Efecto del protocolo de vitrificación y sistemas de empaque sobre la tasa de supervivencia de embriones ovinos obtenidos in vivo

dc.contributor.advisorJiménez Escobar, Claudia
dc.contributor.advisorZambrano, Jorge
dc.contributor.authorGonzález Mendoza, Daniel Fernando
dc.contributor.researchgroupReproducción Animal y Salud de Hatospa
dc.date.accessioned2021-05-11T20:10:30Z
dc.date.available2021-05-11T20:10:30Z
dc.date.issued2020-11-13
dc.descriptiondiagramas, ilustraciones a color, fotografías, tablasspa
dc.description.abstractLa presente investigación tuvo como fin evaluar metodologías que faciliaran el proceso de vitrificación de embriones ovinos y la eliminación de potenciales contaminantes, comparando dos sistemas de empaque (abierto y cerrado) ya que el uso de empaques abiertos se consideran un riesgo de bioseguridad en este tipo de biotecnología reproductiva. Para este fin, se seleccionaron 25 ovejas trihibridas adultas en buenas condiciones sanitarias y nutricionales, cruces de razas Katahdin, Pelibuey y Dorset entre el primero y sexto parto. Se sincronizaron un grupo de cinco ovejas, cada 7 días durante cinco semanas mediante esponjas vaginales impregnadas con 60mg de Acetato Medroxiprogesterona por 13 días; además, se realizó un tratamiento de superovulación entre el día 11 al 14 de tratamiento con 160mg de Hormona Folículo Estimulante porcina (pFSH) en ocho dosis decrecientes, cada 12h paralelamente con la remoción del dispositivo vaginal en el día 13. Por otro lado, se realizó detección de celo con un macho vasectomizado y monta natural controlada, al día siete de esta se realizó recolección de embriones por medio de laparotomía. Subsiguientemente se evaluaron y clasificaron los embriones de acuerdo con las pautas de la Sociedad Internacional de Transferencia de Embriones, y se procedió a realizar criopreservación de sólo embriones categorizados como buenos y excelentes. Se obtuvieron 222 embriones de los cuales se criopreservaron 220, tomando un primer grupo (n=110, 50%) que se vitrificó mediante empaque Abierto (open-pulled Straw, OPS) y el segundo tratamiento experimental (n=110, 50%) se vitrificó a través del método cerrado con pajillas de 0.25cc. Ambos tratamientos divididos equitativamente por etapa de desarrollo y tipo de empaque. Se desvitrificaron 160 embriones, de los 220 congelados, ochenta por cada método de vitrificación los cuales fueron cultivados en una incubadora con 5% de CO2 en aire a 39° C por 72 horas, determinando el porcentaje de embriones reexpandidos a 24, 48 y 72 horas post desvitrificación y su tasa de eclosión, obteniendo una viabilidad del 72,6% (n= 80) para los embriones vitrificados por OPS y del 67,6% (n=80) para los embriones vitrificados por pajilla. Posteriormente se compararon las tasas de supervivencia embrionaria con la prueba de chi-cuadrado con un p-valor 0,49, concluyendo que no existe dependencia o asociación entre la variable (supervivencia) y el factor (empaque); las diferencias significativas se tomaron con un p<0,05. Finalmente, con este estudio se logró aplicar con éxito biotecnologías reproductivas como la ultrasonografía, laparoscopia, sincronización, superovulación, transferencia de embriones y criopreservación de embriones por medio de la vitrificación con dos sistemas de empaque en ovejas trihibridas bajo nuestras condiciones ambientales y de manejo. Considerando que el empaque cerrado es mejor en términos de bioseguridad y que no hubo diferencias con el sistema OPS, se recomienda trabajar el sistema cerrado para vitrificar embriones ovinos.spa
dc.description.abstractThe purpose of this research was to evaluate two different packaging systems to cryopreserve ovine embryos avoiding potential contaminants in vitrification processes related to the use of open packages such as the open-pulled straw system, which is considered to be unsuitable for use in commercial embryo cryopreservation. For this purpose, 25 adult trihybrid ewes (crosses of Katahdin, Pelibuey and Dorset) in good sanitary and nutritional conditions were selected between the first and sixth lambing. Groups of five ewes were synchronized every 7 days for five weeks with intravaginal pessaries impregnated with 60mg of Medroxyprogesterone Acetate for 13 days. In addition, a superovulation treatment was performed between the 11th and 14th day of treatment with 160mg of porcine Follicle-Stimulating Hormone (pFSH) in eight decreasing doses every 12h. Controlled natural breeding was performed after estrus detection with a vasectomized male; seven days after natural breeding, embryo collection was performed by means of laparotomy. Subsequently, the embryos were evaluated and classified according to the guidelines of the International Embryo Transfer Society and only embryos categorized as excellent and good were used in cryopreservation treatments. From the 222 embryos obtained, 220 were cryopreserved; embryos were divided in two treatment groups: first group (n=110, 50%) which were vitrified in open-pulled straws (OPS) and the second group (n=110, 50%) were vitrified in 0.25cc straws. Both treatments were equally divided by developmental stage and type of packaging. For survival evaluation, 160 of the 220 embryos were devitrified, eighty by each method of packaging. These were immediately cultured in an incubator with 5% CO2 in air at 39° C for 72 hours, determining a percentage of embryos re-expanded at 24, 48 and 72 hours post-devitrification and the hatching rate. A viability of 72.6% (n=80) for the embryos vitrified by OPS and 67.6% (n=80) for the embryos vitrified by straw were obtained. Embryo survival rates were not significantly different among the two packaging methods (chi-square test) with a pvalue of 0.49. Finally, with this study, reproductive biotechnologies such as ultrasonography, laparoscopy, synchronization, superovulation, embryo transfer, and cryopreservation of embryos through vitrification with two packing systems were successfully applied in trihybrid ewes. Considering that a closed packaging system is safer in terms of biosecurity and that there were no significant differences in survival rates compared to the OPS system, we recommend to freeze sheep embryos with closed techniques such as the use of 0.25 cc straws.eng
dc.description.degreelevelMaestríaspa
dc.format.extent1 recurso en línea (108 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79502
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicina Veterinaria y de Zootecniaspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animalspa
dc.relation.referencesAbecia, J. A., Forcada, F., Palacín, I., Sánchez-Prieto, L., Sosa, C., Fernández-Foren, A., & Meikle, A. (2015). Undernutrition affects embryo quality of superovulated ewes. Zygote, 23(1), 116–124. https://doi.org/10.1017/S096719941300035Xspa
dc.relation.referencesAbubakar, A. A., Andeshi, R. A., Yakubu, A. S., Lawal, F. M., & Adamu, U. (2014). Comparative Evaluation of Midventral and Flank Laparotomy Approaches in Goat. Journal of Veterinary Medicine, 2014, 1–6. https://doi.org/10.1155/2014/920191spa
dc.relation.referencesAké-lópez, J. R., Centurión-castro, F. G., Magaña-monforte, J. G., & Aké-villanueva, J. R. (2014). Efecto del progestágeno y de la dosis de gonadotropina corionica equina en la sincronización del estro y tasa de gestación en ovejas Pelibuey inseminadas por laparoscopia. Ecosistemas y Recursos Agropecuarios, 1(3), 261–268.spa
dc.relation.referencesAkiyama, K., Kobayashi, J., Sato, Y., Sata, R., Ohashi, M., Sasaki, E., Oda, Y., Ogawa, Y., Ueda, S., Nabenishi, H., & matoba, S. (2010). Calf production from vitrified bovine sexed embryos following in-straw dilution. Animal Science Journal, 81(4), 461–466. https://doi.org/10.1111/j.1740-0929.2010.00763.xspa
dc.relation.referencesAlmodin, C. G., Minguetti-Camara, V. C., Paixao, C. L., & Pereira, P. C. (2010). Embryo development and gestation using fresh and vitrified oocytes. Human Reproduction, 25(5), 1192–1198. https://doi.org/10.1093/humrep/deq042spa
dc.relation.referencesArévalo Garay, Á., & Correa Assmus, G. (2013). Tecnología en la ovinocultura colombiana: estado del arte. Ciencia Animal, 6, 125–142.spa
dc.relation.referencesAsgari, V., Hosseini, S. M., Ostadhosseini, S., Hajian, M., Azhdari, Z. T., Mosaie, M., & Nasr-Esfahani, M. H. (2012). Specific activation requirements of in vitro-matured sheep oocytes following vitrification-warming. Molecular Reproduction and Development, 79(7), 434–444. https://doi.org/10.1002/mrd.22047spa
dc.relation.referencesBaril, G., Traldi, a. L., Cognié, Y., Leboeuf, B., Beckers, J. F., & Mermillod, P. (2001). Successful direct transfer of vitrified sheep embryos. Theriogenology, 56(2), 299–305. https://doi.org/10.1016/S0093-691X(01)00564-7spa
dc.relation.referencesBartlewski, P. M., Seaton, P., Franco Oliveira, M. E., Kridli, R. T., Murawski, M., & Schwarz, T. (2016). Intrinsic determinants and predictors of superovulatory yields in sheep: Circulating concentrations of reproductive hormones, ovarian status, and antral follicular blood flow. Theriogenology, 86(1), 130–143. https://doi.org/10.1016/j.theriogenology.2016.04.024spa
dc.relation.referencesBartlewski, P. M., Seaton, P., Szpila, P., Oliveira, M. E. F., Murawski, M., Schwarz, T., Kridli, R. T., & Zieba, D. A. (2015). Comparison of the effects of pretreatment with Veramix sponge (medroxyprogesterone acetate) or CIDR (natural progesterone) in combination with an injection of estradiol-17β on ovarian activity, endocrine profiles, and embryo yields in cyclic ewes superovu. Theriogenology, 84(7), 1225–1237. https://doi.org/10.1016/j.theriogenology.2015.07.002spa
dc.relation.referencesBergstein-Galan, T. G., Weiss, R. R., Kozicki, L. E., Bortoleto, C. T., Lara, N. S. S., & Aschenbrenner, G. A. (2020). EFFECT OF FLUNIXIN MEGLUMINE AND hCG AT COMMERCIAL PROGRAMS FOR MULTIPLE OVULATION AND EMBRYO TRANSFER (MOET) IN SHEEP. Archives of Veterinary Science, 5(1), 56–66. www.ser.ufpr.br/veterinaryspa
dc.relation.referencesBergstein-Galan, Tácia Gomes, Weiss, R. R., & Kozicki, L. E. (2019). Effect of semen and donor factors on multiple ovulation and embryo transfer (MOET) in sheep. Reproduction in Domestic Animals, 54(2), 401–407. https://doi.org/10.1111/rda.13381spa
dc.relation.referencesBettencourt, E. M., Bettencourt, C. M., Silva, J. C. e., Ferreira, P., Manito, C. I., Matos, C. M., Romão, R. J., & Rocha, A. (2008). Effect of season and gonadotrophin preparation on superovulatory response and embryo quality in Portuguese Black Merinos. Small Ruminant Research, 74(1–3), 134–139. https://doi.org/10.1016/j.smallrumres.2007.05.001spa
dc.relation.referencesBettencourt, E. M. V., Bettencourt, C. M., Silva, J. N. C. E., Ferreira, P., de Matos, C. P., Oliveira, E., Romão, R. J., Rocha, A., & Sousa, M. (2009). Ultrastructural characterization of fresh and cryopreserved in vivo produced ovine embryos. Theriogenology, 71(6), 947–958. https://doi.org/10.1016/j.theriogenology.2008.10.019spa
dc.relation.referencesBhat, M. H., Sharma, V., Khan, F. A., Naykoo, N. A., Yaqoob, S. H., Vajta, G., Khan, H. M., Fazili, M. R., Ganai, N. A., & Shah, R. A. (2015). Open pulled straw vitrification and slow freezing of sheep IVF embryos using different cryoprotectants. Reproduction, Fertility and Development, 27(8), 1175–1180. https://doi.org/10.1071/RD14024spa
dc.relation.referencesBielanski, A., & Vajta, G. (2009). Risk of contamination of germplasm during cryopreservation and cryobanking in IVF units. In Human Reproduction (Vol. 24, Issue 10, pp. 2457–2467). Oxford University Press. https://doi.org/10.1093/humrep/dep117spa
dc.relation.referencesBlanco, M. R., Simonetti, L., & Rivera, O. E. (2003). Embryo production and progesterone profiles in ewes superovulated with different hormonal treatments. Small Ruminant Research, 47(3), 183–191. https://doi.org/10.1016/S0921-4488(02)00245-6spa
dc.relation.referencesBottrel, M., Hidalgo, M., Mogas, T., Pereira, B., Ortiz, I., Díaz-Jiménez, M., Consuegra, C., Morató, R., & Dorado, J. (2020). One-step warming does not affect the in vitro viability and cryosurvival of cryotop-vitrified donkey embryos. Theriogenology, 152, 47–52. https://doi.org/10.1016/j.theriogenology.2020.04.026spa
dc.relation.referencesBrasil, O. O., Moreira, N. H., Santos, G., Silva, B. D. M., Mariante, A. S., & Ramos, A. F. (2016). Superovulatory and embryo yielding in sheep using increased exposure time to progesterone associated with a GnRH agonist. Small Ruminant Research, 136, 54–58. https://doi.org/10.1016/j.smallrumres.2016.01.005spa
dc.relation.referencesBruno-Galarraga, M., Cueto, M., Gibbons, A., Pereyra-Bonnet, F., Subiabre, M., & González-Bulnes, A. (2015). Preselection of high and low ovulatory responders in sheep multiple ovulation and embryo transfer programs. Theriogenology, 84(5), 784–790. https://doi.org/10.1016/j.theriogenology.2015.05.011spa
dc.relation.referencesCaamaño, J. N., Gómez, E., Trigal, B., Muñoz, M., Carrocera, S., Martín, D., & Díez, C. (2015). Survival of vitrified invitro-produced bovine embryos after a one-step warming in-straw cryoprotectant dilution procedure. Theriogenology, 83(5), 881–890. https://doi.org/10.1016/j.theriogenology.2014.11.021spa
dc.relation.referencesChian, R. C., Son, W. Y., Huang, J. Y., Cui, S. J., Buckett, W. M., & Tan, S. L. (2005). High survival rates and pregnancies of human oocytes following vitrification: preliminary report. Fertility and Sterility, 84, S26, 2005. https://doi.org/https://doi.org/10.1016/j.fertnstert.2005.07.086spa
dc.relation.referencesCocero, M., Aguilar., B., Alabart, J. L., Olivera, J., & Folch, J. (2000). FACTORES QUE AFECTAN AL RENDIMIENTO DE LA T.E.CONGELADOS EN EL PROGRAMA GENÉTICO DE OVIARAGON. 760–762.spa
dc.relation.referencesCognie, Y. (1999). State of the art in sheep-goat embryo transfer. Theriogenology, 51(1), 105–116. https://doi.org/10.1016/S0093-691X(98)00235-0 Contreras-Solis, I., Diaz, T., Lopez, G., Caigua, A., Lopez-Sebastian, A., & Gonzalez-Bulnes, A. (2008). Systemic and intraovarian effects of corpus luteum on follicular dynamics during estrous cycle in hair breed sheep. Animal Reproduction Science, 104(1), 47–55. https://doi.org/10.1016/j.anireprosci.2007.01.021spa
dc.relation.referencesCortés-Reyes, É., Rubio-Romero, J. A., & Gaitán-Duarte, H. (2010). Statistical methods for evaluating diagnostic test agreement and reproducibility. Revista Colombiana de Obstetricia y Ginecologia, 61(3), 247–255. https://doi.org/10.18597/rcog.271spa
dc.relation.referencesCrilly, J. P., Politis, A. P., & Hamer, K. (2017). Use of ultrasonographic examination in sheep veterinary practice. Small Ruminant Research, 152(July), 166–173. https://doi.org/10.1016/j.smallrumres.2016.12.021spa
dc.relation.referencesCuadro, F., dos Santos-Neto, P. C., Pinczak, A., Barrera, N., Crispo, M., & Menchaca, A. (2018). Serum progesterone concentrations during FSH superstimulation of the first follicular wave affect embryo production in sheep. Animal Reproduction Science, 196, 205–210. https://doi.org/10.1016/j.anireprosci.2018.08.011spa
dc.relation.referencesCueto, M. I., Gibbons, A. E., Pereyra-Bonnet, F., Silvestre, P., & González-Bulnes, A. (2011a). Effects of Season and Superovulatory Treatment on Embryo Yields in Fine-Wool Merinos Maintained Under Field Conditions. Reproduction in Domestic Animals, 46(5), 770–775. https://doi.org/10.1111/j.1439-0531.2010.01738.xspa
dc.relation.referencesD’Alessandro, A. G., & Martemucci, G. (2016). Superovulatory response to gonadotrophin FSH/LH treatment and effect of progestin supplement to recipients on survival of transferred vitrified embryos in goats. Theriogenology, 85(2), 296–301. https://doi.org/10.1016/j.theriogenology.2015.09.038spa
dc.relation.referencesDalcin, L., Silva, R. C., Paulini, F., Silva, B. D. M., Neves, J. P., & Lucci, C. M. (2013). Cytoskeleton structure, pattern of mitochondrial activity and ultrastructure of frozen or vitrified sheep embryos. Cryobiology, 67(2), 137–145. https://doi.org/10.1016/j.cryobiol.2013.05.012spa
dc.relation.referencesde Araújo-Lemos, P. F. B., de Freitas Neto, L. M., de Melo, J. V., Moura, M. T., Lima, P. F., & Oliveira, M. a. L. (2014). Comparison of different cryoprotectant regimes for vitrification of ovine embryos produced in vivo. Small Ruminant Research, 119(1–3), 100–106. https://doi.org/10.1016/j.smallrumres.2014.02.013spa
dc.relation.referencesde Araújo-Lemos, P. F. B., Freitas Neto, L. M., Moura, M. T., Melo, J. V., Lima, P. F., & De Oliveira, M. A. L. (2015). Comparison of vitrification and conventional freezing for cryopreservation of caprine embryos. Zygote, 23(4), 594–602. https://doi.org/10.1017/S0967199414000215spa
dc.relation.referencesDe Paula, W. B. M., Agip, A. N. A., Missirlis, F., Ashworth, R., Vizcay-Barrena, G., Lucas, C. H., & Allen, J. F. (2013). Female and male gamete mitochondria are distinct and complementary in transcription, structure, and genome function. Genome Biology and Evolution, 5(10), 1969–1977. https://doi.org/10.1093/gbe/evt147spa
dc.relation.referencesDobrinsky, J. R. (2001). Cryopreservation of swine embryos: a chilly past with a vitrifying future. Theriogenology, 56(1), 1333–1344. https://doi.org/https://doi.org/10.1016/S0093-691X(01)00634-3spa
dc.relation.referencesdos Santos-Neto, P. C., Cuadro, F., Barrera, N., Crispo, M., & Menchaca, A. (2017). Embryo survival and birth rate after minimum volume vitrification or slow freezing of in vivo and in vitro produced ovine embryos. Cryobiology, 78, 8–14. https://doi.org/10.1016/j.cryobiol.2017.08.002spa
dc.relation.referencesdos Santos Neto, P. C., Vilariño, M., Barrera, N., Cuadro, F., Crispo, M., & Menchaca, A. (2015). Cryotolerance of Day 2 or Day 6 in vitro produced ovine embryos after vitrification by Cryotop or Spatula methods. Cryobiology, 70(1), 17–22. https://doi.org/10.1016/j.cryobiol.2014.11.001spa
dc.relation.referencesElliott, G. D., Wang, S., & Fuller, B. J. (2017). Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology, 76, 74–91. https://doi.org/10.1016/j.cryobiol.2017.04.004spa
dc.relation.referencesFernandez, J., Bruno- Galarraga, M. M., Soto, A. T., de la Sota, R. L., Cueto, M. I., Lacau, I. M., & Gibbons, A. E. (2018). Hormonal therapeutic strategy on the induction of accessory corpora lutea in relation to follicle size and on the increase of progesterone in sheep. Theriogenology, 105, 184–188. https://doi.org/10.1016/j.theriogenology.2017.09.020spa
dc.relation.referencesFigueira, L. M., Alves, N. G., Batista, R. I. T. P., Brair, V. L., Lima, R. R., Oliveira, M. E. F., Fonseca, J. F., & Souza-Fabjan, J. M. G. (2019). Pregnancy rate after fixed-time transfer of cryopreserved embryos collected by non-surgical route in Lacaune sheep. Reproduction in Domestic Animals, 54(11), 1493–1496. https://doi.org/10.1111/rda.13550spa
dc.relation.referencesFigueira, L. M., Alves, N. G., Maia, A. L. R. e. S., Souza-Fabjan, J. M. G. de, Batista, R. I. T. P., Morais, M. C. da C., Lima, R. R. de, Oliveira, M. E. F., & Fonseca, J. F. da. (2020). Embryo yield and quality are associated with progestogen treatment during superovulation protocol in lactating Lacaune ewes. Theriogenology, 155, 132–138. https://doi.org/10.1016/j.theriogenology.2020.06.004spa
dc.relation.referencesFigueira, L. M., Alves, N. G., Souza-Fabjan, J. M. G., Oliveira, M. E. F., Lima, R. R., Souza, G. N., & Fonseca, J. F. (2020). Preovulatory follicular dynamics, ovulatory response and embryo yield in Lacaune ewes subjected to synchronous estrus induction protocols and non-surgical embryo recovery. In Theriogenology (Vol. 145). Elsevier Inc. https://doi.org/10.1016/j.theriogenology.2019.11.004spa
dc.relation.referencesFonseca, J. F., Oliveira, M. E. F., Brandão, F. Z., Batista, R. I. T. P., Garcia, A. R., Bartlewski, P. M., & Souza-Fabjan, J. M. G. (2019). Non-surgical embryo transfer in goats and sheep: The Brazilian experience. Reproduction, Fertility and Development, 31(1), 17–26. https://doi.org/10.1071/RD18324spa
dc.relation.referencesForcada, F., Amer-Meziane, M. A., Abecia, J. A., Maurel, M. C., Cebrián-Pérez, J. A., Muiño-Blanco, T., Asenjo, B., Vázquez, M. I., & Casao, A. (2011). Repeated superovulation using a simplified FSH/eCG treatment for in vivo embryo production in sheep. Theriogenology, 75(4), 769–776. https://doi.org/10.1016/j.theriogenology.2010.10.019spa
dc.relation.referencesForcada, F., Sánchez-Prieto, L., Casao, A., Palacín, I., Cebrián-Pérez, J. A., Muiño-Blanco, T., & Abecia, J. A. (2012). Use of laparoscopic intrauterine insemination associated with a simplified superovulation treatment for in vivo embryo production in sheep: A preliminary report. Animal Production Science, 52(12), 1111–1116. https://doi.org/10.1071/AN12129spa
dc.relation.referencesGarcia-Dominguez, X., Marco-Jimenez, F., Viudes-de-Castro, M. P., & Vicente, J. S. (2019). Minimally invasive embryo transfer and embryo vitrification at the optimal embryo stage in rabbit model. Journal of Visualized Experiments, 2019(147). https://doi.org/10.3791/58055spa
dc.relation.referencesGarcía, J. I., Noriega-Portella, L., & Noriega-Hoces, L. (2011). Efficacy of oocyte vitrification combined with blastocyst stage transfer in an egg donation program. Human Reproduction, 26(4), 782–790. https://doi.org/10.1093/humrep/der008spa
dc.relation.referencesGarcia Kako Rodriguez, M., Serpa Maciel, G., Ramirez Uscategui, R. A., Correia Santos, V. J., Perecin Nociti, R., Del Aguila da Silva, P., Rossi Feliciano, M. A., Zandonadi Brandão, F., Ferreira Fonseca, J., & Franco Oliveira, M. E. (2019). Early luteal development in Santa Inês ewes superovulated with reduced doses of porcine follicle-stimulating hormone. Reproduction in Domestic Animals, 54(3), 456–463. https://doi.org/10.1111/rda.13374spa
dc.relation.referencesGibbons, A., Cueto, M. I., & Pereyra Bonnet, F. (2011). A simple vitrification technique for sheep and goat embryo cryopreservation. Small Ruminant Research, 95(1), 61–64. https://doi.org/10.1016/j.smallrumres.2010.08.007spa
dc.relation.referencesGibbons, Alejandro, Bruno-Galarraga, M., Fernandez, J., Gonzalez-Bulnes, A., & Cueto, M. (2019). Vitrified embryo transfer in Merino sheep under extensive conditions. Animal Reproduction, 16(2), 297–301. https://doi.org/10.21451/1984-3143-AR2018-0108 Gomes Bergstein-Galan, T., Romualdo Weiss, R., Kozicki, L. E., Bortoleto, C. T., Santana, N., Lara, S., & Aschenbrenner, G. A. (2020). EFFECT OF FLUNIXIN MEGLUMINE AND hCG AT COMMERCIAL PROGRAMS FOR MULTIPLE OVULATION AND EMBRYO TRANSFER (MOET) IN SHEEP (Efeito do flunixin meglumine e hCG em programas comerciais de múltipla ovulação e transferência de embriões (MOTE) em ovinos) (Issue 1). www.ser.ufpr.br/veterinaryspa
dc.relation.referencesGonzález-Bulnes, A., Baird, D. T., Campbell, B. K., Cocero, M. J., García-García, R. M., Inskeep, E. K., López-Sebastián, A., McNeilly, A. S., Santiago-Moreno, J., Souza, C. J. H., & Veiga-López, A. (2004). Multiple factors affecting the efficiency of multiple ovulation and embryo transfer in sheep and goats. Reproduction, Fertility and Development, 16(4), 421–435. https://doi.org/10.1071/RD04033spa
dc.relation.referencesGratwohl, A. (2010). Thomas’TM Hematopoietic Cell Transplantation. In European Journal of Haematology (Vol. 84, Issue 1, pp. 95–95). John Wiley & Sons, Inc. https://doi.org/10.1111/j.1600-0609.2009.01360.xspa
dc.relation.referencesGreen, R., Santos, B., Sicherle, C., Landim-Alvarenga, F., & Bicudo, S. (2009). Viability of OPS vitrified sheep embryos after direct transfer. Reproduction in Domestic Animals, 44(3), 406–410. https://doi.org/10.1111/j.1439-0531.2008.01088.xspa
dc.relation.referencesGrizelj, J., Vince, S., Samardžija, M., de Bulnes, A. G., Dovenski, T., Turmalaj, L., & Ževrnja, B. (2013). Use of ultrasonography to detect ovarian response in goats submitted to multiple ovulation and embryo transfer program. Veterinarski Arhiv, 83(2), 125–134.spa
dc.relation.referencesHa, A. N., Lee, S. R., Jeon, J. S., Park, H. S., Lee, S. H., Jin, J. I., Sessions, B. R., Wang, Z., White, K. L., & Kong, I. K. (2014). Development of a modified straw method for vitrification of in vitro-produced bovine blastocysts and various genes expression in between the methods. Cryobiology, 68(1), 57–64. https://doi.org/10.1016/j.cryobiol.2013.11.007spa
dc.relation.referencesHamawaki, A., Kuwayama, M., & Hamano, S. (1999). Minimum volume cooling method for bovine blastocyst vitrification. Theriogenology, C(4), 38.spa
dc.relation.referencesHerrera-Camacho, J., Aké-López, J. R., Ku-Vera, J. C., Williams, G. L., & Quintal-Franco, J. A. (2008). Respuesta ovulatoria, estado de desarrollo y calidad de embriones de ovejas Pelibuey superovuladas suplementadas con ácidos grasos poliinsaturados. Tecnica Pecuaria En Mexico, 46(2), 107–117.spa
dc.relation.referencesHosseini, S. M., Asgari, V., Ostadhosseini, S., Hajian, M., Piryaei, A., Najarasl, M., & Nasr-Esfahani, M. H. (2012). Potential applications of sheep oocytes as affected by vitrification and in vitro aging. Theriogenology, 77(9), 1741–1753. https://doi.org/10.1016/j.theriogenology.2011.12.005spa
dc.relation.referencesInui, H., Mizuno, J., Kikuchi, E., Noguchi, K., Tanji, Y., Hamabata, M., Kotsuzumi, C., Komiyama, M., Noguchi, Y., & Tamura, M. (2019). Safer Vitrification of Mouse and Human Embryos Using the Novel Cryoroom Vitrification System for Assisted Reproductive Technology. Cryo Letters, 40(1), 1–10.spa
dc.relation.referencesIsachenko, V., Folch, J., Isachenko, E., Nawroth, F., Krivokharchenko, A., Vajta, G., Dattena, M., & Alabart, J. L. (2003). Double vitrification of rat embryos at different developmental stages using an identical protocol. Theriogenology, 60(3), 445–452. https://doi.org/10.1016/S0093-691X(03)00039-6spa
dc.relation.referencesJuárez-Pérez, A., Domínguez-Rebolledo, Á., Pinzón-López, L., Aguilar-Urquizo, E., Ortíz-de la Rosa, B., & Ramón-Ugalde, J. P. (2018). Embriones ovinos vitrificados mediante una técnica “one step” producidos en dos estaciones. Agroproductividad, 11, 121–126. https://doi.org/https://doi.org/10.32854/agrop.v11i10.1255spa
dc.relation.referencesKhunmanee, S., Tharasanit, T., Suwimonteerabutr, J., Panyaboriban, S., Techakumphu, M., & Swangchan-Uthai, T. (2020). On-farm lambing outcomes after transfer of vitrified and slow frozen embryos. Animal Reproduction Science, 216, 106467. https://doi.org/10.1016/j.anireprosci.2020.106467spa
dc.relation.referencesKopeika, J., Thornhill, A., & Khalaf, Y. (2015). The effect of cryopreservation on the genome of gametes and embryos: Principles of cryobiology and critical appraisal of the evidence. Human Reproduction Update, 21(2), 209–227. https://doi.org/10.1093/humupd/dmu063spa
dc.relation.referencesKruse, S. (2012). Vitrification of in-vitro and in vivo- produced bovine embryos for direct transfer (Vol. 3, Issue September) [Colorado State University]. https://doi.org/10.19641/j.cnki.42-1290/f.2012.03.022spa
dc.relation.referencesKuwayama, M. (2007). Highly efficient vitrification for cryopreservation of human oocytes and embryos: The Cryotop method. Theriogenology, 67(1), 73–80. https://doi.org/10.1016/j.theriogenology.2006.09.014spa
dc.relation.referencesKuwayama, M., Vajta, G., Kato, O., & Leibo, S. P. (2005). Highly efficient vitrification method for cryopreservation of human oocytes. Reproductive BioMedicine Online, 11(3), 300–308. https://doi.org/10.1016/S1472-6483(10)60837-1spa
dc.relation.referencesLane, M., Schoolcraft, W. B., Gardner, D. K., & Phil, D. (1999). Vitrification of mouse and human blastocysts using a novel cryoloop container-less technique. Fertility and Sterility, 72(6), 1073–1078. https://doi.org/10.1016/S0015-0282(99)00418-5spa
dc.relation.referencesLedda, S., Kelly, J. M., Nieddu, S., Bebbere, D., Ariu, F., Bogliolo, L., Natan, D., & Arav, A. (2019). High in vitro survival rate of sheep in vitro produced blastocysts vitrified with a new method and device. Journal of Animal Science and Biotechnology, 10(1), 1–10. https://doi.org/10.1186/s40104-019-0390-1spa
dc.relation.referencesLeibo, S. P., & Pool, T. B. (2011). The principal variables of cryopreservation: Solutions, temperatures, and rate changes. Fertility and Sterility, 96(2), 269–276. https://doi.org/10.1016/j.fertnstert.2011.06.065spa
dc.relation.referencesLi, Q. Y., Guan, H., Hou, J., An, X. R., & Chen, Y. F. (2008). Technical note: Transfer of ovine embryos through a simplified mini-laparotomy technique. Journal of Animal Science, 86(11), 3224–3227. https://doi.org/10.2527/jas.2008-0846spa
dc.relation.referencesLiebermann, J., Tucker, M. J., Graham, J. R., Han, T., Davis, A., & Levy, M. J. (2002). Blastocyst development after vitrification of multipronuclear zygotes using the Flexipet denuding pipette. Reproductive Biomedicine Online, 4(2), 146–150. https://doi.org/10.1016/S1472-6483(10)61932-3spa
dc.relation.referencesLoiola Filho, J. B., Monte, A. P. O. do, Souza, T. T. D. S., Miranda, M. D. S., Magalhães, L. C., Barros, C. H. S. C., Silva, A. A. D. A., Santos, A. O., Guimarães, A. D. S. L., Costa, J. M. da S., Cruz, R. B., Cordeiro, M. F., & Lopes Júnior, E. S. (2015). Effect of pFSH dose reduction on in vivo embryo production in Dorper ewes. Semina: Ciências Agrárias, 36(6Supl2), 4215. https://doi.org/10.5433/1679-0359.2015v36n6sup2p4215spa
dc.relation.referencesLópez, J. S., Ramón-Ugalde, J. P., Barroso-Padilla, J. de J., Gutiérrez-Gutiérrez, A. M., Fierro, R., & Piña-Aguilar, R. E. (2013). Superovulation, in vivo embryo recovery and cryopreservation for Aoudad (Ammotragus lervia) females using osmotic pumps and vitrification: A preliminary experience and its implications for conservation. Tropical Conservation Science, 6(1), 149–157. https://doi.org/10.1177/194008291300600105spa
dc.relation.referencesLuna-Palomera, C., Macías-Cruz, U., & Sánchez-Dávila, F. (2019). Superovulatory response and embryo quality in Katahdin ewes treated with FSH or FSH plus eCG during non-breeding season. Tropical Animal Health and Production, 51(5), 1283–1288. https://doi.org/10.1007/s11250-019-01801-9spa
dc.relation.referencesMaciel, G. S., Rodriguez, M. G. K., Santos, V. J. C., Uscategui, R. A. R., Nociti, R. P., Maronezi, M. C., Oliveira, C. S., Feliciano, M. A. R., Vicente, W. R. R., da Fonseca, J. F., & Oliveira, M. E. F. (2019). Follicular dynamics and in vivo embryo production in Santa Inês ewes treated with smaller doses of pFSH. Animal Reproduction Science, 209(February), 106137. https://doi.org/10.1016/j.anireprosci.2019.106137spa
dc.relation.referencesMarco-Jiménez, F., Jiménez-Trigos, E., Almela-Miralles, V., & Vicente, J. S. (2016). Development of cheaper embryo vitrification device using the minimum volume method. PLoS ONE, 11(2). https://doi.org/10.1371/journal.pone.0148661spa
dc.relation.referencesMartínez-Rojero, R., Mejía-Villanueva, O., Zarco-Quintero, L., Mastache-Lagunas, A., Reyna-Santamaría, L., Martínez-Rojero, R., Mejía-Villanueva, O., Zarco-Quintero, L., Mastache-Lagunas, A., & Reyna-Santamaría, L. (2017). Evaluación de un protocolo de superovulación para transferencia de embriones en ovejas Criollas de la Montaña de Guerrero./ Evaluation of a superovulation protocol for embryo transfer in Creole ewes from the Guerrero Mountain. Abanico Veterinario, 7(3), 30–36. https://doi.org/10.21929/abavet2017.73.3spa
dc.relation.referencesMartinez, A. G., & Matkovic, M. (1998). CRYOPRESERVATION OF OVINE EMBRYOS: SLOW FREEZING AND VITRIFICATION. Theriogenology, 49(1084), 1039–1049.spa
dc.relation.referencesMartino, A., Songsasen, N., & Leibo, S. P. (1996). Development into Blastocysts of Bovine Oocytes Cryopreserved by Ultra-Rapid Cooling1. Biology of Reproduction, 54(5), 1059–1069. https://doi.org/10.1095/biolreprod54.5.1059spa
dc.relation.referencesMassip’, A., Van Der Zwalmen, P., Scheffen, B., & Ectors, F. (1989). Some Significant Steps in the Cryopreservation of Mammalian Embryos with a Note on a Vitrification Procedure 2. In Animal Reproduction Science (Vol. 19).spa
dc.relation.referencesMatsumoto, H., Jiang, J. Y., Tanaka, T., Sasada, H., & Sato, E. (2001). Vitrification of large quantities of immature bovine oocytes using nylon mesh. Cryobiology, 42(2), 139–144. https://doi.org/10.1006/cryo.2001.2309spa
dc.relation.referencesMayorg, I., Maraa, L., Sannaa, D., Stellettab, C., Morganteb, M., Casua, S., & Dattenaa, M. (2011). Good quality sheep embryos produced by superovulation treatment without the use of progesterone devices. Theriogenology, 75(9), 1661–1668. https://doi.org/10.1016/j.theriogenology.2010.12.029spa
dc.relation.referencesMaza-Ramos, N. S., Martínez-Tinajero, J. J., Izaguirre-Flores, F., Aguirre-Medina, J. F., Ley de Coss, A., & Martínez-Priego, G. (2017). PRODUCCION, CALIDAD Y DESARROLLO DE EMBRIONES EN OVEJAS PELIBUEY ALIMENTADAS CON Clitoria ternatea L., EN CONDICIONES TROPICALES. AGROProductividad, 10(2), 72–78.spa
dc.relation.referencesMeikle, M. N., Schlapp, G., Menchaca, A., & Crispo, M. (2018). Minimum volume Spatula MVD vitrification method improves embryo survival compared to traditional slow freezing, both for in vivo and in vitro produced mice embryos. Cryobiology, 84, 77–81. https://doi.org/10.1016/j.cryobiol.2018.07.005spa
dc.relation.referencesMeraï, A., Dattena, M., Casu, S., Rekik, M., & Lassoued, N. (2017). High-milking sheep have a lower ovulation rate and tend to yield fewer embryos in response to superovulation and intrauterine artificial insemination. Reproduction in Domestic Animals, 52(5), 814–818. https://doi.org/10.1111/rda.12983spa
dc.relation.referencesMerry, D. A., Bondioli, K. R., Allen, R. L., & Wright, R. W. (1984). One-step sucrose dilution of frozen-thawed sheep embryos. Theriogenology, 22(4), 433–443.spa
dc.relation.referencesMomozawa, K., Matsuzawa, A., Tokunaga, Y., Abe, S., Koyanagi, Y., Kurita, M., Nakano, M., & Miyake, T. (2017). Efficient vitrification of mouse embryos using the Kitasato Vitrification System as a novel vitrification device. Reproductive Biology and Endocrinology, 15(1). https://doi.org/10.1186/s12958-017-0249-2spa
dc.relation.referencesMoore, S. G., & Hasler, J. F. (2017). A 100-Year Review: Reproductive technologies in dairy science. Journal of Dairy Science, 100(12), 10314–10331. https://doi.org/10.3168/jds.2017-13138spa
dc.relation.referencesMorató, R., & Mogas, T. (2014). New device for the vitrification and in-straw warming of in vitro produced bovine embryos. Cryobiology, 68(2), 288–293. https://doi.org/10.1016/j.cryobiol.2014.02.010spa
dc.relation.referencesMpebe, N. A., Gonzalez-Bulnes, A., & Lehloenya, K. C. (2018). Effect of breed and follicular status on response to superovulation in south african goats. Journal of Applied Animal Research, 46(1), 141–145. https://doi.org/10.1080/09712119.2016.1277530spa
dc.relation.referencesNavarrete-Sierra, L. F., Cruz-Tamayo, A. A., González-Parra, E. I., Piña-Aguilar, R. E., Sangines-García, J. R., Toledo-López, V., & Ramón-Ugalde, J. P. (2008). Efecto de la aplicación de la hormona de crecimiento recombinante (rbST) sobre la respuesta superovulatoria y la viabilidad embrionaria en ovejas de pelo. Revista Cientifica de La Facultad de Ciencias Veterinarias de La Universidad Del Zulia, 18(2), 175–179.spa
dc.relation.referencesOliveira, M. E.F., Bartlewski, P. M., Jankowski, N., Padilha-Nakaghi, L. C., Oliveira, L. G., Bicudo, S. D., Fonseca, J. F., & Vicente, W. R. R. (2017). Relationship of antral follicular blood flow velocity to superovulatory responses in ewes. Animal Reproduction Science, 182, 48–55. https://doi.org/10.1016/j.anireprosci.2017.04.009spa
dc.relation.referencesOliveira, M. E.F., Fonseca, J. F., Vicente, W. R. R., Rodrigues, N. N., Vergani, G. B., Souza-Fabjan, J. M. G., Jamieson, M., Cristescu, A., Murawski, M., & Bartlewski, P. M. (2019). Are the spectral Doppler indices of ovarian arteries indicative of antral follicular development and predictive of ovulatory responses and embryo yields in superovulated ewes? Reproductive Biology, 19(4), 394–403. https://doi.org/10.1016/j.repbio.2019.11.004spa
dc.relation.referencesOliveira, M. E.F., Zambrini, F. N., Souza-Fabjan, J. M. G., Bartlewski, P. M., Guimarães, J. D., Brandão, F. Z., & Fonseca, J. F. (2020). Repeated trans-cervical embryo recoveries in Santa inês ewes subjected to short- or long-term superovulatory treatment regimens. Animal Reproduction Science, 217. https://doi.org/10.1016/j.anireprosci.2020.106469spa
dc.relation.referencesOliveira, Maria E.F., Feliciano, M. A. R., D’Amato, C. C., Oliveira, L. G., Bicudo, S. D., Fonseca, J. F., Vicente, W. R. R., Visco, E., & Bartlewski, P. M. (2014). Correlations between ovarian follicular blood flow and superovulatory responses in ewes. Animal Reproduction Science, 144(1–2), 30–37. https://doi.org/10.1016/j.anireprosci.2013.10.012spa
dc.relation.referencesOrtega, R. M. M., Pendás, L. C. T., Ortega, M. M., Abreu, A. P., & Cánovas, A. M. (2009). El coeficiente de correlacion de los rangos de spearman caracterizacion. Revista Habanera de Ciencias Medicas, 8(2).spa
dc.relation.referencesPanagiotidis, Y., Vanderzwalmen, P., Prapas, Y., Kasapi, E., Goudakou, M., Papatheodorou, A., Passadaki, T., Petousis, S., Nikolettos, N., Veletza, S., Prapas, N., & Maroulis, G. (2013). Open versus closed vitrification of blastocysts from an oocyte-donation programme: A prospective randomized study. Reproductive BioMedicine Online, 26(5), 470–476. https://doi.org/10.1016/j.rbmo.2013.01.016spa
dc.relation.referencesPanyaboriban, S., Suwimonteerabutr, J., Swangchan-Uthai, T., Tharasanit, T., Suthikrai, W., Suadsong, S., & Techakumphu, M. (2018). A simplified superovulation protocol using splitsingle administration of Folltropin®-V in hyaluronan: Application to purebred sheep. Veterinarni Medicina, 63(7), 321–328. https://doi.org/10.17221/52/2016-VETMEDspa
dc.relation.referencesParamio, M. T., & Izquierdo, D. (2014). Current status of in vitro embryo production in sheep and goats. Reproduction in Domestic Animals, 49(s4), 37–48. https://doi.org/10.1111/rda.12334spa
dc.relation.referencesParmegiani, L., Cognigni, G. E., Bernardi, S., Cuomo, S., Ciampaglia, W., Infante, F. E., Tabarelli De Fatis, C., Arnone, A., MacCarini, A. M., & Filicori, M. (2011). Efficiency of aseptic open vitrification and hermetical cryostorage of human oocytes. Reproductive BioMedicine Online, 23(4), 505–512. https://doi.org/10.1016/j.rbmo.2011.07.003spa
dc.relation.referencesParmegiani, Lodovico, Accorsi, A., Bernardi, S., Arnone, A., Cognigni, G. E., & Filicori, M. (2012). A reliable procedure for decontamination before thawing of human specimens cryostored in liquid nitrogen: Three washes with sterile liquid nitrogen (SLN2). Fertility and Sterility, 98(4), 870–875. https://doi.org/10.1016/j.fertnstert.2012.06.028spa
dc.relation.referencesPassmore, L. A., & Russo, C. J. (2016). Europe PMC Funders Group Specimen preparation for high-resolution cryo-EM. 51–86. https://doi.org/10.1016/bs.mie.2016.04.011.Specimenspa
dc.relation.referencesPereira, R. M., Mesquita, P., Batista, M., Baptista, M. C., Barbas, J. P., Pimenta, J., Santos, I. C., Marques, M. R., Vasques, M. I., Silva Pereira, M., Santos Silva, F., Oliveira Sousa, M. C., Fontes, C. M. G., Horta, A. E. M., Prates, J. A. M., & Marques, C. C. (2009). Doppel gene polymorphisms in Portuguese sheep breeds: Insights on ram fertility. Animal Reproduction Science, 114(1–3), 157–166. https://doi.org/10.1016/j.anireprosci.2008.10.003spa
dc.relation.referencesPrellwitz, L., Zambrini, F. N., Guimarães, J. D., de Sousa, M. A. P., Oliveira, M. E. F., Garcia, A. R., Esteves, S. N., Bartlewski, P. M., Souza-Fabjan, J. M. G., & Fonseca, J. F. (2019). Comparison of the intravenous and intravaginal route of oxytocin administration for cervical dilation protocol and non-surgical embryo recovery in oestrous-induced Santa Inês ewes. Reproduction in Domestic Animals, 54(9), 1230–1235. https://doi.org/10.1111/rda.13499spa
dc.relation.referencesQuan, F., Zhang, Z., An, Z., Hua, S., Zhao, X., & Zhang, Y. (2011). Multiple Factors Affecting Superovulation in Poll Dorset in China. Reproduction in Domestic Animals, 46(1), 39–44. https://doi.org/10.1111/j.1439-0531.2009.01551.xspa
dc.relation.referencesRebolledo, Á. D., Manzanero, G. V., Romero, A. A., Franco, J. Q., Rodriguez, J. B., Lorca, J. R., & Ugalde, J. R. (2017). Follicular population at the onset of a superovulatory treatment and ovarian response in hair ewes. Romanian Biotechnological Letters, 22(2), 12427–12431.spa
dc.relation.referencesRodriguez-Villamil, P., Ongaratto, F. L., Fernandez Taranco, M., & Bó, G. A. (2014). Solid-surface vitrification and in-straw dilution after warming of in vitro-produced bovine embryos. Reproduction in Domestic Animals, 49(1), 79–84. https://doi.org/10.1111/rda.12229spa
dc.relation.referencesRomão, R., Bettencourt, E., Pereira, R. M. L. N., Marques, C. C., Baptista, M. C., Barbas, J. P., Oliveira, E., Bettencourt, C., & Sousa, M. (2016). Ultrastructural Characterization of Fresh and Vitrified In Vitro- and In Vivo-Produced Sheep Embryos. Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia, 45(3), 231–239. https://doi.org/10.1111/ahe.12191spa
dc.relation.referencesRomão, R., Marques, C. C., Baptista, M. C., Barbas, J. P., Horta, A. E. M., Carolino, N., Bettencourt, E., & Pereira, R. M. (2015). Cryopreservation of invitro-produced sheep embryos: Effects of different protocols of lipid reduction. Theriogenology, 84(1), 118–126. https://doi.org/10.1016/j.theriogenology.2015.02.019spa
dc.relation.referencesSang, T. S., Sung, K. J., Hong, S. Y., Ok, K. L., Yhong, H. S., Won, I. C., Doo, S. L., Gwan, S. L., Jong, K. C., & Young, W. L. (2008). Laparoscopy vs. laparotomy for embryo transfer to produce transgenic goats (Capra hircus). Journal of Veterinary Science, 9(1), 103–107. https://doi.org/10.4142/jvs.2008.9.1.103spa
dc.relation.referencesSaragusty, J., & Arav, A. (2011). Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction, 141(1), 1–19. https://doi.org/10.1530/REP-10-0236spa
dc.relation.referencesShi, J. M., Yi, J. Y., Tian, X. Z., Wang, F., Lian, Z. X., Han, H. Bin, Fu, J. C., Lv, W. F., & Liu, G. S. (2015). Effects of seasonal changes on the ovulation rate and embryo quality in superovulated Black Suffolk ewes. Neuroendocrinology Letters, 36(4), 330–336.spa
dc.relation.referencesSimonetti, L., Forcada, F., Rivera, O. E., Carou, N., Alberio, R. H., Abecia, J. A., & Palacin, I. (2008). Simplified superovulatory treatments in Corriedale ewes. Animal Reproduction Science, 104(2–4), 227–237. https://doi.org/10.1016/j.anireprosci.2007.01.020spa
dc.relation.referencesSkidmore, J. A., Schoevers, E., & Stout, T. A. E. (2009). Effect of different methods of cryopreservation on the cytoskeletal integrity of dromedary camel (Camelus dromedarius) embryos. Animal Reproduction Science, 113(1–4), 196–204. https://doi.org/10.1016/j.anireprosci.2008.07.006spa
dc.relation.referencesStringfellow, D. A., & Givens, D. (2010). Manual of the International Embryo Transfer Society (D. A. Stringfellow & M. D. Givens (eds.); 4th editio, p. 202).spa
dc.relation.referencesStubbs, C., Bailey, T. L., Murray, K., & Gibson, M. I. (2020). Polyampholytes as Emerging Macromolecular Cryoprotectants. Biomacromolecules, 21(1), 7–17. https://doi.org/10.1021/acs.biomac.9b01053spa
dc.relation.referencesSun, X., Li, Z., Yi, Y., Chen, J., Leno, G. H., & Engelhardt, J. F. (2008). Efficient Term Development of Vitrified Ferret Embryos Using a Novel Pipette Chamber Technique1. Biology of Reproduction, 79(5), 832–840. https://doi.org/10.1095/biolreprod.107.067371spa
dc.relation.referencesTalwar, P., & Prakash, V. (2015). Vitrification in Assisted Reproduction. Vitrification in Assisted Reproduction, 51–63. https://doi.org/10.1007/978-81-322-1527-1spa
dc.relation.referencesTaniguchi, M., Ikeda, A., Arikawa, E., Wongsrikeao, P., Agung, B., Naoi, H., Nagai, T., & Otoi, T. (2007). EffTaniguchi, M., Ikeda, A., Arikawa, E., Wongsrikeao, P., Agung, B., Naoi, H., Nagai, T., & Otoi, T. (2007). Effect of cryoprotectant composition on in vitro viability of in vitro fertilized and cloned bovine embryos following vitrification and in-straw . Journal of Reproduction and Development, 53(4), 963–969. https://doi.org/10.1262/jrd.18175spa
dc.relation.referencesTorres-Zapata, S., Luna-Palomera, C., Aguilar-Cabrales, J. A., Peralta-Torres, J. A., Aké-López, J. R., Sánchez-Dávila, F., & Abad-Zavaleta, J. (2016). Ovulatory response and embryo quality in Katahdin ewes supplemented with palm oil. South African Journal of Animal Sciences, 46(3), 261–268. https://doi.org/10.4314/sajas. v46i3.5spa
dc.relation.referencesTorres, S., & Sevellec, C. (1987). Repeated superovulation and surgical recovery of embryos in the ewe. Reproduction Nutrition Developpement, 27(4), 859–863. https://doi.org/10.1051/rnd:19870612spa
dc.relation.referencesTruong, T. T., & Gardner, D. K. (2020). Antioxidants increase blastocyst cryosurvival and viability post-vitrification. Human Reproduction, 35(1), 12–23. https://doi.org/10.1093/humrep/dez243spa
dc.relation.referencesTsang, W. H., & Chow, K. L. (2009). Mouse embryo cryopreservation utilizing a novel high-capacity vitrification spatula. BioTechniques, 46(7), 550–552. https://doi.org/10.2144/000113125spa
dc.relation.referencesVajta, G, Murphy, C. N., & Machaty, Z. (1999). In-straw dilution of bovine blastocysts after vitrification with the method. Veterinary Record, 144, 180–181.spa
dc.relation.referencesVajta, Gábor, & Nagy, Z. P. (2006). Are programmable freezers still needed in the embryo laboratory? Review on vitrification. Reproductive Biomedicine Online, 12(6), 779–796. https://doi.org/10.1016/S1472-6483(10)61091-7spa
dc.relation.referencesVarago, F. C., Moutacas, V. S., Carvalho, B. C., Serapião, R. V., Vieira, F., Chiarini-Garcia, H., Brandão, F. Z., Camargo, L. S., Henry, M., & Lagares, M. A. (2014). Comparison of conventional freezing and vitrification with dimethylformamide and ethylene glycol for cryopreservation of ovine embryos. Reproduction in Domestic Animals, 49(5), 839–844. https://doi.org/10.1111/rda.12376spa
dc.relation.referencesVargas Reyes, J. N., & Chacón Jaramillo, L. (2016). Cryopreservation method and composition of the vitrification solution affect viability of in vitro bovine embryos. Revista Colombiana de Ciencias Pecuarias, 29(2), 130–137. https://doi.org/10.17533/udea.rccp.v29n2a06spa
dc.relation.referencesViana, J. (2019). Embryo Technology Newsletter. Embryo Tecnology Newsletter, v.36, n.4, 2019, 36(4).spa
dc.relation.referencesWilladsen, S. M., Polge, C., Rowson, L. E. A., & Moor, R. M. (1976). Deep freezing of sheep embryos. Journal of Reproduction and Fertility, 46(1), 151–154. https://doi.org/10.1530/jrf.0.0460151spa
dc.relation.referencesYavin, S., & Arav, A. (2007). Measurement of essential physical properties of vitrification solutions. Theriogenology, 67(1), 81–89. https://doi.org/10.1016/j.theriogenology.2006.09.029spa
dc.relation.referencesYoungs, C. R. (2011). Cryopreservation of preimplantation embryos of cattle, sheep, and goats. Journal of Visualized Experiments, 54, 2–5. https://doi.org/10.3791/2764spa
dc.relation.referencesYu, X. L., Deng, W., Liu, F. J., Li, Y. H., Li, X. X., Zhang, Y. L., & Zan, L. S. (2010). Closed pulled straw vitrification of in vitro-produced and in vivo-produced bovine embryos. Theriogenology, 73(4), 474–479. https://doi.org/10.1016/j.theriogenology.2009.10.004spa
dc.relation.referencesZhou, Y., Fu, X., Zhou, G., Jia, B., Fang, Y., Hou, Y., & Zhu, S. (2014). An efficient method for the sanitary vitrification of bovine oocytes in straws. Journal of Animal Science and Biotechnology, 5(1), 1–7. https://doi.org/10.1186/2049-1891-5-19spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocCriopreservación
dc.subject.agrovocCryopreservation
dc.subject.agrovocVitrificación
dc.subject.agrovocVitrification
dc.subject.agrovocOvinos
dc.subject.agrovocSheep
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animalspa
dc.subject.proposalCriopreservaciónspa
dc.subject.proposalOvejasspa
dc.subject.proposalVitrificaciónspa
dc.subject.proposalPajilla Abierta (OPS)spa
dc.subject.proposalPajilla 0,25.spa
dc.subject.proposalCryopreservationeng
dc.subject.proposalSheepeng
dc.subject.proposalUltra-Fast Freezingeng
dc.subject.proposalOpen Straw (OPS)eng
dc.subject.proposalStraw 0,25 cceng
dc.titleEfecto del protocolo de vitrificación y sistemas de empaque sobre la tasa de supervivencia de embriones ovinos obtenidos in vivospa
dc.title.translatedEffect of vitrification protocol and packaging system on the survival rate of in vivo derived ovine embryoseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameGobernación de Boyacáspa
oaire.fundernameColcienciasspa
oaire.fundernameFundación Universitaria Juan de Castellanosspa
oaire.fundernameUniversidad Nacional de Colombia Programas de Posgrado de la Facultad de Medicina Veterinaria y de Zootecnia.spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2949613899.2020.pdf
Tamaño:
1.14 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Salud Animal

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: