Virus de la leucosis bovina en las lecherías de Antioquia: prevalencia molecular, genotipos circulantes y factores asociados a su circulación

dc.contributor.advisorÚsuga Monroy, Cristina
dc.contributor.advisorLópez Herrera, Albeiro
dc.contributor.authorCastillo Rey, Daniela
dc.contributor.orcidCastillo Rey, Daniela [0000-0001-6113-1029]spa
dc.contributor.orcidÚsuga Monroy, Cristina [0000-0001-6101-2994]spa
dc.contributor.orcidLópez Herrera, Albeiro [0000-0003-1444-3470]spa
dc.contributor.researchgroupBiodiversidad y Génetica Molecular "Biogem"spa
dc.date.accessioned2023-09-06T18:07:31Z
dc.date.available2023-09-06T18:07:31Z
dc.date.issued2023-01-30
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl virus de la leucosis bovina (BLV) es un retrovirus que afecta los sistemas de producción de lechería especializada en todo el mundo, relacionado con menor producción de leche y reducción en la vida de los animales infectados. Se han identificado once genotipos del virus circulando y actualmente no existe tratamiento ni vacuna para la enfermedad por lo que las estrategias de control son esenciales. En Colombia la lechería contribuye a la economía y sustento alimentario del país, Antioquia es departamento mayor productor. Para establecer el estado actual del BLV en los sistemas productivos de Antioquia se seleccionaron 575 bovinos pertenecientes a 53 hatos de las regiones Norte, Oriente y Valle de Aburrá, de diferentes razas y edades. Se hizo la caracterización de los sistemas productivos, se estudió la prevalencia molecular mediante una PCR anidada del gen env de BLV, resultando un 17,04% en animales y 75,5% en hatos y por un estudio filogenético del gen tax estableciendo la presencia únicamente del genotipo 1. Además, se determinaron factores de riesgo y de protección asociados a la infección, encontrando que prácticas como el ordeño mecánico y la inseminación artificial (con semen sin conocer estatus microbiológico) suponen un riesgo de infección con BLV y como factores de protección se encontraron de desinfectantes alcoholes y agentes alquilantes y la implementación de sistemas de pediluvio. Los resultados encontrados en este estudio muestran la necesidad de plantear un programa de prevención y educación para controlar la infección por BLV y minimizar las pérdidas económicas que supone la infección. (Texto tomado de la fuente)spa
dc.description.curricularareaÁrea Curricular Biotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biotecnologíaspa
dc.description.methodsDiseño experimental y muestraspa
dc.description.researchareaBiotecnología animalspa
dc.description.sponsorshipGobernación de Antioquiaspa
dc.description.sponsorshipCOLANTAspa
dc.format.extentxvii, 197 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84655
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAbdala, A., Alvarez, I., Brossel, H., Calvinho, L., Carignano, H., Franco, L., Gazon, H., Gillissen, C., Hamaidia, M., Hoyos, C., Jacques, J. R., Joris, T., Laval, F., Petersen, M., Porquet, F., Porta, N., Ruiz, V., Safari, R., Suárez Archilla, G., … Willems, L. (2019). BLV: Lessons on vaccine development. In Retrovirology (Vol. 16, Issue 1). https://doi.org/10.1186/s12977-019-0488-8spa
dc.relation.referencesAbdullah, D. A., Ali, M. S., Omer, S. G., Ola-Fadunsin, S. D., Ali, F. F., & Gimba, F. I. (2019). Prevalence and climatic influence on hemoparasites of cattle and sheep in Mosul, Iraq. Journal of Advanced Veterinary and Animal Research, 6(4), 492. https://doi.org/10.5455/JAVAR.2019.F373spa
dc.relation.referencesAlkan, F., Karayel-Hacioglu, I., Duran Yelken, S., & Coskun, N. (2021). The genotype determination and molecular characterization of bovine leukemia virus in Turkey. Veterinarski Arhiv, 91(3), 237–247. https://doi.org/10.24099/VET.ARHIV.1214spa
dc.relation.referencesAlvarez H., J. E., Rios Y., L. M., Reconco, R., Rendón, J., & Moncada, M. (2021). Análisis de factibilidad técnica y económica para un proyecto de lechería especializada en el Norte Antioqueño, Colombia [Escuela Agrícola Panamericana]. https://bdigital.zamorano.edu/items/131afdc8-9a29-4fcf-993e-83dec238ae30spa
dc.relation.referencesAndoh, K., Akagami, M., Nishimori, A., Matsuura, Y., Kumagai, A., & Hatama, S. (2021). Novel single nucleotide polymorphisms in the bovine leukemia virus genome are associated with proviral load and affect the expression profile of viral non-coding transcripts. Veterinary Microbiology, 261. https://doi.org/10.1016/J.VETMIC.2021.109200spa
dc.relation.referencesArainga, M., Takeda, E., & Aida, Y. (2012). Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis. BMC Genomics, 13, 121. https://doi.org/10.1186/1471-2164-13-121spa
dc.relation.referencesArnaud, F., Nicolas, G., Mathieu, B., Pierre, K., Richard, K., & Luc, W. (2007). Even Attenuated Bovine Leukemia Virus Proviruses Can Be Pathogenic in Sheep. Journal of Virology, 81(18), 10195–10200. https://doi.org/10.1128/JVI.01058-07spa
dc.relation.referencesArunvipas, P., Inpankaew, T., & Jittapalapong, S. (2011). Risk factors of Neospora caninum infection in dogs and cats in dairy farms in Western Thailand. Tropical Animal Health and Production 2011 44:5, 44(5), 1117–1121. https://doi.org/10.1007/S11250-011-0048-2spa
dc.relation.referencesArunvipas, P., Jittapalapong, S., Inpankaew, T., Pinyopanuwat, N., Chimnoi, W., & Maruyama, S. (2013). Seroprevalence and risk factors influenced transmission of Toxoplasma gondii in dogs and cats in dairy farms in Western Thailand. African Journal of Agricultural Research, 8(7), 591–595. https://doi.org/10.5897/AJAR11.2209spa
dc.relation.referencesBarrios, D., & Olivera, M. (2013). Análisis de la competitividad del sector lechero: Caso aplicado al norte de Antioquia, Colombia. Innovar, 23(48), 33–42. http://www.scielo.org.co/pdf/inno/v23n48/v23n48a04.pdfspa
dc.relation.referencesBartlett, P. C., Ruggiero, V. J., Hutchinson, H. C., Droscha, C. J., Norby, B., Sporer, K. R. B., & Taxis, T. M. (2020). Current Developments in the Epidemiology and Control of Enzootic Bovine Leukosis as Caused by Bovine Leukemia Virus. Pathogens (Basel, Switzerland), 9(12). https://doi.org/10.3390/pathogens9121058spa
dc.relation.referencesBartlett, P. C., Sordillo, L. M., Byrem, T. M., Norby, B., Grooms, D. L., Swenson, C. L., Zalucha, J., & Erskine, R. J. (2014). Options for the control of bovine leukemia virus in dairy cattle. Journal of the American Veterinary Medical Association, 244(8), 914–922. https://doi.org/10.2460/javma.244.8.914spa
dc.relation.referencesBedoya Mejía, O., & Loaiza Muñoz, E. (2020). Control lechero en el norte Antioqueño [Corporación Universitaria Lasallista]. http://hdl.handle.net/10567/2746spa
dc.relation.referencesBenavides-Ortiz, E., & Polanco Palencia, N. (2017). Epidemiología de hemoparásitos y endoparásitos en bovinos de zonas de reconversión ganadera en La Macarena (Meta, Colombia). Revista de Medicina Veterinaria, 34(34), 115. https://doi.org/10.19052/mv.4260spa
dc.relation.referencesBenavides, B., Muñoz, S., & Ceriani, C. (2016). Análisis molecular de un fragmento del gen env del virus de leucosis bovina, por PCR anidada en vacas lecheras de Pasto, Nariño. Revista de Medicina Veterinaria, 33, 67–75. https://doi.org/10.19052/mv.4054spa
dc.relation.referencesBenavides, B., Quevedo, D. A., & de La Cruz, M. F. (2013). Epidemiological study of bovine leukemia virus in dairy cows in six herds in the municipality of Pasto, Nariño. Revista Lasallista de Investigacion, 10(1), 18–23. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794-44492013000100003spa
dc.relation.referencesBenavides Ortiz, E., Romero Prada, J., & Villamil Jimènez Luis, C. (2016). Las garrapatas del ganado bovino y los agentes de enfermedad que transmiten en escenarios epidemiològicos de cambio climático. https://agriperfiles.agri-d.net/display/n110615spa
dc.relation.referencesBlazhko, N., Vyshegurov, S., Donchenko, A., Shatokhin, K., Ryabinina, V., Plotnikov, K., Khodakova, A., & Pashkovskiy, S. (2020). Genotypes diversity of env gene of Bovine leukemia virus in Western Siberia. BMC Genetics, 21(Suppl 1), 70. https://doi.org/10.1186/s12863-020-00874-yspa
dc.relation.referencesBojarojć-Nosowicz, B., & Kaczmarczyk, E. (2006). Somatic cell count and chemical composition of milk in naturally BLV-infected cows with different phenotypes of blood leukocyte acid phosphatase. Archives Animal Breeding, 49(1), 17–28. https://doi.org/10.5194/aab-49-17-2006spa
dc.relation.referencesBorjigin, L., Lo, C. W., Bai, L., Hamada, R., Sato, H., Yoneyama, S., Yasui, A., Yasuda, S., Yamanaka, R., Mimura, M., Inokuma, M., Shinozaki, Y., Tanaka, N., Takeshima, S. N., & Aida, Y. (2021). Risk Assessment of Bovine Major Histocompatibility Complex Class II DRB3 Alleles for Perinatal Transmission of Bovine Leukemia Virus. Pathogens (Basel, Switzerland), 10(5). https://doi.org/10.3390/PATHOGENS10050502spa
dc.relation.referencesBravo-Parra, A. M. (2020). Cadenas sostenibles ante un clima cambiante La ganadería en Colombia. https://www.giz.de/de/downloads/GIZ_CIAT_GanaderiaPag_sencillas_web.pdfspa
dc.relation.referencesBuehring, G. C., Delaney, A., Shen, H., Chu, D. L., Razavian, N., Schwartz, D. A., Demkovich, Z. R., & Bates, M. N. (2019). Bovine leukemia virus discovered in human blood. BMC Infectious Diseases, 19(1). https://doi.org/10.1186/s12879-019-3891-9spa
dc.relation.referencesBuehring, G. C., Shen, H. M., Jensen, H. M., Choi, K. Y., Sun, D., & Nuovo, G. (2014). Bovine leukemia virus DNA in human breast tissue. Emerging Infectious Diseases, 20(5), 772–782. https://doi.org/10.3201/eid2005.131298spa
dc.relation.referencesBulla-Castañeda, D. M., Díaz-Anaya, A. M., Garcia-Corredor, D. J., Tobón-Torreglosa, J. C., Ortega, D. O., & Pulido-Medellín, M. O. (2021). Seropositivity and risk factors associated with the presentation of bovine leukosis virus in Sotaquirá, Colombia. Veterinary World, 14(8), 2212–2218. https://doi.org/10.14202/VETWORLD.2021.2212-2218spa
dc.relation.referencesBurkat, S., Díaz, M., Enciso-Valencia, K., Benítez-Urrea, J. L., Charry-Camacho, A., & Triana-Ángel, N. (2020). Desarrollos actuales y potenciales, impactos y opciones de mitigación. www.bioversityinternational.orgspa
dc.relation.referencesCadavid, P. P., Jiménez Arboleda, H. A., Naranjo Ramírez, J. F., Henao Villegas, S., Ramírez García, R., Cardona Zuluaga, E. A., Úsuga Suárez, A., Ruiz Buitrago, J. D., Mejía Sandoval, G., & Muñoz Echavarría, F. A. (2018). Implementación de Buenas Prácticas Ganaderas: principios básicos. https://repository.ces.edu.co/handle/10946/3585spa
dc.relation.referencesCanova, R., Weber, M. N., Budaszewski, R. F., da Silva, M. S., Schwingel, D., Canal, C. W., & Kreutz, L. C. (2021). Bovine leukemia viral DNA found on human breast tissue is genetically related to the cattle virus. One Health, 13, 100252. https://doi.org/10.1016/J.ONEHLT.2021.100252spa
dc.relation.referencesCarulla, J., Cárdenas, E., Sánchez, N., & Riveros, C. (2003). Valor nutricional de los forrajes más usados en los sistemas de producción lechera especializada de la zona andina colombiana. Grupo de Investigación En Nutrición Animal, Departamento de Ciencias Para La Producción Animal, 1–16. https://d1wqtxts1xzle7.cloudfront.net/34596306/valor_nutricional_de_los_forrajes_en_colombia-with-cover-page-v2.pdf?Expires=1656701613&Signature=Si7xCuDbTMBEYQl9if7oS6guFmtwV1L92FEXFyBI89IOZKAeasTboLgewN97MFRNj~GZvzxJ8KgTVpdUgVaGd8m81-uL1-arhP3yHXJDlEPDmOspa
dc.relation.referencesCarulla, J. E., & Ortega, E. (2016). Dairy production systems of Colombia : challenges and opportunities. Archivos Latinoamericanos de Producción Animal, 24(2), 9–13. https://www.researchgate.net/publication/317017699spa
dc.relation.referencesCésar Mendoza, F., Martha Pabón, R., & Juan Carulla, F. (2011). Variaciones diarias de la oferta forrajera, efecto sobre la producción y calidad de la leche. Revista MVZ Cordoba, 16(3), 2721–2732. https://doi.org/10.21897/rmvz.273spa
dc.relation.referencesChaparro, J., Olivera-Angel, M., Luis, P., Villar, D., & Ramírez, N. (2016). Neospora caninum serostatus in dairy cattle of the Northern plains of Antioquia, Colombia. Revista MVZ Córdoba, 21, 5577–5583.spa
dc.relation.referencesColanta. (2018). Informe de Gestión Social y Sostenibilidad. https://colanta.com/corporativo/wp-content/uploads/2019/10/INFORME-DE-GESTION-2018-web.pdfspa
dc.relation.referencesCorrea C, H. J., Pabón R, M. L., & Carulla F, J. E. (2008). Nutritional value of kikuyu grass (Pennisetum clandestinum Hoechst Ex Chiov.) for milk production in Colombia: A review. II. Energy value, intake, production and nutritional efficiency. Valor Nutricional Del Pasto Kikuyo (Pennisetum Clandestinum Hoechst Ex Chiov.) Para La Producción de Leche En Colombia (Una Revisión): II. Contenido de Energía, Consumo, Producción y Eficiencia Nutricional, 20(4). http://www.lrrd.org/lrrd20/4/corra20059.htmspa
dc.relation.referencesCorredor-Figueroa, A. P., Salas, S., Olaya-Galán, N. N., Quintero, J. S., Fajardo, Á., Soñora, M., Moreno, P., Cristina, J., Sánchez, A., Tobón, J., Ortiz, D., & Gutiérrez, M. F. (2020). Prevalence and molecular epidemiology of bovine leukemia virus in Colombian cattle. Infection, Genetics and Evolution, 80. https://doi.org/10.1016/j.meegid.2020.104171spa
dc.relation.referencesDao, T. D., Bui, V. N., Omatsu, T., Katayama, Y., Mizutani, T., Ogawa, H., & Imai, K. (2018). Application of the SureSelect target enrichment system for next-generation sequencing to obtain the complete genome sequence of bovine leukemia virus. Archives of Virology, 163(11), 3155–3159. https://doi.org/10.1007/s00705-018-3957-9spa
dc.relation.referencesCoulston, J., Naif, H., Brandon, R., Kumar, S., Khan, S., Daniel, R. C. W., & Lavin, M. F. (1990). Molecular cloning and sequencing of an Australian isolate of proviral bovine leukaemia virus DNA: Comparison with other isolates. Journal of General Virology, 71(8). https://doi.org/10.1099/0022-1317-71-8-1737spa
dc.relation.referencesDenis-Robichaud, J., Kelton, D. F., Bauman, C. A., Barkema, H. W., Keefe, G. P., & Dubuc, J. (2019). Biosecurity and herd health management practices on Canadian dairy farms. Journal of Dairy Science, 102(10), 9536–9547. https://doi.org/10.3168/JDS.2018-15921spa
dc.relation.referencesDurkin, K., Rosewick, N., Artesi, M., Hahaut, V., Griebel, P., Arsic, N., Burny, A., Georges, M., & Van den Broeke, A. (2016). Characterization of novel Bovine Leukemia Virus (BLV) antisense transcripts by deep sequencing reveals constitutive expression in tumors and transcriptional interaction with viral microRNAs. Retrovirology, 13(1). https://doi.org/10.1186/S12977-016-0267-8spa
dc.relation.referencesEcheverri Z., J., Salazar R., V., & Parra S., J. (2011). Análisis comparativo de los grupos genéticos Holstein, Jersey y algunos de sus cruces en un hato lechero del Norte de Antioquia en Colombia. Zootecnia Tropical, 29(1), 49–59. http://ve.scielo.org/scielo.php?pid=S0798-72692011000100004&script=sci_abstractspa
dc.relation.referencesEmanuelson, U., Scherling, K., & Pettersson, H. (1992). Relationships between herd bovine leukemia virus infection status and reproduction, disease incidence, and productivity in Swedish dairy herds. Preventive Veterinary Medicine, 12(1–2), 121–131. https://doi.org/10.1016/0167-5877(92)90075-Qspa
dc.relation.referencesEvermann, J. F., & Jackson, M. K. (1997). Laboratory diagnostic tests for retroviral infections in dairy and beef cattle. The Veterinary Clinics of North America. Food Animal Practice, 13(1), 87–106. https://doi.org/10.1016/S0749-0720(15)30366-2spa
dc.relation.referencesFAO. (2018). Producción y productos lácteos: Ganado vacuno. Ganado Vacuno. https://www.fao.org/dairy-production-products/production/dairy-animals/cattle/es/spa
dc.relation.referencesFechner, H., Kurg, A., Geue, L., Blankenstein, P., Mewes, G., Ebner, D., & Beier, D. (1996). Evaluation of polymerase chain reaction (PCR) application in diagnosis of bovine leukaemia virus (BLV) infection in naturally infected cattle. Zentralblatt Fur Veterinarmedizin. Reihe B. Journal of Veterinary Medicine. Series B, 43(10), 621–630. https://doi.org/10.1111/j.1439-0450.1996.tb00361.xspa
dc.relation.referencesFEDEGAN. (2018). Ganadería colombiana, hoja de ruta 2018-2022. https://www.fedegan.org.co/estadisticas/documentos-de-estadisticaspa
dc.relation.referencesFEDEGAN. (2021). Cifras de referencia del sector ganadero colombiano. Fedegan, 49. https://estadisticas.fedegan.org.co/DOC/download.jsp?pRealName=Cifras_Referencia_2017.pdf&iIdFiles=641spa
dc.relation.referencesFrie, M. C., Sporer, K. R. B., Benitez, O. J., Wallace, J. C., Droscha, C. J., Bartlett, P. C., & Coussens, P. M. (2017). Dairy Cows Naturally Infected with Bovine Leukemia Virus Exhibit Abnormal B- and T-Cell Phenotypes after Primary and Secondary Exposures to Keyhole Limpet Hemocyanin. Frontiers in Veterinary Science, 4, 112. https://doi.org/10.3389/fvets.2017.00112spa
dc.relation.referencesGao, A., Kouznetsova, V. L., & Tsigelny, I. F. (2020). Bovine leukemia virus relation to human breast cancer: Meta-analysis. Microbial Pathogenesis, 149. https://doi.org/10.1016/J.MICPATH.2020.104417spa
dc.relation.referencesGillet, N., Florins, A., Boxus, M., Burteau, C., Nigro, A., Vandermeers, F., Balon, H., Bouzar, A.-B., Defoiche, J., Burny, A., Reichert, M., Kettmann, R., & Willems, L. (2007). Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology, 4, 18. https://doi.org/10.1186/1742-4690-4-18spa
dc.relation.referencesGobernación de Antioquia. (2019). Anuario Estadístico de Antioquia . http://www.antioquiadatos.gov.co/index.php/9-1-6-explotacion-bovina-y-produccion-de-2019spa
dc.relation.referencesGómez-Vega, S., Caicedo-Pinzón, R., & Vargas-Martínez, J. (2019). Strategic supplementation effect in a dairy system in Cundinamarca, Colombia. Rev Inv Vet Perú, 30(3), 1109–1116. https://doi.org/10.15381/rivep.v30i3.15302spa
dc.relation.referencesGonzález Bosoquet, L. (2003). Antisépticos y desinfectantes. Offarm, 22(3), 64–70. https://www.elsevier.es/es-revista-offarm-4-articulo-antisepticos-desinfectantes-13044452spa
dc.relation.referencesGutiérrez, S. E., Lützelschwab, C. M., Barrios, C. N., & Juliarena, M. A. (2020). Leucosis bovina. Revista de Investigaciones Veterinarias Del Perú, 31(3), e16913. https://doi.org/10.15381/rivep.v31i3.16913spa
dc.relation.referencesHaghparast, A., Tabatabaiezadeh, E., Mohammadi, G., & Kord, N. (2012). Prevalence of Bovine Leukemia Virus (BLV) antibodies in bulk tank milk of dairy cattle herds of Mashhad area, north-east of Iran. Journal of Animal and Veterinary Advances, 11(2), 276–280. https://doi.org/10.3923/JAVAA.2012.276.280spa
dc.relation.referencesHernandez, D., Montes, D., & Alvarez, L. A. (2018). Association of BoLA-DRB3.2 alleles with enzootic bovine leukosis: profiles BLV infection, persistent lymphocytosis and antibody production in Hart�n del Valle Cattle. Indian Journal of Science and Technology, 11(24), 1–14. https://doi.org/10.17485/ijst/2018/v11i24/128164spa
dc.relation.referencesHerrera Hernandez, D., Terranova Posso, A., & Hernandez herrera, D. (2011). Detección del virus de la leucosis bovina en ganado criollo colombiano mediante PCR-anidado. 60(4), 312–318. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0120-28122011000400003&lng=en&nrm=iso&tlng=esspa
dc.relation.referencesHopkins, S. G., & DiGiacomo, R. F. (1997). Natural transmission of bovine leukemia virus in dairy and beef cattle. The Veterinary Clinics of North America. Food Animal Practice, 13(1), 107–128. https://doi.org/10.1016/S0749-0720(15)30367-4spa
dc.relation.referencesICA, I. C. A. (2022). CENSO PECUARIO NACIONAL 2021. Minagricultura. https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018spa
dc.relation.referencesInoue, E., Matsumura, K., Soma, N., Hirasawa, S., Wakimoto, M., Arakaki, Y., Yoshida, T., Osawa, Y., & Okazaki, K. (2013). L233P mutation of the Tax protein strongly correlated with leukemogenicity of bovine leukemia virus. Veterinary Microbiology, 167(3–4), 364–371. https://doi.org/10.1016/j.vetmic.2013.09.026spa
dc.relation.referencesResolución No. 003714, (2015) (testimony of Instituto Colombiano Agropecuario). https://www.ica.gov.co/getattachment/3188abb6-2297-44e2-89e6-3a5dbd4db210/2015R3714.aspxspa
dc.relation.referencesRESOLUCIÓN No. 067449, (2020). https://www.ica.gov.co/getattachment/Areas/Pecuaria/Servicios/Inocuidad-en-las-Cadenas-Agroalimentarias/LISTADO-DE-PREDIOS-CERTIFICADOS-EN-BPG/Resolucion-067449-del-08-de-mayo-2020-1.pdf.aspx?lang=es-COspa
dc.relation.referencesInstituto Colombiano Agropecuario. (2022). BUENAS PRÁCTICAS GANADERAS - BPG. https://www.ica.gov.co/areas/pecuaria/servicios/inocuidad-en-las-cadenas-agroalimentarias/listado-de-predios-certificados-en-bpg.aspxspa
dc.relation.referencesJaimes-Dueñez, J., Triana-Chávez, O., & Mejía-Jaramillo, A. M. (2017). Parasitological and molecular surveys reveal high rates of infection with vector-borne pathogens and clinical anemia signs associated with infection in cattle from two important livestock areas in Colombia. Ticks and Tick-Borne Diseases, 8(2), 290–299. https://doi.org/10.1016/J.TTBDIS.2016.12.002spa
dc.relation.referencesJaśkowski, J. M., Kaczmarowski, M., Kulus, J., Jaśkowski, B. M., Herudzińska, M., & Gehrke, M. (2019). Rectal palpation for pregnancy in cows: A relic or an alternative to modern diagnostic methods. Medycyna Weterynaryjna, 75(5), 259–264. https://doi.org/10.21521/MW.6156spa
dc.relation.referencesKhalilian, M., Hosseini, S. M., & Madadgar, O. (2019). Bovine leukemia virus detected in the breast tissue and blood of Iranian women. Microbial Pathogenesis, 135, 103566. https://doi.org/10.1016/j.micpath.2019.103566spa
dc.relation.referencesKhamesipour, F., Doosti, A., Shahraki, A. K., & Goodarzi, M. (2013). Molecular detection of Bovine Leukemia Virus (BLV) in the frozen semen samples of bulls used for artificial insemination in Iran. Research Opinions in Animal and Veterinary Sciences, 3(11), 412–416.spa
dc.relation.referencesKononoff, P., & Clark, K. J. (2017). Water quality and requirements for Dairy Cattle. Nebraska Extension: Animal Agriculture, Dairy Issue, September 2017, 1–6. https://extensionpublications.unl.edu/assets/html/g2292/build/g2292.htmspa
dc.relation.referencesKuczewski, A., Hogeveen, H., Orsel, K., Wolf, R., Thompson, J., Spackman, E., & van der Meer, F. (2019). Economic evaluation of 4 bovine leukemia virus control strategies for Alberta dairy farms. Journal of Dairy Science, 102(3), 2578–2592. https://doi.org/10.3168/jds.2018-15341spa
dc.relation.referencesKuczewski, A., Mason, S., Orsel, K., & van der Meer, F. (2021). Pilot implementation of a newly developed bovine leukemia virus control program on 11 Alberta dairy farms. Journal of Dairy Science, 104(4), 4549–4560. https://doi.org/10.3168/JDS.2020-19251spa
dc.relation.referencesKuczewski, A., Orsel, K., Barkema, H. W., Mason, S., Erskine, R., & van der Meer, F. (2021). Invited review: Bovine leukemia virus—Transmission, control, and eradication. In Journal of Dairy Science (Vol. 104, Issue 6, pp. 6358–6375). https://doi.org/10.3168/jds.2020-18925spa
dc.relation.referencesKumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096spa
dc.relation.referencesLadronka, R. M., Ainsworth, S., Wilkins, M. J., Norby, B., Byrem, T. M., & Bartlett, P. C. (2018). Prevalence of Bovine Leukemia Virus Antibodies in US Dairy Cattle. Veterinary Medicine International, 2018. https://doi.org/10.1155/2018/5831278spa
dc.relation.referencesLairmore, M. D. (2014). Animal models of bovine leukemia virus and human T-lymphotrophic virus type-1: Insights in transmission and pathogenesis. Annual Review of Animal Biosciences, 2, 189–208. https://doi.org/10.1146/annurev-animal-022513-114117spa
dc.relation.referencesLE, D. T., Yamashita-Kawanishi, N., Okamoto, M., Nguyen, S. V., Nguyen, N. H., Sugiura, K., Miura, T., & Haga, T. (2020). Detection and genotyping of bovine leukemia virus (BLV) in Vietnamese cattle. The Journal of Veterinary Medical Science, 82(7), 1042–1050. https://doi.org/10.1292/jvms.20-0094spa
dc.relation.referencesLee, E., Kim, E.-J., Ratthanophart, J., Vitoonpong, R., Kim, B.-H., Cho, I.-S., Song, J.-Y., Lee, K.-K., & Shin, Y.-K. (2016). Molecular epidemiological and serological studies of bovine leukemia virus (BLV) infection in Thailand cattle. Infection, Genetics and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 41, 245–254. https://doi.org/10.1016/j.meegid.2016.04.010spa
dc.relation.referencesLin, Q., Lim, J. Y. C., Xue, K., Yin, P., Yew, M., Owh, C., Chee, P. L., & Loh, X. J. (2020). Sanitizing agents for virus inactivation and disinfection. View, 1(2), e16. https://doi.org/10.1002/VIW2.16spa
dc.relation.referencesLo, C. W., Borjigin, L., Saito, S., Fukunaga, K., Saitou, E., Okazaki, K., Mizutani, T., Wada, S., Takeshima, S. N., & Aida, Y. (2020). BoLA-DRB3 Polymorphism is Associated with Differential Susceptibility to Bovine Leukemia Virus-Induced Lymphoma and Proviral Load. Viruses, 12(3). https://doi.org/10.3390/V12030352spa
dc.relation.referencesLo, C. W., Takeshima, S. N., Okada, K., Saitou, E., Fujita, T., Matsumoto, Y., Wada, S., Inoko, H., & Aida, Y. (2021). Association of Bovine Leukemia Virus-Induced Lymphoma with BoLA-DRB3 Polymorphisms at DNA, Amino Acid, and Binding Pocket Property Levels. Pathogens 2021, Vol. 10, Page 437, 10(4), 437. https://doi.org/10.3390/PATHOGENS10040437spa
dc.relation.referencesLo, C. W., Takeshima, S. nosuke, Wada, S., Matsumoto, Y., & Aida, Y. (2021). Bovine major histocompatibility complex (BoLA) heterozygote advantage against the outcome of bovine leukemia virus infection. HLA, 98(2), 132–139. https://doi.org/10.1111/tan.14285spa
dc.relation.referencesLohr, C. E., Sporer, K. R. B., Brigham, K. A., Pavliscak, L. A., Mason, M. M., Borgman, A., Ruggiero, V. J., Taxis, T. M., Bartlett, P. C., & Droscha, C. J. (2022). Phenotypic Selection of Dairy Cattle Infected with Bovine Leukemia Virus Demonstrates Immunogenetic Resilience through NGS-Based Genotyping of BoLA MHC Class II Genes. Pathogens (Basel, Switzerland), 11(1). https://doi.org/10.3390/PATHOGENS11010104spa
dc.relation.referencesMamoun, R. Z., Morisson, M., Rebeyrotte, N., Busetta, B., Couez, D., Kettmann, R., Hospital, M., & Guillemain, B. (1990). Sequence variability of bovine leukemia virus env gene and its relevance to the structure and antigenicity of the glycoproteins. Journal of Virology, 64(9), 4180–4188. https://doi.org/10.1128/jvi.64.9.4180-4188.1990spa
dc.relation.referencesMarawan, M. A., Alouffi, A., El Tokhy, S., Badawy, S., Shirani, I., Dawood, A., Guo, A., Almutairi, M. M., Alshammari, F. A., & Selim, A. (2021). Bovine leukaemia virus: Current epidemiological circumstance and future prospective. In Viruses (Vol. 13, Issue 11). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/v13112167spa
dc.relation.referencesMiller, S. A., Dykes, D. D., & Polesky, H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16(3), 1215. https://doi.org/10.1093/nar/16.3.1215spa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural. (2012). Resolucion 000017 de 2012 (p. 18). https://www.minagricultura.gov.co/ministerio/direcciones/Documents/d.angie/Res 000017 de 2012.pdfspa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural. (2020a). Análisis situacional Cadena láctea. http://www.andi.com.co/Uploads/20200430_DT_AnalSitLecheLarga_AndreaGonzalez.pdfspa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural. (2020b). Sector Lácteo. https://sioc.minagricultura.gov.co/SICLA/Documentos/2020-06-30 Cifras Sectoriales.pdfspa
dc.relation.referencesMohammadi, V., Atyabi, N., Brujeni, G. N., & Lotfollahzadeh, S. (2011). Seroprevalence of Bovine Leukemia Virus in Some Dairy Farms in Iran Emerging and Re-emerging Infectious Diseases in Iran View project. Global Veterinaria, 7(3). https://www.researchgate.net/publication/216677145spa
dc.relation.referencesMomont, H. (1990). Rectal palpation: The Bovine Practitioner, 122–123. https://doi.org/10.21423/BOVINE-VOL0NO25P122-123spa
dc.relation.referencesMoorer, W. R. (2003). Antiviral activity of alcohol for surface disinfection. International Journal of Dental Hygiene, 1(3), 138–142. https://doi.org/10.1034/J.1601-5037.2003.00032.Xspa
dc.relation.referencesMúnera Bedoya, O. D., Dagher Cassoli, L., Olivera Ángel, M., & Cerón Muñoz, M. F. (2018). Characterization of dairy farms with mechanical milking in Antioquia, Colombia. Livestock Research for Rural Development, 30(5). http://www.lrrd.org/lrrd30/5/ceron30086.htmlspa
dc.relation.referencesMurakami, K., Kobayashi, S., Konishi, M., Kameyama, K. ichiro, Yamamoto, T., & Tsutsui, T. (2011). The recent prevalence of bovine leukemia virus (BLV) infection among Japanese cattle. Veterinary Microbiology, 148(1), 84–88. https://doi.org/10.1016/J.VETMIC.2010.08.001spa
dc.relation.referencesNorton, E. C., Dowd, B. E., & Maciejewski, M. L. (2018). Odds Ratios—Current Best Practice and Use. JAMA, 320(1), 84–85. https://doi.org/10.1001/JAMA.2018.6971spa
dc.relation.referencesNotsu, K., El Daous, H., Mitoma, S., Norimine, J., & Sekiguchi, S. (2022). A pooled testing system to rapidly identify cattle carrying the elite controller BoLA-DRB3*009:02 haplotype against bovine leukemia virus infection. HLA, 99(1), 12–24. https://doi.org/10.1111/TAN.14502spa
dc.relation.referencesOhno, A., Takeshima, S. nosuke, Matsumoto, Y., & Aida, Y. (2015). Risk factors associated with increased bovine leukemia virus proviral load in infected cattle in Japan from 2012 to 2014. Virus Research, 210, 283–290. https://doi.org/10.1016/J.VIRUSRES.2015.08.020spa
dc.relation.referencesOIE. (2018). Enzootic Bovine Leukosis. In OIE Terrestrial Manual. https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.04.10_EBL.pdfspa
dc.relation.referencesOjeda, J., Salgado, M., Encina, C., Santamaria, C., & Monti, G. (2018). Evidence of interspecies transmission of pathogenic Leptospira between livestock and a domestic cat dwelling in a dairy cattle farm. Journal of Veterinary Medical Science, 80(8), 16–0361. https://doi.org/10.1292/JVMS.16-0361spa
dc.relation.referencesOlaya-Galán, N. N., Corredor-Figueroa, A. P., Guzmán-Garzón, T. C., Ríos-Hernandez, K. S., Salas-Cárdenas, S. P., Patarroyo, M. A., & Gutierrez, M. F. (2017). Bovine leukaemia virus DNA in fresh milk and raw beef for human consumption. Epidemiology and Infection, 145(15), 3125–3130. https://doi.org/10.1017/S0950268817002229spa
dc.relation.referencesOrtiz, D., Sanchez, A., Tobon, J., Chaparro, Y., Cortes, S., & Gutierrez, M. F. (2016). Seroprevalence and risk factors associated with bovine leukemia virus in Colombia. Journal of Veterinary Medicine and Animal Health, 8(5), 35–43. https://doi.org/10.5897/JVMAH2016.0457spa
dc.relation.referencesOtta, S. L., Johnson, R., & Wells, S. J. (2003). Association between bovine-leukosis virus seroprevalence and herd-level productivity on US dairy farms. Preventive Veterinary Medicine, 61(4), 249–262. https://doi.org/10.1016/j.prevetmed.2003.08.003spa
dc.relation.referencesPluta, A., Blazhko, N. V., Ngirande, C., Joris, T., Willems, L., & Kuźmak, J. (2021). Analysis of Nucleotide Sequence of Tax, miRNA and LTR of Bovine Leukemia Virus in Cattle with Different Levels of Persistent Lymphocytosis in Russia. Pathogens (Basel, Switzerland), 10(2), 1–21. https://doi.org/10.3390/PATHOGENS10020246spa
dc.relation.referencesPluta, A., Jaworski, J. P., & Douville, R. N. (2020). Regulation of expression and latency in BLV and HTLV. In Viruses (Vol. 12, Issue 10). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/v12101079spa
dc.relation.referencesPluta, A., Willems, L., Douville, R. N., & Kuźmak, J. (2020). Effects of naturally occurring mutations in bovine leukemia virus 5′‐ltr and tax gene on viral transcriptional activity. Pathogens, 9(10), 1–28. https://doi.org/10.3390/pathogens9100836spa
dc.relation.referencesPolanco-Echeverry, D. N., & Ríos-Osorio, L. A. (2016). Aspectos biológicos y ecológicos de las garrapatas duras. Ciencia & Tecnología Agropecuaria, 17(1), 81–95. https://doi.org/10.21930/rcta.vol17_num1_art:463spa
dc.relation.referencesPolat, M., Takeshima, S. N., & Aida, Y. (2017). Epidemiology and genetic diversity of bovine leukemia virus. In Virology Journal (Vol. 14, Issue 1). https://doi.org/10.1186/s12985-017-0876-4spa
dc.relation.referencesPolat, M., Takeshima, S. nosuke, Hosomichi, K., Kim, J., Miyasaka, T., Yamada, K., Arainga, M., Murakami, T., Matsumoto, Y., Barra Diaz, V., Panei, C. J., González, E. T., Kanemaki, M., Onuma, M., Giovambattista, G., & Aida, Y. (2016). A new genotype of bovine leukemia virus in South America identified by NGS-based whole genome sequencing and molecular evolutionary genetic analysis. Retrovirology, 13(1). https://doi.org/10.1186/s12977-016-0239-zspa
dc.relation.referencesPortetelle, D., Couez, D., Bruck, C., Kettmann, R., Mammerickx, M., Van der Maaten, M., Brasseur, R., & Burny, A. (1989). Antigenic variants of bovine leukemia virus (BLV) are defined by amino acid substitutions in the NH2 part of the envelope glycoprotein gp51. Virology, 169(1), 27–33. https://doi.org/10.1016/0042-6822(89)90037-8spa
dc.relation.referencesQuiroga Calderón, E. G., Gatica Colima, A. B., & Carlo Rojas, Z. (2021). Los Factores de Riesgo Asociados a Parásitos Gastrointestinales en Animales de Producción. Cultura Científica y Tecnológica, 18(3), 1–11. https://doi.org/10.20983/culcyt.2021.3.21.1spa
dc.relation.referencesRashid, T., VonVille, H. M., Hasan, I., & Garey, K. W. (2016). Shoe soles as a potential vector for pathogen transmission: a systematic review. Journal of Applied Microbiology, 121(5), 1223–1231. https://doi.org/10.1111/JAM.13250spa
dc.relation.referencesReinemann, D. J. (2000). REVIEW OF PRACTICES FOR CLEANING AND SANITATION OF MILKING.spa
dc.relation.referencesRhodes, J. K., Pelzer, K. D., & Johnson, Y. J. (2003). Economic implications of bovine leukemia virus infection in mid-Atlantic dairy herds. Journal of the American Veterinary Medical Association, 223(3), 346–352. https://doi.org/10.2460/javma.2003.223.346spa
dc.relation.referencesRiera, M. A., Rojas, M. E., & Zapata, P. D. (2010). Protocolo de extracción de DNA por salting-out para pequeños volúmenes de sangre. Revista de Ciencia y Tecnología, 1(14), 4–7. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1851-75872010000200001spa
dc.relation.referencesRola‐łuszczak, M., Sakhawat, A., Pluta, A., Ryło, A., Bomba, A., Bibi, N., & Kuźmak, J. (2021). Molecular Characterization of the env Gene of Bovine Leukemia Virus in Cattle from Pakistan with NGS-Based Evidence of Virus Heterogeneity. Pathogens (Basel, Switzerland), 10(7). https://doi.org/10.3390/PATHOGENS10070910spa
dc.relation.referencesRuiz, V., Porta, N. G., Lomónaco, M., Trono, K., & Alvarez, I. (2018). Bovine Leukemia virus infection in neonatal calves. risk factors and control measures. Frontiers in Veterinary Science, 5(OCT). https://doi.org/10.3389/fvets.2018.00267spa
dc.relation.referencesSagata, N., Yasunaga, T., Tsuzuku-Kawamura, J., Ohishi, K., Ogawa, Y., & Ikawa, Y. (1985). Complete nucleotide sequence of the genome of bovine leukemia virus: Its evolutionary relationship to other retroviruses. Proceedings of the National Academy of Sciences of the United States of America, 82(3). https://doi.org/10.1073/pnas.82.3.677spa
dc.relation.referencesSandev, N., Ilieva, D., Sizov, I., Rusenova, N., Iliev, E., N.Sandev, Ilieva, D., Sizov, I., Rusenova, N., & Iliev, E. (2006). Prevalence of enzootic bovine leukosis in the Republic of Bulgaria in 1997-2004. Veterinarski Archiv, 2006, 76, (3), 263-268., 76(3), 263–268.spa
dc.relation.referencesSargeant, J. M., Kelton, D. F., Martin, S. W., & Mann, E. D. (1997). Associations between farm management practices, productivity, and bovine leukemia virus infection in Ontario dairy herds. Preventive Veterinary Medicine, 31(3–4), 211–221. https://doi.org/10.1016/S0167-5877(96)01140-3spa
dc.relation.referencesSchwartz, I., & Lévy, D. (1994). Pathobiology of bovine leukemia virus. In Veterinary research (Vol. 25, Issue 6, pp. 521–536).spa
dc.relation.referencesSecretaría de Agricultura y Desarrollo Rural. (2019). Anuario Estadístico del Sector Agropecuario en el Departamento de Antioquia 2018. In Gobernación de Antioquia.spa
dc.relation.referencesSelim, A., Manaa, E. A., Alanazi, A. D., & Alyousif, M. S. (2021). Seroprevalence, risk factors and molecular identification of bovine leukemia virus in egyptian cattle. Animals, 11(2), 1–9. https://doi.org/10.3390/ani11020319spa
dc.relation.referencesŞevik, M., Avcı, O., & İnce, Ö. B. (2015). An 8-year longitudinal sero-epidemiological study of bovine leukaemia virus (BLV) infection in dairy cattle in Turkey and analysis of risk factors associated with BLV seropositivity. Tropical Animal Health and Production, 47(4), 715–720. https://doi.org/10.1007/S11250-015-0783-X/METRICSspa
dc.relation.referencesStarciuc, N., Osadci, N., Petcu, I., Malancea, N., Bordos, X., & Ungureanu, V. (2018). Comparative Efficiency of Various Disinfectants Used in the Cattle Farm. “Agriculture for Life, Life for Agriculture” Conference Proceedings, 1(1), 485–489. https://doi.org/10.2478/ALIFE-2018-0076spa
dc.relation.referencesSuárez, A., Cristina, Á., Parra, B., & Andrés, C. (2017). Actualización de la leptospirosis bovina en colombia actualización de la leptospirosis bovina en colombia bovine leptospirosis update in colombia abstract. In kmilo215@hotmail.com (Vol. 7, Issue 1). https://revista.jdc.edu.co/index.php/conexagro/article/view/572spa
dc.relation.referencesSultanov, A., Rola-Łuszczak, M., Mamanova, S., Ryło, A., Osiński, Z., Saduakassova, M. A., Bashenova, E., & Kuźmak, J. (2022). Molecular Characterization of Bovine Leukemia Virus with the Evidence of a New Genotype Circulating in Cattle from Kazakhstan. Pathogens, 11(2). https://doi.org/10.3390/pathogens11020180spa
dc.relation.referencesSzewczuk, M., Zych, S., & Katafiasz, S. (2012). Diagnosis of the bovine leukaemia virus infection in Polish Holstein-Friesian cows and comparison of their milk productivity. Acta Veterinaria Brno, 81, 353–358. https://doi.org/10.2754/avb201281040353spa
dc.relation.referencesTajima, S., & Aida, Y. (2000). The Region between Amino Acids 245 and 265 of the Bovine Leukemia Virus (BLV) Tax Protein Restricts Transactivation Not Only via the BLV Enhancer but Also via Other Retrovirus Enhancers. Journal of Virology, 74(23), 10939–10949. https://doi.org/10.1128/jvi.74.23.10939-10949.2000spa
dc.relation.referencesTajima, S., & Aida, Y. (2002). Mutant tax protein from bovine leukemia virus with enhanced ability to activate the expression of c-fos. Journal of Virology, 76(5), 2557–2562. https://doi.org/10.1128/jvi.76.5.2557-2562.2002spa
dc.relation.referencesTajima, S., Takahashi, M., Takeshima, S.-N., Konnai, S., Yin, S. A., Watarai, S., Tanaka, Y., Onuma, M., Okada, K., & Aida, Y. (2003). A mutant form of the tax protein of bovine leukemia virus (BLV), with enhanced transactivation activity, increases expression and propagation of BLV in vitro but not in vivo. Journal of Virology, 77(3), 1894–1903. https://doi.org/10.1128/jvi.77.3.1894-1903.2003spa
dc.relation.referencesTakeshima, S. N., Ohno, A., & Aida, Y. (2019). Bovine leukemia virus proviral load is more strongly associated with bovine major histocompatibility complex class II DRB3 polymorphism than with DQA1 polymorphism in Holstein cow in Japan. Retrovirology, 16(1). https://doi.org/10.1186/s12977-019-0476-zspa
dc.relation.referencesTemple, M., & Manteca, X. (2012). Efecto del descornado y del desmochado en el bienestar del ganado vacuno. 2. https://www.fawec.org/es/fichas-tecnicas/21-ganado-vacuno/20-efecto-del-descornado-y-del-desmochado-en-el-bienestar-del-ganado-vacunospa
dc.relation.referencesTomiyasu, T., Sato, A., Mori, H., & Okazaki, K. (2021). L233P mutation in the bovine leukemia virus Tax protein has impact on annexin A3 and type I collagen secretion by host cells. Veterinary Microbiology, 256, 109042. https://doi.org/10.1016/J.VETMIC.2021.109042spa
dc.relation.referencesTwizere, J.-C., Kerkhofs, P., Burny, A., Portetelle, D., Kettmann, R., & Willems, L. (2000). Discordance between Bovine Leukemia Virus Tax Immortalization In Vitro and Oncogenicity In Vivo. Journal of Virology, 74(21), 9895–9902. https://doi.org/10.1128/jvi.74.21.9895-9902.2000spa
dc.relation.referencesÚsuga-Monroy, C. (2019). Virus de la leucosis bovina: respuesta inmune y caracterización filogenética como herramientas para el entendimiento de la enfermedad. Universidad Nacional de Colombia.spa
dc.relation.referencesÚsuga-Monroy, C., Díaz, F. J., Echeverri-Zuluaga, J., González-Herrera, L. G., & López-Herrera, A. (2021). PRESENCIA DEL VIRUS DE LA LEUCOSIS BOVINA EN MUESTRAS DE CALOSTRO Y SU POTENCIAL PARA INFECTAR TERNEROS. Chilean Journal of Agricultural & Animal Sciences, 37(2 SE-), 167–176. https://revistas.udec.cl/index.php/chjaas/article/view/5236spa
dc.relation.referencesÚsuga-Monroy, C., Díaz, F. J., Echeverri-Zuluaga, J. J., González-Herrera, L. G., López-Herrera, A., Úsuga-Monroy, C., Díaz, F. J., Echeverri-Zuluaga, J. J., González-Herrera, L. G., & López-Herrera, A. (2018). Presence of bovine leukemia virus genotypes 1 and 3 in Antioquia, Colombia. Revista U.D.C.A Actualidad & Divulgación Científica, 21(1), 119–126. https://doi.org/10.31910/rudca.v21.n1.2018.670spa
dc.relation.referencesÚsuga-Monroy, C., Echeverri-Zuluaga, J. J., & López-Herrera, A. (2018a). Detección molecular y serológica del virus de la leucosis bovina en una población de vacas Holstein, de Colombia. Revista Mexicana de Ciencias Pecuarias, 9(2). https://doi.org/10.22319/rmcp.v9i2.4232spa
dc.relation.referencesÚsuga-Monroy, C., Echeverri-Zuluaga, J. J., & López-Herrera, A. (2018b). Molecular and serological detection of bovine leukemia virus in a population of Holstein cows, from Colombia. Revista Mexicana De Ciencias Pecuarias, 9(2), 387–399. https://doi.org/10.22319/rmcp.v9i2.4232spa
dc.relation.referencesÚsuga-Monroy, C., Echeverri, J. J., & López-Herrera, A. (2018). El componente racial influencia la resistencia a la infección con el virus de la leucosis bovina. Revista de La Facultad de Medicina Veterinaria y de Zootecnia, 65(2). https://doi.org/10.15446/rfmvz.v65n2.75632spa
dc.relation.referencesÚsuga-Monroy, C., Zuluaga, J. J., & López-Herrera, A. (2018). Bovine leukemia virus decreases milk production and quality in Holstein cattle. Archivos de Zootecnia, 67(258), 254–259. https://doi.org/10.21071/az.v67i258.3661spa
dc.relation.referencesVan Den Broeke, A., Bagnis, C., Ciesiolka, M., Cleuter, Y., Gelderblom, H., Kerkhofs, P., Griebel, P., Mannoni, P., & Burny, A. (1999). In vivo rescue of a silent tax-deficient bovine leukemia virus from a tumor-derived ovine B-cell line by recombination with a retrovirally transduced wild-type tax gene. Journal of Virology, 73(2), 1054–1065. https://doi.org/10.1128/JVI.73.2.1054-1065.1999spa
dc.relation.referencesVargas-Cuy, D. H. (2019). Anaplasmosis y babesiosis: estudio actual. Pensamiento y Acción, 26.spa
dc.relation.referencesWingChing-Jones, R., Monge-Meza, J., & Pérez Salas, R. (2009). Roedores pequeños en un sistema de producción de ganado lechero. Agronomía Mesoamericana, 20(1), 127. https://doi.org/10.15517/AM.V20I1.4988spa
dc.relation.referencesWu, D., Murakami, K., Morooka, A., Jin, H., Inoshima, Y., & Sentsui, H. (2003). In vivo transcription of bovine leukemia virus and bovine immunodeficiency-like virus. Virus Research, 97(2), 81–87. https://doi.org/10.1016/S0168-1702(03)00222-3spa
dc.relation.referencesYang, Y., Fan, W., Mao, Y., Yang, Z., Lu, G., Zhang, R., Zhang, H., Szeto, C., & Wang, C. (2016). Bovine leukemia virus infection in cattle of China: Association with reduced milk production and increased somatic cell score. Journal of Dairy Science, 99(5), 3688–3697. https://doi.org/10.3168/jds.2015-10580spa
dc.relation.referencesYu, C., Wang, X., Zhou, Y., Wang, Y., Zhang, X., & Zheng, Y. (2019). Genotyping bovine leukemia virus in dairy cattle of Heilongjiang, northeastern China. BMC Veterinary Research, 15(1). https://doi.org/10.1186/s12917-019-1863-3spa
dc.relation.referencesZapata Salas, R., Cardona Zuluaga, E. A., Reyes Vélez, J., Triana Chávez, O., Peña García, V. H., Ríos Osorio, L. A., Barahona Rosales, R., Polanco Echeverry, D., Zapata Salas, R., Cardona Zuluaga, E. A., Reyes Vélez, J., Triana Chávez, O., Peña García, V. H., Ríos Osorio, L. A., Barahona Rosales, R., & Polanco Echeverry, D. (2017). Tripanosomiasis bovina en ganadería lechera de trópico alto: primer informe de Haematobia irritans como principal vector de T. vivax y T. evansi en Colombia. Revista de Medicina Veterinaria, 33, 21–34. https://doi.org/10.19052/MV.4048spa
dc.relation.referencesZyrianova, I. M., & Kovalchuk, S. N. (2020). Bovine leukemia virus tax gene/Tax protein polymorphism and its relation to Enzootic Bovine Leukosis. Virulence, 11(1), 80–87. https://doi.org/10.1080/21505594.2019.1708051spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animalspa
dc.subject.lembGanado lecherospa
dc.subject.lembDairy cattleeng
dc.subject.lembEnefermedades en el ganadospa
dc.subject.lembLivestock - diseaseseng
dc.subject.proposalGenotipospa
dc.subject.proposalInfecciónspa
dc.subject.proposalLeucosis Bovina Enzoóticaspa
dc.subject.proposalPrevalenciaspa
dc.subject.proposalFactor de riesgospa
dc.subject.proposalProvirusspa
dc.subject.proposalReacción en cadena de la polimerasaspa
dc.subject.proposalRetrovirusspa
dc.subject.proposalGenotypeeng
dc.subject.proposalEnzootic Bovine Leukemiaeng
dc.subject.proposalInfectioneng
dc.subject.proposalPrevalenceeng
dc.subject.proposalProviruseng
dc.subject.proposalPolymerase Chain Reactioneng
dc.subject.proposalRetroviruseng
dc.subject.proposalRisk Factoreng
dc.titleVirus de la leucosis bovina en las lecherías de Antioquia: prevalencia molecular, genotipos circulantes y factores asociados a su circulaciónspa
dc.title.translatedBovine leukemia virus in Antioquia dairies: molecular prevalence, circulating genotypes and factors associated with its circulation.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameCONVOCATORIA CONJUNTA DE PROYECTOS DE I+D+i EN EL MARCO DE LA AGENDA REGIONAL DE I+D -> ispa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Informe final tesis de maestria Daniela Castillo.pdf
Tamaño:
2.29 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: