Generación de insumos inmunológicos de utilidad en la elaboración de pruebas rápidas como alternativa costo efectiva para el diagnóstico del cáncer de cuello uterino en zonas rurales de Colombia
| dc.contributor.advisor | Ramírez Hernández, María Helena | spa |
| dc.contributor.author | Gómez Avendaño, Gabriela | spa |
| dc.contributor.researchgroup | Libbiq Un | spa |
| dc.coverage.temporal | Colombia | spa |
| dc.coverage.tgn | http://vocab.getty.edu/page/tgn/1000050 | |
| dc.date.accessioned | 2025-10-30T02:05:20Z | |
| dc.date.available | 2025-10-30T02:05:20Z | |
| dc.date.issued | 2025-10-28 | |
| dc.description | ilustraciones, diagramas, fotografías | spa |
| dc.description.abstract | El Virus del Papiloma Humano (VPH) es un virus de ADN doble cadena, cubierto por una cápside proteica icosaédrica, sin envoltura. Su infección se adquiere principalmente por contacto sexual, siendo uno de los virus de transmisión sexual más comunes en el mundo. Actualmente, se han descrito más de 150 genotipos, algunos de importancia clínica (VPH de alto riesgo) por su capacidad de generar una infección persistente en el tracto anogenital femenino, induciendo la proliferación celular del epitelio cervical, por lo que se conocen como la causa principal de Cáncer de Cuello Uterino (CaCU). En Colombia, en 2022, el CaCU fue el segundo en ocasionar más muertes en mujeres, con 80 defunciones y 403 casos nuevos reportados. La ruta diagnóstica comprende PCR para detección de ADN del VPH, citología cervicovaginal, colposcopia y biopsia; sin embargo, en regiones rurales dispersas del país, debido a las limitaciones sociales, económicas y de desplazamiento a los sitios de salud, el diagnóstico se hace principalmente con técnicas de inspección visual, las cuales son menos sensibles, pero de resultado inmediato. Por consiguiente, el objetivo de este estudio fue generar bioinsumos inmunológicos (proteínas recombinantes y anticuerpos) que constituyan la primera fase para el desarrollo de un sistema de rápida detección de oncoproteínas de VPH alto riesgo, como alternativa para el apoyo diagnóstico de CaCU en zonas rurales de Colombia. Combinando herramientas computacionales, de biología molecular y bioquímicas se logró la generación de un anticuerpo aviar anti MBP-E6VPH16 mediante la construcción de un vector recombinante que permitió obtener el péptido antigénico elegido a través de herramientas computacionales. El anticuerpo se caracterizó mediante ensayos de western blot y ELISA. (Texto tomado de la fuente). | spa |
| dc.description.abstract | Human Papillomavirus (HPV) is a double-stranded DNA virus, covered by an icosahedral protein capsid, without envelope. Its infection is acquired mainly by sexual contact, being one of the most common sexually transmitted viruses in the world. Currently, more than 150 genotypes have been described, some of clinical importance (high-risk HPV) for their ability to generate a persistent infection in the female anogenital tract, inducing cell proliferation of the cervical epithelium, so they are known as the main cause of Cervical Cancer (CaCU). In Colombia, in 2022, CaCU was the second leading cause of death in women, with 80 deaths and 403 new cases reported. The diagnostic pathway includes PCR for HPV DNA detection, cervicovaginal cytology, colposcopy and biopsy; however, in dispersed rural regions of the country, due to social, economic and travel limitations to health sites, diagnosis is mainly done with visual inspection techniques, which are less sensitive, but with immediate results. Therefore, the objective of this study was to generate immunological bioinputs (recombinant proteins and antibodies) that constitute the first phase for the development of a rapid detection system for high-risk HPV oncoproteins, as an alternative for the diagnostic support of CaCU in rural areas of Colombia. Combining computational, molecular biology and biochemical tools, the generation of an avian anti MBP-E6VPH16 antibody was achieved through the construction of a recombinant vector that allowed obtaining the chosen antigenic peptide through computational tools. The antibody was characterized by western blot and ELISA assays. | eng |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magíster en Ciencias - Bioquímica | spa |
| dc.format.extent | 81 páginas | spa |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89079 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Departamento de Química | spa |
| dc.publisher.faculty | Facultad de Ciencias | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Bioquímica | spa |
| dc.relation.indexed | Bireme | spa |
| dc.relation.references | Merlo LMF, Mandik-Nayak L. Adaptive Immunity: B Cells and Antibodies. Cancer Immunotherapy: Immune Suppression and Tumor Growth: Second Edition. 2013 Jan 1;25–40. | |
| dc.relation.references | Crescioli S, Kaplon H, Chenoweth A, Wang L, Visweswaraiah J, Reichert JM. Antibodies to watch in 2024. MAbs [Internet]. 2024 Dec 31 [cited 2025 Apr 9];16(1). Available from: https://www.tandfonline.com/doi/abs/10.1080/19420862.2023.2297450 | |
| dc.relation.references | Sukumaran A, Thomas T, Thomas R, Thomas RE, Paul JK, Vasudevan DM. Development and Troubleshooting in Lateral Flow Immunochromatography Assays. Indian Journal of Clinical Biochemistry [Internet]. 2021 Apr 1 [cited 2025 Mar 7];36(2):208–12. Available from: https://link.springer.com/article/10.1007/s12291-020-00887-5 | |
| dc.relation.references | Khan S, Ullah MW, Siddique R, Nabi G, Manan S, Yousaf M, et al. Role of Recombinant DNA Technology to Improve Life. 2016 [cited 2024 Apr 7]; Available from: http://dx.doi.org/10.1155/2016/2405954 | |
| dc.relation.references | Gatica R, Slebe JC, Ulloa J, Yáñez AJ. Comparación de dos vías de inoculación en la producción de anticuerpos contra fructosa 1,6-bisfosfatasa en huevos de gallina. Arch Med Vet [Internet]. 2004 [cited 2025 Jan 18];36(1):49–58. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0301 732X2004000100005&lng=es&nrm=iso&tlng=es | |
| dc.relation.references | de Sanjosé S, Brotons M, Pavón MA. The natural history of human papillomavirus infection. Best Pract Res Clin Obstet Gynaecol [Internet]. 2018 Feb 1 [cited 2023 Mar 19];47:2–13. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1521693417301335 | |
| dc.relation.references | Formana D, de Martel C, Lacey CJ, Soerjomatarama I, Lortet-Tieulent J, Bruni L, et al. Global Burden of Human Papillomavirus and Related Diseases. Vaccine. 2012 Nov 20;30(SUPPL.5):F12–23. | |
| dc.relation.references | Scarth JA, Patterson MR, Morgan EL, Macdonald A. The human papillomavirus oncoproteins: a review of the host pathways targeted on the road to transformation. J Gen Virol [Internet]. 2021 Jan 11 [cited 2023 Aug 27];102(3):1540. Available from: /pmc/articles/PMC8148304/ | |
| dc.relation.references | LPC_Guia_Profesionales_julio_2016. Guía de práctica clinica Manejo de Cáncer cervicouterino | |
| dc.relation.references | Zerón A. Inmunización e inmunidad. Regreso a clases de inmunología. Revista de la Asociación Dental Mexicana. 2021;78(3):124–7. | |
| dc.relation.references | Reyes Martín E, Prieto Martín A, Díaz Martín D, Álvarez-Mon Soto M. Inmunidad innata e inmunidad adaptativa. Medicine - Programa de Formación Médica Continuada Acreditado. 2013 Mar 1;11(28):1760–7. | |
| dc.relation.references | Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nature Immunology 2015 16:4 [Internet]. 2015 Mar 19 [cited 2025 Apr 10];16(4):343 53. Available from: https://www.nature.com/articles/ni.3123 | |
| dc.relation.references | Prieto Martín A, Barbarroja Escudero J, Haro Girón S, Monserrat Sanz J. Respuesta inmune adaptativa y sus implicaciones fisiopatológicas. Medicine - Programa de Formación Médica Continuada Acreditado. 2017 Jan 1;12(24):1398–407. | |
| dc.relation.references | Fraile Sauce LJ. Transferencia de la inmunidad humoral y celular. Suis, ISSN 1699-7867, No 150, 2018, págs 12-18 [Internet]. 2018 [cited 2025 Apr 10];(150):12–8. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=6572168&info=resumen&idioma=SP A | |
| dc.relation.references | Prieto Martín A, Barbarroja Escudero J, Barcenilla Rodríguez H, Díaz Martín D. Funciones de los linfocitos B. Medicine - Programa de Formación Médica Continuada Acreditado. 2013 Mar 1;11(28):1752–9. | |
| dc.relation.references | (PDF) Inmunoglobulinas [Internet]. [cited 2025 Apr 10]. Available from: https://www.researchgate.net/publication/233794658_Inmunoglobulinas | |
| dc.relation.references | Gartner LP, Hiatt JL. Color Atlas and Text of Histology-sixth editon. Lippinot Williams and Wilkins [Internet]. 2014 [cited 2025 Apr 10];2–148. Available from: file:///Users/aylingokhan/Documents/Mendeley Desktop/Gartner, HIatt - 2014 - Color Atlas and Text of Histology-sixth editon.pdf | |
| dc.relation.references | Mamani Yujra R, Tito Ramírez E. Revista de Actualización Clínica Investiga. Revista de Actualización Clínica Investiga [Internet]. 2011 [cited 2025 Apr 10];13:663. Available from: http://revistasbolivianas.umsa.bo/scielo.php?script=sci_arttext&pid=S2304 37682011001000007&lng=pt&nrm=iso&tlng=es | |
| dc.relation.references | Digilio P. Biotecnología, desarrollo y neoliberalismo. Erasmus Revista para el diálogo intercultural [Internet]. 2021 Apr 9 [cited 2025 Apr 12];23(1). Available from: https://qellqasqa.com.ar/ojs/index.php/erasmus/article/view/609 | |
| dc.relation.references | Hernández Fonseca H. Biotecnología. Revista Científica [Internet]. 2010 [cited 2025 Apr 12];20(3):225–6. Available from: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798 22592010000300001&lng=es&nrm=iso&tlng=es | |
| dc.relation.references | Notin P, Rollins N, Gal Y, Sander C, Marks D. Machine learning for functional protein design. Nature Biotechnology 2024 42:2 [Internet]. 2024 Feb 15 [cited 2025 Apr 12];42(2):216–28. Available from: https://www.nature.com/articles/s41587-024 02127-0 | |
| dc.relation.references | Morbioli GG, Mazzu-Nascimento T, Aquino A, Cervantes C, Carrilho E. Recombinant drugs-on-a-chip: The usage of capillary electrophoresis and trends in miniaturized systems - A review. Anal Chim Acta [Internet]. 2016 Sep 7 [cited 2025 Apr 12];935:44 57. Available from: https://pubmed.ncbi.nlm.nih.gov/27543014/ | |
| dc.relation.references | Thompson MK, Fridy PC, Keegan S, Chait BT, Fenyö D, Rout MP. Optimizing Selection of Large Animals for Antibody Production by Screening Immune Response to Standard Vaccines. J Immunol Methods [Internet]. 2016 Mar 1 [cited 2025 Apr 12];430:56. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4769958/ | |
| dc.relation.references | Greenfield EA. Immunizing Animals. Cold Spring Harb Protoc [Internet]. 2022 Jul 1 [cited 2025 Apr 12];2022(7):267–94. Available from: https://pubmed.ncbi.nlm.nih.gov/35820791/ | |
| dc.relation.references | Fibriani A, Naisanu K, Yamahoki N, Kinanti DR. Development of polyclonal chicken egg yolk immunoglobulin Y (IgY) antibodies targeting SARS-CoV-2 multi-epitope antigen. J Virol Methods [Internet]. 2025 [cited 2025 Apr 13];331:115062. Available from: https://pubmed.ncbi.nlm.nih.gov/39551444/ | |
| dc.relation.references | Bzhalava D, Eklund C, Dillner J. International standardization and classification of human papillomavirus types. Virology [Internet]. 2015 Feb 1 [cited 2023 Mar 19];476:341–4. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0042682214005777 | |
| dc.relation.references | Chen Z, Schiffman M, Herrero R, DeSalle R, Anastos K, Segondy M, et al. Classification and Evolution of Human Papillomavirus Genome Variants: Alpha-5 (HPV26, 51, 69, 82), Alpha-6 (HPV30, 53, 56, 66), Alpha-11 (HPV34, 73), Alpha-13 (HPV54) and Alpha-3 (HPV61). Virology [Internet]. 2018 Mar 1 [cited 2023 Mar 19];516:86. Available from: /pmc/articles/PMC6093212/ | |
| dc.relation.references | Zou K, Huang Y, Li Z. Prevention and treatment of human papillomavirus in men benefits both men and women. Vol. 12, Frontiers in Cellular and Infection Microbiology. Frontiers Media S.A.; 2022. | |
| dc.relation.references | Petca A, Borislavschi A, Zvanca M, Petca RC, Sandru F, Dumitrascu M. Non-sexual HPV transmission and role of vaccination for a better future (Review). Exp Ther Med. 2020 Oct 13;20(6):1–1. | |
| dc.relation.references | Malinova M. [Human papillomavirus infection and pregnancy]. Akush Ginekol (Mosk) [Internet]. 2015 Jan 1 [cited 2023 Oct 27];54 Suppl 2:14–8. Available from: https://europepmc.org/article/med/26817247 | |
| dc.relation.references | Araldi RP, Sant’Ana TA, Módolo DG, de Melo TC, Spadacci-Morena DD, de Cassia Stocco R, et al. The human papillomavirus (HPV)-related cancer biology: An overview. Biomedicine & Pharmacotherapy. 2018 Oct 1;106:1537–56. | |
| dc.relation.references | Santos-López G, Márquez-Domínguez L, Reyes-Leyva J, Vallejo-Ruiz V. Aspectos generales de la estructura, la clasificación y la replicación del virus del papiloma humano. [cited 2023 Mar 9]; Available from: http://viralzone.expasy.org/. | |
| dc.relation.references | Pappa KI, Kontostathi G, Lygirou V, Zoidakis J, Anagnou NP. Novel structural approaches concerning HPV proteins: Insight into targeted therapies for cervical cancer (Review). Vol. 39, Oncology Reports. Spandidos Publications; 2018. p. 1547–54. | |
| dc.relation.references | Nguyen HP, Ramírez-Fort MK, Rady PL. The Biology of Human Papillomaviruses. Current Problems in Dermatology (Switzerland) [Internet]. 2014 [cited 2023 Mar 18];45:19–32. Available from: https://www.karger.com/Article/FullText/355959 | |
| dc.relation.references | Vashisht S, Mishra H, Mishra PK, Ekielski A, Talegaonkar S. Structure, Genome, Infection Cycle and Clinical Manifestations Associated with Human Papillomavirus. Curr Pharm Biotechnol. 2019 Aug 4;20(15):1260–80. | |
| dc.relation.references | Kirk A, Graham S V. The human papillomavirus late life cycle and links to keratinocyte differentiation. J Med Virol [Internet]. 2024 Feb 1 [cited 2025 Mar 22];96(2):e29461. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/jmv.29461 | |
| dc.relation.references | Sravani AB, Ghate V, Lewis S. Human papillomavirus infection, cervical cancer and the less explored role of trace elements. 2011 [cited 2023 Oct 29]; Available from: https://doi.org/10.1007/s12011-022-03226-2 | |
| dc.relation.references | Verssimo J, de Medeiros Fernandes TAA. Human Papillomavirus: Biology and Pathogenesis. In: Human Papillomavirus and Related Diseases - From Bench to Bedside - A Clinical Perspective. InTech; 2012. | |
| dc.relation.references | Doorbar J, Quint W, Banks L, Bravo IG, Stoler M, Broker TR, et al. The biology and life cycle of human papillomaviruses. Vol. 30, Vaccine. Elsevier Ltd; 2012 | |
| dc.relation.references | Hampson IN, Oliver AW, Hampson L. Potential effects of human papillomavirus type substitution, superinfection exclusion and latency on the efficacy of the current l1 prophylactic vaccines. Vol. 13, Viruses. MDPI AG; 2021. | |
| dc.relation.references | Doorbar J, Egawa N, Griffin H, Kranjec C, Murakami I. Human papillomavirus molecular biology and disease association. Rev Med Virol [Internet]. 2015 Mar 1 [cited 2023 Mar 18];25(S1):2–23. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/rmv.1822 | |
| dc.relation.references | Zanier K, Ould M’hamed Ould Sidi A, Boulade-Ladame C, Rybin V, Chappelle A, Atkinson A, et al. Article Solution Structure Analysis of the HPV16 E6 Oncoprotein Reveals a Self Association Mechanism Required for E6-Mediated Degradation of p53. | |
| dc.relation.references | Illiano E, Demurtas OC, Massa S, Bonito P, Consalvi V, Chiaraluce R, et al. Production of functional, stable, unmutated recombinant human papillomavirus E6 oncoprotein: Implications for HPV-tumor diagnosis and therapy. J Transl Med [Internet]. 2016 Jul 28 [cited 2023 Mar 24];14(1):1–14. Available from: https://translational medicine.biomedcentral.com/articles/10.1186/s12967-016-0978-6 | |
| dc.relation.references | Nominé Y, Masson M, Charbonnier S, Zanier K, Ristriani T, Deryckère F, et al. Structural and functional analysis of E6 oncoprotein: Insights in the molecular pathways of human papillomavirus-mediated pathogenesis. Mol Cell [Internet]. 2006 Mar 3 [cited 2024 Nov 3];21(5):665–78. Available from: http://www.cell.com/article/S1097276506000463/fulltext | |
| dc.relation.references | Li S, Hong X, Wei Z, Xie M, Li W, Liu G, et al. Ubiquitination of the HPV oncoprotein E6 is critical for E6/E6AP-mediated p53 degradation. Front Microbiol [Internet]. 2019 Oct 31 [cited 2025 Mar 23];10(OCT):497413. Available from: www.frontiersin.org | |
| dc.relation.references | Ferreira AR, Ramalho AC, Marques M, Ribeiro D. cancers The Interplay between Antiviral Signalling and Carcinogenesis in Human Papillomavirus Infections. 2020 [cited 2023 Oct 29]; Available from: www.mdpi.com/journal/cancers | |
| dc.relation.references | Stewart BZ, Caria S, Humbert PO, Kvansakul M. Structural analysis of human papillomavirus E6 interactions with Scribble PDZ domains. FEBS J [Internet]. 2023 Jun 1 [cited 2025 Mar 23];290(11):2868–80. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/febs.16718 | |
| dc.relation.references | Argentina R, María Elina Totaro L. ANÁLISIS DE LOS GENES E6, E7 y L1 DEL VIRUS PAPILOMA HUMANO TIPO 16 COMO MARCADORES PRONÓSTICO TEMPRANOS DE LA PROGRESIÓN DE LESIONES DE CUELLO UTERINO. | |
| dc.relation.references | Senba M, Mori N. Mechanisms of virus immune evasion lead to development from chronic inflammation to cancer formation associated with human papillomavirus infection. Vol. 6, Oncology Reviews. 2012. p. 135–44. | |
| dc.relation.references | Egawa N, Doorbar J. The low-risk papillomaviruses. Virus Res. 2017 Mar 2;231:119–27. | |
| dc.relation.references | Arbyn M, Tommasino M, Depuydt C, Dillner J. Are 20 human papillomavirus types causing cervical cancer? J Pathol [Internet]. 2014 Dec 1 [cited 2023 Mar 19];234(4):431 5. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/path.4424 | |
| dc.relation.references | Kim M, Kim J, Park NJY, Park JY. Comparison of Seegene Anyplex II HPV28 assay with BD Onclarity HPV assay for human papillomavirus genotyping. PLoS One [Internet]. 2022 Jul 1 [cited 2023 Mar 20];17(7):e0267836. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267836 | |
| dc.relation.references | Toro-Montoya AI, Tapia-Vela LJ. Human papillomavirus (HPV) and cancer. Vol. 25, Medicina y Laboratorio. Universidad de Antioquia; 2021. p. 467–83. | |
| dc.relation.references | Ruiz AA, Ruiz AAA, Cruz MO, Pino MMGG del, Palacios KR, Hernández ONM, et al. Cáncer cérvicouterino. Algo para reflexionar. Medisur [Internet]. 2019 Nov 6 [cited 2024 Oct 2];17(6):857–66. Available from: http://medisur.sld.cu/index.php/medisur/article/view/4446 | |
| dc.relation.references | Piña-Sánchez P. Human Papillomavirus: Challenges and Opportunities for the Control of Cervical Cancer. Arch Med Res. 2022 Dec 1;53(8):753–69. | |
| dc.relation.references | WHO. CERVIX UTERI Cancer - GLOBOCAN. 2022. | |
| dc.relation.references | WORLD HEALTH ORGANIZATION. WHO guideline for screening and treatment of cervical pre-cancer lesions for cervical cancer prevention. WHO guideline for screening and treatment of cervical pre-cancer lesions for cervical cancer prevention [Internet]. 2021 [cited 2024 Oct 2]; Available from: https://www.ncbi.nlm.nih.gov/books/NBK572317/ | |
| dc.relation.references | Día Mundial del Cáncer de Cuello Uterino 2024 - Cuenta de Alto Costo [Internet]. [cited 2025 Mar 24]. Available from: https://cuentadealtocosto.org/cancer/dia-mundial-del cancer-de-cuello-uterino-2024/ | |
| dc.relation.references | Blackadar CB. Historical review of the causes of cancer. World J Clin Oncol [Internet]. 2016 Feb 10 [cited 2023 Mar 19];7(1):54–86. Available from: https://pubmed.ncbi.nlm.nih.gov/26862491/ | |
| dc.relation.references | Tanriverdi O, Tasar M, Yilmaz M, Durak M, Sezer S, Demir H, et al. Important milestones for cancer at the Nobel prize. Indian J Cancer [Internet]. 2020 Oct 1 [cited 2023 Mar 19];57(4):370–5. Available from: https://journals.lww.com/indianjcancer/Fulltext/2020/57040/Important_milestones_fo r_cancer_at_the_Nobel_prize.2.aspx | |
| dc.relation.references | Waggoner SE. Cervical cancer. Lancet [Internet]. 2003 Jun 28 [cited 2023 Nov 18];361(9376):2217–25. Available from: http://www.thelancet.com/article/S0140673603137786/fulltext | |
| dc.relation.references | Nelson CW, Mirabello L. Human papillomavirus genomics: Understanding carcinogenicity. 2023 [cited 2023 Oct 31]; Available from: https://doi.org/10.1016/j.tvr.2023.200258 | |
| dc.relation.references | Wang X, Huang X, Zhang Y. Involvement of Human Papillomaviruses in Cervical Cancer. Front Microbiol [Internet]. 2018 Nov 28 [cited 2023 Mar 20];9(NOV). Available from: /pmc/articles/PMC6279876/ | |
| dc.relation.references | Gravitt PE, Winer RL, Mcbride AA, Munger K. Natural History of HPV Infection across the Lifespan: Role of Viral Latency. [cited 2023 Mar 18]; Available from: www.mdpi.com/journal/viruses | |
| dc.relation.references | Molina MA, Steenbergen RDM, Pumpe A, Kenyon AN, Melchers WJG. HPV integration and cervical cancer: a failed evolutionary viral trait. Trends Mol Med. 2024 Sep 1;30(9):890–902. | |
| dc.relation.references | Della Fera AN, Warburton A, Coursey TL, Khurana S, McBride AA. Persistent Human Papillomavirus Infection. Viruses 2021, Vol 13, Page 321 [Internet]. 2021 Feb 20 [cited 2023 Mar 18];13(2):321. Available from: https://www.mdpi.com/1999 4915/13/2/321/htm | |
| dc.relation.references | Rincón R DF, Morales L LA, Rincón-Orozco B, Rincón R DF, Morales L LA, Rincón-Orozco B. Modernas metodologías diagnosticas para la detección del Virus del Papiloma Humano y prevención del cáncer de cuello uterino. Revista de la Universidad Industrial de Santander Salud [Internet]. 2017 Sep 30 [cited 2025 Apr 14];49(3):478–88. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121 08072017000300478&lng=en&nrm=iso&tlng=es | |
| dc.relation.references | HPV Tests For Cervical Cancer Screening - PAHO/WHO | Pan American Health Organization [Internet]. [cited 2025 Apr 14]. Available from: https://www.paho.org/en/topics/cervical-cancer/hpv-tests-cervical-cancer-screening | |
| dc.relation.references | Lowy DR. HPV vaccination to prevent cervical cancer and other HPV-associated disease: from basic science to effective interventions. J Clin Invest [Internet]. 2016 Jan 1 [cited 2023 Mar 20];126(1):5. Available from: /pmc/articles/PMC4701560/ | |
| dc.relation.references | Frazer IH. The HPV Vaccine Story. ACS Pharmacol Transl Sci [Internet]. 2019 Jun 6 [cited 2023 Mar 20];2(3):210. Available from: /pmc/articles/PMC7089001/ | |
| dc.relation.references | Markowitz LE, Schiller JT. Human Papillomavirus Vaccines. J Infect Dis [Internet]. 2021 Sep 30 [cited 2023 Mar 21];224(Supplement_4):S367–78. Available from: https://academic.oup.com/jid/article/224/Supplement_4/S367/6378095 | |
| dc.relation.references | Swailes AL, Hossler CE, Kesterson JP. Pathway to the Papanicolaou smear: The development of cervical cytology in twentieth-century America and implications in the present day. Gynecol Oncol. 2019 Jul 1;154(1):3–7. | |
| dc.relation.references | Chrysostomou AC, Kostrikis LG. Methodologies of Primary HPV Testing Currently Applied for Cervical Cancer Screening. Life 2020, Vol 10, Page 290 [Internet]. 2020 Nov 19 [cited 2023 Mar 23];10(11):290. Available from: https://www.mdpi.com/2075 1729/10/11/290/htm | |
| dc.relation.references | Saraiya M, Steben M, Watson M, Markowitz L. Evolution of cervical cancer screening and prevention in United States and Canada: Implications for public health practitioners and clinicians. Prev Med (Baltim) [Internet]. 2013 Nov [cited 2023 Mar 23];57(5):426. Available from: /pmc/articles/PMC4515308/ | |
| dc.relation.references | Cubie HA, Cuschieri K. Understanding HPV tests and their appropriate applications. Cytopathology [Internet]. 2013 Oct 1 [cited 2023 Mar 24];24(5):289–308. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/cyt.12083 | |
| dc.relation.references | Kocken M, Uijterwaal MH, De Vries ALM, Berkhof J, Ket JCF, Helmerhorst TJM, et al. High-risk human papillomavirus testing versus cytology in predicting post-treatment disease in women treated for high-grade cervical disease: a systematic review and meta-analysis. Gynecol Oncol [Internet]. 2012 May [cited 2024 Oct 5];125(2):500–7. Available from: https://www.ncbi.nlm.nih.gov/books/NBK97911/ | |
| dc.relation.references | Ministerio de Salud y Protección Social, Colombia. Guía de Práctica Clínica (GPC) para la detección y manejo de lesiones precancerosas de cuello uterino. 2014. | |
| dc.relation.references | Jiménez Jiménez C, Paola Y, Muvdi M, Pacheco Hernández O, Antonio L, Castillo D. Técnica “VIA-VILI” y su aplicación comparativa en México y Colombia: scoping review. Paradigmas Socio-Humanísticos [Internet]. 2021 May 12 [cited 2024 Oct 6];3(2):38–49. Available from: https://revistas.juanncorpas.edu.co/index.php/revistaparadigmassh/article/view/542 | |
| dc.relation.references | Dong Z, Hu R, Du Y, Tan L, Li L, Du J, et al. Immunodiagnosis and Immunotherapeutics Based on Human Papillomavirus for HPV-Induced Cancers. Front Immunol. 2021 Jan 8;11:3408. | |
| dc.relation.references | Gutierrez-Xicotencatl L, Salazar-Piña DA, Pedroza-Saavedra A, Chihu-Amparan L, Rodriguez-Ocampo AN, Maldonado-Gama M, et al. Humoral Immune Response Against Human Papillomavirus as Source of Biomarkers for the Prediction and Detection of Cervical Cancer. https://home.liebertpub.com/vim [Internet]. 2016 Mar 7 [cited 2023 Mar 24];29(2):83–94. Available from: https://www.liebertpub.com/doi/10.1089/vim.2015.0087 | |
| dc.relation.references | Ferrera A, Valladares W, Cabrera Y, de la Luz Hernandez M, Darragh T, Baena A, et al. Performance of an HPV 16/18 E6 oncoprotein test for detection of cervical precancer and cancer. Int J Cancer [Internet]. 2019 Oct 15 [cited 2024 Oct 5];145(8):2042–50. Available from: https://pubmed.ncbi.nlm.nih.gov/30684396/ | |
| dc.relation.references | Wiesner C, Rincón L, Gamboa Ó, Piñeros M, González M, Ortiz N, et al. Barreras para la implementación de la prueba ADN-VPH como técnica de tamización primaria para cáncer de cuello uterino en un área demostrativa en Colombia. Revista Colombiana de Cancerología. 2013 Sep 1;17(3):93–102. | |
| dc.relation.references | E6 - Protein E6 - Human papillomavirus type 16 | UniProtKB | UniProt [Internet]. [cited 2023 Nov 22]. Available from: https://www.uniprot.org/uniprotkb/P03126/entry#sequences | |
| dc.relation.references | Expasy - ProtParam [Internet]. [cited 2023 Nov 22]. Available from: https://web.expasy.org/cgi-bin/protparam/protparam | |
| dc.relation.references | T-Coffee - Multiple Sequence Alignment Server [Internet]. [cited 2023 Nov 22]. Available from: https://tcoffee.crg.eu/ | |
| dc.relation.references | CLUSTAL OMEGA Multiple Sequence Alignment [Internet]. [cited 2023 Nov 22]. Available from: https://www.ebi.ac.uk/Tools/msa/clustalo/ | |
| dc.relation.references | PREDICTED ANTIGENIC PEPTIDES [Internet]. [cited 2023 Nov 22]. Available from: http://imed.med.ucm.es/Tools/antigenic.pl | |
| dc.relation.references | Bertero A, Brown S, Vallier L. Methods of Cloning. Basic Science Methods for Clinical Researchers. 2017 Jan 1;19–39. | |
| dc.relation.references | Thuring RWJ, Sanders JPM, Borst P. A freeze-squeeze method for recovering long DNA from agarose gels. Anal Biochem. 1975 May 26;66(1):213–20. | |
| dc.relation.references | Instruction Manual pMAL Protein Fusion & Purification System PROTEIN EXPRESSION & ANALYSIS NEB #E8200S Store at-20°C. | |
| dc.relation.references | EcoRI [Internet]. 2012. Available from: www.thermoscientific.com/doubledigest | |
| dc.relation.references | SalI [Internet]. 2012. Available from: www.thermoscientific.com/doubledigest | |
| dc.relation.references | Scientific T. T4 DNA Ligase, 5 Weiss U/µL [Internet]. 2014. Available from: www.thermoscientific.com/onebio | |
| dc.relation.references | Davis MW, Jorgensen EM. ApE, A Plasmid Editor: A Freely Available DNA Manipulation and Visualization Program. Frontiers in Bioinformatics. 2022 Feb 4;2:818619. | |
| dc.relation.references | BL21 Competent E. coli | NEB [Internet]. [cited 2023 Nov 13]. Available from: https://www.neb.com/en/products/c2530-bl21-competent-e coli#Product%20Information_Related%20Products | |
| dc.relation.references | Guo N, Wei Q, Xu Y. Optimization of cryopreservation of pathogenic microbial strains. J Biosaf Biosecur. 2020 Dec 1;2(2):66–70. | |
| dc.relation.references | Chung CT, Miller RH. [43] Preparation and storage of competent Escherichia coli cells. Methods Enzymol. 1993 Jan 1;218(C):621–7. | |
| dc.relation.references | Froger A, Hall JE. Transformation of plasmid DNA into E. coli using the heat shock method. J Vis Exp [Internet]. 2007 Aug 1 [cited 2024 May 18];6(6):253–253. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/18997900/?tool=EBI | |
| dc.relation.references | Birnboim HC. A rapid alkaline extraction method for the isolation of plasmid DNA. Methods Enzymol [Internet]. 1983 Jan 1 [cited 2025 Mar 16];100(C):243–55. Available from: https://pubmed.ncbi.nlm.nih.gov/6353143/ | |
| dc.relation.references | Effect of Temperature, Inducer Concentration, and Escherichia coli Cytosolic Redox State on MBP-PI2 Expression | jemi.microbiology.ubc.ca [Internet]. [cited 2025 Jan 29]. Available from: https://jemi.microbiology.ubc.ca/node/109 | |
| dc.relation.references | Geohanna A, Jurado S. APROXIMACIÓN AL ESTUDIO DE LAS SIRTUINAS DE G. duodenalis: Evaluación y caracterización de un nuevo candidato. | |
| dc.relation.references | MM B. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem [Internet]. 1976 May 7 [cited 2023 Nov 27];72(1–2):248–54. Available from: https://pubmed.ncbi.nlm.nih.gov/942051/ | |
| dc.relation.references | Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A [Internet]. 1979 [cited 2023 Nov 27];76(9):4350. Available from: /pmc/articles/PMC411572/?report=abstract | |
| dc.relation.references | Mahmood T, Yang PC. Western Blot: Technique, Theory, and Trouble Shooting. N Am J Med Sci [Internet]. 2012 Sep [cited 2023 Nov 27];4(9):429. Available from: /pmc/articles/PMC3456489/ | |
| dc.relation.references | Jeong C, Kim HJ. MBP fusion proteins: enhanced expression and solubility, unexpected cleavage dilemma. BioDesign [Internet]. 2024 Sep 30 [cited 2024 Nov 4];12(3):39–43. Available from: https://www.bdjn.org/journal/view.html?doi=10.34184/kssb.2024.12.3.39 | |
| dc.relation.references | Lebendiker M, Danieli T. Purification of Proteins Fused to Maltose-Binding Protein. Methods in Molecular Biology [Internet]. 2011 [cited 2025 Jan 30];681:281–93. Available from: https://link.springer.com/protocol/10.1007/978-1-60761-913-0_15 | |
| dc.relation.references | Alexandrov A, Dutta K, Pascal SM. MBP fusion protein with a viral protease cleavage site: One-step cleavage/purification of insoluble proteins. Vol. 30, BioTechniques. Eaton Publishing Company; 2001. p. 1194–8. | |
| dc.relation.references | Tong C, Geng F, He Z, Cai Z, Ma M. A simple method for isolating chicken egg yolk immunoglobulin using effective delipidation solution and ammonium sulfate. Poult Sci. 2015 Jan 1;94(1):104–10. | |
| dc.relation.references | Benet C, Van Cutsem P. Negative purification method for the selection of specific antibodies from polyclonal antisera. Biotechniques. 2002 Nov 1;33(5):1050–4. | |
| dc.relation.references | Hornbeck P. Enzyme‐Linked Immunosorbent Assays. Curr Protoc Immunol. 1992 Mar;1(1). | |
| dc.relation.references | Relevance of infection with human papillomavirus: The role of the p53 tumor suppressor protein and E6/E7 zinc finger proteins (Review) [Internet]. [cited 2024 Nov 4]. Available from: https://www.spandidos publications.com/10.3892/ijo.2013.2105?text=fulltext | |
| dc.relation.references | De Freitas AC, Coimbra EC, Leitão M da CG. Molecular targets of HEPV oncoproteins: Potential biomarkers for cervical carcinogenesis. Vol. 1845, Biochimica et Biophysica Acta - Reviews on Cancer. 2014. p. 91–103. | |
| dc.relation.references | Downham L, Jaafar I, Rol ML, Nyawira Nyaga V, Valls J, Baena A, et al. Accuracy of HPV E6/E7 oncoprotein tests to detect high-grade cervical lesions: a systematic literature review and meta-analysis. Br J Cancer [Internet]. 2023 Mar 9 [cited 2025 Feb 8];130(4):517. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10876647/ | |
| dc.relation.references | Trujillo E, Morales N, Buitrago O, Posso H, Bravo MM. Distribución de los genotipos del virus del papiloma humano en mujeres de Bogotá con anomalías en la citología cervicouterina. Revista Colombiana de Cancerología [Internet]. 2016 Jan 1 [cited 2023 Mar 9];20(1):3–9. Available from: https://www.elsevier.es/es-revista-revista colombiana-cancerologia-361-articulo-distribucion-genotipos-del-virus-del S0123901515000955 | |
| dc.relation.references | Garzón-Olivares CD, Grillo-Ardila CF, Amaya-Guio J, Vallejo-Ortega MT, Diaz-Cruz LA, Fernández-Motta C, et al. Tamización primaria con prueba ADN-VPH en mujeres menores de 30 años: evaluación de tecnología sanitaria. Rev Colomb Obstet Ginecol [Internet]. 2022 Jun 30 [cited 2024 Oct 5];73(2):203–22. Available from: https://revista.fecolsog.org/index.php/rcog/article/view/3866 | |
| dc.relation.references | Van Regenmortel MHV. Antigenicity and Immunogenicity of Synthetic Peptides. Biologicals. 2001 Sep 1;29(3–4):209–13. | |
| dc.relation.references | Expasy - ProtParam [Internet]. [cited 2025 Mar 30]. Available from: https://web.expasy.org/cgi-bin/protparam/protparam | |
| dc.relation.references | Haq WY, Kang SK, Lee SB, Kang HC, Choi YJ, Lee CN, et al. High-level soluble expression of bioactive porcine myostatin propeptide in E. coli. Appl Microbiol Biotechnol [Internet]. 2013 Oct 1 [cited 2024 Apr 19];97(19):8517–27. Available from: https://link.springer.com/article/10.1007/s00253-013-5134-0 | |
| dc.relation.references | SnapGene | Software for everyday molecular biology [Internet]. [cited 2025 Apr 20]. Available from: https://www.snapgene.com/ | |
| dc.relation.references | Durfee T, Nelson R, Baldwin S, Plunkett G, Burland V, Mau B, et al. The Complete Genome Sequence of Escherichia coli DH10B: Insights into the Biology of a Laboratory Workhorse. J Bacteriol [Internet]. 2008 Apr [cited 2025 Apr 7];190(7):2597. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC2293198/ | |
| dc.relation.references | Bergkessel M, Guthrie C. Colony PCR. Methods Enzymol [Internet]. 2013 [cited 2025 Apr 7];529:299–309. Available from: https://pubmed.ncbi.nlm.nih.gov/24011056/ | |
| dc.relation.references | Estrategias de obtención de proteínas recombinantes en Escherichia. | |
| dc.relation.references | Jia B, Jeon CO. High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biol [Internet]. 2016 Aug 1 [cited 2025 Apr 14];6(8):160196. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC5008019/ | |
| dc.relation.references | Zamora Chimal CG. Análisis espectral del ruido bioquímico en un oscilador genético sintético. Exploraciones, intercambios y relaciones entre el diseño y la tecnología [Internet]. 2015 [cited 2025 Apr 14];57–79. Available from: https://repositorio.cinvestav.mx/handle/cinvestav/2127 | |
| dc.relation.references | Jin T, Chuenchor W, Jiang J, Cheng J, Li Y, Fang K, et al. Design of an expression system to enhance MBP-mediated crystallization. Scientific Reports 2017 7:1 [Internet]. 2017 Jan 23 [cited 2025 Apr 14];7(1):1–11. Available from: https://www.nature.com/articles/srep40991 | |
| dc.relation.references | Bhatwa A, Wang W, Hassan YI, Abraham N, Li XZ, Zhou T. Challenges Associated With the Formation of Recombinant Protein Inclusion Bodies in Escherichia coli and Strategies to Address Them for Industrial Applications. Front Bioeng Biotechnol [Internet]. 2021 Feb 10 [cited 2025 Apr 20];9:630551. Available from: www.frontiersin.org | |
| dc.relation.references | Sonezaki S, Kondo A, Oba T, Ishii Y, Kato Y, Nakayama H. Overproduction and purification of Lon protease from Escherichia coli using a maltose-binding protein fusion system. Appl Microbiol Biotechnol [Internet]. 1994 Nov [cited 2025 Apr 14];42(2 3):313–8. Available from: https://pubmed.ncbi.nlm.nih.gov/7765772/ | |
| dc.relation.references | Tran PL, Yoo M, Kim SG, Park JT. MalS, a periplasmic α-amylase in Escherichia coli, has a binding affinity to glycogen with unique substrate specificities. Appl Microbiol Biotechnol [Internet]. 2025 Dec 1 [cited 2025 Apr 14];109(1):46. Available from: https://link.springer.com/article/10.1007/s00253-025-13421-5 | |
| dc.relation.references | Bertz M, Rief M. Ligand binding mechanics of maltose binding protein. J Mol Biol [Internet]. 2009 Nov 13 [cited 2025 Apr 14];393(5):1097–105. Available from: https://pubmed.ncbi.nlm.nih.gov/19733183/ | |
| dc.relation.references | Pattenden LK, Thomas WG. Amylose Affinity Chromatography of Maltose-Binding Protein. Affinity Chromatography. 2008;169–90. | |
| dc.relation.references | Sivashanmugam A, Murray V, Cui C, Zhang Y, Wang J, Li Q. Practical protocols for production of very high yields of recombinant proteins using Escherichia coli. Protein Sci [Internet]. 2009 May [cited 2025 Apr 14];18(5):936. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC2771296/ | |
| dc.relation.references | Salema V, Fernández LÁ. High yield purification of nanobodies from the periplasm of E. coli as fusions with the maltose binding protein. Protein Expr Purif [Internet]. 2013 [cited 2025 Jan 30];91(1):42–8. Available from: https://pubmed.ncbi.nlm.nih.gov/23856605/ | |
| dc.relation.references | Pereira EPV, van Tilburg MF, Florean EOPT, Guedes MIF. Egg yolk antibodies (IgY) and their applications in human and veterinary health: A review. Int Immunopharmacol. 2019 Aug 1;73:293–303. | |
| dc.relation.references | Michael A, Meenatchisundaram S, Parameswari G, Subbraj T, Selvakumaran R, Ramalingam S. Chicken egg yolk antibodies (IgY) as an alternative to mammalian antibodies. Indian J Sci Technol. 2010;3(4):468–74. | |
| dc.relation.references | Valor L, De la Torre I. Comprender el concepto de inmunogenicidad. Reumatol Clin [Internet]. 2013 Jan 1 [cited 2025 Apr 15];9(1):1–4. Available from: https://www.reumatologiaclinica.org/es-comprender-el-concepto-inmunogenicidad articulo-S1699258X12002537 | |
| dc.relation.references | Satterlee DG, Cadd GG, Fioretti WC. Active immunization of broiler breeder hens with a recombinant chicken inhibin fusion protein enhances egg lay. Poult Sci. 2002 Apr 1;81(4):519–28. | |
| dc.relation.references | Zhang L, Ye F, He Y, Kong D, Han C, Zhao Z, et al. Establishment of a Mouse IgA Nephropathy Model With the MBP-20-Peptide Fusion Protein. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology [Internet]. 2010 Oct 1 [cited 2025 Apr 15];293(10):1729–37. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/ar.21225 | |
| dc.relation.references | Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018 Jul 2;46(W1):W296–303. | |
| dc.relation.references | Pacheco BLB, Nogueira CP, Venancio EJ. IgY Antibodies from Birds: A Review on Affinity and Avidity. Animals 2023, Vol 13, Page 3130 [Internet]. 2023 Oct 7 [cited 2025 Apr 15];13(19):3130. Available from: https://www.mdpi.com/2076-2615/13/19/3130/htm | |
| dc.relation.references | Pauly D, Chacana PA, Calzado EG, Brembs B, Schade R. Igy technology: Extraction of chicken antibodies from egg yolk by polyethylene glycol (PEG) precipitation. Journal of Visualized Experiments. 2011;(51). | |
| dc.relation.references | Eliana S, Silva V. EXPLORATION OF A NAD+ TRANSPORTER AND/OR ITS PRECURSORS IN LEISHMANIA. | |
| dc.relation.references | Estefanía L, Orjuela R. Aplicación del sistema phage display para la producción de anticuerpos monoclonales: Una aproximación al desarrollo de herramientas para la detección de proteínas. 2023. | |
| dc.relation.references | Benet C, Van Cutsem P. Negative purification method for the selection of specific antibodies from polyclonal antisera. Biotechniques [Internet]. 2002 Nov 1 [cited 2025 Apr 16];33(5):1050–4. Available from: https://pubmed.ncbi.nlm.nih.gov/12449383/ | |
| dc.relation.references | Gómez Osorio V, González Rodríguez S, Contreras Rodríguez LE, Díaz GJ, Ramírez Hernández MH, Gómez Osorio V, et al. Obtención de la proteína verde fluorescente recombinante y su anticuerpo policlonal Igy. Rev Colomb Biotecnol [Internet]. 2023 Jun 1 [cited 2025 Apr 20];25(1):57–68. Available from: | |
| dc.relation.references | Esteban J, León G. Desarrollo de herramientas moleculares para la implementación del sistema CRISPR-Cas9 en Leishmania braziliensis. 2024. | |
| dc.relation.references | Eliana S, Silva V. EXPLORATION OF A NAD+ TRANSPORTER AND/OR ITS PRECURSORS IN LEISHMANIA. | |
| dc.relation.references | Lee BS, Huang JS, Jayathilaka LP, Lee J, Gupta S. Antibody Production with Synthetic Peptides. Methods Mol Biol [Internet]. 2016 [cited 2025 Apr 17];1474:25–47. Available from: https://pubmed.ncbi.nlm.nih.gov/27515072/ | |
| dc.relation.references | Carlander David. Avian IgY antibody : in vitro and in vivo. 2002. 53 p. | |
| dc.relation.references | Zeng X, Wang H, Huang C, Logue CM, Barbieri NL, Nolan LK, et al. Evaluation of the Immunogenic Response of a Novel Enterobactin Conjugate Vaccine in Chickens for the Production of Enterobactin-Specific Egg Yolk Antibodies. Front Immunol [Internet]. 2021 Apr 2 [cited 2025 Apr 16];12:629480. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8050339/ | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Reconocimiento 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.ddc | 570 - Biología::572 - Bioquímica | spa |
| dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
| dc.subject.decs | Población Rural | spa |
| dc.subject.decs | Rural Population | eng |
| dc.subject.decs | Neoplasias del Cuello Uterino | spa |
| dc.subject.decs | Uterine Cervical Neoplasms | eng |
| dc.subject.decs | Infecciones por Papillomavirus | spa |
| dc.subject.decs | Papillomavirus Infections | eng |
| dc.subject.decs | Población Rural | spa |
| dc.subject.decs | Rural Population | eng |
| dc.subject.proposal | Virus del papiloma humano | spa |
| dc.subject.proposal | Cáncer de cuello uterino | spa |
| dc.subject.proposal | Bioinsumo | spa |
| dc.subject.proposal | Human papillomavirus | eng |
| dc.subject.proposal | Cervical cancer | eng |
| dc.subject.proposal | Bioinput | eng |
| dc.title | Generación de insumos inmunológicos de utilidad en la elaboración de pruebas rápidas como alternativa costo efectiva para el diagnóstico del cáncer de cuello uterino en zonas rurales de Colombia | spa |
| dc.title.translated | Generation of immunological tools for the development of rapid tests as a cost-effective alternative for the diagnosis of cervical cancer in rural areas of Colombia | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Grupos comunitarios | spa |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| dcterms.audience.professionaldevelopment | Público general | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1012427167_GABRIELA_GOMEZ_MB_2024_2.pdf
- Tamaño:
- 3.06 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Bioquímica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

