: Recommended methods for the Identification and Analysis of Synthetic Cannabinoid Receptor Agonists in Seized Materials. Forensic Sci Int Synerg, 3, 100129. https://doi.org/10.1016/j.fsisyn.2020.11.003 | spa |
dc.relation.references | Toth, J. A., Smart, L. B., Smart, C. D., Stack, G. M., Carlson, C. H., Philippe, G., & Rose, J. K. C. (2021). Limited effect of environmental stress on cannabinoid profiles in high-cannabidiol hemp (Cannabis sativa L.). GCB Bioenergy, 13(10), 1666-1674. https://doi.org/https://doi.org/10.1111/gcbb.12880 | spa |
dc.relation.references | Trancoso, I., de Souza, G. A. R., dos Santos, P. R., dos Santos, K. D., de Miranda, R. M. d. S. N., da Silva, A. L. P. M., Santos, D. Z., García-Tejero, I. F., & Campostrini, E. (2022). Cannabis sativa L.: Crop Management and Abiotic Factors That Affect Phytocannabinoid Production. Agronomy, 12(7), 1492. https://www.mdpi.com/2073-4395/12/7/1492 | spa |
dc.relation.references | Ugoji, E. O., Laing, M. D., & Hunter, C. H. (2005). Colonization of Bacillus spp. on seeds and in plant rhizoplane. J Environ Biol, 26(3), 459-466. | spa |
dc.relation.references | Vanhove, W., Surmont, T., Van Damme, P., & De Ruyver, B. (2012). Yield and turnover of illicit indoor cannabis (Cannabis spp.) plantations in Belgium. Forensic Science International, 220(1), 265-270. https://doi.org/https://doi.org/10.1016/j.forsciint.2012.03.013 | spa |
dc.relation.references | Vélez-Torres, I., Hurtado, D., & Bueno, B. (2021). Medicinal Marijuana, Inc.: A Critique on the Market-led Legalization of Cannabis and the Criminalization of Rural Livelihoods in Colombia. Critical Criminology, 29(3), 505-526. https://doi.org/10.1007/s10612-021-09589-7 | spa |
dc.relation.references | Vergara, D., Feathers, C., Huscher, E. L., Holmes, B., Haas, J. A., & Kane, N. C. (2021). Widely assumed phenotypic associations in Cannabis sativa lack a shared genetic basis. PeerJ, 9, e10672. | spa |
dc.relation.references | Verma, R., Hoda, F., Arshad, M., Iqubal, A., Siddiqui, A. N., Khan, M. A., Haque, S. E., Akhtar, M., & Najmi, A. K. (2021). Cannabis, a Miracle Drug with Polyvalent Therapeutic Utility: Preclinical and Clinical-Based Evidence. Med Cannabis Cannabinoids, 4(1), 43-60. https://doi.org/10.1159/000515042 | spa |
dc.relation.references | Vernon, M., Kouzani, A. Z., Webb, L. D., & Adams, S. D. (2023). A Survey of Modern Greenhouse Technologies and Practices for Commercial Cannabis Cultivation. IEEE Access. | spa |
dc.relation.references | Vesga Rendón, J. E. (2022). El uso de Cannabis sativa como especie fitorremediadora de cadmio: una alternativa para revivir el suelo. Caso de estudio finca La Chuqua, Guasca-Cundinamarca. | spa |
dc.relation.references | Visković, J., Zheljazkov, V. D., Sikora, V., Noller, J., Latković, D., Ocamb, C. M., & Koren, A. (2023). Industrial Hemp (Cannabis sativa L.) Agronomy and Utilization: A Review. Agronomy, 13(3), 931. https://www.mdpi.com/2073-4395/13/3/931 | spa |
dc.relation.references | Vives-Peris, V., de Ollas, C., Gómez-Cadenas, A., & Pérez-Clemente, R. M. (2020). Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep, 39(1), 3-17. https://doi.org/10.1007/s00299-019-02447-5 | spa |
dc.relation.references | Vulfsons, S., Minerbi, A., & Sahar, T. (2020). Cannabis and Pain Treatment-A Review of the Clinical Utility and a Practical Approach in Light of Uncertainty. Rambam Maimonides Med J, 11(1). https://doi.org/10.5041/rmmj.10385 | spa |
dc.relation.references | Waadt, R., Seller, C. A., Hsu, P. K., Takahashi, Y., Munemasa, S., & Schroeder, J. I. (2022). Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol, 23(10), 680-694. https://doi.org/10.1038/s41580-022-00479-6 | spa |
dc.relation.references | Wan, W., Qin, Y., Wu, H., Zuo, W., He, H., Tan, J., Wang, Y., & He, D. (2020). Isolation and Characterization of Phosphorus Solubilizing Bacteria With Multiple Phosphorus Sources Utilizing Capability and Their Potential for Lead Immobilization in Soil [Original Research]. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00752 | spa |
dc.relation.references | Wang, H., Liu, R., You, M. P., Barbetti, M. J., & Chen, Y. (2021). Pathogen Biocontrol Using Plant Growth-Promoting Bacteria (PGPR): Role of Bacterial Diversity. Microorganisms, 9(9), 1988. https://www.mdpi.com/2076-2607/9/9/1988 | spa |
dc.relation.references | Watts, S., McElroy, M., Migicovsky, Z., Maassen, H., van Velzen, R., & Myles, S. (2021). Cannabis labelling is associated with genetic variation in terpene synthase genes. Nature Plants, 7(10), 1330-1334. https://doi.org/10.1038/s41477-021-01003-y | spa |
dc.relation.references | Wei, G., Ning, K., Zhang, G., Yu, H., Yang, S., Dai, F., Dong, L., & Chen, S. (2021). Compartment Niche Shapes the Assembly and Network of Cannabis sativa-Associated Microbiome [Original Research]. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.714993 | spa |
dc.relation.references | Wei, Y., Zhao, Y., Shi, M., Cao, Z., Lu, Q., Yang, T., Fan, Y., & Wei, Z. (2018). Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. Bioresour Technol, 247, 190-199. https://doi.org/10.1016/j.biortech.2017.09.092 | spa |
dc.relation.references | Weil, R., & Brady, N. (2017). The Nature and Properties of Soils. 15th edition. | spa |
dc.relation.references | Winston, M. E., Hampton-Marcell, J., Zarraonaindia, I., Owens, S. M., Moreau, C. S., Gilbert, J. A., Hartsel, J., Kennedy, S. J., & Gibbons, S. M. (2014). Understanding cultivar-specificity and soil determinants of the cannabis microbiome. PLoS one, 9(6), e99641. | spa |
dc.relation.references | Xie, Z., Mi, Y., Kong, L., Gao, M., Chen, S., Chen, W., Meng, X., Sun, W., Chen, S., & Xu, Z. (2023). Cannabis sativa: origin and history, glandular trichome development, and cannabinoid biosynthesis. Horticulture Research, 10(9). https://doi.org/10.1093/hr/uhad150 | spa |
dc.relation.references | Yano, H., & Fu, W. (2023). Hemp: A Sustainable Plant with High Industrial Value in Food Processing. Foods, 12(3). https://doi.org/10.3390/foods12030651 | spa |
dc.relation.references | Yousefi, A. A., Khavazi, K., Moezzi, A., Rejali, F., & Nadian, H. A. (2011). Phosphate solubilizing bacteria and arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat growth. World Applied Sciences Journal, 15, 1310-1318. | spa |
dc.relation.references | Zhang, J., Yan, J., Huang, S., Pan, G., Chang, L., Li, J., Zhang, C., Tang, H., Chen, A., Peng, D., Biswas, A., Zhang, C., Zhao, L., & Li, D. (2020). Genetic Diversity and Population Structure of Cannabis Based on the Genome-Wide Development of Simple Sequence Repeat Markers. Front Genet, 11, 958. https://doi.org/10.3389/fgene.2020.00958 | spa |
dc.relation.references | Zhang, J. X., Xue, A. G., & Tambong, J. T. (2009). Evaluation of Seed and Soil Treatments with Novel Bacillus subtilis Strains for Control of Soybean Root Rot Caused by Fusarium oxysporum and F. graminearum. Plant Dis, 93(12), 1317-1323. https://doi.org/10.1094/pdis-93-12-1317 | spa |
dc.relation.references | Zhao, J., Xu, Y., Wang, W., Griffin, J., Roozeboom, K., & Wang, D. (2020). Bioconversion of industrial hemp biomass for bioethanol production: A review. Fuel, 281, 118725. https://doi.org/https://doi.org/10.1016/j.fuel.2020.118725 | spa |
dc.relation.references | Zhao, M., Liu, Z., Zhang, H., Wang, Y., & Yan, H. (2021). Germination Characteristics Is More Associated With Phylogeny-Related Traits of Species in a Salinized Grassland of Northeastern China [Original Research]. Frontiers in Ecology and Evolution, 9. https://doi.org/10.3389/fevo.2021.748038 | spa |
dc.relation.references | Zheng, Z., Fiddes, K., & Yang, L. (2021). A narrative review on environmental impacts of cannabis cultivation. Journal of Cannabis Research, 3(1), 35. https://doi.org/10.1186/s42238-021-00090-0 | spa |
dc.relation.references | Žydelis, R., Herbst, M., Weihermüller, L., Ruzgas, R., Volungevičius, J., Barčauskaitė, K., & Tilvikienė, V. (2022). Yield potential and factor influencing yield gap in industrial hemp cultivation under nemoral climate conditions. European Journal of Agronomy, 139, 126576. https://doi.org/https://doi.org/10.1016/j.eja.2022.126576 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 580 - Plantas | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación | spa |
dc.subject.ddc | 570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas | spa |
dc.subject.lemb | FIBRAS VEGETALES | spa |
dc.subject.lemb | Plant fibers | eng |
dc.subject.lemb | FIBRAS CELULOSAS | spa |
dc.subject.lemb | Cellulose fibers | eng |
dc.subject.lemb | CAÑAMO | spa |
dc.subject.lemb | Hemp | eng |
dc.subject.lemb | CULTIVOS EXTENSIVOS | spa |
dc.subject.lemb | Field crops | eng |
dc.subject.lemb | PRODUCTOS VEGETALES | spa |
dc.subject.lemb | Plant products | eng |
dc.subject.proposal | Agroecología | spa |
dc.subject.proposal | Sostenibilidad | spa |
dc.subject.proposal | Cannabis | spa |
dc.subject.proposal | Microbioma | spa |
dc.subject.proposal | Microorganismos | spa |
dc.subject.proposal | Benéficos | spa |
dc.subject.proposal | Cáñamo | spa |
dc.subject.proposal | Promotores de Crecimiento | spa |
dc.subject.proposal | Humedad del Dosel Aéreo | spa |
dc.subject.proposal | Cannabinoides | spa |
dc.subject.proposal | Agroecology | eng |
dc.subject.proposal | Sustainability | eng |
dc.subject.proposal | Cannabis | eng |
dc.subject.proposal | Microbiome | eng |
dc.subject.proposal | Beneficial Microbes | eng |
dc.subject.proposal | Hemp | eng |
dc.subject.proposal | Beneficial Growth promoters | eng |
dc.subject.proposal | Air Canopy Humidity | eng |
dc.subject.proposal | Cannabinoids | eng |
dc.title | Evaluation of factors that shape the development of Cannabis sativa L., and the production of its cannabinoids in the context of agroecological sustainability | eng |
dc.title.translated | Evaluación de factores que condicionan el desarrollo de Cannabis sativa L., y la producción de sus cannabinoides en un contexto de sostenibilidad agroecológica | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Receptores de fondos federales y solicitantes | spa |
dcterms.audience.professionaldevelopment | Responsables políticos | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 52429019.2024.pdf
- Tamaño:
- 23.41 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Agroecología