Cantidad y perfil fenotípico de células dendríticas en gestantes del tercer trimestre con y sin preeclampsia : Revisión sistemática y metaanálisis

dc.contributor.advisorHenao Riveros, Sandra Consuelospa
dc.contributor.advisorMontilla Velásquez, Maria del Pilarspa
dc.contributor.authorBautista Charry, Alejandro Antoniospa
dc.contributor.subjectmatterexpertAlfaro Marenco, María Alejandraspa
dc.contributor.subjectmatterexpertPáez Castellanos, Edgar Augustospa
dc.coverage.countryColombiaspa
dc.date.accessioned2025-07-31T14:53:26Z
dc.date.available2025-07-31T14:53:26Z
dc.date.issued2025-04
dc.descriptionilustraciones a color, diagramasspa
dc.description.abstractLa preeclampsia (PE) es una complicación obstétrica multisistémica donde los principales mecanismos involucrados son la activación del sistema inmune de manera exacerbada y la activación endotelial con importantes consecuencias materno-fetales; es una de las principales causas de morbi-mortalidad materna y perinatal convirtiéndose en un problema de salud pública a nivel mundial. Contrario a la PE, el embarazo normal es un proceso regulado, complejo y su éxito depende de la interacción entre una respuesta inmunotolerante materna y los antígenos paternos trofoblásticos. Este entorno tolerogénico involucra varias poblaciones celulares entre ellas a las DCs (células dendríticas), que actúan como reguladoras clave de la inmunidad secretando citoquinas antiinflamatorias, activando linfocitos T reguladores, pero también ejerciendo un papel central en los mecanismos inmunológicos de la PE. Sin embargo, existe un vacío en la literatura sobre la relación entre la cantidad y el perfil fenotípico de estas células en embarazadas con preeclampsia. Por esta razón se quiso hacer una revisión de la literatura con el objetivo de investigar la posible relación entre la cantidad y el perfil fenotípico de DCs en embarazadas del tercer trimestre con y sin preeclampsia, mediante una revisión sistemática y metaanálisis. Se realizó una búsqueda sistemática en bases de datos como MEDLINE, Embase y Scopus, abarcando estudios publicados entre 2004 y 2024. Se incluyeron estudios de casos y controles en los cuales se identificaron DCs mediante citometría de flujo e inmunohistoquímica en sangre y decidua. Se evaluó el riesgo de sesgo con la escala Newcastle-Ottawa y se llevó a cabo un metaanálisis cuando fue posible. Con los resultados de la búsqueda se incluyeron 12 estudios con un total de 691 embarazadas (328 con PE y 363 controles). Se observó una mayor proporción de DCs convencionales (cDCs) en la decidua de mujeres con PE y un incremento significativo en las DCs maduras en la decidua de mujeres con PE en comparación con gestantes sanas (DME 2.58; IC 95%: 1.47-3.69), lo que sugiere un ambiente inmunológico más proinflamatorio. En cuanto a la cantidad de células dendríticas plasmacitoides circulantes entre ambos grupos no hubo diferencias significativas. La heterogeneidad de los estudios fue moderada a baja en los análisis realizados, indicando consistencia en los hallazgos. Este metaanálisis afianza el conocimiento de la preeclampsia donde encontramos alteraciones cuantitativas y funcionales en las DCs. El aumento de DCs maduras en la decidua y la mayor proporción de cDCs sugieren un desbalance inmunológico que podría contribuir a la disfunción endotelial y a la respuesta inflamatoria exagerada en la PE. Estos hallazgos refuerzan la importancia de las células dendríticas en la patogénesis de la enfermedad y se espera que en el futuro se pueda prevenir o intervenir con terapias basadas en la inmunomodulación (Texto tomado de la fuente).spa
dc.description.abstractPreeclampsia (PE) is a multisystemic obstetric complication where the main actors involved are the exacerbated activation of the immune system and endothelial activation with significant maternal-fetal consequences; it is one of the main causes of maternal and perinatal morbidity and mortality, becoming a global public health problem. Contrary to PE, normal pregnancy is a regulated, complex process, and its success depends on the interaction between a maternal immunotolerant response and paternal trophoblastic antigens. This tolerogenic environment involves various cell populations, including DCs (dendritic cells), which act as key regulators of immunity by secreting anti-inflammatory cytokines, activating regulatory T lymphocytes, but also playing a central role in the immunological mechanisms of PE. However, there is a gap in the literature regarding the relationship between the quantity and phenotypic profile of these cells in pregnant women with preeclampsia. For this reason, a literature review was conducted with the aim of investigating the possible relationship between the quantity and phenotypic profile of DCs in third-trimester pregnant women with and without preeclampsia, through a systematic review and meta-analysis. A systematic search was conducted in databases such as MEDLINE, Embase, and Scopus, covering studies published between 2004 and 2024. Case-control studies in which DCs were identified by flow cytometry and immunohistochemistry in blood and decidua were included. The risk of bias was assessed with the Newcastle-Ottawa scale, and a meta-analysis was carried out when possible. From the search results, 12 studies with a total of 691 pregnant women (328 with PE and 363 controls) were included. A higher proportion of conventional DCs (cDCs) was observed in the decidua of women with PE, and a significant increase in mature DCs was found in the decidua of women with PE compared to healthy pregnant women (SMD 2.58; 95% CI: 1.47-3.69), suggesting a more pro-inflammatory immunological environment. Regarding the number of circulating plasmacytoid dendritic cells between both groups, there were no significant differences. The heterogeneity of the studies was moderate to low in the analyses performed, indicating consistency in the findings. This meta-analysis reinforces the knowledge of pre-eclampsia, where we find quantitative and functional alterations in DCs. The increase in mature DCs in the decidua and the higher proportion of cDCs suggest an immunological imbalance that could contribute to endothelial dysfunction and the exaggerated inflammatory response in PE. These findings reinforce the importance of dendritic cells in the pathogenesis of the disease, and it is hoped that in the future, prevention or intervention with immunomodulation-based therapies will be possible.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Inmunologíaspa
dc.description.methodsEl protocolo y la conducción de esta revisión se realizó con base a las recomendaciones del manual Cochrane para revisiones sistemáticas (118), se registró prospectivamente el protocolo en PROSPERO en diciembre de 2024 con número de registro CRD42025638226 y se siguieron las recomendaciones de reporte de la declaración PRISMA (119).spa
dc.format.extentxvi, 86 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88407
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Inmunologíaspa
dc.relation.references1. Brosens I, Puttemans P, Benagiano G. Placental bed research: I. The placental bed: from spiral arteries remodeling to the great obstetrical syndromes. Am J Obstet Gynecol. 2019;221(5):437-456. doi:10.1016/j.ajog.2019.05.044spa
dc.relation.references2. Gyselaers W. Preeclampsia Is a Syndrome with a Cascade of Pathophysiologic Events. J Clin Med. 2020;9(7):2245. doi:10.3390/jcm9072245spa
dc.relation.references3. Marti JJ, Herrmann U. Immunogestosis: A new etiologic concept of “essential” EPH gestosis, with special consideration of the primigravid patient. Am J Obstet Gynecol. 1977;128(5):489-493. doi:10.1016/0002-9378(77)90030-8spa
dc.relation.references4. Gómez Palacino J. Palabras del profesor Jesús Alberto Gómez Palacino en la inauguración del XXIX Congreso Nacional de Obstetricia y Ginecología. Rev Colomb Obstet Ginecol. 2014;65(2):183-185.spa
dc.relation.references5. Ali M, Ahmed M, Memon M, et al. Preeclampsia: A comprehensive review. Clinica Chimica Acta. 2024;563:119922. doi:10.1016/j.cca.2024.119922spa
dc.relation.references6. Abalos E, Cuesta C, Grosso AL, Chou D, Say L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2013;170(1):1-7. doi:10.1016/j.ejogrb.2013.05.005spa
dc.relation.references7. Organización Mundial de la Salud. Cada Dos Minutos Muere Una Mujer Por Problemas En El Embarazo o El Parto: Organismos de Las Naciones Unidas.; 2023. https://www.who.int/es/news/item/23-02-2023-a-woman-dies-every-two-minutes-due-to-pregnancy-or-childbirth--un-agenciesspa
dc.relation.references8. Instituto Nacional de Salud. Boletín Epidemiológico Semanal, Semana Epidemiológica 52.; 2024.spa
dc.relation.references9. Narváez Díaz NS. Informe de Evento 2023. Morbilidad Materna Extrema. Instituto Nacional de Salud.; 2024. doi:10.33610/infoeventos.46.1spa
dc.relation.references10. Schjenken JE, Robertson SA. The Female Response to Seminal Fluid. Physiol Rev. 2020;100(3):1077-1117. doi:10.1152/physrev.00013.2018spa
dc.relation.references11. Solak Y, Afsar B, Vaziri ND, et al. Hypertension as an autoimmune and inflammatory disease. Hypertension Research. 2016;39(8):567-573. doi:10.1038/hr.2016.35spa
dc.relation.references12. Caillon A, Paradis P, Schiffrin EL. Role of immune cells in hypertension. Br J Pharmacol. 2019;176(12):1818-1828. doi:10.1111/bph.14427spa
dc.relation.references13. Higaki A, Mogi M. Dendritic cells as potential initiators of immune-mediated hypertensive disorders. Hypertension Research. 2022;45(3):527-529. doi:10.1038/s41440-021-00830-yspa
dc.relation.references14. Cornelius DC. Preeclampsia: From Inflammation to Immunoregulation. Clin Med Insights Blood Disord. 2018;11:1-6. doi:10.1177/1179545X17752325spa
dc.relation.references15. Brown MA, Magee LA, Kenny LC, et al. Hypertensive Disorders of Pregnancy. Hypertension. 2018;72(1):24-43. doi:10.1161/HYPERTENSIONAHA.117.10803spa
dc.relation.references16. Herrock O, Deer E, LaMarca B. Setting a stage: Inflammation during preeclampsia and postpartum. Front Physiol. 2023;14:1-14. doi:10.3389/fphys.2023.1130116spa
dc.relation.references17. Ortíz-Ferro M, Bautista-Charry A. Cambios fisiológicos asociados al embarazo. In: Angel-Muller E, Parra-Pineda M, Bautista-Charry A, eds. Obstetricia Integral Siglo XXI. Vol 1. 2nd ed. Universidad Nacional de Colombia ; 2022:57-92.spa
dc.relation.references18. Agarwal I, Karumanchi SA. Preeclampsia and the anti-angiogenic state. Pregnancy Hypertension: An International Journal of Women’s Cardiovascular Health. 2011;1(1):17-21. doi:10.1016/j.preghy.2010.10.007spa
dc.relation.references19. Yagel S, Cohen SM, Admati I, et al. Preeclampsia Type I and Type II. Am J Obstet Gynecol MFM. 2023;5(12):101203. doi:10.1016/j.ajogmf.2023.101203spa
dc.relation.references20. Plaks V, Birnberg T, Berkutzki T, et al. Uterine DCs are crucial for decidua formation during embryo implantation in mice. Journal of Clinical Investigation. 2008;12(118):3954-3965. doi:10.1172/JCI36682spa
dc.relation.references21. Aisagbonhi O, Morris GP. Human Leukocyte Antigens in Pregnancy and Preeclampsia. Front Genet. 2022;13:884275. doi:10.3389/fgene.2022.884275spa
dc.relation.references22. Lombardelli L, Logiodice F, Kullolli O, et al. At Embryo Implantation Site IL-35 Secreted by Trophoblast, Polarizing T Cells towards IL-35+ IL-10+ IL-4+ Th2-Type Cells, Could Favour Fetal Allograft Tolerance and Pregnancy Success. Int J Mol Sci. 2022;23(9):4926. doi:10.3390/ijms23094926spa
dc.relation.references23. Mor G, Aldo P, Alvero AB. The unique immunological and microbial aspects of pregnancy. Nat Rev Immunol. 2017;17(8):469-482. doi:10.1038/nri.2017.64spa
dc.relation.references24. Li X, Zhou J, Fang M, Yu B. Pregnancy immune tolerance at the maternal-fetal interface. Int Rev Immunol. 2020;39(6):247-263. doi:10.1080/08830185.2020.1777292spa
dc.relation.references25. Li J, Zhou J, Huang H, Jiang J, Zhang T, Ni C. Mature dendritic cells enriched in immunoregulatory molecules (mregDCs): A novel population in the tumour microenvironment and immunotherapy target. Clin Transl Med. 2023;13(2). doi:10.1002/ctm2.1199spa
dc.relation.references26. Solano ME. Decidual immune cells: Guardians of human pregnancies. Best Pract Res Clin Obstet Gynaecol. 2019;60:3-16. doi:10.1016/j.bpobgyn.2019.05.009spa
dc.relation.references27. Wang J, Han T, Zhu X. Role of maternal–fetal immune tolerance in the establishment and maintenance of pregnancy. Chin Med J (Engl). 2024;137(12):1399-1406. doi:10.1097/CM9.0000000000003114spa
dc.relation.references28. Boulanger H, Bounan S, Mahdhi A, et al. Immunologic aspects of preeclampsia. AJOG Global Reports. 2024;4(1):100321. doi:10.1016/j.xagr.2024.100321spa
dc.relation.references29. Nagayama S, Shirasuna K, Nagayama M, et al. Decreased circulating levels of plasmacytoid dendritic cells in women with early-onset preeclampsia. J Reprod Immunol. 2020;141:103170. doi:10.1016/j.jri.2020.103170spa
dc.relation.references30. Chaouat G. The Th1/Th2 paradigm: still important in pregnancy? Semin Immunopathol. 2007;29(2):95-113. doi:10.1007/s00281-007-0069-0spa
dc.relation.references31. Annunziato F, Romagnani C, Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. Journal of Allergy and Clinical Immunology. 2015;135(3):626-635. doi:10.1016/j.jaci.2014.11.001spa
dc.relation.references32. Valencia‐Ortega J, Saucedo R, Peña‐Cano MI, Hernández‐Valencia M, Cruz‐Durán JG. Immune tolerance at the maternal‐placental interface in healthy pregnancy and pre‐eclampsia. Journal of Obstetrics and Gynaecology Research. 2020;46(7):1067-1076. doi:10.1111/jog.14309spa
dc.relation.references33. Abu-Raya B, Michalski C, Sadarangani M, Lavoie PM. Maternal Immunological Adaptation During Normal Pregnancy. Front Immunol. 2020;11:575197. doi:10.3389/fimmu.2020.575197spa
dc.relation.references34. Li J, Huang L, Wang S, Zhang Z. The prevalence of regulatory T and dendritic cells is altered in peripheral blood of women with pre-eclampsia. Pregnancy Hypertens. 2019;17:233-240. doi:10.1016/j.preghy.2019.07.003spa
dc.relation.references35. Bautista-Charry A. Preeclampsia Una Perspectiva Inmunológica: Revisión Narrativa. Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia.; 2019.spa
dc.relation.references36. Steinman RM, Nussenzweig MC. Dendritic Cells: Features and Functions. Immunol Rev. 1980;53(1):127-147. doi:10.1111/j.1600-065X.1980.tb01042.xspa
dc.relation.references37. Moser M. Dendritic Cells in Immunity and Tolerance—Do They Display Opposite Functions? Immunity. 2003;19(1):5-8. doi:10.1016/S1074-7613(03)00182-1spa
dc.relation.references38. León B. Type 2 conventional dendritic cell functional heterogeneity: ontogenically committed or environmentally plastic? Trends Immunol. 2025;46(2):104-120. doi:10.1016/j.it.2024.12.005spa
dc.relation.references39. Dzionek A, Fuchs A, Schmidt P, et al. BDCA-2, BDCA-3, and BDCA-4: Three Markers for Distinct Subsets of Dendritic Cells in Human Peripheral Blood. The Journal of Immunology. 2000;165(11):6037-6046. doi:10.4049/jimmunol.165.11.6037spa
dc.relation.references40. Liu Z, Wang H, Li Z, et al. Dendritic cell type 3 arises from Ly6C+ monocyte-dendritic cell progenitors. Immunity. 2023;56(8):1761-1777.e6. doi:10.1016/j.immuni.2023.07.001spa
dc.relation.references41. Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and locations. Int Rev Cell Mol Biol. Published online 2019:1-68. doi:10.1016/bs.ircmb.2019.07.004spa
dc.relation.references42. Palomares F, Pina A, Dakhaoui H, et al. Dendritic Cells as a Therapeutic Strategy in Acute Myeloid Leukemia: Vaccines. Vaccines (Basel). 2024;12(2):165. doi:10.3390/vaccines12020165spa
dc.relation.references43. Patente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM. Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy. Front Immunol. 2019;9. doi:10.3389/fimmu.2018.03176spa
dc.relation.references44. Cabeza-Cabrerizo M, Cardoso A, Minutti CM, Pereira da Costa M, Reis e Sousa C. Dendritic Cells Revisited. Annu Rev Immunol. 2021;39(1):131-166. doi:10.1146/annurev-immunol-061020-053707spa
dc.relation.references45. Villani AC, Satija R, Reynolds G, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science (1979). 2017;356(6335). doi:10.1126/science.aah4573spa
dc.relation.references46. Solano-Gálvez SG, Tovar-Torres SM, Tron-Gómez MS, et al. Human Dendritic Cells: Ontogeny and Their Subsets in Health and Disease. Medical Sciences. 2018;6(4):88. doi:10.3390/medsci6040088spa
dc.relation.references47. Adams NM, Das A, Yun TJ, Reizis B. Ontogeny and Function of Plasmacytoid Dendritic Cells. Annu Rev Immunol. 2024;42(1):347-373. doi:10.1146/annurev-immunol-090122-041105spa
dc.relation.references48. Gregori S, Tomasoni D, Pacciani V, et al. Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10 requires the IL-10–dependent ILT4/HLA-G pathway. Blood. 2010;116(6):935-944. doi:10.1182/blood-2009-07-234872spa
dc.relation.references49. Amodio G, Sales de Albuquerque R, Gregori S. New insights into HLA-G mediated tolerance. Tissue Antigens. 2014;84(3):255-263. doi:10.1111/tan.12427spa
dc.relation.references50. Amodio G, Mugione A, Sanchez AM, et al. HLA-G expressing DC-10 and CD4+ T cells accumulate in human decidua during pregnancy. Hum Immunol. 2013;74(4):406-411. doi:10.1016/j.humimm.2012.11.031spa
dc.relation.references51. Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology. 2018;154(1):3-20. doi:10.1111/imm.12888spa
dc.relation.references52. Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 2002;23(9):445-449. doi:10.1016/S1471-4906(02)02281-0spa
dc.relation.references53. Dudek AM, Martin S, Garg AD, Agostinis P. Immature, Semi-Mature, and Fully Mature Dendritic Cells: Toward a DC-Cancer Cells Interface That Augments Anticancer Immunity. Front Immunol. 2013;4. doi:10.3389/fimmu.2013.00438spa
dc.relation.references54. Kämmerer U, Schoppet M, McLellan AD, et al. Human Decidua Contains Potent Immunostimulatory CD83+ Dendritic Cells. Am J Pathol. 2000;157(1):159-169. doi:10.1016/S0002-9440(10)64527-0spa
dc.relation.references55. Mincheva-Nilsson L, Baranov V, Yeung MM, Hammarström S, Hammarström ML. Immunomorphologic studies of human decidua-associated lymphoid cells in normal early pregnancy. Journal of Immunology. 1994;152(4):2020-2032.spa
dc.relation.references56. Zhou LJ, Tedder TF. CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proceedings of the National Academy of Sciences. 1996;93(6):2588-2592. doi:10.1073/pnas.93.6.2588spa
dc.relation.references57. Gardner L. Dendritic Cells in the Human Decidua. Biol Reprod. 2003;69(4):1438-1446. doi:10.1095/biolreprod.103.017574spa
dc.relation.references58. Wei R, Lai N, Zhao L, et al. Dendritic cells in pregnancy and pregnancy-associated diseases. Biomedicine & Pharmacotherapy. 2021;133:110921. doi:10.1016/j.biopha.2020.110921spa
dc.relation.references59. Mahajan D, Kumar T, Rath PK, et al. Dendritic Cells and the Establishment of Fetomaternal Tolerance for Successful Human Pregnancy. Arch Immunol Ther Exp (Warsz). 2024;72(1). doi:10.2478/aite-2024-0010spa
dc.relation.references60. Erlebacher A. Immunology of the Maternal-Fetal Interface. Annu Rev Immunol. 2013;31(1):387-411. doi:10.1146/annurev-immunol-032712-100003spa
dc.relation.references61. Collins MK, Tay CS, Erlebacher A. Dendritic cell entrapment within the pregnant uterus inhibits immune surveillance of the maternal/fetal interface in mice. Journal of Clinical Investigation. Published online June 22, 2009. doi:10.1172/JCI38714spa
dc.relation.references62. Ban YL, Kong BH, Qu X, Yang QF, Ma YY. BDCA-1+, BDCA-2+ and BDCA-3+ dendritic cells in early human pregnancy decidua. Clin Exp Immunol. 2008;151(3):399-406. doi:10.1111/j.1365-2249.2007.03576.xspa
dc.relation.references63. Chang CC, Ciubotariu R, Manavalan JS, et al. Tolerization of dendritic cells by TS cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol. 2002;3(3):237-243. doi:10.1038/ni760spa
dc.relation.references64. Miyazaki S, Tsuda H, Sakai M, et al. Predominance of Th2-promoting dendritic cells in early human pregnancy decidua. J Leukoc Biol. 2003;74(4):514-522. doi:10.1189/jlb.1102566spa
dc.relation.references65. Vento-Tormo R, Efremova M, Botting RA, et al. Single-cell reconstruction of the early maternal–fetal interface in humans. Nature. 2018;563(7731):347-353. doi:10.1038/s41586-018-0698-6spa
dc.relation.references66. Liu S, Wei H, Li Y, et al. Downregulation of ILT4+ dendritic cells in recurrent miscarriage and recurrent implantation failure. American Journal of Reproductive Immunology. 2018;80(4). doi:10.1111/aji.12998spa
dc.relation.references67. Kwan M, Hazan A, Zhang J, et al. Dynamic changes in maternal decidual leukocyte populations from first to second trimester gestation. Placenta. 2014;35(12):1027-1034. doi:10.1016/j.placenta.2014.09.018spa
dc.relation.references68. Kämmerer U, Eggert AO, Kapp M, et al. Unique Appearance of Proliferating Antigen-Presenting Cells Expressing DC-SIGN (CD209) in the Decidua of Early Human Pregnancy. Am J Pathol. 2003;162(3):887-896. doi:10.1016/S0002-9440(10)63884-9spa
dc.relation.references69. Rieger L, Honig A, Sütterlin M, et al. Antigen-Presenting Cells in Human Endometrium During the Menstrual Cycle Compared to Early Pregnancy. J Soc Gynecol Investig. 2004;11(7):488-493. doi:10.1016/j.jsgi.2004.05.007spa
dc.relation.references70. Croxatto D, Vacca P, Canegallo F, et al. Stromal Cells from Human Decidua Exert a Strong Inhibitory Effect on NK Cell Function and Dendritic Cell Differentiation. PLoS One. 2014;9(2):e89006. doi:10.1371/journal.pone.0089006spa
dc.relation.references71. Faas MM, De Vos P. Innate immune cells in the placental bed in healthy pregnancy and preeclampsia. Placenta. 2018;69:125-133. doi:10.1016/j.placenta.2018.04.012spa
dc.relation.references72. Blois SM, Kammerer U, Soto CA, et al. Dendritic Cells: Key to Fetal Tolerance?1. Biol Reprod. 2007;77(4):590-598. doi:10.1095/biolreprod.107.060632spa
dc.relation.references73. Blois S, Arck P, Barrientos G. Part B: Dendritic Cells: New Insights in Reproduction. In: Chaouat G, Sandra O, Lédée N, eds. Immunology of Pregnancy. 1st ed. Bentham Science Publishers; 2013:220-237.spa
dc.relation.references74. Barrientos G, Tirado-González I, Klapp BF, et al. The impact of dendritic cells on angiogenic responses at the fetal–maternal interface. J Reprod Immunol. 2009;83(1-2):85-94. doi:10.1016/j.jri.2009.07.011spa
dc.relation.references75. Della Bella S, Giannelli S, Cozzi V, et al. Incomplete activation of peripheral blood dendritic cells during healthy human pregnancy. Clin Exp Immunol. 2011;164(2):180-192. doi:10.1111/j.1365-2249.2011.04330.xspa
dc.relation.references76. Li F, Long Y, Yu X, Tong Y, Gong L. Different Immunoregulation Roles of Activin A Compared With TGF-β. Front Immunol. 2022;13. doi:10.3389/fimmu.2022.921366spa
dc.relation.references77. Szekeres-Bartho J, Barakonyi A, Miko E, Polgar B, Palkovics T. The role of / T cells in the feto-maternal relationship. Semin Immunol. 2001;13(4):229-233. doi:10.1006/smim.2000.0318spa
dc.relation.references78. Miranda S, Litwin S, Barrientos G, et al. Dendritic Cells Therapy Confers a Protective Microenvironment in Murine Pregnancy. Scand J Immunol. 2006;64(5):493-499. doi:10.1111/j.1365-3083.2006.01841.xspa
dc.relation.references79. Laresgoiti-Servitje E. A leading role for the immune system in the pathophysiology of preeclampsia. J Leukoc Biol. 2013;94(2):247-257. doi:10.1189/jlb.1112603spa
dc.relation.references80. Dietl J, Hönig A, Kämmerer U, Rieger L. Natural Killer Cells and Dendritic Cells at the Human Feto-maternal Interface: an Effective Cooperation? Placenta. 2006;27(4-5):341-347. doi:10.1016/j.placenta.2005.05.001spa
dc.relation.references81. Tirado-González I, Muñoz-Fernández R, Prados A, et al. Apoptotic DC-SIGN+ cells in normal human decidua. Placenta. 2012;33(4):257-263. doi:10.1016/j.placenta.2012.01.003spa
dc.relation.references82. Kammerer U, Rieger L, Honig A. Characterization of Human Dendritic Cells at the Maternal-Fetal Interphase. In: Madame Curie Bioscience Database . Landes Bioscience; 2013.spa
dc.relation.references83. Kämmerer U, von Wolff M, Markert UR. Immunology of human endometrium. Immunobiology. 2004;209(7):569-574. doi:10.1016/j.imbio.2004.04.009spa
dc.relation.references84. Segerer S, Staib C, Kaemmerer U, et al. Dendritic Cells: Elegant Arbiters in Human Reproduction. Curr Pharm Biotechnol. 2012;13(8):1378-1384. doi:10.2174/138920112800784916spa
dc.relation.references85. Carreras E, Turner S, Paharkova-Vatchkova V, Mao A, Dascher C, Kovats S. Estradiol Acts Directly on Bone Marrow Myeloid Progenitors to Differentially Regulate GM-CSF or Flt3 Ligand-Mediated Dendritic Cell Differentiation. The Journal of Immunology. 2008;180(2):727-738. doi:10.4049/jimmunol.180.2.727spa
dc.relation.references86. Rissoan MC, Soumelis V, Kadowaki N, et al. Reciprocal Control of T Helper Cell and Dendritic Cell Differentiation. Science (1979). 1999;283(5405):1183-1186. doi:10.1126/science.283.5405.1183spa
dc.relation.references87. Eisenbarth SC. Dendritic cell subsets in T cell programming: location dictates function. Nat Rev Immunol. 2019;19(2):89-103. doi:10.1038/s41577-018-0088-1spa
dc.relation.references88. Eikmans M, van der Zwan A, Claas FHJ, van der Hoorn M, Heidt S. Got your mother in a whirl: The role of maternal T cells and myeloid cells in pregnancy. HLA. 2020;96(5):561-579. doi:10.1111/tan.14055spa
dc.relation.references89. Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol. 2015;15(8):471-485. doi:10.1038/nri3865spa
dc.relation.references90. Moseman EA, Liang X, Dawson AJ, et al. Human Plasmacytoid Dendritic Cells Activated by CpG Oligodeoxynucleotides Induce the Generation of CD4+CD25+ Regulatory T Cells. The Journal of Immunology. 2004;173(7):4433-4442. doi:10.4049/jimmunol.173.7.4433spa
dc.relation.references91. Salamone G, Fraccaroli L, Gori S, et al. Trophoblast cells induce a tolerogenic profile in dendritic cells. Human Reproduction. 2012;27(9):2598-2606. doi:10.1093/humrep/des208spa
dc.relation.references92. Yang F, Zheng Q, Jin L. Dynamic Function and Composition Changes of Immune Cells During Normal and Pathological Pregnancy at the Maternal-Fetal Interface. Front Immunol. 2019;10. doi:10.3389/fimmu.2019.02317spa
dc.relation.references93. Schumacher A. Human Chorionic Gonadotropin as a Pivotal Endocrine Immune Regulator Initiating and Preserving Fetal Tolerance. Int J Mol Sci. 2017;18(10):2166. doi:10.3390/ijms18102166spa
dc.relation.references94. Segerer SE, Müller N, Brandt J van den, et al. The glycoprotein-hormones activin A and inhibin A interfere with dendritic cell maturation. Reproductive Biology and Endocrinology. 2008;6(1):17. doi:10.1186/1477-7827-6-17spa
dc.relation.references95. Lin YL, Liang YC, Chiang BL. Placental growth factor down-regulates type 1 T helper immune response by modulating the function of dendritic cells. J Leukoc Biol. 2007;82(6):1473-1480. doi:10.1189/jlb.0307164spa
dc.relation.references96. Komi J, Lassila O. Nonsteroidal anti-estrogens inhibit the functional differentiation of human monocyte-derived dendritic cells. Blood. 2000;95(9):2875-2882.spa
dc.relation.references97. Liu S, Diao L, Huang C, Li Y, Zeng Y, Kwak-Kim JYH. The role of decidual immune cells on human pregnancy. J Reprod Immunol. 2017;124:44-53. doi:10.1016/j.jri.2017.10.045spa
dc.relation.references98. Kammerer U, Kruse A, Barrientos G, Arck P, Blois S. Role of Dendritic Cells in the Regulation of Maternal Immune Responses to the Fetus During Mammalian Gestation. Immunol Invest. 2008;37(5):499-533. doi:10.1080/08820130802191334spa
dc.relation.references99. Raguema N, Moustadraf S, Bertagnolli M. Immune and Apoptosis Mechanisms Regulating Placental Development and Vascularization in Preeclampsia. Front Physiol. 2020;11. doi:10.3389/fphys.2020.00098spa
dc.relation.references100. Huang S, Chen C, Schatz F, Rahman M, Abrahams V, Lockwood C. Pre‐eclampsia is associated with dendritic cell recruitment into the uterine decidua. J Pathol. 2008;214(3):328-336. doi:10.1002/path.2257spa
dc.relation.references101. Saito S, Nakashima A, Shima T, Ito M. Th1/Th2/Th17 and Regulatory T‐Cell Paradigm in Pregnancy. American Journal of Reproductive Immunology. 2010;63(6):601-610. doi:10.1111/j.1600-0897.2010.00852.xspa
dc.relation.references102. Hosseini A, Dolati S, Hashemi V, Abdollahpour‐Alitappeh M, Yousefi M. Regulatory T and T helper 17 cells: Their roles in preeclampsia. J Cell Physiol. 2018;233(9):6561-6573. doi:10.1002/jcp.26604spa
dc.relation.references103. Shin S, Jang JY, Roh EY, et al. Differences in Circulating Dendritic Cell Subtypes in Pregnant Women, Cord Blood and Healthy Adult Women. J Korean Med Sci. 2009;24(5):853. doi:10.3346/jkms.2009.24.5.853spa
dc.relation.references104. Miller D, Motomura K, Galaz J, et al. Cellular immune responses in the pathophysiology of preeclampsia. J Leukoc Biol. 2021;111(1):237-260. doi:10.1002/JLB.5RU1120-787RRspa
dc.relation.references105. Fu B, Tian Z, Wei H. TH17 cells in human recurrent pregnancy loss and pre-eclampsia. Cell Mol Immunol. 2014;11(6):564-570. doi:10.1038/cmi.2014.54spa
dc.relation.references106. Spence T, Allsopp PJ, Yeates AJ, Mulhern MS, Strain JJ, McSorley EM. Maternal Serum Cytokine Concentrations in Healthy Pregnancy and Preeclampsia. J Pregnancy. 2021;2021:1-33. doi:10.1155/2021/6649608spa
dc.relation.references107. Zhang W, Zhou Y, Ding Y. Lnc-DC mediates the over-maturation of decidual dendritic cells and induces the increase in Th1 cells in preeclampsia. American Journal of Reproductive Immunology. 2017;77(6). doi:10.1111/aji.12647spa
dc.relation.references108. Darmochwal-Kolarz D, Rolinski J, Tabarkiewicz J, Leszczynska-Gorzelak B, Buczkowski J. Myeloid and lymphoid dendritic cells in normal pregnancy and pre-eclampsia. Clin Exp Immunol. 2003;132(2):339-344. doi:10.1046/j.1365-2249.2003.02136.xspa
dc.relation.references109. Hsu P, Santner-Nanan B, Dahlstrom JE, et al. Altered Decidual DC-SIGN+ Antigen-Presenting Cells and Impaired Regulatory T-Cell Induction in Preeclampsia. Am J Pathol. 2012;181(6):2149-2160. doi:10.1016/j.ajpath.2012.08.032spa
dc.relation.references110. Wang J, Tao YM, Cheng X, et al. Vascular endothelial growth factor affects dendritic cell activity in hypertensive disorders of pregnancy. Mol Med Rep. 2015;12(3):3781-3786. doi:10.3892/mmr.2015.3783spa
dc.relation.references111. Possomato-Vieira JS, Khalil RA. Mechanisms of Endothelial Dysfunction in Hypertensive Pregnancy and Preeclampsia. Adv Pharmacol. 2016;77:361-431. doi:10.1016/bs.apha.2016.04.008spa
dc.relation.references112. Fromm PD, Silveira PA, Hsu JL, et al. Distinguishing human peripheral blood CD16+ myeloid cells based on phenotypic characteristics. J Leukoc Biol. 2020;107(2):323-339. doi:10.1002/JLB.5A1119-362RRRspa
dc.relation.references113. MacDonald KPA, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DNJ. Characterization of human blood dendritic cell subsets. Blood. 2002;100(13):4512-4520. doi:10.1182/blood-2001-11-0097spa
dc.relation.references114. Baumgaertner P, Sankar M, Herrera F, et al. Unsupervised Analysis of Flow Cytometry Data in a Clinical Setting Captures Cell Diversity and Allows Population Discovery. Front Immunol. 2021;12:633910. doi:10.3389/fimmu.2021.633910spa
dc.relation.references115. Heger L, Hofer TP, Bigley V, et al. Subsets of CD1c+ DCs: Dendritic Cell Versus Monocyte Lineage. Front Immunol. 2020;11. doi:10.3389/fimmu.2020.559166spa
dc.relation.references116. Schütz F, Hackstein H. Identification of novel dendritic cell subset markers in human blood. Biochem Biophys Res Commun. 2014;443(2):453-457. doi:10.1016/j.bbrc.2013.11.112spa
dc.relation.references117. De Dios Soler M, Acosta Haab G. Guía de Inmunohistoquímica Para Técnicos. Instituto Nacional del Cáncer; 2018.spa
dc.relation.references118. Higgins J, Thomas J, Chandler J, et al. Cochrane Handbook for Systematic Reviews of Interventions Version 6.5 (Updated August 2024). Cochrane; 2024. www.training.cochrane.org/handbook.spa
dc.relation.references119. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. Published online March 29, 2021:n71. doi:10.1136/bmj.n71spa
dc.relation.references120. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603-605. doi:10.1007/s10654-010-9491-zspa
dc.relation.references121. Darmochwal-Kolarz D, Kludka-Sternik M, Kolarz B, et al. The expression of B7-H1 and B7-H4 co-stimulatory molecules on myeloid and plasmacytoid dendritic cells in pre-eclampsia and normal pregnancy. J Reprod Immunol. 2013;99(1-2):33-38. doi:10.1016/j.jri.2013.04.004spa
dc.relation.references122. Darmochwal‐Kolarz DA, Kludka‐Sternik M, Chmielewski T, et al. The Expressions of CD200 and CD200R Molecules on Myeloid and Lymphoid Dendritic Cells in Pre-Eclampsia and Normal Pregnancy. American Journal of Reproductive Immunology. 2012;67(6):474-481. doi:10.1111/j.1600-0897.2012.01126.xspa
dc.relation.references123. Panda B, Panda A, Ueda I, et al. Dendritic cells in the circulation of women with preeclampsia demonstrate a pro-inflammatory bias secondary to dysregulation of TLR receptors. J Reprod Immunol. 2012;94(2):210-215. doi:10.1016/j.jri.2012.01.008spa
dc.relation.references124. Scholz C, Toth B, Santoso L, et al. Distribution and Maturity of Dendritic Cells in Diseases of Insufficient Placentation. American Journal of Reproductive Immunology. 2008;60(3):238-245. doi:10.1111/j.1600-0897.2008.00619.xspa
dc.relation.references125. Silalahi ER, Wibowo N, Prasmusinto D, Djuwita R, Rengganis I, Mose JC. Decidual dendritic cells 10 and CD4+CD25+FOXP3 regulatory T cell in preeclampsia and their correlation with nutritional factors in pathomechanism of immune rejection in pregnancy. J Reprod Immunol. 2022;154:103746. doi:10.1016/j.jri.2022.103746spa
dc.relation.references126. Toldi G, Svec P, Vásárhelyi B, et al. Decreased number of FoxP3+ regulatory T cells in preeclampsia. Acta Obstet Gynecol Scand. 2008;87(11):1229-1233. doi:10.1080/00016340802389470spa
dc.relation.references127. Wang J, Tao Y, Cheng X, Zhu T, Chen Z, Yao H. Dendritic cells derived from preeclampsia patients influence Th1/Th17 cell differentiation in vitro. Int J Clin Exp Med. 2014;7(12):5303-5309.spa
dc.relation.references128. Rizzuto G, Erlebacher A. Trophoblast antigens, fetal blood cell antigens, and the paradox of fetomaternal tolerance. Journal of Experimental Medicine. 2022;219(5):e20211515. doi:10.1084/jem.20211515spa
dc.relation.references129. LaMarca B, Cornelius D, Wallace K. Elucidating Immune Mechanisms Causing Hypertension During Pregnancy. Physiology. 2013;28(4):225-233. doi:10.1152/physiol.00006.2013spa
dc.relation.references130. Zhang S, Ding J, Zhang Y, Liu S, Yang J, Yin T. Regulation and Function of Chemokines at the Maternal–Fetal Interface. Front Cell Dev Biol. 2022;10:826053. doi:10.3389/fcell.2022.826053spa
dc.relation.references131. Juretic K, Strbo N, Crncic TB, Laskarin G, Rukavina D. An Insight into the Dendritic Cells at the Maternal–Fetal Interface. American Journal of Reproductive Immunology. 2004;52(6):350-355. doi:10.1111/j.1600-0897.2004.00232.xspa
dc.relation.references132. Fang W ning, Shi M, Meng C yang, Li D dan, Peng J pian. The Balance between Conventional DCs and Plasmacytoid DCs Is Pivotal for Immunological Tolerance during Pregnancy in the Mouse. Sci Rep. 2016;6(1):26984. doi:10.1038/srep26984spa
dc.relation.references133. Maldonado RA, von Andrian UH. How Tolerogenic Dendritic Cells Induce Regulatory T Cells. Adv Immunol. 2010;108:111-165. doi:10.1016/B978-0-12-380995-7.00004-5spa
dc.relation.references134. Bourque J, Hawiger D. Life and death of tolerogenic dendritic cells. Trends Immunol. 2023;44(2):110-118. doi:10.1016/j.it.2022.12.006spa
dc.relation.references135. Bosteels V, Janssens S. Striking a balance: new perspectives on homeostatic dendritic cell maturation. Nat Rev Immunol. 2025;25(2):125-140. doi:10.1038/s41577-024-01079-5spa
dc.relation.references136. Dutta S, Sengupta P, Liew FF. Cytokine landscapes of pregnancy: mapping gestational immune phases. Gynecology and Obstetrics Clinical Medicine. 2024;4(1):e000011. doi:10.1136/gocm-2024-000011spa
dc.relation.references137. Steinman RM, Turley S, Mellman I, Inaba K. The Induction of Tolerance by Dendritic Cells That Have Captured Apoptotic Cells. J Exp Med. 2000;191(3):411-416. doi:10.1084/jem.191.3.411spa
dc.relation.references138. Hatton RD. TGF-β in Th17 Cell Development: The Truth Is Out There. Immunity. 2011;34(3):288-290. doi:10.1016/j.immuni.2011.03.009spa
dc.relation.references139. Meyyazhagan A, Kuchi Bhotla H, Pappuswamy M, Tsibizova V, Al Qasem M, Di Renzo GC. Cytokine see‐saw across pregnancy, its related complexities and consequences. International Journal of Gynecology & Obstetrics. 2023;160(2):516-525. doi:10.1002/ijgo.14333spa
dc.relation.references140. Barbaro NR, Foss JD, Kryshtal DO, et al. Dendritic Cell Amiloride-Sensitive Channels Mediate Sodium-Induced Inflammation and Hypertension. Cell Rep. 2017;21(4):1009-1020. doi:10.1016/j.celrep.2017.10.002spa
dc.relation.references141. Jiménez-Cortegana C, Palomares F, Alba G, et al. Dendritic cells: the yin and yang in disease progression. Front Immunol. 2024;14:1321051. doi:10.3389/fimmu.2023.1321051spa
dc.relation.references142. Peng X, Chinwe Oluchi-Amaka I, Kwak-Kim J, Yang X. A comprehensive review of the roles of T-cell immunity in preeclampsia. Front Immunol. 2025;16:1476123. doi:10.3389/fimmu.2025.1476123spa
dc.relation.references143. Böckle BC, Sölder E, Kind S, Romani N, Sepp NT. DC-SIGN+ CD163+ Macrophages Expressing Hyaluronan Receptor LYVE-1 Are Located within Chorion Villi of the Placenta. Placenta. 2008;29(2):187-192. doi:10.1016/j.placenta.2007.11.003spa
dc.relation.references144. Langerhans P. Ueber die Nerven der menschlichen Haut. Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin. 1868;44(2-3):325-337. doi:10.1007/BF01959006spa
dc.relation.references145. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 1973;137(5):1142-1162. doi:10.1084/jem.137.5.1142spa
dc.relation.references146. Redman C. HLA-DR antigen on human trophoblast: a review. American Journal of Reproductive Immunology. 1983;3(4):175-177. doi:10.1111/j.1600-0897.1983.tb00241.xspa
dc.relation.references147. Oksenberg J, Mor-Yosef S, Persitz E, Schenker Y, Mozes E, Brautbar C. Antigen‐Presenting Cells in Human Decidual Tissue. American Journal of Reproductive Immunology and Microbiology. 1986;11(3):82-88. doi:10.1111/j.1600-0897.1986.tb00036.xspa
dc.relation.references148. Oksenberg J, Mor-Yosef S, Ezra Y, Brautbar C. Antigen Presenting Cells in Human Decidual Tissue: III. Role of Accessory Cells in the Activation of Suppressor Cells. American Journal of Reproductive Immunology and Microbiology. 1988;16(4):151-158. doi:10.1111/j.1600-0897.1988.tb00187.xspa
dc.relation.references149. Girling JE, Rogers PAW. The endometrial lymphatic vasculature: Function and dysfunction. Rev Endocr Metab Disord. 2012;13(4):265-275. doi:10.1007/s11154-012-9224-6spa
dc.relation.references150. Abomaray FM, Al Jumah MA, Kalionis B, et al. Human Chorionic Villous Mesenchymal Stem Cells Modify the Functions of Human Dendritic Cells, and Induce an Anti-Inflammatory Phenotype in CD1+ Dendritic Cells. Stem Cell Rev Rep. 2015;11(3):423-441. doi:10.1007/s12015-014-9562-8spa
dc.relation.references151. Aldebert D, Diallo M, Niang M, et al. Differences in circulating dendritic cell subtypes in peripheral, placental and cord blood in African pregnant women. J Reprod Immunol. 2007;73(1):11-19. doi:10.1016/j.jri.2006.05.002spa
dc.relation.references152. Baig S, Vasoo S, Teh B, et al. Immunomodulation by placental microvesicles in adverse pregnancy outcomes (preeclampsia and recurrent pregnancy loss). J Reprod Immunol. 2012;94(1):17-18. doi:10.1016/j.jri.2012.03.268spa
dc.relation.references153. Darmochwal-Kolarz D, Kolarz B, Chmielewski T, Oleszczuk J. O76. The role of costimulatory molecules in the pathogenesis of pre-eclampsia. Pregnancy Hypertension: An International Journal of Women’s Cardiovascular Health. 2015;5(3):228. doi:10.1016/j.preghy.2015.07.050spa
dc.relation.references154. Darmochwal-Kolarz DA, Kludka-Sternik M, Chmielewski T, Kolarz B, Rolinski J, Oleszczuk J. PP069. The expressions of B7-H1 and B7-H4 co-stimulatory molecules on myeloid and lymphoid dendritic cells in pre-eclampsia and normal pregnancy. The expressions of B7-H1 and B7-H4 co-stimulatory moleculeson myeloid and lymphoid dendritic cells in pre-eclampsia and normal pregnancy. Pregnancy Hypertension: An International Journal of Women’s Cardiovascular Health. 2012;2(3):278-279. doi:10.1016/j.preghy.2012.04.180spa
dc.relation.references155. Scientific Abstracts. Reproductive Sciences. 2015;22(S1):A55-A389. doi:10.1177/1933719115579631spa
dc.relation.references156. Frankel R, Gutzeit O, Hantisteanu S, et al. 1021: Alterations of myeloid cell populations in human pregnancies complicated by preeclampsia. Am J Obstet Gynecol. 2019;220(1):S656. doi:10.1016/j.ajog.2018.11.1045spa
dc.relation.references157. Hsu P, Santner‐Nanan B, Joung S, Peek MJ, Nanan R. Expansion of CD4(+) HLA-G(+) T Cell in human pregnancy is impaired in pre-eclampsia. American Journal of Reproductive Immunology. 2014;71(3):217-228. doi:10.1111/aji.12195spa
dc.relation.references158. Kwon J, Pi H, Jung Y, Park Y, Kwon H. Preeclampsia is associated withimpaired lymphangiogenic andimmune cell trafficking function ofdecidual lymphatic endothelial cells. Reproductive Sciences. 2019;26(S1):A62-A390. doi:10.1177/1933719119834079spa
dc.relation.references159. Scientific Abstracts. Reproductive Sciences. 2011;18(S3):A69-A384. doi:10.1177/193371912011183s067spa
dc.relation.references160. Panda B, Panda A, Abrahams VM, et al. 745: Increase in TLR protein in preeclamptic patients does not correlate with a corresponding increase in TLR gene expression. Am J Obstet Gynecol. 2012;206(1):S330. doi:10.1016/j.ajog.2011.10.763spa
dc.relation.references161. Shao Q, Liu X, Huang Y, Chen X, Wang H. Human Decidual Stromal Cells in Early Pregnancy Induce Functional Re-Programming of Monocyte-Derived Dendritic Cells via Crosstalk Between G-CSF and IL-1β. Front Immunol. 2020;11:574270. doi:10.3389/fimmu.2020.574270spa
dc.relation.references162. Shi W, Riedel A, Bazzano M V., et al. Regulatory CD8+ T cells are modulated in healthy and preeclampsia pregnancies. J Reprod Immunol. 2023;159:104074. doi:10.1016/j.jri.2023.104074spa
dc.relation.references163. Yang SW, Cho EH, Choi SY, et al. DC-SIGN expression in Hofbauer cells may play an important role in immune tolerance in fetal chorionic villi during the development of preeclampsia. J Reprod Immunol. 2017;124:30-37. doi:10.1016/j.jri.2017.09.012spa
dc.relation.references164. Young BC, Stanic AK, Panda B, Rueda BR, Panda A. Longitudinal expression of Toll-like receptors on dendritic cells in uncomplicated pregnancy and postpartum. Am J Obstet Gynecol. 2014;210(5):445.e1-445.e6. doi:10.1016/j.ajog.2013.11.037spa
dc.relation.references165. Wang J, Su L, Zhu T. [Effect of dendritic cells on the differentiation of Th1/Th17 in peripheral blood from preeclampsia patients]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2013;29(7):744-747.spa
dc.relation.references166. Van Coillie S, Wiernicki B, Xu J. Molecular and Cellular Functions of CTLA-4. In: Xu J, ed. Regulation of Cancer Immune Checkpoints. Advances in Experimental Medicine and Biology. Vol 1248. 1st ed. Springer; 2020:7-32. doi:10.1007/978-981-15-3266-5_2spa
dc.relation.references167. Hsu P, Santner-Nanan B, Peek MJ, Dahlstrom J, Nanan R. Mismatch between decidual DC-SIGN+ dendritic cells and Foxp3+ T regulatory cells in preeclampsia. J Reprod Immunol. 2010;86(1):28. doi:10.1016/j.jri.2010.06.050spa
dc.relation.references168. Ding J, Wang J, Cai X, et al. Granulocyte colony-stimulating factor in reproductive-related disease: Function, regulation and therapeutic effect. Biomedicine & Pharmacotherapy. 2022;150:112903. doi:10.1016/j.biopha.2022.112903spa
dc.relation.references169. Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today. 1993;14(7):353-356. doi:10.1016/0167-5699(93)90235-Dspa
dc.relation.references170. Trundley A, Moffett A. Human uterine leukocytes and pregnancy. Tissue Antigens. 2004;63(1):1-12. doi:10.1111/j.1399-0039.2004.00170.xspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc610 - Medicina y salud::618 - Ginecología, obstetricia, pediatría, geriatríaspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decsPreeclampsiaspa
dc.subject.decsPre-Eclampsiaeng
dc.subject.decsHipertensión Inducida en el Embarazospa
dc.subject.decsHypertension, Pregnancy-Inducedeng
dc.subject.decsComplicaciones del Embarazospa
dc.subject.decsPregnancy Complicationseng
dc.subject.decsMortalidad Maternaspa
dc.subject.decsMaternal Mortalityeng
dc.subject.decsMortalidad Fetalspa
dc.subject.decsFetal Mortalityeng
dc.subject.decsTrimestres del Embarazospa
dc.subject.decsPregnancy Trimesterseng
dc.subject.decsComplicaciones del Embarazospa
dc.subject.decsPregnancy Complicationseng
dc.subject.proposalCélulas Dendríticasspa
dc.subject.proposalPreeclampsiaspa
dc.subject.proposalEmbarazospa
dc.subject.proposalSistema Inmunológicospa
dc.subject.proposalEndotelio vascularspa
dc.subject.proposalDeciduaspa
dc.subject.proposalMetaanálisisspa
dc.subject.proposalDendritic celleng
dc.subject.proposalPreeclampsiaeng
dc.subject.proposalPregnancyeng
dc.subject.proposalImmunological systemeng
dc.subject.proposalVascular endotheliumeng
dc.subject.proposalDeciduaeng
dc.subject.proposalTercer Trimestre del Embarazospa
dc.subject.proposalInmunidadspa
dc.subject.proposalMeta-Analysiseng
dc.subject.proposalThird Trimester of Pregnancyeng
dc.subject.proposalImmunityeng
dc.titleCantidad y perfil fenotípico de células dendríticas en gestantes del tercer trimestre con y sin preeclampsia : Revisión sistemática y metaanálisis
dc.title.translatedQuantity and phenotypic profile of dendritic cells in third-trimester pregnant women with and without preeclampsia: A systematic review and metaanalysiseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79379811.2025.pdf
Tamaño:
7.35 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Inmunología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: