Virus de la leucosis bovina en las lecherías de Antioquia: prevalencia molecular, genotipos circulantes y factores asociados a su circulación
dc.contributor.advisor | Úsuga Monroy, Cristina | |
dc.contributor.advisor | López Herrera, Albeiro | |
dc.contributor.author | Castillo Rey, Daniela | |
dc.contributor.orcid | Castillo Rey, Daniela [0000-0001-6113-1029] | spa |
dc.contributor.orcid | Úsuga Monroy, Cristina [0000-0001-6101-2994] | spa |
dc.contributor.orcid | López Herrera, Albeiro [0000-0003-1444-3470] | spa |
dc.contributor.researchgroup | Biodiversidad y Génetica Molecular "Biogem" | spa |
dc.date.accessioned | 2023-09-06T18:07:31Z | |
dc.date.available | 2023-09-06T18:07:31Z | |
dc.date.issued | 2023-01-30 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | El virus de la leucosis bovina (BLV) es un retrovirus que afecta los sistemas de producción de lechería especializada en todo el mundo, relacionado con menor producción de leche y reducción en la vida de los animales infectados. Se han identificado once genotipos del virus circulando y actualmente no existe tratamiento ni vacuna para la enfermedad por lo que las estrategias de control son esenciales. En Colombia la lechería contribuye a la economía y sustento alimentario del país, Antioquia es departamento mayor productor. Para establecer el estado actual del BLV en los sistemas productivos de Antioquia se seleccionaron 575 bovinos pertenecientes a 53 hatos de las regiones Norte, Oriente y Valle de Aburrá, de diferentes razas y edades. Se hizo la caracterización de los sistemas productivos, se estudió la prevalencia molecular mediante una PCR anidada del gen env de BLV, resultando un 17,04% en animales y 75,5% en hatos y por un estudio filogenético del gen tax estableciendo la presencia únicamente del genotipo 1. Además, se determinaron factores de riesgo y de protección asociados a la infección, encontrando que prácticas como el ordeño mecánico y la inseminación artificial (con semen sin conocer estatus microbiológico) suponen un riesgo de infección con BLV y como factores de protección se encontraron de desinfectantes alcoholes y agentes alquilantes y la implementación de sistemas de pediluvio. Los resultados encontrados en este estudio muestran la necesidad de plantear un programa de prevención y educación para controlar la infección por BLV y minimizar las pérdidas económicas que supone la infección. (Texto tomado de la fuente) | spa |
dc.description.curriculararea | Área Curricular Biotecnología | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Biotecnología | spa |
dc.description.methods | Diseño experimental y muestra | spa |
dc.description.researcharea | Biotecnología animal | spa |
dc.description.sponsorship | Gobernación de Antioquia | spa |
dc.description.sponsorship | COLANTA | spa |
dc.format.extent | xvii, 197 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84655 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Ciencias - Maestría en Ciencias - Biotecnología | spa |
dc.relation.indexed | Agrosavia | spa |
dc.relation.indexed | RedCol | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.indexed | Agrovoc | spa |
dc.relation.references | Abdala, A., Alvarez, I., Brossel, H., Calvinho, L., Carignano, H., Franco, L., Gazon, H., Gillissen, C., Hamaidia, M., Hoyos, C., Jacques, J. R., Joris, T., Laval, F., Petersen, M., Porquet, F., Porta, N., Ruiz, V., Safari, R., Suárez Archilla, G., … Willems, L. (2019). BLV: Lessons on vaccine development. In Retrovirology (Vol. 16, Issue 1). https://doi.org/10.1186/s12977-019-0488-8 | spa |
dc.relation.references | Abdullah, D. A., Ali, M. S., Omer, S. G., Ola-Fadunsin, S. D., Ali, F. F., & Gimba, F. I. (2019). Prevalence and climatic influence on hemoparasites of cattle and sheep in Mosul, Iraq. Journal of Advanced Veterinary and Animal Research, 6(4), 492. https://doi.org/10.5455/JAVAR.2019.F373 | spa |
dc.relation.references | Alkan, F., Karayel-Hacioglu, I., Duran Yelken, S., & Coskun, N. (2021). The genotype determination and molecular characterization of bovine leukemia virus in Turkey. Veterinarski Arhiv, 91(3), 237–247. https://doi.org/10.24099/VET.ARHIV.1214 | spa |
dc.relation.references | Alvarez H., J. E., Rios Y., L. M., Reconco, R., Rendón, J., & Moncada, M. (2021). Análisis de factibilidad técnica y económica para un proyecto de lechería especializada en el Norte Antioqueño, Colombia [Escuela Agrícola Panamericana]. https://bdigital.zamorano.edu/items/131afdc8-9a29-4fcf-993e-83dec238ae30 | spa |
dc.relation.references | Andoh, K., Akagami, M., Nishimori, A., Matsuura, Y., Kumagai, A., & Hatama, S. (2021). Novel single nucleotide polymorphisms in the bovine leukemia virus genome are associated with proviral load and affect the expression profile of viral non-coding transcripts. Veterinary Microbiology, 261. https://doi.org/10.1016/J.VETMIC.2021.109200 | spa |
dc.relation.references | Arainga, M., Takeda, E., & Aida, Y. (2012). Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis. BMC Genomics, 13, 121. https://doi.org/10.1186/1471-2164-13-121 | spa |
dc.relation.references | Arnaud, F., Nicolas, G., Mathieu, B., Pierre, K., Richard, K., & Luc, W. (2007). Even Attenuated Bovine Leukemia Virus Proviruses Can Be Pathogenic in Sheep. Journal of Virology, 81(18), 10195–10200. https://doi.org/10.1128/JVI.01058-07 | spa |
dc.relation.references | Arunvipas, P., Inpankaew, T., & Jittapalapong, S. (2011). Risk factors of Neospora caninum infection in dogs and cats in dairy farms in Western Thailand. Tropical Animal Health and Production 2011 44:5, 44(5), 1117–1121. https://doi.org/10.1007/S11250-011-0048-2 | spa |
dc.relation.references | Arunvipas, P., Jittapalapong, S., Inpankaew, T., Pinyopanuwat, N., Chimnoi, W., & Maruyama, S. (2013). Seroprevalence and risk factors influenced transmission of Toxoplasma gondii in dogs and cats in dairy farms in Western Thailand. African Journal of Agricultural Research, 8(7), 591–595. https://doi.org/10.5897/AJAR11.2209 | spa |
dc.relation.references | Barrios, D., & Olivera, M. (2013). Análisis de la competitividad del sector lechero: Caso aplicado al norte de Antioquia, Colombia. Innovar, 23(48), 33–42. http://www.scielo.org.co/pdf/inno/v23n48/v23n48a04.pdf | spa |
dc.relation.references | Bartlett, P. C., Ruggiero, V. J., Hutchinson, H. C., Droscha, C. J., Norby, B., Sporer, K. R. B., & Taxis, T. M. (2020). Current Developments in the Epidemiology and Control of Enzootic Bovine Leukosis as Caused by Bovine Leukemia Virus. Pathogens (Basel, Switzerland), 9(12). https://doi.org/10.3390/pathogens9121058 | spa |
dc.relation.references | Bartlett, P. C., Sordillo, L. M., Byrem, T. M., Norby, B., Grooms, D. L., Swenson, C. L., Zalucha, J., & Erskine, R. J. (2014). Options for the control of bovine leukemia virus in dairy cattle. Journal of the American Veterinary Medical Association, 244(8), 914–922. https://doi.org/10.2460/javma.244.8.914 | spa |
dc.relation.references | Bedoya Mejía, O., & Loaiza Muñoz, E. (2020). Control lechero en el norte Antioqueño [Corporación Universitaria Lasallista]. http://hdl.handle.net/10567/2746 | spa |
dc.relation.references | Benavides-Ortiz, E., & Polanco Palencia, N. (2017). Epidemiología de hemoparásitos y endoparásitos en bovinos de zonas de reconversión ganadera en La Macarena (Meta, Colombia). Revista de Medicina Veterinaria, 34(34), 115. https://doi.org/10.19052/mv.4260 | spa |
dc.relation.references | Benavides, B., Muñoz, S., & Ceriani, C. (2016). Análisis molecular de un fragmento del gen env del virus de leucosis bovina, por PCR anidada en vacas lecheras de Pasto, Nariño. Revista de Medicina Veterinaria, 33, 67–75. https://doi.org/10.19052/mv.4054 | spa |
dc.relation.references | Benavides, B., Quevedo, D. A., & de La Cruz, M. F. (2013). Epidemiological study of bovine leukemia virus in dairy cows in six herds in the municipality of Pasto, Nariño. Revista Lasallista de Investigacion, 10(1), 18–23. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794-44492013000100003 | spa |
dc.relation.references | Benavides Ortiz, E., Romero Prada, J., & Villamil Jimènez Luis, C. (2016). Las garrapatas del ganado bovino y los agentes de enfermedad que transmiten en escenarios epidemiològicos de cambio climático. https://agriperfiles.agri-d.net/display/n110615 | spa |
dc.relation.references | Blazhko, N., Vyshegurov, S., Donchenko, A., Shatokhin, K., Ryabinina, V., Plotnikov, K., Khodakova, A., & Pashkovskiy, S. (2020). Genotypes diversity of env gene of Bovine leukemia virus in Western Siberia. BMC Genetics, 21(Suppl 1), 70. https://doi.org/10.1186/s12863-020-00874-y | spa |
dc.relation.references | Bojarojć-Nosowicz, B., & Kaczmarczyk, E. (2006). Somatic cell count and chemical composition of milk in naturally BLV-infected cows with different phenotypes of blood leukocyte acid phosphatase. Archives Animal Breeding, 49(1), 17–28. https://doi.org/10.5194/aab-49-17-2006 | spa |
dc.relation.references | Borjigin, L., Lo, C. W., Bai, L., Hamada, R., Sato, H., Yoneyama, S., Yasui, A., Yasuda, S., Yamanaka, R., Mimura, M., Inokuma, M., Shinozaki, Y., Tanaka, N., Takeshima, S. N., & Aida, Y. (2021). Risk Assessment of Bovine Major Histocompatibility Complex Class II DRB3 Alleles for Perinatal Transmission of Bovine Leukemia Virus. Pathogens (Basel, Switzerland), 10(5). https://doi.org/10.3390/PATHOGENS10050502 | spa |
dc.relation.references | Bravo-Parra, A. M. (2020). Cadenas sostenibles ante un clima cambiante La ganadería en Colombia. https://www.giz.de/de/downloads/GIZ_CIAT_GanaderiaPag_sencillas_web.pdf | spa |
dc.relation.references | Buehring, G. C., Delaney, A., Shen, H., Chu, D. L., Razavian, N., Schwartz, D. A., Demkovich, Z. R., & Bates, M. N. (2019). Bovine leukemia virus discovered in human blood. BMC Infectious Diseases, 19(1). https://doi.org/10.1186/s12879-019-3891-9 | spa |
dc.relation.references | Buehring, G. C., Shen, H. M., Jensen, H. M., Choi, K. Y., Sun, D., & Nuovo, G. (2014). Bovine leukemia virus DNA in human breast tissue. Emerging Infectious Diseases, 20(5), 772–782. https://doi.org/10.3201/eid2005.131298 | spa |
dc.relation.references | Bulla-Castañeda, D. M., Díaz-Anaya, A. M., Garcia-Corredor, D. J., Tobón-Torreglosa, J. C., Ortega, D. O., & Pulido-Medellín, M. O. (2021). Seropositivity and risk factors associated with the presentation of bovine leukosis virus in Sotaquirá, Colombia. Veterinary World, 14(8), 2212–2218. https://doi.org/10.14202/VETWORLD.2021.2212-2218 | spa |
dc.relation.references | Burkat, S., Díaz, M., Enciso-Valencia, K., Benítez-Urrea, J. L., Charry-Camacho, A., & Triana-Ángel, N. (2020). Desarrollos actuales y potenciales, impactos y opciones de mitigación. www.bioversityinternational.org | spa |
dc.relation.references | Cadavid, P. P., Jiménez Arboleda, H. A., Naranjo Ramírez, J. F., Henao Villegas, S., Ramírez García, R., Cardona Zuluaga, E. A., Úsuga Suárez, A., Ruiz Buitrago, J. D., Mejía Sandoval, G., & Muñoz Echavarría, F. A. (2018). Implementación de Buenas Prácticas Ganaderas: principios básicos. https://repository.ces.edu.co/handle/10946/3585 | spa |
dc.relation.references | Canova, R., Weber, M. N., Budaszewski, R. F., da Silva, M. S., Schwingel, D., Canal, C. W., & Kreutz, L. C. (2021). Bovine leukemia viral DNA found on human breast tissue is genetically related to the cattle virus. One Health, 13, 100252. https://doi.org/10.1016/J.ONEHLT.2021.100252 | spa |
dc.relation.references | Carulla, J., Cárdenas, E., Sánchez, N., & Riveros, C. (2003). Valor nutricional de los forrajes más usados en los sistemas de producción lechera especializada de la zona andina colombiana. Grupo de Investigación En Nutrición Animal, Departamento de Ciencias Para La Producción Animal, 1–16. https://d1wqtxts1xzle7.cloudfront.net/34596306/valor_nutricional_de_los_forrajes_en_colombia-with-cover-page-v2.pdf?Expires=1656701613&Signature=Si7xCuDbTMBEYQl9if7oS6guFmtwV1L92FEXFyBI89IOZKAeasTboLgewN97MFRNj~GZvzxJ8KgTVpdUgVaGd8m81-uL1-arhP3yHXJDlEPDmO | spa |
dc.relation.references | Carulla, J. E., & Ortega, E. (2016). Dairy production systems of Colombia : challenges and opportunities. Archivos Latinoamericanos de Producción Animal, 24(2), 9–13. https://www.researchgate.net/publication/317017699 | spa |
dc.relation.references | César Mendoza, F., Martha Pabón, R., & Juan Carulla, F. (2011). Variaciones diarias de la oferta forrajera, efecto sobre la producción y calidad de la leche. Revista MVZ Cordoba, 16(3), 2721–2732. https://doi.org/10.21897/rmvz.273 | spa |
dc.relation.references | Chaparro, J., Olivera-Angel, M., Luis, P., Villar, D., & Ramírez, N. (2016). Neospora caninum serostatus in dairy cattle of the Northern plains of Antioquia, Colombia. Revista MVZ Córdoba, 21, 5577–5583. | spa |
dc.relation.references | Colanta. (2018). Informe de Gestión Social y Sostenibilidad. https://colanta.com/corporativo/wp-content/uploads/2019/10/INFORME-DE-GESTION-2018-web.pdf | spa |
dc.relation.references | Correa C, H. J., Pabón R, M. L., & Carulla F, J. E. (2008). Nutritional value of kikuyu grass (Pennisetum clandestinum Hoechst Ex Chiov.) for milk production in Colombia: A review. II. Energy value, intake, production and nutritional efficiency. Valor Nutricional Del Pasto Kikuyo (Pennisetum Clandestinum Hoechst Ex Chiov.) Para La Producción de Leche En Colombia (Una Revisión): II. Contenido de Energía, Consumo, Producción y Eficiencia Nutricional, 20(4). http://www.lrrd.org/lrrd20/4/corra20059.htm | spa |
dc.relation.references | Corredor-Figueroa, A. P., Salas, S., Olaya-Galán, N. N., Quintero, J. S., Fajardo, Á., Soñora, M., Moreno, P., Cristina, J., Sánchez, A., Tobón, J., Ortiz, D., & Gutiérrez, M. F. (2020). Prevalence and molecular epidemiology of bovine leukemia virus in Colombian cattle. Infection, Genetics and Evolution, 80. https://doi.org/10.1016/j.meegid.2020.104171 | spa |
dc.relation.references | Dao, T. D., Bui, V. N., Omatsu, T., Katayama, Y., Mizutani, T., Ogawa, H., & Imai, K. (2018). Application of the SureSelect target enrichment system for next-generation sequencing to obtain the complete genome sequence of bovine leukemia virus. Archives of Virology, 163(11), 3155–3159. https://doi.org/10.1007/s00705-018-3957-9 | spa |
dc.relation.references | Coulston, J., Naif, H., Brandon, R., Kumar, S., Khan, S., Daniel, R. C. W., & Lavin, M. F. (1990). Molecular cloning and sequencing of an Australian isolate of proviral bovine leukaemia virus DNA: Comparison with other isolates. Journal of General Virology, 71(8). https://doi.org/10.1099/0022-1317-71-8-1737 | spa |
dc.relation.references | Denis-Robichaud, J., Kelton, D. F., Bauman, C. A., Barkema, H. W., Keefe, G. P., & Dubuc, J. (2019). Biosecurity and herd health management practices on Canadian dairy farms. Journal of Dairy Science, 102(10), 9536–9547. https://doi.org/10.3168/JDS.2018-15921 | spa |
dc.relation.references | Durkin, K., Rosewick, N., Artesi, M., Hahaut, V., Griebel, P., Arsic, N., Burny, A., Georges, M., & Van den Broeke, A. (2016). Characterization of novel Bovine Leukemia Virus (BLV) antisense transcripts by deep sequencing reveals constitutive expression in tumors and transcriptional interaction with viral microRNAs. Retrovirology, 13(1). https://doi.org/10.1186/S12977-016-0267-8 | spa |
dc.relation.references | Echeverri Z., J., Salazar R., V., & Parra S., J. (2011). Análisis comparativo de los grupos genéticos Holstein, Jersey y algunos de sus cruces en un hato lechero del Norte de Antioquia en Colombia. Zootecnia Tropical, 29(1), 49–59. http://ve.scielo.org/scielo.php?pid=S0798-72692011000100004&script=sci_abstract | spa |
dc.relation.references | Emanuelson, U., Scherling, K., & Pettersson, H. (1992). Relationships between herd bovine leukemia virus infection status and reproduction, disease incidence, and productivity in Swedish dairy herds. Preventive Veterinary Medicine, 12(1–2), 121–131. https://doi.org/10.1016/0167-5877(92)90075-Q | spa |
dc.relation.references | Evermann, J. F., & Jackson, M. K. (1997). Laboratory diagnostic tests for retroviral infections in dairy and beef cattle. The Veterinary Clinics of North America. Food Animal Practice, 13(1), 87–106. https://doi.org/10.1016/S0749-0720(15)30366-2 | spa |
dc.relation.references | FAO. (2018). Producción y productos lácteos: Ganado vacuno. Ganado Vacuno. https://www.fao.org/dairy-production-products/production/dairy-animals/cattle/es/ | spa |
dc.relation.references | Fechner, H., Kurg, A., Geue, L., Blankenstein, P., Mewes, G., Ebner, D., & Beier, D. (1996). Evaluation of polymerase chain reaction (PCR) application in diagnosis of bovine leukaemia virus (BLV) infection in naturally infected cattle. Zentralblatt Fur Veterinarmedizin. Reihe B. Journal of Veterinary Medicine. Series B, 43(10), 621–630. https://doi.org/10.1111/j.1439-0450.1996.tb00361.x | spa |
dc.relation.references | FEDEGAN. (2018). Ganadería colombiana, hoja de ruta 2018-2022. https://www.fedegan.org.co/estadisticas/documentos-de-estadistica | spa |
dc.relation.references | FEDEGAN. (2021). Cifras de referencia del sector ganadero colombiano. Fedegan, 49. https://estadisticas.fedegan.org.co/DOC/download.jsp?pRealName=Cifras_Referencia_2017.pdf&iIdFiles=641 | spa |
dc.relation.references | Frie, M. C., Sporer, K. R. B., Benitez, O. J., Wallace, J. C., Droscha, C. J., Bartlett, P. C., & Coussens, P. M. (2017). Dairy Cows Naturally Infected with Bovine Leukemia Virus Exhibit Abnormal B- and T-Cell Phenotypes after Primary and Secondary Exposures to Keyhole Limpet Hemocyanin. Frontiers in Veterinary Science, 4, 112. https://doi.org/10.3389/fvets.2017.00112 | spa |
dc.relation.references | Gao, A., Kouznetsova, V. L., & Tsigelny, I. F. (2020). Bovine leukemia virus relation to human breast cancer: Meta-analysis. Microbial Pathogenesis, 149. https://doi.org/10.1016/J.MICPATH.2020.104417 | spa |
dc.relation.references | Gillet, N., Florins, A., Boxus, M., Burteau, C., Nigro, A., Vandermeers, F., Balon, H., Bouzar, A.-B., Defoiche, J., Burny, A., Reichert, M., Kettmann, R., & Willems, L. (2007). Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology, 4, 18. https://doi.org/10.1186/1742-4690-4-18 | spa |
dc.relation.references | Gobernación de Antioquia. (2019). Anuario Estadístico de Antioquia . http://www.antioquiadatos.gov.co/index.php/9-1-6-explotacion-bovina-y-produccion-de-2019 | spa |
dc.relation.references | Gómez-Vega, S., Caicedo-Pinzón, R., & Vargas-Martínez, J. (2019). Strategic supplementation effect in a dairy system in Cundinamarca, Colombia. Rev Inv Vet Perú, 30(3), 1109–1116. https://doi.org/10.15381/rivep.v30i3.15302 | spa |
dc.relation.references | González Bosoquet, L. (2003). Antisépticos y desinfectantes. Offarm, 22(3), 64–70. https://www.elsevier.es/es-revista-offarm-4-articulo-antisepticos-desinfectantes-13044452 | spa |
dc.relation.references | Gutiérrez, S. E., Lützelschwab, C. M., Barrios, C. N., & Juliarena, M. A. (2020). Leucosis bovina. Revista de Investigaciones Veterinarias Del Perú, 31(3), e16913. https://doi.org/10.15381/rivep.v31i3.16913 | spa |
dc.relation.references | Haghparast, A., Tabatabaiezadeh, E., Mohammadi, G., & Kord, N. (2012). Prevalence of Bovine Leukemia Virus (BLV) antibodies in bulk tank milk of dairy cattle herds of Mashhad area, north-east of Iran. Journal of Animal and Veterinary Advances, 11(2), 276–280. https://doi.org/10.3923/JAVAA.2012.276.280 | spa |
dc.relation.references | Hernandez, D., Montes, D., & Alvarez, L. A. (2018). Association of BoLA-DRB3.2 alleles with enzootic bovine leukosis: profiles BLV infection, persistent lymphocytosis and antibody production in Hart�n del Valle Cattle. Indian Journal of Science and Technology, 11(24), 1–14. https://doi.org/10.17485/ijst/2018/v11i24/128164 | spa |
dc.relation.references | Herrera Hernandez, D., Terranova Posso, A., & Hernandez herrera, D. (2011). Detección del virus de la leucosis bovina en ganado criollo colombiano mediante PCR-anidado. 60(4), 312–318. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0120-28122011000400003&lng=en&nrm=iso&tlng=es | spa |
dc.relation.references | Hopkins, S. G., & DiGiacomo, R. F. (1997). Natural transmission of bovine leukemia virus in dairy and beef cattle. The Veterinary Clinics of North America. Food Animal Practice, 13(1), 107–128. https://doi.org/10.1016/S0749-0720(15)30367-4 | spa |
dc.relation.references | ICA, I. C. A. (2022). CENSO PECUARIO NACIONAL 2021. Minagricultura. https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018 | spa |
dc.relation.references | Inoue, E., Matsumura, K., Soma, N., Hirasawa, S., Wakimoto, M., Arakaki, Y., Yoshida, T., Osawa, Y., & Okazaki, K. (2013). L233P mutation of the Tax protein strongly correlated with leukemogenicity of bovine leukemia virus. Veterinary Microbiology, 167(3–4), 364–371. https://doi.org/10.1016/j.vetmic.2013.09.026 | spa |
dc.relation.references | Resolución No. 003714, (2015) (testimony of Instituto Colombiano Agropecuario). https://www.ica.gov.co/getattachment/3188abb6-2297-44e2-89e6-3a5dbd4db210/2015R3714.aspx | spa |
dc.relation.references | RESOLUCIÓN No. 067449, (2020). https://www.ica.gov.co/getattachment/Areas/Pecuaria/Servicios/Inocuidad-en-las-Cadenas-Agroalimentarias/LISTADO-DE-PREDIOS-CERTIFICADOS-EN-BPG/Resolucion-067449-del-08-de-mayo-2020-1.pdf.aspx?lang=es-CO | spa |
dc.relation.references | Instituto Colombiano Agropecuario. (2022). BUENAS PRÁCTICAS GANADERAS - BPG. https://www.ica.gov.co/areas/pecuaria/servicios/inocuidad-en-las-cadenas-agroalimentarias/listado-de-predios-certificados-en-bpg.aspx | spa |
dc.relation.references | Jaimes-Dueñez, J., Triana-Chávez, O., & Mejía-Jaramillo, A. M. (2017). Parasitological and molecular surveys reveal high rates of infection with vector-borne pathogens and clinical anemia signs associated with infection in cattle from two important livestock areas in Colombia. Ticks and Tick-Borne Diseases, 8(2), 290–299. https://doi.org/10.1016/J.TTBDIS.2016.12.002 | spa |
dc.relation.references | Jaśkowski, J. M., Kaczmarowski, M., Kulus, J., Jaśkowski, B. M., Herudzińska, M., & Gehrke, M. (2019). Rectal palpation for pregnancy in cows: A relic or an alternative to modern diagnostic methods. Medycyna Weterynaryjna, 75(5), 259–264. https://doi.org/10.21521/MW.6156 | spa |
dc.relation.references | Khalilian, M., Hosseini, S. M., & Madadgar, O. (2019). Bovine leukemia virus detected in the breast tissue and blood of Iranian women. Microbial Pathogenesis, 135, 103566. https://doi.org/10.1016/j.micpath.2019.103566 | spa |
dc.relation.references | Khamesipour, F., Doosti, A., Shahraki, A. K., & Goodarzi, M. (2013). Molecular detection of Bovine Leukemia Virus (BLV) in the frozen semen samples of bulls used for artificial insemination in Iran. Research Opinions in Animal and Veterinary Sciences, 3(11), 412–416. | spa |
dc.relation.references | Kononoff, P., & Clark, K. J. (2017). Water quality and requirements for Dairy Cattle. Nebraska Extension: Animal Agriculture, Dairy Issue, September 2017, 1–6. https://extensionpublications.unl.edu/assets/html/g2292/build/g2292.htm | spa |
dc.relation.references | Kuczewski, A., Hogeveen, H., Orsel, K., Wolf, R., Thompson, J., Spackman, E., & van der Meer, F. (2019). Economic evaluation of 4 bovine leukemia virus control strategies for Alberta dairy farms. Journal of Dairy Science, 102(3), 2578–2592. https://doi.org/10.3168/jds.2018-15341 | spa |
dc.relation.references | Kuczewski, A., Mason, S., Orsel, K., & van der Meer, F. (2021). Pilot implementation of a newly developed bovine leukemia virus control program on 11 Alberta dairy farms. Journal of Dairy Science, 104(4), 4549–4560. https://doi.org/10.3168/JDS.2020-19251 | spa |
dc.relation.references | Kuczewski, A., Orsel, K., Barkema, H. W., Mason, S., Erskine, R., & van der Meer, F. (2021). Invited review: Bovine leukemia virus—Transmission, control, and eradication. In Journal of Dairy Science (Vol. 104, Issue 6, pp. 6358–6375). https://doi.org/10.3168/jds.2020-18925 | spa |
dc.relation.references | Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096 | spa |
dc.relation.references | Ladronka, R. M., Ainsworth, S., Wilkins, M. J., Norby, B., Byrem, T. M., & Bartlett, P. C. (2018). Prevalence of Bovine Leukemia Virus Antibodies in US Dairy Cattle. Veterinary Medicine International, 2018. https://doi.org/10.1155/2018/5831278 | spa |
dc.relation.references | Lairmore, M. D. (2014). Animal models of bovine leukemia virus and human T-lymphotrophic virus type-1: Insights in transmission and pathogenesis. Annual Review of Animal Biosciences, 2, 189–208. https://doi.org/10.1146/annurev-animal-022513-114117 | spa |
dc.relation.references | LE, D. T., Yamashita-Kawanishi, N., Okamoto, M., Nguyen, S. V., Nguyen, N. H., Sugiura, K., Miura, T., & Haga, T. (2020). Detection and genotyping of bovine leukemia virus (BLV) in Vietnamese cattle. The Journal of Veterinary Medical Science, 82(7), 1042–1050. https://doi.org/10.1292/jvms.20-0094 | spa |
dc.relation.references | Lee, E., Kim, E.-J., Ratthanophart, J., Vitoonpong, R., Kim, B.-H., Cho, I.-S., Song, J.-Y., Lee, K.-K., & Shin, Y.-K. (2016). Molecular epidemiological and serological studies of bovine leukemia virus (BLV) infection in Thailand cattle. Infection, Genetics and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 41, 245–254. https://doi.org/10.1016/j.meegid.2016.04.010 | spa |
dc.relation.references | Lin, Q., Lim, J. Y. C., Xue, K., Yin, P., Yew, M., Owh, C., Chee, P. L., & Loh, X. J. (2020). Sanitizing agents for virus inactivation and disinfection. View, 1(2), e16. https://doi.org/10.1002/VIW2.16 | spa |
dc.relation.references | Lo, C. W., Borjigin, L., Saito, S., Fukunaga, K., Saitou, E., Okazaki, K., Mizutani, T., Wada, S., Takeshima, S. N., & Aida, Y. (2020). BoLA-DRB3 Polymorphism is Associated with Differential Susceptibility to Bovine Leukemia Virus-Induced Lymphoma and Proviral Load. Viruses, 12(3). https://doi.org/10.3390/V12030352 | spa |
dc.relation.references | Lo, C. W., Takeshima, S. N., Okada, K., Saitou, E., Fujita, T., Matsumoto, Y., Wada, S., Inoko, H., & Aida, Y. (2021). Association of Bovine Leukemia Virus-Induced Lymphoma with BoLA-DRB3 Polymorphisms at DNA, Amino Acid, and Binding Pocket Property Levels. Pathogens 2021, Vol. 10, Page 437, 10(4), 437. https://doi.org/10.3390/PATHOGENS10040437 | spa |
dc.relation.references | Lo, C. W., Takeshima, S. nosuke, Wada, S., Matsumoto, Y., & Aida, Y. (2021). Bovine major histocompatibility complex (BoLA) heterozygote advantage against the outcome of bovine leukemia virus infection. HLA, 98(2), 132–139. https://doi.org/10.1111/tan.14285 | spa |
dc.relation.references | Lohr, C. E., Sporer, K. R. B., Brigham, K. A., Pavliscak, L. A., Mason, M. M., Borgman, A., Ruggiero, V. J., Taxis, T. M., Bartlett, P. C., & Droscha, C. J. (2022). Phenotypic Selection of Dairy Cattle Infected with Bovine Leukemia Virus Demonstrates Immunogenetic Resilience through NGS-Based Genotyping of BoLA MHC Class II Genes. Pathogens (Basel, Switzerland), 11(1). https://doi.org/10.3390/PATHOGENS11010104 | spa |
dc.relation.references | Mamoun, R. Z., Morisson, M., Rebeyrotte, N., Busetta, B., Couez, D., Kettmann, R., Hospital, M., & Guillemain, B. (1990). Sequence variability of bovine leukemia virus env gene and its relevance to the structure and antigenicity of the glycoproteins. Journal of Virology, 64(9), 4180–4188. https://doi.org/10.1128/jvi.64.9.4180-4188.1990 | spa |
dc.relation.references | Marawan, M. A., Alouffi, A., El Tokhy, S., Badawy, S., Shirani, I., Dawood, A., Guo, A., Almutairi, M. M., Alshammari, F. A., & Selim, A. (2021). Bovine leukaemia virus: Current epidemiological circumstance and future prospective. In Viruses (Vol. 13, Issue 11). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/v13112167 | spa |
dc.relation.references | Miller, S. A., Dykes, D. D., & Polesky, H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16(3), 1215. https://doi.org/10.1093/nar/16.3.1215 | spa |
dc.relation.references | Ministerio de Agricultura y Desarrollo Rural. (2012). Resolucion 000017 de 2012 (p. 18). https://www.minagricultura.gov.co/ministerio/direcciones/Documents/d.angie/Res 000017 de 2012.pdf | spa |
dc.relation.references | Ministerio de Agricultura y Desarrollo Rural. (2020a). Análisis situacional Cadena láctea. http://www.andi.com.co/Uploads/20200430_DT_AnalSitLecheLarga_AndreaGonzalez.pdf | spa |
dc.relation.references | Ministerio de Agricultura y Desarrollo Rural. (2020b). Sector Lácteo. https://sioc.minagricultura.gov.co/SICLA/Documentos/2020-06-30 Cifras Sectoriales.pdf | spa |
dc.relation.references | Mohammadi, V., Atyabi, N., Brujeni, G. N., & Lotfollahzadeh, S. (2011). Seroprevalence of Bovine Leukemia Virus in Some Dairy Farms in Iran Emerging and Re-emerging Infectious Diseases in Iran View project. Global Veterinaria, 7(3). https://www.researchgate.net/publication/216677145 | spa |
dc.relation.references | Momont, H. (1990). Rectal palpation: The Bovine Practitioner, 122–123. https://doi.org/10.21423/BOVINE-VOL0NO25P122-123 | spa |
dc.relation.references | Moorer, W. R. (2003). Antiviral activity of alcohol for surface disinfection. International Journal of Dental Hygiene, 1(3), 138–142. https://doi.org/10.1034/J.1601-5037.2003.00032.X | spa |
dc.relation.references | Múnera Bedoya, O. D., Dagher Cassoli, L., Olivera Ángel, M., & Cerón Muñoz, M. F. (2018). Characterization of dairy farms with mechanical milking in Antioquia, Colombia. Livestock Research for Rural Development, 30(5). http://www.lrrd.org/lrrd30/5/ceron30086.html | spa |
dc.relation.references | Murakami, K., Kobayashi, S., Konishi, M., Kameyama, K. ichiro, Yamamoto, T., & Tsutsui, T. (2011). The recent prevalence of bovine leukemia virus (BLV) infection among Japanese cattle. Veterinary Microbiology, 148(1), 84–88. https://doi.org/10.1016/J.VETMIC.2010.08.001 | spa |
dc.relation.references | Norton, E. C., Dowd, B. E., & Maciejewski, M. L. (2018). Odds Ratios—Current Best Practice and Use. JAMA, 320(1), 84–85. https://doi.org/10.1001/JAMA.2018.6971 | spa |
dc.relation.references | Notsu, K., El Daous, H., Mitoma, S., Norimine, J., & Sekiguchi, S. (2022). A pooled testing system to rapidly identify cattle carrying the elite controller BoLA-DRB3*009:02 haplotype against bovine leukemia virus infection. HLA, 99(1), 12–24. https://doi.org/10.1111/TAN.14502 | spa |
dc.relation.references | Ohno, A., Takeshima, S. nosuke, Matsumoto, Y., & Aida, Y. (2015). Risk factors associated with increased bovine leukemia virus proviral load in infected cattle in Japan from 2012 to 2014. Virus Research, 210, 283–290. https://doi.org/10.1016/J.VIRUSRES.2015.08.020 | spa |
dc.relation.references | OIE. (2018). Enzootic Bovine Leukosis. In OIE Terrestrial Manual. https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.04.10_EBL.pdf | spa |
dc.relation.references | Ojeda, J., Salgado, M., Encina, C., Santamaria, C., & Monti, G. (2018). Evidence of interspecies transmission of pathogenic Leptospira between livestock and a domestic cat dwelling in a dairy cattle farm. Journal of Veterinary Medical Science, 80(8), 16–0361. https://doi.org/10.1292/JVMS.16-0361 | spa |
dc.relation.references | Olaya-Galán, N. N., Corredor-Figueroa, A. P., Guzmán-Garzón, T. C., Ríos-Hernandez, K. S., Salas-Cárdenas, S. P., Patarroyo, M. A., & Gutierrez, M. F. (2017). Bovine leukaemia virus DNA in fresh milk and raw beef for human consumption. Epidemiology and Infection, 145(15), 3125–3130. https://doi.org/10.1017/S0950268817002229 | spa |
dc.relation.references | Ortiz, D., Sanchez, A., Tobon, J., Chaparro, Y., Cortes, S., & Gutierrez, M. F. (2016). Seroprevalence and risk factors associated with bovine leukemia virus in Colombia. Journal of Veterinary Medicine and Animal Health, 8(5), 35–43. https://doi.org/10.5897/JVMAH2016.0457 | spa |
dc.relation.references | Otta, S. L., Johnson, R., & Wells, S. J. (2003). Association between bovine-leukosis virus seroprevalence and herd-level productivity on US dairy farms. Preventive Veterinary Medicine, 61(4), 249–262. https://doi.org/10.1016/j.prevetmed.2003.08.003 | spa |
dc.relation.references | Pluta, A., Blazhko, N. V., Ngirande, C., Joris, T., Willems, L., & Kuźmak, J. (2021). Analysis of Nucleotide Sequence of Tax, miRNA and LTR of Bovine Leukemia Virus in Cattle with Different Levels of Persistent Lymphocytosis in Russia. Pathogens (Basel, Switzerland), 10(2), 1–21. https://doi.org/10.3390/PATHOGENS10020246 | spa |
dc.relation.references | Pluta, A., Jaworski, J. P., & Douville, R. N. (2020). Regulation of expression and latency in BLV and HTLV. In Viruses (Vol. 12, Issue 10). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/v12101079 | spa |
dc.relation.references | Pluta, A., Willems, L., Douville, R. N., & Kuźmak, J. (2020). Effects of naturally occurring mutations in bovine leukemia virus 5′‐ltr and tax gene on viral transcriptional activity. Pathogens, 9(10), 1–28. https://doi.org/10.3390/pathogens9100836 | spa |
dc.relation.references | Polanco-Echeverry, D. N., & Ríos-Osorio, L. A. (2016). Aspectos biológicos y ecológicos de las garrapatas duras. Ciencia & Tecnología Agropecuaria, 17(1), 81–95. https://doi.org/10.21930/rcta.vol17_num1_art:463 | spa |
dc.relation.references | Polat, M., Takeshima, S. N., & Aida, Y. (2017). Epidemiology and genetic diversity of bovine leukemia virus. In Virology Journal (Vol. 14, Issue 1). https://doi.org/10.1186/s12985-017-0876-4 | spa |
dc.relation.references | Polat, M., Takeshima, S. nosuke, Hosomichi, K., Kim, J., Miyasaka, T., Yamada, K., Arainga, M., Murakami, T., Matsumoto, Y., Barra Diaz, V., Panei, C. J., González, E. T., Kanemaki, M., Onuma, M., Giovambattista, G., & Aida, Y. (2016). A new genotype of bovine leukemia virus in South America identified by NGS-based whole genome sequencing and molecular evolutionary genetic analysis. Retrovirology, 13(1). https://doi.org/10.1186/s12977-016-0239-z | spa |
dc.relation.references | Portetelle, D., Couez, D., Bruck, C., Kettmann, R., Mammerickx, M., Van der Maaten, M., Brasseur, R., & Burny, A. (1989). Antigenic variants of bovine leukemia virus (BLV) are defined by amino acid substitutions in the NH2 part of the envelope glycoprotein gp51. Virology, 169(1), 27–33. https://doi.org/10.1016/0042-6822(89)90037-8 | spa |
dc.relation.references | Quiroga Calderón, E. G., Gatica Colima, A. B., & Carlo Rojas, Z. (2021). Los Factores de Riesgo Asociados a Parásitos Gastrointestinales en Animales de Producción. Cultura Científica y Tecnológica, 18(3), 1–11. https://doi.org/10.20983/culcyt.2021.3.21.1 | spa |
dc.relation.references | Rashid, T., VonVille, H. M., Hasan, I., & Garey, K. W. (2016). Shoe soles as a potential vector for pathogen transmission: a systematic review. Journal of Applied Microbiology, 121(5), 1223–1231. https://doi.org/10.1111/JAM.13250 | spa |
dc.relation.references | Reinemann, D. J. (2000). REVIEW OF PRACTICES FOR CLEANING AND SANITATION OF MILKING. | spa |
dc.relation.references | Rhodes, J. K., Pelzer, K. D., & Johnson, Y. J. (2003). Economic implications of bovine leukemia virus infection in mid-Atlantic dairy herds. Journal of the American Veterinary Medical Association, 223(3), 346–352. https://doi.org/10.2460/javma.2003.223.346 | spa |
dc.relation.references | Riera, M. A., Rojas, M. E., & Zapata, P. D. (2010). Protocolo de extracción de DNA por salting-out para pequeños volúmenes de sangre. Revista de Ciencia y Tecnología, 1(14), 4–7. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1851-75872010000200001 | spa |
dc.relation.references | Rola‐łuszczak, M., Sakhawat, A., Pluta, A., Ryło, A., Bomba, A., Bibi, N., & Kuźmak, J. (2021). Molecular Characterization of the env Gene of Bovine Leukemia Virus in Cattle from Pakistan with NGS-Based Evidence of Virus Heterogeneity. Pathogens (Basel, Switzerland), 10(7). https://doi.org/10.3390/PATHOGENS10070910 | spa |
dc.relation.references | Ruiz, V., Porta, N. G., Lomónaco, M., Trono, K., & Alvarez, I. (2018). Bovine Leukemia virus infection in neonatal calves. risk factors and control measures. Frontiers in Veterinary Science, 5(OCT). https://doi.org/10.3389/fvets.2018.00267 | spa |
dc.relation.references | Sagata, N., Yasunaga, T., Tsuzuku-Kawamura, J., Ohishi, K., Ogawa, Y., & Ikawa, Y. (1985). Complete nucleotide sequence of the genome of bovine leukemia virus: Its evolutionary relationship to other retroviruses. Proceedings of the National Academy of Sciences of the United States of America, 82(3). https://doi.org/10.1073/pnas.82.3.677 | spa |
dc.relation.references | Sandev, N., Ilieva, D., Sizov, I., Rusenova, N., Iliev, E., N.Sandev, Ilieva, D., Sizov, I., Rusenova, N., & Iliev, E. (2006). Prevalence of enzootic bovine leukosis in the Republic of Bulgaria in 1997-2004. Veterinarski Archiv, 2006, 76, (3), 263-268., 76(3), 263–268. | spa |
dc.relation.references | Sargeant, J. M., Kelton, D. F., Martin, S. W., & Mann, E. D. (1997). Associations between farm management practices, productivity, and bovine leukemia virus infection in Ontario dairy herds. Preventive Veterinary Medicine, 31(3–4), 211–221. https://doi.org/10.1016/S0167-5877(96)01140-3 | spa |
dc.relation.references | Schwartz, I., & Lévy, D. (1994). Pathobiology of bovine leukemia virus. In Veterinary research (Vol. 25, Issue 6, pp. 521–536). | spa |
dc.relation.references | Secretaría de Agricultura y Desarrollo Rural. (2019). Anuario Estadístico del Sector Agropecuario en el Departamento de Antioquia 2018. In Gobernación de Antioquia. | spa |
dc.relation.references | Selim, A., Manaa, E. A., Alanazi, A. D., & Alyousif, M. S. (2021). Seroprevalence, risk factors and molecular identification of bovine leukemia virus in egyptian cattle. Animals, 11(2), 1–9. https://doi.org/10.3390/ani11020319 | spa |
dc.relation.references | Şevik, M., Avcı, O., & İnce, Ö. B. (2015). An 8-year longitudinal sero-epidemiological study of bovine leukaemia virus (BLV) infection in dairy cattle in Turkey and analysis of risk factors associated with BLV seropositivity. Tropical Animal Health and Production, 47(4), 715–720. https://doi.org/10.1007/S11250-015-0783-X/METRICS | spa |
dc.relation.references | Starciuc, N., Osadci, N., Petcu, I., Malancea, N., Bordos, X., & Ungureanu, V. (2018). Comparative Efficiency of Various Disinfectants Used in the Cattle Farm. “Agriculture for Life, Life for Agriculture” Conference Proceedings, 1(1), 485–489. https://doi.org/10.2478/ALIFE-2018-0076 | spa |
dc.relation.references | Suárez, A., Cristina, Á., Parra, B., & Andrés, C. (2017). Actualización de la leptospirosis bovina en colombia actualización de la leptospirosis bovina en colombia bovine leptospirosis update in colombia abstract. In kmilo215@hotmail.com (Vol. 7, Issue 1). https://revista.jdc.edu.co/index.php/conexagro/article/view/572 | spa |
dc.relation.references | Sultanov, A., Rola-Łuszczak, M., Mamanova, S., Ryło, A., Osiński, Z., Saduakassova, M. A., Bashenova, E., & Kuźmak, J. (2022). Molecular Characterization of Bovine Leukemia Virus with the Evidence of a New Genotype Circulating in Cattle from Kazakhstan. Pathogens, 11(2). https://doi.org/10.3390/pathogens11020180 | spa |
dc.relation.references | Szewczuk, M., Zych, S., & Katafiasz, S. (2012). Diagnosis of the bovine leukaemia virus infection in Polish Holstein-Friesian cows and comparison of their milk productivity. Acta Veterinaria Brno, 81, 353–358. https://doi.org/10.2754/avb201281040353 | spa |
dc.relation.references | Tajima, S., & Aida, Y. (2000). The Region between Amino Acids 245 and 265 of the Bovine Leukemia Virus (BLV) Tax Protein Restricts Transactivation Not Only via the BLV Enhancer but Also via Other Retrovirus Enhancers. Journal of Virology, 74(23), 10939–10949. https://doi.org/10.1128/jvi.74.23.10939-10949.2000 | spa |
dc.relation.references | Tajima, S., & Aida, Y. (2002). Mutant tax protein from bovine leukemia virus with enhanced ability to activate the expression of c-fos. Journal of Virology, 76(5), 2557–2562. https://doi.org/10.1128/jvi.76.5.2557-2562.2002 | spa |
dc.relation.references | Tajima, S., Takahashi, M., Takeshima, S.-N., Konnai, S., Yin, S. A., Watarai, S., Tanaka, Y., Onuma, M., Okada, K., & Aida, Y. (2003). A mutant form of the tax protein of bovine leukemia virus (BLV), with enhanced transactivation activity, increases expression and propagation of BLV in vitro but not in vivo. Journal of Virology, 77(3), 1894–1903. https://doi.org/10.1128/jvi.77.3.1894-1903.2003 | spa |
dc.relation.references | Takeshima, S. N., Ohno, A., & Aida, Y. (2019). Bovine leukemia virus proviral load is more strongly associated with bovine major histocompatibility complex class II DRB3 polymorphism than with DQA1 polymorphism in Holstein cow in Japan. Retrovirology, 16(1). https://doi.org/10.1186/s12977-019-0476-z | spa |
dc.relation.references | Temple, M., & Manteca, X. (2012). Efecto del descornado y del desmochado en el bienestar del ganado vacuno. 2. https://www.fawec.org/es/fichas-tecnicas/21-ganado-vacuno/20-efecto-del-descornado-y-del-desmochado-en-el-bienestar-del-ganado-vacuno | spa |
dc.relation.references | Tomiyasu, T., Sato, A., Mori, H., & Okazaki, K. (2021). L233P mutation in the bovine leukemia virus Tax protein has impact on annexin A3 and type I collagen secretion by host cells. Veterinary Microbiology, 256, 109042. https://doi.org/10.1016/J.VETMIC.2021.109042 | spa |
dc.relation.references | Twizere, J.-C., Kerkhofs, P., Burny, A., Portetelle, D., Kettmann, R., & Willems, L. (2000). Discordance between Bovine Leukemia Virus Tax Immortalization In Vitro and Oncogenicity In Vivo. Journal of Virology, 74(21), 9895–9902. https://doi.org/10.1128/jvi.74.21.9895-9902.2000 | spa |
dc.relation.references | Úsuga-Monroy, C. (2019). Virus de la leucosis bovina: respuesta inmune y caracterización filogenética como herramientas para el entendimiento de la enfermedad. Universidad Nacional de Colombia. | spa |
dc.relation.references | Úsuga-Monroy, C., Díaz, F. J., Echeverri-Zuluaga, J., González-Herrera, L. G., & López-Herrera, A. (2021). PRESENCIA DEL VIRUS DE LA LEUCOSIS BOVINA EN MUESTRAS DE CALOSTRO Y SU POTENCIAL PARA INFECTAR TERNEROS. Chilean Journal of Agricultural & Animal Sciences, 37(2 SE-), 167–176. https://revistas.udec.cl/index.php/chjaas/article/view/5236 | spa |
dc.relation.references | Úsuga-Monroy, C., Díaz, F. J., Echeverri-Zuluaga, J. J., González-Herrera, L. G., López-Herrera, A., Úsuga-Monroy, C., Díaz, F. J., Echeverri-Zuluaga, J. J., González-Herrera, L. G., & López-Herrera, A. (2018). Presence of bovine leukemia virus genotypes 1 and 3 in Antioquia, Colombia. Revista U.D.C.A Actualidad & Divulgación Científica, 21(1), 119–126. https://doi.org/10.31910/rudca.v21.n1.2018.670 | spa |
dc.relation.references | Úsuga-Monroy, C., Echeverri-Zuluaga, J. J., & López-Herrera, A. (2018a). Detección molecular y serológica del virus de la leucosis bovina en una población de vacas Holstein, de Colombia. Revista Mexicana de Ciencias Pecuarias, 9(2). https://doi.org/10.22319/rmcp.v9i2.4232 | spa |
dc.relation.references | Úsuga-Monroy, C., Echeverri-Zuluaga, J. J., & López-Herrera, A. (2018b). Molecular and serological detection of bovine leukemia virus in a population of Holstein cows, from Colombia. Revista Mexicana De Ciencias Pecuarias, 9(2), 387–399. https://doi.org/10.22319/rmcp.v9i2.4232 | spa |
dc.relation.references | Úsuga-Monroy, C., Echeverri, J. J., & López-Herrera, A. (2018). El componente racial influencia la resistencia a la infección con el virus de la leucosis bovina. Revista de La Facultad de Medicina Veterinaria y de Zootecnia, 65(2). https://doi.org/10.15446/rfmvz.v65n2.75632 | spa |
dc.relation.references | Úsuga-Monroy, C., Zuluaga, J. J., & López-Herrera, A. (2018). Bovine leukemia virus decreases milk production and quality in Holstein cattle. Archivos de Zootecnia, 67(258), 254–259. https://doi.org/10.21071/az.v67i258.3661 | spa |
dc.relation.references | Van Den Broeke, A., Bagnis, C., Ciesiolka, M., Cleuter, Y., Gelderblom, H., Kerkhofs, P., Griebel, P., Mannoni, P., & Burny, A. (1999). In vivo rescue of a silent tax-deficient bovine leukemia virus from a tumor-derived ovine B-cell line by recombination with a retrovirally transduced wild-type tax gene. Journal of Virology, 73(2), 1054–1065. https://doi.org/10.1128/JVI.73.2.1054-1065.1999 | spa |
dc.relation.references | Vargas-Cuy, D. H. (2019). Anaplasmosis y babesiosis: estudio actual. Pensamiento y Acción, 26. | spa |
dc.relation.references | WingChing-Jones, R., Monge-Meza, J., & Pérez Salas, R. (2009). Roedores pequeños en un sistema de producción de ganado lechero. Agronomía Mesoamericana, 20(1), 127. https://doi.org/10.15517/AM.V20I1.4988 | spa |
dc.relation.references | Wu, D., Murakami, K., Morooka, A., Jin, H., Inoshima, Y., & Sentsui, H. (2003). In vivo transcription of bovine leukemia virus and bovine immunodeficiency-like virus. Virus Research, 97(2), 81–87. https://doi.org/10.1016/S0168-1702(03)00222-3 | spa |
dc.relation.references | Yang, Y., Fan, W., Mao, Y., Yang, Z., Lu, G., Zhang, R., Zhang, H., Szeto, C., & Wang, C. (2016). Bovine leukemia virus infection in cattle of China: Association with reduced milk production and increased somatic cell score. Journal of Dairy Science, 99(5), 3688–3697. https://doi.org/10.3168/jds.2015-10580 | spa |
dc.relation.references | Yu, C., Wang, X., Zhou, Y., Wang, Y., Zhang, X., & Zheng, Y. (2019). Genotyping bovine leukemia virus in dairy cattle of Heilongjiang, northeastern China. BMC Veterinary Research, 15(1). https://doi.org/10.1186/s12917-019-1863-3 | spa |
dc.relation.references | Zapata Salas, R., Cardona Zuluaga, E. A., Reyes Vélez, J., Triana Chávez, O., Peña García, V. H., Ríos Osorio, L. A., Barahona Rosales, R., Polanco Echeverry, D., Zapata Salas, R., Cardona Zuluaga, E. A., Reyes Vélez, J., Triana Chávez, O., Peña García, V. H., Ríos Osorio, L. A., Barahona Rosales, R., & Polanco Echeverry, D. (2017). Tripanosomiasis bovina en ganadería lechera de trópico alto: primer informe de Haematobia irritans como principal vector de T. vivax y T. evansi en Colombia. Revista de Medicina Veterinaria, 33, 21–34. https://doi.org/10.19052/MV.4048 | spa |
dc.relation.references | Zyrianova, I. M., & Kovalchuk, S. N. (2020). Bovine leukemia virus tax gene/Tax protein polymorphism and its relation to Enzootic Bovine Leukosis. Virulence, 11(1), 80–87. https://doi.org/10.1080/21505594.2019.1708051 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::636 - Producción animal | spa |
dc.subject.lemb | Ganado lechero | spa |
dc.subject.lemb | Dairy cattle | eng |
dc.subject.lemb | Enefermedades en el ganado | spa |
dc.subject.lemb | Livestock - diseases | eng |
dc.subject.proposal | Genotipo | spa |
dc.subject.proposal | Infección | spa |
dc.subject.proposal | Leucosis Bovina Enzoótica | spa |
dc.subject.proposal | Prevalencia | spa |
dc.subject.proposal | Factor de riesgo | spa |
dc.subject.proposal | Provirus | spa |
dc.subject.proposal | Reacción en cadena de la polimerasa | spa |
dc.subject.proposal | Retrovirus | spa |
dc.subject.proposal | Genotype | eng |
dc.subject.proposal | Enzootic Bovine Leukemia | eng |
dc.subject.proposal | Infection | eng |
dc.subject.proposal | Prevalence | eng |
dc.subject.proposal | Provirus | eng |
dc.subject.proposal | Polymerase Chain Reaction | eng |
dc.subject.proposal | Retrovirus | eng |
dc.subject.proposal | Risk Factor | eng |
dc.title | Virus de la leucosis bovina en las lecherías de Antioquia: prevalencia molecular, genotipos circulantes y factores asociados a su circulación | spa |
dc.title.translated | Bovine leukemia virus in Antioquia dairies: molecular prevalence, circulating genotypes and factors associated with its circulation. | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | CONVOCATORIA CONJUNTA DE PROYECTOS DE I+D+i EN EL MARCO DE LA AGENDA REGIONAL DE I+D -> i | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Informe final tesis de maestria Daniela Castillo.pdf
- Tamaño:
- 2.29 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Biotecnología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: