Cantidad y perfil fenotípico de células dendríticas en gestantes del tercer trimestre con y sin preeclampsia : Revisión sistemática y metaanálisis
dc.contributor.advisor | Henao Riveros, Sandra Consuelo | spa |
dc.contributor.advisor | Montilla Velásquez, Maria del Pilar | spa |
dc.contributor.author | Bautista Charry, Alejandro Antonio | spa |
dc.contributor.subjectmatterexpert | Alfaro Marenco, María Alejandra | spa |
dc.contributor.subjectmatterexpert | Páez Castellanos, Edgar Augusto | spa |
dc.coverage.country | Colombia | spa |
dc.date.accessioned | 2025-07-31T14:53:26Z | |
dc.date.available | 2025-07-31T14:53:26Z | |
dc.date.issued | 2025-04 | |
dc.description | ilustraciones a color, diagramas | spa |
dc.description.abstract | La preeclampsia (PE) es una complicación obstétrica multisistémica donde los principales mecanismos involucrados son la activación del sistema inmune de manera exacerbada y la activación endotelial con importantes consecuencias materno-fetales; es una de las principales causas de morbi-mortalidad materna y perinatal convirtiéndose en un problema de salud pública a nivel mundial. Contrario a la PE, el embarazo normal es un proceso regulado, complejo y su éxito depende de la interacción entre una respuesta inmunotolerante materna y los antígenos paternos trofoblásticos. Este entorno tolerogénico involucra varias poblaciones celulares entre ellas a las DCs (células dendríticas), que actúan como reguladoras clave de la inmunidad secretando citoquinas antiinflamatorias, activando linfocitos T reguladores, pero también ejerciendo un papel central en los mecanismos inmunológicos de la PE. Sin embargo, existe un vacío en la literatura sobre la relación entre la cantidad y el perfil fenotípico de estas células en embarazadas con preeclampsia. Por esta razón se quiso hacer una revisión de la literatura con el objetivo de investigar la posible relación entre la cantidad y el perfil fenotípico de DCs en embarazadas del tercer trimestre con y sin preeclampsia, mediante una revisión sistemática y metaanálisis. Se realizó una búsqueda sistemática en bases de datos como MEDLINE, Embase y Scopus, abarcando estudios publicados entre 2004 y 2024. Se incluyeron estudios de casos y controles en los cuales se identificaron DCs mediante citometría de flujo e inmunohistoquímica en sangre y decidua. Se evaluó el riesgo de sesgo con la escala Newcastle-Ottawa y se llevó a cabo un metaanálisis cuando fue posible. Con los resultados de la búsqueda se incluyeron 12 estudios con un total de 691 embarazadas (328 con PE y 363 controles). Se observó una mayor proporción de DCs convencionales (cDCs) en la decidua de mujeres con PE y un incremento significativo en las DCs maduras en la decidua de mujeres con PE en comparación con gestantes sanas (DME 2.58; IC 95%: 1.47-3.69), lo que sugiere un ambiente inmunológico más proinflamatorio. En cuanto a la cantidad de células dendríticas plasmacitoides circulantes entre ambos grupos no hubo diferencias significativas. La heterogeneidad de los estudios fue moderada a baja en los análisis realizados, indicando consistencia en los hallazgos. Este metaanálisis afianza el conocimiento de la preeclampsia donde encontramos alteraciones cuantitativas y funcionales en las DCs. El aumento de DCs maduras en la decidua y la mayor proporción de cDCs sugieren un desbalance inmunológico que podría contribuir a la disfunción endotelial y a la respuesta inflamatoria exagerada en la PE. Estos hallazgos refuerzan la importancia de las células dendríticas en la patogénesis de la enfermedad y se espera que en el futuro se pueda prevenir o intervenir con terapias basadas en la inmunomodulación (Texto tomado de la fuente). | spa |
dc.description.abstract | Preeclampsia (PE) is a multisystemic obstetric complication where the main actors involved are the exacerbated activation of the immune system and endothelial activation with significant maternal-fetal consequences; it is one of the main causes of maternal and perinatal morbidity and mortality, becoming a global public health problem. Contrary to PE, normal pregnancy is a regulated, complex process, and its success depends on the interaction between a maternal immunotolerant response and paternal trophoblastic antigens. This tolerogenic environment involves various cell populations, including DCs (dendritic cells), which act as key regulators of immunity by secreting anti-inflammatory cytokines, activating regulatory T lymphocytes, but also playing a central role in the immunological mechanisms of PE. However, there is a gap in the literature regarding the relationship between the quantity and phenotypic profile of these cells in pregnant women with preeclampsia. For this reason, a literature review was conducted with the aim of investigating the possible relationship between the quantity and phenotypic profile of DCs in third-trimester pregnant women with and without preeclampsia, through a systematic review and meta-analysis. A systematic search was conducted in databases such as MEDLINE, Embase, and Scopus, covering studies published between 2004 and 2024. Case-control studies in which DCs were identified by flow cytometry and immunohistochemistry in blood and decidua were included. The risk of bias was assessed with the Newcastle-Ottawa scale, and a meta-analysis was carried out when possible. From the search results, 12 studies with a total of 691 pregnant women (328 with PE and 363 controls) were included. A higher proportion of conventional DCs (cDCs) was observed in the decidua of women with PE, and a significant increase in mature DCs was found in the decidua of women with PE compared to healthy pregnant women (SMD 2.58; 95% CI: 1.47-3.69), suggesting a more pro-inflammatory immunological environment. Regarding the number of circulating plasmacytoid dendritic cells between both groups, there were no significant differences. The heterogeneity of the studies was moderate to low in the analyses performed, indicating consistency in the findings. This meta-analysis reinforces the knowledge of pre-eclampsia, where we find quantitative and functional alterations in DCs. The increase in mature DCs in the decidua and the higher proportion of cDCs suggest an immunological imbalance that could contribute to endothelial dysfunction and the exaggerated inflammatory response in PE. These findings reinforce the importance of dendritic cells in the pathogenesis of the disease, and it is hoped that in the future, prevention or intervention with immunomodulation-based therapies will be possible. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Inmunología | spa |
dc.description.methods | El protocolo y la conducción de esta revisión se realizó con base a las recomendaciones del manual Cochrane para revisiones sistemáticas (118), se registró prospectivamente el protocolo en PROSPERO en diciembre de 2024 con número de registro CRD42025638226 y se siguieron las recomendaciones de reporte de la declaración PRISMA (119). | spa |
dc.format.extent | xvi, 86 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88407 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Medicina - Maestría en Inmunología | spa |
dc.relation.references | 1. Brosens I, Puttemans P, Benagiano G. Placental bed research: I. The placental bed: from spiral arteries remodeling to the great obstetrical syndromes. Am J Obstet Gynecol. 2019;221(5):437-456. doi:10.1016/j.ajog.2019.05.044 | spa |
dc.relation.references | 2. Gyselaers W. Preeclampsia Is a Syndrome with a Cascade of Pathophysiologic Events. J Clin Med. 2020;9(7):2245. doi:10.3390/jcm9072245 | spa |
dc.relation.references | 3. Marti JJ, Herrmann U. Immunogestosis: A new etiologic concept of “essential” EPH gestosis, with special consideration of the primigravid patient. Am J Obstet Gynecol. 1977;128(5):489-493. doi:10.1016/0002-9378(77)90030-8 | spa |
dc.relation.references | 4. Gómez Palacino J. Palabras del profesor Jesús Alberto Gómez Palacino en la inauguración del XXIX Congreso Nacional de Obstetricia y Ginecología. Rev Colomb Obstet Ginecol. 2014;65(2):183-185. | spa |
dc.relation.references | 5. Ali M, Ahmed M, Memon M, et al. Preeclampsia: A comprehensive review. Clinica Chimica Acta. 2024;563:119922. doi:10.1016/j.cca.2024.119922 | spa |
dc.relation.references | 6. Abalos E, Cuesta C, Grosso AL, Chou D, Say L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2013;170(1):1-7. doi:10.1016/j.ejogrb.2013.05.005 | spa |
dc.relation.references | 7. Organización Mundial de la Salud. Cada Dos Minutos Muere Una Mujer Por Problemas En El Embarazo o El Parto: Organismos de Las Naciones Unidas.; 2023. https://www.who.int/es/news/item/23-02-2023-a-woman-dies-every-two-minutes-due-to-pregnancy-or-childbirth--un-agencies | spa |
dc.relation.references | 8. Instituto Nacional de Salud. Boletín Epidemiológico Semanal, Semana Epidemiológica 52.; 2024. | spa |
dc.relation.references | 9. Narváez Díaz NS. Informe de Evento 2023. Morbilidad Materna Extrema. Instituto Nacional de Salud.; 2024. doi:10.33610/infoeventos.46.1 | spa |
dc.relation.references | 10. Schjenken JE, Robertson SA. The Female Response to Seminal Fluid. Physiol Rev. 2020;100(3):1077-1117. doi:10.1152/physrev.00013.2018 | spa |
dc.relation.references | 11. Solak Y, Afsar B, Vaziri ND, et al. Hypertension as an autoimmune and inflammatory disease. Hypertension Research. 2016;39(8):567-573. doi:10.1038/hr.2016.35 | spa |
dc.relation.references | 12. Caillon A, Paradis P, Schiffrin EL. Role of immune cells in hypertension. Br J Pharmacol. 2019;176(12):1818-1828. doi:10.1111/bph.14427 | spa |
dc.relation.references | 13. Higaki A, Mogi M. Dendritic cells as potential initiators of immune-mediated hypertensive disorders. Hypertension Research. 2022;45(3):527-529. doi:10.1038/s41440-021-00830-y | spa |
dc.relation.references | 14. Cornelius DC. Preeclampsia: From Inflammation to Immunoregulation. Clin Med Insights Blood Disord. 2018;11:1-6. doi:10.1177/1179545X17752325 | spa |
dc.relation.references | 15. Brown MA, Magee LA, Kenny LC, et al. Hypertensive Disorders of Pregnancy. Hypertension. 2018;72(1):24-43. doi:10.1161/HYPERTENSIONAHA.117.10803 | spa |
dc.relation.references | 16. Herrock O, Deer E, LaMarca B. Setting a stage: Inflammation during preeclampsia and postpartum. Front Physiol. 2023;14:1-14. doi:10.3389/fphys.2023.1130116 | spa |
dc.relation.references | 17. Ortíz-Ferro M, Bautista-Charry A. Cambios fisiológicos asociados al embarazo. In: Angel-Muller E, Parra-Pineda M, Bautista-Charry A, eds. Obstetricia Integral Siglo XXI. Vol 1. 2nd ed. Universidad Nacional de Colombia ; 2022:57-92. | spa |
dc.relation.references | 18. Agarwal I, Karumanchi SA. Preeclampsia and the anti-angiogenic state. Pregnancy Hypertension: An International Journal of Women’s Cardiovascular Health. 2011;1(1):17-21. doi:10.1016/j.preghy.2010.10.007 | spa |
dc.relation.references | 19. Yagel S, Cohen SM, Admati I, et al. Preeclampsia Type I and Type II. Am J Obstet Gynecol MFM. 2023;5(12):101203. doi:10.1016/j.ajogmf.2023.101203 | spa |
dc.relation.references | 20. Plaks V, Birnberg T, Berkutzki T, et al. Uterine DCs are crucial for decidua formation during embryo implantation in mice. Journal of Clinical Investigation. 2008;12(118):3954-3965. doi:10.1172/JCI36682 | spa |
dc.relation.references | 21. Aisagbonhi O, Morris GP. Human Leukocyte Antigens in Pregnancy and Preeclampsia. Front Genet. 2022;13:884275. doi:10.3389/fgene.2022.884275 | spa |
dc.relation.references | 22. Lombardelli L, Logiodice F, Kullolli O, et al. At Embryo Implantation Site IL-35 Secreted by Trophoblast, Polarizing T Cells towards IL-35+ IL-10+ IL-4+ Th2-Type Cells, Could Favour Fetal Allograft Tolerance and Pregnancy Success. Int J Mol Sci. 2022;23(9):4926. doi:10.3390/ijms23094926 | spa |
dc.relation.references | 23. Mor G, Aldo P, Alvero AB. The unique immunological and microbial aspects of pregnancy. Nat Rev Immunol. 2017;17(8):469-482. doi:10.1038/nri.2017.64 | spa |
dc.relation.references | 24. Li X, Zhou J, Fang M, Yu B. Pregnancy immune tolerance at the maternal-fetal interface. Int Rev Immunol. 2020;39(6):247-263. doi:10.1080/08830185.2020.1777292 | spa |
dc.relation.references | 25. Li J, Zhou J, Huang H, Jiang J, Zhang T, Ni C. Mature dendritic cells enriched in immunoregulatory molecules (mregDCs): A novel population in the tumour microenvironment and immunotherapy target. Clin Transl Med. 2023;13(2). doi:10.1002/ctm2.1199 | spa |
dc.relation.references | 26. Solano ME. Decidual immune cells: Guardians of human pregnancies. Best Pract Res Clin Obstet Gynaecol. 2019;60:3-16. doi:10.1016/j.bpobgyn.2019.05.009 | spa |
dc.relation.references | 27. Wang J, Han T, Zhu X. Role of maternal–fetal immune tolerance in the establishment and maintenance of pregnancy. Chin Med J (Engl). 2024;137(12):1399-1406. doi:10.1097/CM9.0000000000003114 | spa |
dc.relation.references | 28. Boulanger H, Bounan S, Mahdhi A, et al. Immunologic aspects of preeclampsia. AJOG Global Reports. 2024;4(1):100321. doi:10.1016/j.xagr.2024.100321 | spa |
dc.relation.references | 29. Nagayama S, Shirasuna K, Nagayama M, et al. Decreased circulating levels of plasmacytoid dendritic cells in women with early-onset preeclampsia. J Reprod Immunol. 2020;141:103170. doi:10.1016/j.jri.2020.103170 | spa |
dc.relation.references | 30. Chaouat G. The Th1/Th2 paradigm: still important in pregnancy? Semin Immunopathol. 2007;29(2):95-113. doi:10.1007/s00281-007-0069-0 | spa |
dc.relation.references | 31. Annunziato F, Romagnani C, Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. Journal of Allergy and Clinical Immunology. 2015;135(3):626-635. doi:10.1016/j.jaci.2014.11.001 | spa |
dc.relation.references | 32. Valencia‐Ortega J, Saucedo R, Peña‐Cano MI, Hernández‐Valencia M, Cruz‐Durán JG. Immune tolerance at the maternal‐placental interface in healthy pregnancy and pre‐eclampsia. Journal of Obstetrics and Gynaecology Research. 2020;46(7):1067-1076. doi:10.1111/jog.14309 | spa |
dc.relation.references | 33. Abu-Raya B, Michalski C, Sadarangani M, Lavoie PM. Maternal Immunological Adaptation During Normal Pregnancy. Front Immunol. 2020;11:575197. doi:10.3389/fimmu.2020.575197 | spa |
dc.relation.references | 34. Li J, Huang L, Wang S, Zhang Z. The prevalence of regulatory T and dendritic cells is altered in peripheral blood of women with pre-eclampsia. Pregnancy Hypertens. 2019;17:233-240. doi:10.1016/j.preghy.2019.07.003 | spa |
dc.relation.references | 35. Bautista-Charry A. Preeclampsia Una Perspectiva Inmunológica: Revisión Narrativa. Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia.; 2019. | spa |
dc.relation.references | 36. Steinman RM, Nussenzweig MC. Dendritic Cells: Features and Functions. Immunol Rev. 1980;53(1):127-147. doi:10.1111/j.1600-065X.1980.tb01042.x | spa |
dc.relation.references | 37. Moser M. Dendritic Cells in Immunity and Tolerance—Do They Display Opposite Functions? Immunity. 2003;19(1):5-8. doi:10.1016/S1074-7613(03)00182-1 | spa |
dc.relation.references | 38. León B. Type 2 conventional dendritic cell functional heterogeneity: ontogenically committed or environmentally plastic? Trends Immunol. 2025;46(2):104-120. doi:10.1016/j.it.2024.12.005 | spa |
dc.relation.references | 39. Dzionek A, Fuchs A, Schmidt P, et al. BDCA-2, BDCA-3, and BDCA-4: Three Markers for Distinct Subsets of Dendritic Cells in Human Peripheral Blood. The Journal of Immunology. 2000;165(11):6037-6046. doi:10.4049/jimmunol.165.11.6037 | spa |
dc.relation.references | 40. Liu Z, Wang H, Li Z, et al. Dendritic cell type 3 arises from Ly6C+ monocyte-dendritic cell progenitors. Immunity. 2023;56(8):1761-1777.e6. doi:10.1016/j.immuni.2023.07.001 | spa |
dc.relation.references | 41. Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and locations. Int Rev Cell Mol Biol. Published online 2019:1-68. doi:10.1016/bs.ircmb.2019.07.004 | spa |
dc.relation.references | 42. Palomares F, Pina A, Dakhaoui H, et al. Dendritic Cells as a Therapeutic Strategy in Acute Myeloid Leukemia: Vaccines. Vaccines (Basel). 2024;12(2):165. doi:10.3390/vaccines12020165 | spa |
dc.relation.references | 43. Patente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM. Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy. Front Immunol. 2019;9. doi:10.3389/fimmu.2018.03176 | spa |
dc.relation.references | 44. Cabeza-Cabrerizo M, Cardoso A, Minutti CM, Pereira da Costa M, Reis e Sousa C. Dendritic Cells Revisited. Annu Rev Immunol. 2021;39(1):131-166. doi:10.1146/annurev-immunol-061020-053707 | spa |
dc.relation.references | 45. Villani AC, Satija R, Reynolds G, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science (1979). 2017;356(6335). doi:10.1126/science.aah4573 | spa |
dc.relation.references | 46. Solano-Gálvez SG, Tovar-Torres SM, Tron-Gómez MS, et al. Human Dendritic Cells: Ontogeny and Their Subsets in Health and Disease. Medical Sciences. 2018;6(4):88. doi:10.3390/medsci6040088 | spa |
dc.relation.references | 47. Adams NM, Das A, Yun TJ, Reizis B. Ontogeny and Function of Plasmacytoid Dendritic Cells. Annu Rev Immunol. 2024;42(1):347-373. doi:10.1146/annurev-immunol-090122-041105 | spa |
dc.relation.references | 48. Gregori S, Tomasoni D, Pacciani V, et al. Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10 requires the IL-10–dependent ILT4/HLA-G pathway. Blood. 2010;116(6):935-944. doi:10.1182/blood-2009-07-234872 | spa |
dc.relation.references | 49. Amodio G, Sales de Albuquerque R, Gregori S. New insights into HLA-G mediated tolerance. Tissue Antigens. 2014;84(3):255-263. doi:10.1111/tan.12427 | spa |
dc.relation.references | 50. Amodio G, Mugione A, Sanchez AM, et al. HLA-G expressing DC-10 and CD4+ T cells accumulate in human decidua during pregnancy. Hum Immunol. 2013;74(4):406-411. doi:10.1016/j.humimm.2012.11.031 | spa |
dc.relation.references | 51. Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology. 2018;154(1):3-20. doi:10.1111/imm.12888 | spa |
dc.relation.references | 52. Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 2002;23(9):445-449. doi:10.1016/S1471-4906(02)02281-0 | spa |
dc.relation.references | 53. Dudek AM, Martin S, Garg AD, Agostinis P. Immature, Semi-Mature, and Fully Mature Dendritic Cells: Toward a DC-Cancer Cells Interface That Augments Anticancer Immunity. Front Immunol. 2013;4. doi:10.3389/fimmu.2013.00438 | spa |
dc.relation.references | 54. Kämmerer U, Schoppet M, McLellan AD, et al. Human Decidua Contains Potent Immunostimulatory CD83+ Dendritic Cells. Am J Pathol. 2000;157(1):159-169. doi:10.1016/S0002-9440(10)64527-0 | spa |
dc.relation.references | 55. Mincheva-Nilsson L, Baranov V, Yeung MM, Hammarström S, Hammarström ML. Immunomorphologic studies of human decidua-associated lymphoid cells in normal early pregnancy. Journal of Immunology. 1994;152(4):2020-2032. | spa |
dc.relation.references | 56. Zhou LJ, Tedder TF. CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proceedings of the National Academy of Sciences. 1996;93(6):2588-2592. doi:10.1073/pnas.93.6.2588 | spa |
dc.relation.references | 57. Gardner L. Dendritic Cells in the Human Decidua. Biol Reprod. 2003;69(4):1438-1446. doi:10.1095/biolreprod.103.017574 | spa |
dc.relation.references | 58. Wei R, Lai N, Zhao L, et al. Dendritic cells in pregnancy and pregnancy-associated diseases. Biomedicine & Pharmacotherapy. 2021;133:110921. doi:10.1016/j.biopha.2020.110921 | spa |
dc.relation.references | 59. Mahajan D, Kumar T, Rath PK, et al. Dendritic Cells and the Establishment of Fetomaternal Tolerance for Successful Human Pregnancy. Arch Immunol Ther Exp (Warsz). 2024;72(1). doi:10.2478/aite-2024-0010 | spa |
dc.relation.references | 60. Erlebacher A. Immunology of the Maternal-Fetal Interface. Annu Rev Immunol. 2013;31(1):387-411. doi:10.1146/annurev-immunol-032712-100003 | spa |
dc.relation.references | 61. Collins MK, Tay CS, Erlebacher A. Dendritic cell entrapment within the pregnant uterus inhibits immune surveillance of the maternal/fetal interface in mice. Journal of Clinical Investigation. Published online June 22, 2009. doi:10.1172/JCI38714 | spa |
dc.relation.references | 62. Ban YL, Kong BH, Qu X, Yang QF, Ma YY. BDCA-1+, BDCA-2+ and BDCA-3+ dendritic cells in early human pregnancy decidua. Clin Exp Immunol. 2008;151(3):399-406. doi:10.1111/j.1365-2249.2007.03576.x | spa |
dc.relation.references | 63. Chang CC, Ciubotariu R, Manavalan JS, et al. Tolerization of dendritic cells by TS cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol. 2002;3(3):237-243. doi:10.1038/ni760 | spa |
dc.relation.references | 64. Miyazaki S, Tsuda H, Sakai M, et al. Predominance of Th2-promoting dendritic cells in early human pregnancy decidua. J Leukoc Biol. 2003;74(4):514-522. doi:10.1189/jlb.1102566 | spa |
dc.relation.references | 65. Vento-Tormo R, Efremova M, Botting RA, et al. Single-cell reconstruction of the early maternal–fetal interface in humans. Nature. 2018;563(7731):347-353. doi:10.1038/s41586-018-0698-6 | spa |
dc.relation.references | 66. Liu S, Wei H, Li Y, et al. Downregulation of ILT4+ dendritic cells in recurrent miscarriage and recurrent implantation failure. American Journal of Reproductive Immunology. 2018;80(4). doi:10.1111/aji.12998 | spa |
dc.relation.references | 67. Kwan M, Hazan A, Zhang J, et al. Dynamic changes in maternal decidual leukocyte populations from first to second trimester gestation. Placenta. 2014;35(12):1027-1034. doi:10.1016/j.placenta.2014.09.018 | spa |
dc.relation.references | 68. Kämmerer U, Eggert AO, Kapp M, et al. Unique Appearance of Proliferating Antigen-Presenting Cells Expressing DC-SIGN (CD209) in the Decidua of Early Human Pregnancy. Am J Pathol. 2003;162(3):887-896. doi:10.1016/S0002-9440(10)63884-9 | spa |
dc.relation.references | 69. Rieger L, Honig A, Sütterlin M, et al. Antigen-Presenting Cells in Human Endometrium During the Menstrual Cycle Compared to Early Pregnancy. J Soc Gynecol Investig. 2004;11(7):488-493. doi:10.1016/j.jsgi.2004.05.007 | spa |
dc.relation.references | 70. Croxatto D, Vacca P, Canegallo F, et al. Stromal Cells from Human Decidua Exert a Strong Inhibitory Effect on NK Cell Function and Dendritic Cell Differentiation. PLoS One. 2014;9(2):e89006. doi:10.1371/journal.pone.0089006 | spa |
dc.relation.references | 71. Faas MM, De Vos P. Innate immune cells in the placental bed in healthy pregnancy and preeclampsia. Placenta. 2018;69:125-133. doi:10.1016/j.placenta.2018.04.012 | spa |
dc.relation.references | 72. Blois SM, Kammerer U, Soto CA, et al. Dendritic Cells: Key to Fetal Tolerance?1. Biol Reprod. 2007;77(4):590-598. doi:10.1095/biolreprod.107.060632 | spa |
dc.relation.references | 73. Blois S, Arck P, Barrientos G. Part B: Dendritic Cells: New Insights in Reproduction. In: Chaouat G, Sandra O, Lédée N, eds. Immunology of Pregnancy. 1st ed. Bentham Science Publishers; 2013:220-237. | spa |
dc.relation.references | 74. Barrientos G, Tirado-González I, Klapp BF, et al. The impact of dendritic cells on angiogenic responses at the fetal–maternal interface. J Reprod Immunol. 2009;83(1-2):85-94. doi:10.1016/j.jri.2009.07.011 | spa |
dc.relation.references | 75. Della Bella S, Giannelli S, Cozzi V, et al. Incomplete activation of peripheral blood dendritic cells during healthy human pregnancy. Clin Exp Immunol. 2011;164(2):180-192. doi:10.1111/j.1365-2249.2011.04330.x | spa |
dc.relation.references | 76. Li F, Long Y, Yu X, Tong Y, Gong L. Different Immunoregulation Roles of Activin A Compared With TGF-β. Front Immunol. 2022;13. doi:10.3389/fimmu.2022.921366 | spa |
dc.relation.references | 77. Szekeres-Bartho J, Barakonyi A, Miko E, Polgar B, Palkovics T. The role of / T cells in the feto-maternal relationship. Semin Immunol. 2001;13(4):229-233. doi:10.1006/smim.2000.0318 | spa |
dc.relation.references | 78. Miranda S, Litwin S, Barrientos G, et al. Dendritic Cells Therapy Confers a Protective Microenvironment in Murine Pregnancy. Scand J Immunol. 2006;64(5):493-499. doi:10.1111/j.1365-3083.2006.01841.x | spa |
dc.relation.references | 79. Laresgoiti-Servitje E. A leading role for the immune system in the pathophysiology of preeclampsia. J Leukoc Biol. 2013;94(2):247-257. doi:10.1189/jlb.1112603 | spa |
dc.relation.references | 80. Dietl J, Hönig A, Kämmerer U, Rieger L. Natural Killer Cells and Dendritic Cells at the Human Feto-maternal Interface: an Effective Cooperation? Placenta. 2006;27(4-5):341-347. doi:10.1016/j.placenta.2005.05.001 | spa |
dc.relation.references | 81. Tirado-González I, Muñoz-Fernández R, Prados A, et al. Apoptotic DC-SIGN+ cells in normal human decidua. Placenta. 2012;33(4):257-263. doi:10.1016/j.placenta.2012.01.003 | spa |
dc.relation.references | 82. Kammerer U, Rieger L, Honig A. Characterization of Human Dendritic Cells at the Maternal-Fetal Interphase. In: Madame Curie Bioscience Database . Landes Bioscience; 2013. | spa |
dc.relation.references | 83. Kämmerer U, von Wolff M, Markert UR. Immunology of human endometrium. Immunobiology. 2004;209(7):569-574. doi:10.1016/j.imbio.2004.04.009 | spa |
dc.relation.references | 84. Segerer S, Staib C, Kaemmerer U, et al. Dendritic Cells: Elegant Arbiters in Human Reproduction. Curr Pharm Biotechnol. 2012;13(8):1378-1384. doi:10.2174/138920112800784916 | spa |
dc.relation.references | 85. Carreras E, Turner S, Paharkova-Vatchkova V, Mao A, Dascher C, Kovats S. Estradiol Acts Directly on Bone Marrow Myeloid Progenitors to Differentially Regulate GM-CSF or Flt3 Ligand-Mediated Dendritic Cell Differentiation. The Journal of Immunology. 2008;180(2):727-738. doi:10.4049/jimmunol.180.2.727 | spa |
dc.relation.references | 86. Rissoan MC, Soumelis V, Kadowaki N, et al. Reciprocal Control of T Helper Cell and Dendritic Cell Differentiation. Science (1979). 1999;283(5405):1183-1186. doi:10.1126/science.283.5405.1183 | spa |
dc.relation.references | 87. Eisenbarth SC. Dendritic cell subsets in T cell programming: location dictates function. Nat Rev Immunol. 2019;19(2):89-103. doi:10.1038/s41577-018-0088-1 | spa |
dc.relation.references | 88. Eikmans M, van der Zwan A, Claas FHJ, van der Hoorn M, Heidt S. Got your mother in a whirl: The role of maternal T cells and myeloid cells in pregnancy. HLA. 2020;96(5):561-579. doi:10.1111/tan.14055 | spa |
dc.relation.references | 89. Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol. 2015;15(8):471-485. doi:10.1038/nri3865 | spa |
dc.relation.references | 90. Moseman EA, Liang X, Dawson AJ, et al. Human Plasmacytoid Dendritic Cells Activated by CpG Oligodeoxynucleotides Induce the Generation of CD4+CD25+ Regulatory T Cells. The Journal of Immunology. 2004;173(7):4433-4442. doi:10.4049/jimmunol.173.7.4433 | spa |
dc.relation.references | 91. Salamone G, Fraccaroli L, Gori S, et al. Trophoblast cells induce a tolerogenic profile in dendritic cells. Human Reproduction. 2012;27(9):2598-2606. doi:10.1093/humrep/des208 | spa |
dc.relation.references | 92. Yang F, Zheng Q, Jin L. Dynamic Function and Composition Changes of Immune Cells During Normal and Pathological Pregnancy at the Maternal-Fetal Interface. Front Immunol. 2019;10. doi:10.3389/fimmu.2019.02317 | spa |
dc.relation.references | 93. Schumacher A. Human Chorionic Gonadotropin as a Pivotal Endocrine Immune Regulator Initiating and Preserving Fetal Tolerance. Int J Mol Sci. 2017;18(10):2166. doi:10.3390/ijms18102166 | spa |
dc.relation.references | 94. Segerer SE, Müller N, Brandt J van den, et al. The glycoprotein-hormones activin A and inhibin A interfere with dendritic cell maturation. Reproductive Biology and Endocrinology. 2008;6(1):17. doi:10.1186/1477-7827-6-17 | spa |
dc.relation.references | 95. Lin YL, Liang YC, Chiang BL. Placental growth factor down-regulates type 1 T helper immune response by modulating the function of dendritic cells. J Leukoc Biol. 2007;82(6):1473-1480. doi:10.1189/jlb.0307164 | spa |
dc.relation.references | 96. Komi J, Lassila O. Nonsteroidal anti-estrogens inhibit the functional differentiation of human monocyte-derived dendritic cells. Blood. 2000;95(9):2875-2882. | spa |
dc.relation.references | 97. Liu S, Diao L, Huang C, Li Y, Zeng Y, Kwak-Kim JYH. The role of decidual immune cells on human pregnancy. J Reprod Immunol. 2017;124:44-53. doi:10.1016/j.jri.2017.10.045 | spa |
dc.relation.references | 98. Kammerer U, Kruse A, Barrientos G, Arck P, Blois S. Role of Dendritic Cells in the Regulation of Maternal Immune Responses to the Fetus During Mammalian Gestation. Immunol Invest. 2008;37(5):499-533. doi:10.1080/08820130802191334 | spa |
dc.relation.references | 99. Raguema N, Moustadraf S, Bertagnolli M. Immune and Apoptosis Mechanisms Regulating Placental Development and Vascularization in Preeclampsia. Front Physiol. 2020;11. doi:10.3389/fphys.2020.00098 | spa |
dc.relation.references | 100. Huang S, Chen C, Schatz F, Rahman M, Abrahams V, Lockwood C. Pre‐eclampsia is associated with dendritic cell recruitment into the uterine decidua. J Pathol. 2008;214(3):328-336. doi:10.1002/path.2257 | spa |
dc.relation.references | 101. Saito S, Nakashima A, Shima T, Ito M. Th1/Th2/Th17 and Regulatory T‐Cell Paradigm in Pregnancy. American Journal of Reproductive Immunology. 2010;63(6):601-610. doi:10.1111/j.1600-0897.2010.00852.x | spa |
dc.relation.references | 102. Hosseini A, Dolati S, Hashemi V, Abdollahpour‐Alitappeh M, Yousefi M. Regulatory T and T helper 17 cells: Their roles in preeclampsia. J Cell Physiol. 2018;233(9):6561-6573. doi:10.1002/jcp.26604 | spa |
dc.relation.references | 103. Shin S, Jang JY, Roh EY, et al. Differences in Circulating Dendritic Cell Subtypes in Pregnant Women, Cord Blood and Healthy Adult Women. J Korean Med Sci. 2009;24(5):853. doi:10.3346/jkms.2009.24.5.853 | spa |
dc.relation.references | 104. Miller D, Motomura K, Galaz J, et al. Cellular immune responses in the pathophysiology of preeclampsia. J Leukoc Biol. 2021;111(1):237-260. doi:10.1002/JLB.5RU1120-787RR | spa |
dc.relation.references | 105. Fu B, Tian Z, Wei H. TH17 cells in human recurrent pregnancy loss and pre-eclampsia. Cell Mol Immunol. 2014;11(6):564-570. doi:10.1038/cmi.2014.54 | spa |
dc.relation.references | 106. Spence T, Allsopp PJ, Yeates AJ, Mulhern MS, Strain JJ, McSorley EM. Maternal Serum Cytokine Concentrations in Healthy Pregnancy and Preeclampsia. J Pregnancy. 2021;2021:1-33. doi:10.1155/2021/6649608 | spa |
dc.relation.references | 107. Zhang W, Zhou Y, Ding Y. Lnc-DC mediates the over-maturation of decidual dendritic cells and induces the increase in Th1 cells in preeclampsia. American Journal of Reproductive Immunology. 2017;77(6). doi:10.1111/aji.12647 | spa |
dc.relation.references | 108. Darmochwal-Kolarz D, Rolinski J, Tabarkiewicz J, Leszczynska-Gorzelak B, Buczkowski J. Myeloid and lymphoid dendritic cells in normal pregnancy and pre-eclampsia. Clin Exp Immunol. 2003;132(2):339-344. doi:10.1046/j.1365-2249.2003.02136.x | spa |
dc.relation.references | 109. Hsu P, Santner-Nanan B, Dahlstrom JE, et al. Altered Decidual DC-SIGN+ Antigen-Presenting Cells and Impaired Regulatory T-Cell Induction in Preeclampsia. Am J Pathol. 2012;181(6):2149-2160. doi:10.1016/j.ajpath.2012.08.032 | spa |
dc.relation.references | 110. Wang J, Tao YM, Cheng X, et al. Vascular endothelial growth factor affects dendritic cell activity in hypertensive disorders of pregnancy. Mol Med Rep. 2015;12(3):3781-3786. doi:10.3892/mmr.2015.3783 | spa |
dc.relation.references | 111. Possomato-Vieira JS, Khalil RA. Mechanisms of Endothelial Dysfunction in Hypertensive Pregnancy and Preeclampsia. Adv Pharmacol. 2016;77:361-431. doi:10.1016/bs.apha.2016.04.008 | spa |
dc.relation.references | 112. Fromm PD, Silveira PA, Hsu JL, et al. Distinguishing human peripheral blood CD16+ myeloid cells based on phenotypic characteristics. J Leukoc Biol. 2020;107(2):323-339. doi:10.1002/JLB.5A1119-362RRR | spa |
dc.relation.references | 113. MacDonald KPA, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DNJ. Characterization of human blood dendritic cell subsets. Blood. 2002;100(13):4512-4520. doi:10.1182/blood-2001-11-0097 | spa |
dc.relation.references | 114. Baumgaertner P, Sankar M, Herrera F, et al. Unsupervised Analysis of Flow Cytometry Data in a Clinical Setting Captures Cell Diversity and Allows Population Discovery. Front Immunol. 2021;12:633910. doi:10.3389/fimmu.2021.633910 | spa |
dc.relation.references | 115. Heger L, Hofer TP, Bigley V, et al. Subsets of CD1c+ DCs: Dendritic Cell Versus Monocyte Lineage. Front Immunol. 2020;11. doi:10.3389/fimmu.2020.559166 | spa |
dc.relation.references | 116. Schütz F, Hackstein H. Identification of novel dendritic cell subset markers in human blood. Biochem Biophys Res Commun. 2014;443(2):453-457. doi:10.1016/j.bbrc.2013.11.112 | spa |
dc.relation.references | 117. De Dios Soler M, Acosta Haab G. Guía de Inmunohistoquímica Para Técnicos. Instituto Nacional del Cáncer; 2018. | spa |
dc.relation.references | 118. Higgins J, Thomas J, Chandler J, et al. Cochrane Handbook for Systematic Reviews of Interventions Version 6.5 (Updated August 2024). Cochrane; 2024. www.training.cochrane.org/handbook. | spa |
dc.relation.references | 119. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. Published online March 29, 2021:n71. doi:10.1136/bmj.n71 | spa |
dc.relation.references | 120. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603-605. doi:10.1007/s10654-010-9491-z | spa |
dc.relation.references | 121. Darmochwal-Kolarz D, Kludka-Sternik M, Kolarz B, et al. The expression of B7-H1 and B7-H4 co-stimulatory molecules on myeloid and plasmacytoid dendritic cells in pre-eclampsia and normal pregnancy. J Reprod Immunol. 2013;99(1-2):33-38. doi:10.1016/j.jri.2013.04.004 | spa |
dc.relation.references | 122. Darmochwal‐Kolarz DA, Kludka‐Sternik M, Chmielewski T, et al. The Expressions of CD200 and CD200R Molecules on Myeloid and Lymphoid Dendritic Cells in Pre-Eclampsia and Normal Pregnancy. American Journal of Reproductive Immunology. 2012;67(6):474-481. doi:10.1111/j.1600-0897.2012.01126.x | spa |
dc.relation.references | 123. Panda B, Panda A, Ueda I, et al. Dendritic cells in the circulation of women with preeclampsia demonstrate a pro-inflammatory bias secondary to dysregulation of TLR receptors. J Reprod Immunol. 2012;94(2):210-215. doi:10.1016/j.jri.2012.01.008 | spa |
dc.relation.references | 124. Scholz C, Toth B, Santoso L, et al. Distribution and Maturity of Dendritic Cells in Diseases of Insufficient Placentation. American Journal of Reproductive Immunology. 2008;60(3):238-245. doi:10.1111/j.1600-0897.2008.00619.x | spa |
dc.relation.references | 125. Silalahi ER, Wibowo N, Prasmusinto D, Djuwita R, Rengganis I, Mose JC. Decidual dendritic cells 10 and CD4+CD25+FOXP3 regulatory T cell in preeclampsia and their correlation with nutritional factors in pathomechanism of immune rejection in pregnancy. J Reprod Immunol. 2022;154:103746. doi:10.1016/j.jri.2022.103746 | spa |
dc.relation.references | 126. Toldi G, Svec P, Vásárhelyi B, et al. Decreased number of FoxP3+ regulatory T cells in preeclampsia. Acta Obstet Gynecol Scand. 2008;87(11):1229-1233. doi:10.1080/00016340802389470 | spa |
dc.relation.references | 127. Wang J, Tao Y, Cheng X, Zhu T, Chen Z, Yao H. Dendritic cells derived from preeclampsia patients influence Th1/Th17 cell differentiation in vitro. Int J Clin Exp Med. 2014;7(12):5303-5309. | spa |
dc.relation.references | 128. Rizzuto G, Erlebacher A. Trophoblast antigens, fetal blood cell antigens, and the paradox of fetomaternal tolerance. Journal of Experimental Medicine. 2022;219(5):e20211515. doi:10.1084/jem.20211515 | spa |
dc.relation.references | 129. LaMarca B, Cornelius D, Wallace K. Elucidating Immune Mechanisms Causing Hypertension During Pregnancy. Physiology. 2013;28(4):225-233. doi:10.1152/physiol.00006.2013 | spa |
dc.relation.references | 130. Zhang S, Ding J, Zhang Y, Liu S, Yang J, Yin T. Regulation and Function of Chemokines at the Maternal–Fetal Interface. Front Cell Dev Biol. 2022;10:826053. doi:10.3389/fcell.2022.826053 | spa |
dc.relation.references | 131. Juretic K, Strbo N, Crncic TB, Laskarin G, Rukavina D. An Insight into the Dendritic Cells at the Maternal–Fetal Interface. American Journal of Reproductive Immunology. 2004;52(6):350-355. doi:10.1111/j.1600-0897.2004.00232.x | spa |
dc.relation.references | 132. Fang W ning, Shi M, Meng C yang, Li D dan, Peng J pian. The Balance between Conventional DCs and Plasmacytoid DCs Is Pivotal for Immunological Tolerance during Pregnancy in the Mouse. Sci Rep. 2016;6(1):26984. doi:10.1038/srep26984 | spa |
dc.relation.references | 133. Maldonado RA, von Andrian UH. How Tolerogenic Dendritic Cells Induce Regulatory T Cells. Adv Immunol. 2010;108:111-165. doi:10.1016/B978-0-12-380995-7.00004-5 | spa |
dc.relation.references | 134. Bourque J, Hawiger D. Life and death of tolerogenic dendritic cells. Trends Immunol. 2023;44(2):110-118. doi:10.1016/j.it.2022.12.006 | spa |
dc.relation.references | 135. Bosteels V, Janssens S. Striking a balance: new perspectives on homeostatic dendritic cell maturation. Nat Rev Immunol. 2025;25(2):125-140. doi:10.1038/s41577-024-01079-5 | spa |
dc.relation.references | 136. Dutta S, Sengupta P, Liew FF. Cytokine landscapes of pregnancy: mapping gestational immune phases. Gynecology and Obstetrics Clinical Medicine. 2024;4(1):e000011. doi:10.1136/gocm-2024-000011 | spa |
dc.relation.references | 137. Steinman RM, Turley S, Mellman I, Inaba K. The Induction of Tolerance by Dendritic Cells That Have Captured Apoptotic Cells. J Exp Med. 2000;191(3):411-416. doi:10.1084/jem.191.3.411 | spa |
dc.relation.references | 138. Hatton RD. TGF-β in Th17 Cell Development: The Truth Is Out There. Immunity. 2011;34(3):288-290. doi:10.1016/j.immuni.2011.03.009 | spa |
dc.relation.references | 139. Meyyazhagan A, Kuchi Bhotla H, Pappuswamy M, Tsibizova V, Al Qasem M, Di Renzo GC. Cytokine see‐saw across pregnancy, its related complexities and consequences. International Journal of Gynecology & Obstetrics. 2023;160(2):516-525. doi:10.1002/ijgo.14333 | spa |
dc.relation.references | 140. Barbaro NR, Foss JD, Kryshtal DO, et al. Dendritic Cell Amiloride-Sensitive Channels Mediate Sodium-Induced Inflammation and Hypertension. Cell Rep. 2017;21(4):1009-1020. doi:10.1016/j.celrep.2017.10.002 | spa |
dc.relation.references | 141. Jiménez-Cortegana C, Palomares F, Alba G, et al. Dendritic cells: the yin and yang in disease progression. Front Immunol. 2024;14:1321051. doi:10.3389/fimmu.2023.1321051 | spa |
dc.relation.references | 142. Peng X, Chinwe Oluchi-Amaka I, Kwak-Kim J, Yang X. A comprehensive review of the roles of T-cell immunity in preeclampsia. Front Immunol. 2025;16:1476123. doi:10.3389/fimmu.2025.1476123 | spa |
dc.relation.references | 143. Böckle BC, Sölder E, Kind S, Romani N, Sepp NT. DC-SIGN+ CD163+ Macrophages Expressing Hyaluronan Receptor LYVE-1 Are Located within Chorion Villi of the Placenta. Placenta. 2008;29(2):187-192. doi:10.1016/j.placenta.2007.11.003 | spa |
dc.relation.references | 144. Langerhans P. Ueber die Nerven der menschlichen Haut. Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin. 1868;44(2-3):325-337. doi:10.1007/BF01959006 | spa |
dc.relation.references | 145. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 1973;137(5):1142-1162. doi:10.1084/jem.137.5.1142 | spa |
dc.relation.references | 146. Redman C. HLA-DR antigen on human trophoblast: a review. American Journal of Reproductive Immunology. 1983;3(4):175-177. doi:10.1111/j.1600-0897.1983.tb00241.x | spa |
dc.relation.references | 147. Oksenberg J, Mor-Yosef S, Persitz E, Schenker Y, Mozes E, Brautbar C. Antigen‐Presenting Cells in Human Decidual Tissue. American Journal of Reproductive Immunology and Microbiology. 1986;11(3):82-88. doi:10.1111/j.1600-0897.1986.tb00036.x | spa |
dc.relation.references | 148. Oksenberg J, Mor-Yosef S, Ezra Y, Brautbar C. Antigen Presenting Cells in Human Decidual Tissue: III. Role of Accessory Cells in the Activation of Suppressor Cells. American Journal of Reproductive Immunology and Microbiology. 1988;16(4):151-158. doi:10.1111/j.1600-0897.1988.tb00187.x | spa |
dc.relation.references | 149. Girling JE, Rogers PAW. The endometrial lymphatic vasculature: Function and dysfunction. Rev Endocr Metab Disord. 2012;13(4):265-275. doi:10.1007/s11154-012-9224-6 | spa |
dc.relation.references | 150. Abomaray FM, Al Jumah MA, Kalionis B, et al. Human Chorionic Villous Mesenchymal Stem Cells Modify the Functions of Human Dendritic Cells, and Induce an Anti-Inflammatory Phenotype in CD1+ Dendritic Cells. Stem Cell Rev Rep. 2015;11(3):423-441. doi:10.1007/s12015-014-9562-8 | spa |
dc.relation.references | 151. Aldebert D, Diallo M, Niang M, et al. Differences in circulating dendritic cell subtypes in peripheral, placental and cord blood in African pregnant women. J Reprod Immunol. 2007;73(1):11-19. doi:10.1016/j.jri.2006.05.002 | spa |
dc.relation.references | 152. Baig S, Vasoo S, Teh B, et al. Immunomodulation by placental microvesicles in adverse pregnancy outcomes (preeclampsia and recurrent pregnancy loss). J Reprod Immunol. 2012;94(1):17-18. doi:10.1016/j.jri.2012.03.268 | spa |
dc.relation.references | 153. Darmochwal-Kolarz D, Kolarz B, Chmielewski T, Oleszczuk J. O76. The role of costimulatory molecules in the pathogenesis of pre-eclampsia. Pregnancy Hypertension: An International Journal of Women’s Cardiovascular Health. 2015;5(3):228. doi:10.1016/j.preghy.2015.07.050 | spa |
dc.relation.references | 154. Darmochwal-Kolarz DA, Kludka-Sternik M, Chmielewski T, Kolarz B, Rolinski J, Oleszczuk J. PP069. The expressions of B7-H1 and B7-H4 co-stimulatory molecules on myeloid and lymphoid dendritic cells in pre-eclampsia and normal pregnancy. The expressions of B7-H1 and B7-H4 co-stimulatory moleculeson myeloid and lymphoid dendritic cells in pre-eclampsia and normal pregnancy. Pregnancy Hypertension: An International Journal of Women’s Cardiovascular Health. 2012;2(3):278-279. doi:10.1016/j.preghy.2012.04.180 | spa |
dc.relation.references | 155. Scientific Abstracts. Reproductive Sciences. 2015;22(S1):A55-A389. doi:10.1177/1933719115579631 | spa |
dc.relation.references | 156. Frankel R, Gutzeit O, Hantisteanu S, et al. 1021: Alterations of myeloid cell populations in human pregnancies complicated by preeclampsia. Am J Obstet Gynecol. 2019;220(1):S656. doi:10.1016/j.ajog.2018.11.1045 | spa |
dc.relation.references | 157. Hsu P, Santner‐Nanan B, Joung S, Peek MJ, Nanan R. Expansion of CD4(+) HLA-G(+) T Cell in human pregnancy is impaired in pre-eclampsia. American Journal of Reproductive Immunology. 2014;71(3):217-228. doi:10.1111/aji.12195 | spa |
dc.relation.references | 158. Kwon J, Pi H, Jung Y, Park Y, Kwon H. Preeclampsia is associated withimpaired lymphangiogenic andimmune cell trafficking function ofdecidual lymphatic endothelial cells. Reproductive Sciences. 2019;26(S1):A62-A390. doi:10.1177/1933719119834079 | spa |
dc.relation.references | 159. Scientific Abstracts. Reproductive Sciences. 2011;18(S3):A69-A384. doi:10.1177/193371912011183s067 | spa |
dc.relation.references | 160. Panda B, Panda A, Abrahams VM, et al. 745: Increase in TLR protein in preeclamptic patients does not correlate with a corresponding increase in TLR gene expression. Am J Obstet Gynecol. 2012;206(1):S330. doi:10.1016/j.ajog.2011.10.763 | spa |
dc.relation.references | 161. Shao Q, Liu X, Huang Y, Chen X, Wang H. Human Decidual Stromal Cells in Early Pregnancy Induce Functional Re-Programming of Monocyte-Derived Dendritic Cells via Crosstalk Between G-CSF and IL-1β. Front Immunol. 2020;11:574270. doi:10.3389/fimmu.2020.574270 | spa |
dc.relation.references | 162. Shi W, Riedel A, Bazzano M V., et al. Regulatory CD8+ T cells are modulated in healthy and preeclampsia pregnancies. J Reprod Immunol. 2023;159:104074. doi:10.1016/j.jri.2023.104074 | spa |
dc.relation.references | 163. Yang SW, Cho EH, Choi SY, et al. DC-SIGN expression in Hofbauer cells may play an important role in immune tolerance in fetal chorionic villi during the development of preeclampsia. J Reprod Immunol. 2017;124:30-37. doi:10.1016/j.jri.2017.09.012 | spa |
dc.relation.references | 164. Young BC, Stanic AK, Panda B, Rueda BR, Panda A. Longitudinal expression of Toll-like receptors on dendritic cells in uncomplicated pregnancy and postpartum. Am J Obstet Gynecol. 2014;210(5):445.e1-445.e6. doi:10.1016/j.ajog.2013.11.037 | spa |
dc.relation.references | 165. Wang J, Su L, Zhu T. [Effect of dendritic cells on the differentiation of Th1/Th17 in peripheral blood from preeclampsia patients]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2013;29(7):744-747. | spa |
dc.relation.references | 166. Van Coillie S, Wiernicki B, Xu J. Molecular and Cellular Functions of CTLA-4. In: Xu J, ed. Regulation of Cancer Immune Checkpoints. Advances in Experimental Medicine and Biology. Vol 1248. 1st ed. Springer; 2020:7-32. doi:10.1007/978-981-15-3266-5_2 | spa |
dc.relation.references | 167. Hsu P, Santner-Nanan B, Peek MJ, Dahlstrom J, Nanan R. Mismatch between decidual DC-SIGN+ dendritic cells and Foxp3+ T regulatory cells in preeclampsia. J Reprod Immunol. 2010;86(1):28. doi:10.1016/j.jri.2010.06.050 | spa |
dc.relation.references | 168. Ding J, Wang J, Cai X, et al. Granulocyte colony-stimulating factor in reproductive-related disease: Function, regulation and therapeutic effect. Biomedicine & Pharmacotherapy. 2022;150:112903. doi:10.1016/j.biopha.2022.112903 | spa |
dc.relation.references | 169. Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today. 1993;14(7):353-356. doi:10.1016/0167-5699(93)90235-D | spa |
dc.relation.references | 170. Trundley A, Moffett A. Human uterine leukocytes and pregnancy. Tissue Antigens. 2004;63(1):1-12. doi:10.1111/j.1399-0039.2004.00170.x | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 610 - Medicina y salud::618 - Ginecología, obstetricia, pediatría, geriatría | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica | spa |
dc.subject.decs | Preeclampsia | spa |
dc.subject.decs | Pre-Eclampsia | eng |
dc.subject.decs | Hipertensión Inducida en el Embarazo | spa |
dc.subject.decs | Hypertension, Pregnancy-Induced | eng |
dc.subject.decs | Complicaciones del Embarazo | spa |
dc.subject.decs | Pregnancy Complications | eng |
dc.subject.decs | Mortalidad Materna | spa |
dc.subject.decs | Maternal Mortality | eng |
dc.subject.decs | Mortalidad Fetal | spa |
dc.subject.decs | Fetal Mortality | eng |
dc.subject.decs | Trimestres del Embarazo | spa |
dc.subject.decs | Pregnancy Trimesters | eng |
dc.subject.decs | Complicaciones del Embarazo | spa |
dc.subject.decs | Pregnancy Complications | eng |
dc.subject.proposal | Células Dendríticas | spa |
dc.subject.proposal | Preeclampsia | spa |
dc.subject.proposal | Embarazo | spa |
dc.subject.proposal | Sistema Inmunológico | spa |
dc.subject.proposal | Endotelio vascular | spa |
dc.subject.proposal | Decidua | spa |
dc.subject.proposal | Metaanálisis | spa |
dc.subject.proposal | Dendritic cell | eng |
dc.subject.proposal | Preeclampsia | eng |
dc.subject.proposal | Pregnancy | eng |
dc.subject.proposal | Immunological system | eng |
dc.subject.proposal | Vascular endothelium | eng |
dc.subject.proposal | Decidua | eng |
dc.subject.proposal | Tercer Trimestre del Embarazo | spa |
dc.subject.proposal | Inmunidad | spa |
dc.subject.proposal | Meta-Analysis | eng |
dc.subject.proposal | Third Trimester of Pregnancy | eng |
dc.subject.proposal | Immunity | eng |
dc.title | Cantidad y perfil fenotípico de células dendríticas en gestantes del tercer trimestre con y sin preeclampsia : Revisión sistemática y metaanálisis | |
dc.title.translated | Quantity and phenotypic profile of dendritic cells in third-trimester pregnant women with and without preeclampsia: A systematic review and metaanalysis | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 79379811.2025.pdf
- Tamaño:
- 7.35 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Inmunología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: