Caracterización morfológica y molecular de Trypanosoma spp. en anuros de ecosistemas tropicales en Colombia

dc.contributor.advisorMatta Camacho, Nubia Estela
dc.contributor.advisorAponte Gutiérrez, Andrés Felipe
dc.contributor.authorOspina Rios, Angélica Tatiana
dc.contributor.orcidOspina Rios, Angélica Tatiana [0009000834331218]
dc.contributor.orcidMatta Camacho, Nubia Estela [0000000317750804]
dc.contributor.orcidAponte Gutiérrez, Andrés Felipe [0000000213086769]
dc.contributor.researchgroupGrupo de Estudio Relación Parásito Hospedero (GERPH)
dc.coverage.countryColombia
dc.date.accessioned2025-09-12T18:28:49Z
dc.date.available2025-09-12T18:28:49Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramas, fotografías, mapas, tablasspa
dc.description.abstractEl segundo grupo más biodiverso de Colombia, los anuros, son susceptibles a infecciones por parásitos como Trypanosoma spp. pero son escasas las investigaciones relacionadas en el país. Este estudio analizó 434 muestras (56 especies de anuros de 7 localidades de Colombia) depositadas en la colección biológica Grupo de Estudio Relación Parásito Hospedero (GERPH), con el objetivo de determinar la diversidad morfológica, molecular y las relaciones filogenéticas de Trypanosoma spp. Se realizó diagnóstico microscópico, y descripciones morfológicas usando 13 variables cuantitativas y 11 categóricas. Se aplicaron análisis estadísticos (PCA, ANOSIM, PERMANOVA, Distancia de Gower) para evaluar segregación entre morfotipos. Se desarrolló cultivo de Trypanosoma de Rhinella horribilis en medio NNN y se estandarizó protocolo de PCR anidada para amplificar un fragmento de 18S rRNA de 900 pb. Se realizaron análisis filogenéticos de máxima verosimilitud y distancias genéticas usando las secuencias obtenidas y varias reportadas en otros hospederos. Mediante morfología se lograron caracterizar 12 morfotipos de Trypanosoma en anuros. Las pruebas estadísticas comprobaron la utilidad del uso de datos mixtos para la clasificación de morfotipos. Se logró el mantenimiento ex situ del modelo animal Rhinella horribilis, permitiendo la estandarización del cultivo de Trypanosoma y la obtención del control positivo para pruebas moleculares. El protocolo molecular permitió obtener y asignar secuencias BarCode a cuatro morfotipos. Filogenéticamente, se estableció correspondencia del morfotipo I con Trypanosoma tungarae, el morfotipo II con una nueva especie, la cual denominamos Trypanosoma homochattoni n.sp., y los morfotipos III y IV con un complejo relacionado con Trypanosoma tokoloshi (Texto tomado de la fuente).spa
dc.description.abstractThe second most biodiverse group in Colombia, anurans, are susceptible to infections by parasites such as Trypanosoma spp., but related research in the country is scarce. In this study, 434 samples (56 species of anurans from 10 localities in Colombia) deposited in the biological collection Grupo de Estudio Relación Parásito Hospedero (GERPH) were analyzed with the aim of determining the morphological and molecular diversity, and the phylogenetic relationships of Trypanosoma spp. Microscopic diagnosis and morphological descriptions were performed using 13 quantitative and 11 categorical variables. Statistical analyses (PCA, ANOSIM, PERMANOVA, Gower's distance) were used to evaluate the segregation between morphotypes. The trypanosome culture of Rhinella horribilis was optimized in NNN medium and the nested PCR protocol was standardized to amplify a 900 bp 18S rRNA fragment. Phylogenetic analyses of maximum likelihood and genetic distances were performed using the sequences obtained and several reported in other hosts. Morphology was used to characterize 12 morphotypes of trypanosomes in anurans. Statistical tests demonstrated the effectiveness of using mixed data for morphotype classification. The ex situ maintenance of Rhinella horribilis as an animal model was successful, allowing the standardization of the trypanosome culture and obtaining the positive control for molecular tests. The molecular protocol allowed the acquisition and assignment of BarCode sequences to four morphotypes. Phylogenetically, we established the correspondence of morphotype I with Trypanosoma tungarae, morphotype II with a new species, which we named Trypanosoma homochattoni n.sp., and morphotypes III and IV as part of a complex related to Trypanosoma tokoloshi.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Microbiología
dc.description.researchareaBiología Molecular de agentes Infecciosos
dc.format.extent196 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88744
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.relation.referencesAcosta, A. (2024). Lista de los anfibios de Colombia: Referencia en línea V.13.2023. Página web accesible en http://www.batrachia.com; Batrachia, Villa de Leyva, Boyacá, Colombia.
dc.relation.referencesAldana-Domínguez, J., Montes, C., Martínez, M., Medina, N., Hahn, J., Duque, M. (2017). Biodiversity and ecosystem services knowledge in the Colombian Caribbean. Tropical Conservation Science. 10, 194008291771422). https://doi.org/10.1177/1940082917714229.
dc.relation.referencesAnderson, J. R. Ayala, S. C. (1968). Trypanosome transmitted by Phlebotomus: First report from the Americas. Science, N. Y. 161 (3845), 1023-1025
dc.relation.referencesAtkinson, C., Samuel, M. (2010). Avian malaria Plasmodium relictum in native Hawaiian forest birds: epizootiology and demographic impacts on ‵apapane Himatione sanguínea. Journal of Avian Biology 41(4): 357–366. https://doi.org/10.1111/j.1600-048x.2009.04915.x.
dc.relation.referencesBardsley, J., Harmsen, R. (1973). The Trypanosomes of Anura. Advances in Parasitology 11 (1): 1–73. Elsevier. https://doi.org/10.1016/s0065-308x(08)60184-0
dc.relation.referencesBarrow, J. H. (1953). The biology of Trypanosoma diemyctyli (Tobey). I. Trypanosoma diemyctyli in the leech, Batrachobdella picta (Verrill). Transactions of the American Microscopical Society, 72, 197-216.
dc.relation.referencesBarta, J., Desser, S. (1984). Blood parasites of amphibians from Algonquin Park, Ontario. Journal of Wildlife Diseases 20 (3): 180–189. Wildlife Disease Association. https://doi.org/10.7589/0090-3558-20.3.180
dc.relation.referencesBernal, X., Pinto, C. (2016). Sexual differences in prevalence of a new species of trypanosome infecting tungara frogs. International Journal for Parasitology: Parasites and Wildlife. 21;5(1):40-7. doi: 10.1016/j.ijppaw.2016.01.005.
dc.relation.referencesBillet, A. (1904). Sur le Trypanosoma inopinatum de la grenouille verte d‘Algerie et sa relation possible avec les Drepanidium. C. r. Sianc. SOC. Biol. 57, 161- 165
dc.relation.referencesBispo, R., & Marques, F. (2023). Stability of principal components under normal and nonnormal parent populations and different covariance structures scenarios. Journal of Statistical Computation and Simulation, 93(7), 1060-1076. https://doi.org/10.1080/00949655.2022.2125971.
dc.relation.referencesBorges, A. R., Engstler, M., Wolf, M. (2021). 18S rDNA Sequence-Structure Phylogeny of the Trypanosomatida (Kinetoplastea, Euglenozoa) with Special Reference on Trypanosoma. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.08.04.235945
dc.relation.referencesBrowne, A., Guerra, C. A., Alves, R., da Costa, V., Wilson, A., Pigott, D., Hay, S., Lindsay, S., Golding, N., Moyes, C. (2017). The contemporary distribution of Trypanosoma cruzi infection in humans, alternative hosts and vectors. Scientific Data 4 (1). Springer Science and Business Media LLC. https://doi.org/10.1038/sdata.2017.50
dc.relation.referencesCarnes, J., Anupama, A., Balmer, O., Jackson, A., Lewis, M., Brown, R., Cestari, I., Desquesnes, M., Gendrin, C., Hertz-Fowler, C., Imamura, H., Ivens, A., Kořený, L., Lai, D.-H., MacLeod, A., McDermott, S. M., Merritt, C., Monnerat, S., Moon, W., … Schnaufer, A. (2015). Genome and Phylogenetic Analyses of Trypanosoma evansi Reveal Extensive Similarity to T. brucei and Multiple Independent Origins for Dyskinetoplasty. C. Tschudi (Ed.), PLoS Neglected Tropical Diseases, 9(1):e3404. Public Library of Science (PLoS). https://doi.org/10.1371/journal.pntd.0003404
dc.relation.referencesCarvajal, H. (1982). Tripanosomas de anfibios de la Costa Pacífica de Colombia. Actualidades Biológicas, 11 (42): 107–114. Universidad de Antioquia. https://doi.org/10.17533/udea.acbi.330322.
dc.relation.referencesClarke, K. (1993). Non‐parametric multivariate analyses of changes in community structure. Australian Journal of Ecology. 18 (1): 117–143. Wiley. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
dc.relation.referencesClarke, K., Green, R. (1988). Statistical design and analysis for a “biological effects” study. Marine Ecology Progress Series. 46 (1): 213–226. Wiley. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
dc.relation.referencesCoêlho, T. A., Souza, D. C., Kawashita-Ribeiro, R. A., Correa, L. L. (2021). First record of Trypanosoma sp. (Kinetoplastea: Trypanosomatidae) parasiting Rhinella major in the Brazilian Amazon. Anais da Academia Brasileira de Ciências, 93(2). FapUNIFESP (SciELO). https://doi.org/10.1590/0001-3765202120190467.
dc.relation.referencesCortez, A., Ventura, R., Rodrigues, A., Batista, J., Paiva, F., Machado, R., Gibson, W., Teixeira, M. (2006). The taxonomic and phylogenetic relationships of Trypanosoma vivax from South America and Africa. Parasitology. 133(2): 159. Cambridge University Press (CUP). https://doi.org/10.1017/s0031182006000254
dc.relation.referencesCruz-Saavedra, L., Ospina, C., Patiño, J., Villar, L., Sáenz, O., Cantillo-Barraza, J., Dueñez, J., Ballesteros, N., Cáceres, T., Vallejo, G., Ramírez, J. (2024). Enhancing Trypanosomatid Identification and Genotyping with Oxford Nanopore Sequencing: Development and Validation of an 18S rRNA Amplicon-Based Method. The Journal of Molecular Diagnostics. 26(5): 323-336, ISSN 1525-1578, https://doi.org/10.1016/j.jmoldx.2024.01.012.
dc.relation.referencesda S. Ferreira, J. I. G., da Costa, A. P., Ramirez, D., Roldan, J. A. M., Saraiva, D., da S. Founier, G. F. R., Sue, A., Zambelli, E. R., Minervino, A. H. H., Verdade, V. K., Gennari, S. M., & Marcili, A. (2015). Anuran trypanosomes: phylogenetic evidence for new clades in Brazil. Systematic Parasitology, 91(1): 63–70. Springer Science and Business Media LLC. https://doi.org/10.1007/s11230-015-9558-z.
dc.relation.referencesDaszak, P., Cunningham, A., Hyatt, A. (2000). Emerging infectious diseases of wildlife-- threats to biodiversity and human health. Science 287 (5452): 443–449. American Association for the Advancement of Science (AAAS). https://doi.org/10.1126/science.287.5452.443
dc.relation.referencesDe Souza, W., de Carvalho, T. U., & Barrias, E. S. (2017). Ultrastructure of Trypanosoma cruzi and its interaction with host cells. American Trypanosomiasis Chagas Disease, 401–427. doi:10.1016/b978-0-12-801029-7.00018-6
dc.relation.referencesDelgado, I., Zavala, A., Espinoza, B., Ortega, J., Ley, C., Aguirre, A., Rendón, E. (2023). Hematologic parameters and the effect of hemoparasites of wild anurans in Northern Sinaloa, Mexico. Veterinary Clinical Pathology 52(3): 386–395. Wiley. https://doi.org/10.1111/vcp.13214
dc.relation.referencesDemori, I., Rashed, Z., Corradino, V., Catalano, A., Rovegno, L., Queirolo, L., Salvidio, S., Biggi, E., Zanotti-Russo, M., Canesi, L., Catenazzi, A., Grasselli, E. (2019). Peptides for skin protection and healing in amphibians. Molecules 24(2):. 347). MDPI AG. https://doi.org/10.3390/molecules24020347.
dc.relation.referencesDensmore, C., Green, D. (2007). Diseases of amphibians. ILAR. 48(3):235-54. doi: 10.1093/ilar.48.3.235. PMID: 17592186.
dc.relation.referencesDesser, S. S., McIver, S. B., Ryckman, A. (1973). Culex territans as a potential vector of Trypanosoma rotatorium. I. Development of the flagellate in the mosquito. The Journal of Parasitology, 353-358.
dc.relation.referencesDesser, S. S. (2001). The blood parasites of anurans from Costa Rica with reflections on the taxonomy of their trypanosomes. Journal of Parasitology, 87 (1): 152–160. American Society of Parasitologists. https://doi.org/10.1645/0022-3395(2001)087[0152:tbpoaf]2.0.co;2
dc.relation.referencesDiamond, L. S. (1958). “A study of the Morphology, Biology and Taxonomy of the Trypanosomes of Anura”. Doctoral Thesis, University of Minnesota, U.S.A.
dc.relation.referencesDu Buisson, J. (2023). Diversity and distribution of anuran blood parasites within the Vhembe Biosphere. North-West University.
dc.relation.referencesDuellman, W. E. & Trueb, L. (1994) Biology of Amphibians. Johns Hopkins University. Press. ISBN 978-0-8018-4780-6.
dc.relation.referencesEsquerré, D., Brennan, I., Catullo, R., Torres‐Pérez, F., Keogh, J. (2018). How mountains shape biodiversity: The role of the Andes in biogeography, diversification, and reproductive biology in South America’s most species‐rich lizard radiation (Squamata: Liolaemidae). Evolution 73 (2): 214–230. Wiley. https://doi.org/10.1111/evo.13657
dc.relation.referencesFarmer, M. A. (2009). Euglenozoa. Encyclopedia of Microbiology: 634–645. Elsevier. https://doi.org/10.1016/b978-012373944-5.00252-2
dc.relation.referencesFerreira, R. C., Campaner, M., Viola, L. B., Takata, C. S. A., Takeda, G. F. & Teixeira, M. M. G. (2007). Morphological and molecular diversity and phylogenetic relationships among anuran trypanosomes from the Amazonia, Atlantic Forest and Pantanal biomes in Brazil. Parasitology, 134:1623–1638. doi: 10.1017/S0031182007003058
dc.relation.referencesFerreira, R., De Souza, A., Freitas, R., Campaner, M., Takata, C., Barrett, T., Shaw, .J, Teixeira, M. (2008) A phylogenetic lineage of closely related trypanosomes (Trypanosomatidae, Kinetoplastida) of anurans and sand flies (Psychodidae, Diptera) sharing the same ecotopes in brazilian amazonia. Journal of Eukaryotic Microbiology. Sep-Oct;55(5):427-35. doi: 10.1111/j.1550-7408.2008.00342.x. PMID: 19017063.
dc.relation.referencesFilip-Hutsch, K., Świsłocka, M., Karbowiak, G., Myczka, A. W., Demiaszkiewicz, A. W., & Werszko, J. (2022). Molecular identification of Trypanosoma theileri complex in Eurasian moose Alces alces (L.). International Journal for Parasitology: Parasites and Wildlife, 19: 317–322. Elsevier BV. https://doi.org/10.1016/j.ijppaw.2022.11.008.
dc.relation.referencesForzán, M. J., & Wood, J. (2013). Low detection of ranavirus DNA in wild postmetamorphic green frogs, Rana (Lithobates) clamitans, despite previous or concurrent tadpole mortality. Journal of wildlife diseases, 49(4), 879-886.
dc.relation.referencesGalliard, H. (1929). Culture des trypanosomes, et en particulier T. inopinatum, en milieu liquide sucrk. Annls. Parasitology. 7, 248-249.
dc.relation.referencesGonzález, L., Vargas-León, C., Fuentes-Rodríguez, G., Calderón-Espinosa, M., Matta, N. (2021). Do blood parasites increase immature erythrocytes and mitosis in amphibians? Revista de Biología Tropical 69 (2) : 615–624). Universidad de Costa Rica. https://doi.org/10.15517/rbt.v69i2.45459
dc.relation.referencesGrogan, L., Robert, J., Berger, L., Skerratt, L., Scheele, B., Castley, J.G, Newell, D., McCallum, H. (2018). Review of the amphibian immune response to chytridiomycosis, and future directions. Frontiers in Immunology. 9:2536. 10.3389/fimmu.2018.02536
dc.relation.referencesGuhl, F., & Ramírez, J. D. (2011). Trypanosoma cruzi I diversity: Towards the need of genetic subdivision? Acta Tropica, 119 (1): 1–4. Elsevier BV. https://doi.org/10.1016/j.actatropica.2011.04.002
dc.relation.referencesHamilton, P., Stevens, J., Gaunt, M., Gidley, J., Gibson, W. (2004). Trypanosomes are monophyletic: evidence from genes for glyceraldehyde phosphate dehydrogenase and small subunit ribosomal RNA. International Journal of Parasitology. 34(12):1393-404. doi: 10.1016/j.ijpara.2004.08.011.
dc.relation.referencesHammer, Ø., Harper, D.A.T., Ryan, P.D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm
dc.relation.referencesHayes, P., Lawton, S., Smit, N., Gibson, W., & Davies, A. J. (2014). Morphological and molecular characterization of a marine fish trypanosome from South Africa, including its development in a leech vector. Parasites & vectors. 7(1), 50.
dc.relation.referencesHerczeg, D., Ujszegi, J., Kásler, A., Holly, D., Hettyey, A. (2021). Host–multiparasite interactions in amphibians: a review. Parasites & Vectors 14, 296. https://doi.org/10.1186/s13071-021-04796-1
dc.relation.referencesHernández, I., García, L., Gómez, I., Marzal, A. (2022). The Adaptive Host Manipulation Hypothesis: Parasites Modify the behaviour, morphology, and physiology of amphibians. Diversity. 14(9): 739. https://doi.org/10.3390/d14090739
dc.relation.referencesHickman, C., Keen, S., Eisenhour, D., Roberts, L., Larson, A. (2001). Integrated Principles of Zoology, McGraw-Hill Publishing Co. ISBN 0-07-290961-7.
dc.relation.referencesHoang, D.T; Chernomor, O., von Haeseler, A., Minh, B.Q., Vinh, LS. (2018) UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution., 35:518–522. https://doi.org/10.1093/molbev/msx281
dc.relation.referencesHughes, A.L., Piontkivska, H. (2003). Molecular phylogenetics of Trypanosomatidae: contrasting results from 18S rRNA and protein phylogenies. Kinetoplastid Biology and Disease, 2, 15.
dc.relation.referencesIsaak-Delgado, A. B., López-Díaz, O., Romero-Callejas, E., Martínez-Hernández, F., Muñoz-García, C. I., Villalobos, G., & Rendón-Franco, E. (2020). Morphological and molecular characteristics of hemoparasites in vaillant’s frogs (Lithobates vaillanti). Parasitology Research, 119(6), 1891–1901. doi:10.1007/s00436-020-06689-1
dc.relation.referencesJones, S., Woo, P. (1986). Trypanosoma chattoni Mathis & Leger, 1911 in Rana pipiens of southern Ontario: morphometrics and a description of the division process. Systematic Parasitology 9, 57–62. https://doi.org/10.1007/BF00009897
dc.relation.referencesJordaan, B. J., van As, J., & Netherlands, E. C. (2023a). Morphological and molecular diagnosis of two new species of Trypanosoma Gruby, 1843 infecting South African cordylid lizards (Squamata: Cordylidae: Cordylinae), Trypanosoma (Squamatrypanum) ndumoensis n. sp. and Trypanosoma (Trypanosoma) tokoloshi n. sp. Journal of Eukaryotic Microbiology, 70(4). Wiley. https://doi.org/10.1111/jeu.12970.
dc.relation.referencesJordaan, B., du Preez, L., Netherlands, E. (2023b). Taxonomic reevaluation of African anuran trypanosomes with the redescription and molecular diagnosis of Trypanosoma (Trypanosoma) nelspruitense Laveran, 1904 and Trypanosoma (Haematomonas) grandicolor Pienaar, 1962. Parasitology 150: 477–487. https://doi.org/10.1017/S0031182023000203.
dc.relation.referencesKatoh, K., Standley, DM. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution. 30(4):772–780. doi:10.1093/molbev/mst010.
dc.relation.referencesKudo, R. (1922). On the Protozoa parasitic in frogs. Transactions of the American Microscopical Society. Sci. 41,59-76. l'Académie des Sciences 17(20): 1134–1136.
dc.relation.referencesLai, D.-H., Hashimi, H., Lun, Z.-R., Ayala, F. J., & Lukeš, J. (2008). Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proceedings of the National Academy of Sciences, 105(6):1999–2004. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.0711799105
dc.relation.referencesLemos, M., Morais, D., Carvalho, V., D'Agosto, M. (2008). First record of Trypanosoma chattoni in Brazil and occurrence of other Trypanosoma species in Brazilian frogs (Anura, Leptodactylidae). Journal of Parasitology. 94(1):148-51. doi: 10.1645/GE-1095.1. PMID: 18372634.
dc.relation.referencesLuedtke, J. A., Chanson, J., Neam, K., Hobin, L., Maciel, A. O., Catenazzi, A., Borzée, A., Hamidy, A., Aowphol, A., Jean, A., Sosa-Bartuano, Á., Fong G., A., de Silva, A., Fouquet, A., Angulo, A., Kidov, A. A., Muñoz Saravia, A., Diesmos, A. C., Tominaga, A., … Stuart, S. N. (2023). Ongoing declines for the world’s amphibians in the face of emerging threats. Nature, 622(7982): 308–314. Springer Science and Business Media LLC. https://doi.org/10.1038/s41586-023-06578-4
dc.relation.referencesLukes, J., Guilbride, D., Votýpka, J., Zíková, A., Benne, R., Englund, P.T. (2002). Kinetoplast DNA network: evolution of an improbable structure. Eukaryotic Cell 1: 495-502.
dc.relation.referencesMartin, D. S., Wright, A.-D. G., Barta, J. R., & Desser, S. S. (2002). Phylogenetic position of the giant anuran trypanosomes Trypanosoma chattoni, Trypanosoma fallisi, Trypanosoma mega, Trypanosoma neveulemairei, and Trypanosoma ranarum inferred from 18s rRNA gene sequences. Journal of Parasitology 88 (3): 566–571. American Society of Parasitologists. https://doi.org/10.1645/0022-3395(2002)088[0566:ppotga]2.0.co;2
dc.relation.referencesMartin, D., Desser, S. (1990). A light and electron microscopic study of Trypanosoma fallisi N. Sp. in Toads (Bufo americanus) from Algonquin Park, Ontario. The Journal of Protozoology 37 (3): 199–206. Wiley. https://doi.org/10.1111/j.1550-7408.1990.tb01128.x:
dc.relation.referencesMaslov, D., Lukes, J., Jirku, M., Simpson, L. (1996). Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa. Molecular and Biochemical Parasitology. 75(2):197-205. doi:10.1016/0166- 6851(95)02526-x.
dc.relation.referencesMatta, N. E., Lotta-Arévalo, I. A., Gamboa-Suárez, B. A., & Bernal, S. I. (2022). 3. Diptera-borne hemoparasites of herpetofauna: rediscovering its importance. Ecology of diseases transmitted by mosquitoes to wildlife, 39–79. Brill | Wageningen Academic. https://doi.org/10.3920/978-90-8686-931-2_3
dc.relation.referencesMegía-Palma, R., Sánchez-Montes, G., Netherlands, E., Palomar, G., & Martínez-Solano, I. (2024). High prevalence of Trypanosoma infection in Iberian green frogs (Pelophylax perezi) and evidence of a negative relationship between blood parasites and two indices of frog body condition. Basic and Applied Herpetology. Asociacion Herpetologica Española. https://doi.org/10.11160/bah.294
dc.relation.referencesMoreno, A., Barreto, D., González, I. (2015). Caracterización morfológica de hemoparásitos presentes en algunos anfibios y reptiles de Guaviare, Colombia. [Tesis de pregrado]. Universidad Colegio Mayor de Cundinamarca.
dc.relation.referencesNadler, S. A., De León, G. P.P. (2011). Integrating molecular and morphological approaches for characterizing parasite cryptic species: implications for parasitology. Parasitology. 138(13):1688–1709. Cambridge University Press (CUP). https://doi.org/10.1017/s003118201000168x
dc.relation.referencesNetherlands, E., Cook, C., Kruger, D., du Preez, L., Smit, N. (2015). Biodiversity of frog haemoparasites from sub-tropical northern KwaZulu-Natal, South Africa. International Journal for Parasitology: Parasites and Wildlife 4:135–141.
dc.relation.referencesNguyen, L., Schmidt, HA., von Haeseler, A., Minh, BQ. (2015) IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution, 32:268-274. https://doi.org/10.1093/molbev/msu300
dc.relation.referencesNoller, W. (1913). Die Blutprotisten des Wasserfroches und ihre Uebertragung. (Vorlaufige Mitteilung). Arch. Protistenk. 28, 313-316.
dc.relation.referencesNoyes, H., Stevens, J., Teixeira, M., Phelan, J., Holz, P. (1999). A nested PCR for the ssrRNA gene detects Trypanosoma binneyi in the platypus and Trypanosoma sp. in wombats and kangaroos in Australia. International Journal of Parasitology. 29(2):331-9. doi: 10.1016/s0020-7519(98)00167-2. Erratum in: International Journal of Parasitology 2000 Feb;30(2):228.
dc.relation.referencesPavľáková, B., Pipová, N., Balogová, M., Majláth, I., Mikulíček, P., & Majláthová, V. (2024). Blood parasites of water frogs (Pelophylax esculentus complex) from the Danube Delta, Romania. Parasitology International. 102: 102920. Elsevier BV. https://doi.org/10.1016/j.parint.2024.102920.
dc.relation.referencesPoinar, G., & Telford SR Jr. (2009). Hemoparasites of the Reptilia. Color Atlas and Text. Parasites & Vectors 2, 40. https://doi.org/10.1186/1756-3305-2-40
dc.relation.referencesPollo, F., Salinas, Z., Baraquet, M., Otero, M. A., Grenat, P. R., Salas, N., Martino, A. L., & Sinsch, U. (2023). Hemoparasites Do Not Affect Life-History Traits and Cellular Immune Response in Treefrog Hosts Boana cordobae. Animals 13 (22): 3566. MDPI AG. https://doi.org/10.3390/ani13223566.
dc.relation.referencesRahbek, C., Borregaard, M., Colwell, R., Dalsgaard, B., Holt, B., Morueta-Holme, N., Nogues-Bravo, D., Whittaker, R., Fjeldså, J. (2019). Humboldt’s enigma: What causes global patterns of mountain biodiversity?. Science 365 (6458): 1108–1113. American Association for the Advancement of Science (AAAS). https://doi.org/10.1126/science.aax0149.
dc.relation.referencesRamos, B., Urdaneta-Morales, S. (1977). Hematophagous insects as vectors for frog trypanosomes. Revista de Biología Tropical, 25(2):209-17. PMID: 615322.
dc.relation.referencesRhyan, J. C., & Spraker, T. R. (2010). Emergence of Diseases From Wildlife Reservoirs. Veterinary Pathology, 47(1): 34–39. SAGE Publications. https://doi.org/10.1177/0300985809354466
dc.relation.referencesRodrigues, A., Honorio, D., Carvalho, V., D´Agosto, M., Lemos, M. (2019). Morphological and morphometric characterization of trypanosomes in Leptodactylus lineatus and Osteocephalus sp. (Anura) from Brazilian Midwest. Revista Brasileira de Zoociências. 20. 1-10.
dc.relation.referencesRomero, M., Galindo, G., Otero J., Armenteros, D. (2004). Ecosistemas de la cuenca del Orinoco colombiano. Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt. Bogotá. Colombia. 189p. ISBN 958-815137-6.
dc.relation.referencesSailasuta, A., Satetasit, J., Chutmongkonkul, M. (2011). Pathological study of blood parasites in rice field frogs, Hoplobatrachus rugulosus (Wiegmann, 1834). Veterinary Medicine International. doi: 10.4061/2011/850568.
dc.relation.referencesScheele, B. C., Pasmans, F., Skerratt, L. F., Berger, L., Martel, A., Beukema, W., Acevedo, A. A., Burrowes, P. A., Carvalho, T., Catenazzi, A., De la Riva, I., Fisher, M. C., Flechas, S. V., Foster, C. N., Frías-Álvarez, P., Garner, T. W. J., Gratwicke, B., Guayasamin, J. M., Hirschfeld, M., … Canessa, S. (2019). Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science, 63(6434): 1459–1463. American Association for the Advancement of Science (AAAS). https://doi.org/10.1126/science.aav0379
dc.relation.referencesSchneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. doi:10.1038/nmeth.2089.
dc.relation.referencesSeed, J. R. (1970). Diurnal and seasonal rhythms in parasitemia levels of some trypanosomes infecting Rana clamitans from Louisiana. Journal of Parasitology. 56, 31 1-312.
dc.relation.referencesSewell, T. R., Longcore, J., & Fisher, M. C. (2021). Batrachochytrium dendrobatidis. Trends in Parasitology 37 (10): 933–934. Elsevier BV. https://doi.org/10.1016/j.pt.2021.04.014
dc.relation.referencesShapiro, T.A., Englund, P.T. (1995). The structure and replication of kinetoplast DNA. Annual Review of Microbiology, 49: 117-143.
dc.relation.referencesSiddall, M. E., & Desser, S. S. (1992). Alternative Leech Vectors for Frog and Turtle Trypanosomes. The Journal of Parasitology, 78 (3): 562. JSTOR. https://doi.org/10.2307/3283672
dc.relation.referencesSouza, W. de. (2009). Structural organization of Trypanosoma cruzi. Memórias do Instituto Oswaldo Cruz, 104(1): 89–100. FapUNIFESP (SciELO). https://doi.org/10.1590/s0074-02762009000900014
dc.relation.referencesSpodareva, V.V., Grybchuk-Ieremenko, A., Losev, A., Votýpka, J., Lukeš, J., Yurchenko, V., Kostygov, A.Y. (2018). Diversity and evolution of anuran trypanosomes: insights from the study of European species. Parasites & Vectors 11, 447. https://doi.org/10.1186/s13071-018-3023-1.
dc.relation.referencesStevens, J., Noyes, H., & Gibson, W. (1998). The Evolution of trypanosomes infecting humans and primates. Memórias do Instituto Oswaldo Cruz. 93(5): 669–676. FapUNIFESP (SciELO). https://doi.org/10.1590/s0074-02761998000500019.
dc.relation.referencesStorer, T. (1979). General Zoology. 6th edition. MC. Graw Hill Book Company, Inc.
dc.relation.referencesTamura, K., Stecher, G., Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38 (7): 3022–3027. https://doi.org/10.1093/molbev/msab120
dc.relation.referencesTrifinopoulos, J., Nguyen, L-T., von Haeseler, A., Minh, B.Q. (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research., 44:W232-W235. https://doi.org/10.1093/nar/gkw256
dc.relation.referencesTruc, P., Büscher, P., Cuny, G., Gonzatti, M., Jannin, J., Joshi, P., Juyal, P., Lun, Z., Mattioli, R., Pays, E., Simarro, P., Teixeira, M., Touratier, L., Vincendeau, P., Desquesnes, M. (2013). Atypical human infections by animal Trypanosomes. J. M. Ndung’u (Ed.), PLoS Neglected Tropical Diseases. 7(9): e2256. Public Library of Science (PLoS). https://doi.org/10.1371/journal.pntd.0002256
dc.relation.referencesVargas, C. (2018). Morphological and molecular characterization of Trypanosoma (Euglenozoa: Kinetoplastida) parasites of the biological collection GERPH - Colombia. [Tesis de Maestría]. Facultad de Ciencias. Universidad Nacional de Colombia.
dc.relation.referencesWhiles, M., Lips, K., Pringle, C., Kilham, S., Bixby, R., Brenes, R., Connelly, S., Colon-Gaud, J., Hunte, M., Huryn, A., Montgomery, C., Peterson, S. (2006). The effects of amphibian population declines on the structure and function of Neotropical stream ecosystems. Frontiers in Ecology and the Environment, 4(1): 27–34. Wiley. https://doi.org/10.1890/1540-9295(2006)004[0027:teoapd]2.0.co;2
dc.relation.referencesWoo, P. (1969). Trypanosomes in amphibians and reptiles in southern Ontario. Canadian Journal of Zoology. 47 (1): 981-988.
dc.relation.referencesWoo, P., Bogart, J. P. (1984). Trypanosoma spp. (Protozoa: Kinetoplastida) in Hylidae (Anura) from eastern North America, with notes on their distributions and prevalences. Canadian Journal of Zoology, 62(5): 820–824). Canadian Science Publishing. https://doi.org/10.1139/z84-119
dc.relation.referencesYazaki, E., Ishikawa, SA., Kume, K., Kumagai, A., Kamaishi, T., Tanifuji, G., Hashimoto, T., Inagaki, Y. (2017). Global Kinetoplastea phylogenyinferred from a large-scale multigene alignment including parasitic species for better understanding transitions from a free-living to a parasitic lifestyle. Genes & Genetic Systems 92,35–42.
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animal
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animal
dc.subject.lembANUROSspa
dc.subject.lembAnuraeng
dc.subject.lembSAPOSspa
dc.subject.lembToadseng
dc.subject.lembRANASspa
dc.subject.lembFrogseng
dc.subject.lembTRYPANOSOMAspa
dc.subject.lembTrypanosomaeng
dc.subject.lembINFECCIONES POR PROTOZOARIOSspa
dc.subject.lembProtozoan diseaseseng
dc.subject.lembENFERMEDADES PARASITARIASspa
dc.subject.lembParasitic diseaseseng
dc.subject.proposalKinetoplasteaspa
dc.subject.proposalAnfibiosspa
dc.subject.proposalVida silvestrespa
dc.subject.proposalParásitosspa
dc.subject.proposalMorfologíaspa
dc.subject.proposalPCRspa
dc.subject.proposalKinetoplasteaeng
dc.subject.proposalAmphibianseng
dc.subject.proposalWildlifeeng
dc.subject.proposalParasiteseng
dc.subject.proposalMorphologyeng
dc.titleCaracterización morfológica y molecular de Trypanosoma spp. en anuros de ecosistemas tropicales en Colombiaspa
dc.title.translatedMorphological and molecular characterization of Trypanosoma spp. in anurans from tropical ecosystems in Colombiaeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_16ec

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
1016110045_2025.pdf
Tamaño:
18.4 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias – Microbiología
Cargando...
Miniatura
Nombre:
Anexos_1016110045_2025.xlsx
Tamaño:
68.94 KB
Formato:
Microsoft Excel XML

Bloque de licencias

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
U.FT.09.006.004 Licencia para publicación de obras en el Repositorio Institucional UNAL v4 (1).pdf
Tamaño:
200.75 KB
Formato:
Adobe Portable Document Format
Descripción: