Valorización de cascarilla de arroz a través de una estrategia de biorrefinería y determinación del impacto ambiental mediante el análisis de ciclo de vida del proceso
dc.contributor.advisor | Zapata Zapata, Arley David | |
dc.contributor.author | Eraso Calvachi, Lina Maria | |
dc.contributor.researchgroup | Biotecnología Industrial | spa |
dc.date.accessioned | 2025-03-31T18:52:02Z | |
dc.date.available | 2025-03-31T18:52:02Z | |
dc.date.issued | 2025 | |
dc.description | Ilustraciones | spa |
dc.description.abstract | Debido a la amplia disponibilidad de la cascarilla de arroz, su bajo costo como subproducto del procesamiento del arroz, la inadecuada disposición actual y su subutilización, surge la necesidad de su valorización. Por ello, en el presente estudio se propone la aplicación de una estrategia de biorrefinería para transformar la cascarilla de arroz en metabolitos de valor agregado como el xilitol y la glucosa, además, de la realización de un análisis ciclo de vida (ACV) para determinar el impacto ambiental del proceso de biorrefinación propuesto. Para ello, se evaluó el efecto del tamaño de partícula y tiempo de hidrólisis ácida para la producción de xilosa, posteriormente se llevó a cabo la adaptación de la levadura Candida tropicalis y se estudió la concentración de xilosa y de inóculo para la producción de xilitol mediante fermentación. Posteriormente, se determinó el efecto de la carga de enzima FoodPro® CBL y el sustrato en la hidrólisis enzimática para la producción de glucosa. Entre las posibles aplicaciones de la glucosa, se exploró su uso en la producción de etanol y finalmente se realizó un ACV. Los resultados indicaron que las partículas de mayor tamaño generaron la mayor producción de xilosa, siendo la cascarilla de arroz sin moler durante 60 min el tratamiento óptimo, con una concentración de xilosa de 12,846 g/L. Para la producción de xilitol se determinó que la concentración de xilosa es el factor determinante sobre la producción de xilitol, por medio del modelo matemático desarrollado se establecieron condiciones óptimas de 4,41 g/L de inóculo y 68,28 g/L de xilosa, logrando una concentración de xilitol de 36,74 g/L. En cuanto a la producción de glucosa, ambos factores influyeron significativamente, con condiciones óptimas de relación sólido-líquido de 24,57% y dosis de enzima de 22,43 FPU/g, logrando una concentración de glucosa de 10,31 g/L. A partir de la glucosa obtenida, se produjo 4,43 g/L de etanol, destacando su potencial para la generación de biocombustibles. Mediante el ACV, se identificó que el principal punto crítico del proceso es el uso de electricidad, proponiéndose mejoras en su uso y en el proceso en general. Este proyecto demuestra que la cascarilla de arroz puede ser valorizada mediante una estrategia de biorrefinería, obteniendo productos de valor agregado y destacando su potencial como fuente de producción de metabolitos en la industria biotecnológica. Así mismo, proporciona una base para la adopción de tecnologías de biorrefinería en la gestión de residuos agrícolas y reitera la importancia del ACV en la evaluación de nuevos procesos industriales. (Texto tomado de la fuente) | spa |
dc.description.abstract | Title: Rice husk valorization through a biorefinery strategy and determination of environmental impact through process life cycle assessment Due to the wide availability of rice husk, its low cost as a by-product of rice processing, its inadequate current disposal and its underutilization, the need for its valorization arises. Therefore, in the present study, the application of a biorefinery strategy is proposed to transform rice husk into value-added metabolites such as xylitol and glucose, in addition to the realization of a life cycle analysis (LCA) to determine the environmental impact of the proposed biorefining process. To achieve this, the effect of particle size and acid hydrolysis time to produce xylose was evaluated, then the adaptation of the Candida tropicalis yeast was carried out, and the concentration of xylose and inoculum for the production of xylitol through fermentation were studied. Subsequently, the effect of the FoodPro® CBL enzyme and substrate load on the enzymatic hydrolysis to obtain glucose was determined. Among the possible applications of glucose, its use in ethanol production was explored and finally an LCA was performed. The results indicated that the largest particles generated the highest xylose production, with unmilled rice husk for 60 min being the optimal treatment, with a xylose concentration of 12,846 g/L. For xylitol production, it was determined that xylose concentration is the determining factor on xylitol production. Through the mathematical model, optimal conditions of 4,41 g/L of inoculum and 68,28 g/L of xylose were established, achieving a xylitol concentration of 36,74 g/L. Regarding glucose production, both factors had a significant influence, with optimal conditions of solid-liquid ratio of 24,57% and enzyme dose of 22,43 FPU/g, achieving a glucose concentration of 10,31 g/L. From the glucose obtained, 4,43 g/L of ethanol was produced, highlighting its potential for biofuel generation. Through the LCA, it was identified that the main critical point of the process is the use of electricity, proposing improvements in its use and in the process in general. This project demonstrates that rice husk can be valorized through a biorefinery strategy, obtaining value-added products and highlighting its potential as a source of metabolite production in the biotechnology industry. It also provides a basis for the adoption of biorefinery technologies in agricultural waste management and emphasizes the importance of LCA in the evaluation of new industrial processes. | eng |
dc.description.curriculararea | Área curricular Biotecnología | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ciencias - Biotecnología | spa |
dc.description.researcharea | Aprovechamiento biotecnológico de residuos agroindustriales | spa |
dc.format.extent | 154 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87792 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Ciencias - Maestría en Ciencias - Biotecnología | spa |
dc.relation.references | Abaide, E. R., Tres, M. V., Zabot, G. L., & Mazutti, M. A. (2019). Reasons for processing of rice coproducts: Reality and expectations. Biomass and Bioenergy, 120(November 2018), 240–256. https://doi.org/10.1016/j.biombioe.2018.11.032 | spa |
dc.relation.references | Abaide, E. R., Ugalde, G., Di Luccio, M., Moreira, R. de F. P. M., Tres, M. V., Zabot, G. L., & Mazutti, M. A. (2019). Obtaining fermentable sugars and bioproducts from rice husks by subcritical water hydrolysis in a semi-continuous mode. Bioresource Technology, 272(October 2018), 510–520. https://doi.org/10.1016/j.biortech.2018.10.075 | spa |
dc.relation.references | Abbas, A., & Ansumali, S. (2010). Global Potential of Rice Husk as a Renewable Feedstock for Ethanol Biofuel Production. Bioenergy Research, 3(4), 328–334. https://doi.org/10.1007/s12155-010-9088-0 | spa |
dc.relation.references | Abdou Alio, M., Tugui, O. C., Rusu, L., Pons, A., & Vial, C. (2020). Hydrolysis and fermentation steps of a pretreated sawmill mixed feedstock for bioethanol production in a wood biorefinery. Bioresource Technology, 310(February), 123412. https://doi.org/10.1016/j.biortech.2020.123412 | spa |
dc.relation.references | Abedi, E., & Hashemi, S. M. B. (2020). Lactic acid production – producing microorganisms and substrates sources-state of art. Heliyon, 6(10), e04974. https://doi.org/10.1016/j.heliyon.2020.e04974 | spa |
dc.relation.references | Abood Habeeb, G., & Bin Mahmud, H. (2010). Study on Properties of Rice Husk Ash and Its Use as Cement Replacement Material. Materials Research, 13(2), 185–190. | spa |
dc.relation.references | Abu Bakar, N. A., Roslan, A. M., Hassan, M. A., Abdul Rahman, M. H., Ibrahim, K. N., Abdul Rahman, M. D., & Mohamad, R. (2022). Development of life cycle inventory and greenhouse gas emissions from damaged paddy grain as fermentation feedstock: A case study in Malaysia. Journal of Cleaner Production, 354(September 2021), 131722. https://doi.org/10.1016/j.jclepro.2022.131722 | spa |
dc.relation.references | Acero, A. A. P., Rodríguez, C., & Ciroth, A. (2017). LCIA methods Impact assessment methods in Life Cycle Assessment and their impact categories. February 2014, 1–23. | spa |
dc.relation.references | Adney, B., & Baker, J. (2008). Measurement of Cellulase Activities. In NREL (Issue January). | spa |
dc.relation.references | Ahlgren, S. (2015). Review of methodological choices in LCA of biorefinery systems - key. 606–619. https://doi.org/10.1002/bbb | spa |
dc.relation.references | Ahlgren, S., Björklund, A., Ekman, A., Karlsson, H., Berlin, J., Börjesson, P., Ekvall, T., Finnveden, G., Janssen, M., & Strid, I. (2013). LCA of biorefineries identification of key issues and methodological recommendations. November 2013, 81. http://f3centre.se/sites/default/files/f3_report_2013-25_lca_biorefineries_140710.pdf | spa |
dc.relation.references | Ahlgren, S., Björklund, A., Ekman, A., Karlsson, H., Berlin, J., Börjesson, P., Ekvall, T., Finnveden, G., Janssen, M., & Strid, I. (2015). Review of methodological choices in LCA of biorefinery systems - key issues and recommendations. Biofuels, Bioproducts and Biorefining, 9(5), 606–619. https://doi.org/10.1002/bbb.1563 | spa |
dc.relation.references | Ahmad, I., Shim, W. Y., Jeon, W. Y., Yoon, B. H., & Kim, J. H. (2012). Enhancement of xylitol production in Candida tropicalis by co-expression of two genes involved in pentose phosphate pathway. Bioprocess and Biosystems Engineering, 35(1–2), 199–204. https://doi.org/10.1007/s00449-011-0641-9 | spa |
dc.relation.references | Ali, A. A. M., Othman, M. R., Shirai, Y., & Hassan, M. A. (2015). Sustainable and integrated palm oil biorefinery concept with value-addition of biomass and zero emission system. Journal of Cleaner Production, 91, 96–99. https://doi.org/10.1016/j.jclepro.2014.12.030 | spa |
dc.relation.references | Almhofer, L., Bischof, R. H., Madera, M., & Paulik, C. (2023). Kinetic and mechanistic aspects of furfural degradation in biorefineries. Canadian Journal of Chemical Engineering, 101(4), 2033–2049. https://doi.org/10.1002/cjce.24593 | spa |
dc.relation.references | Alvarez, P. A., Maciel Filho, R., Plazas Tovar, L., & Wolf Maciel, M. R. (2015). Kinetics of the acid hydrolysis of sugarcane bagasse using different milling size, high solid load and low pretreatment temperature. Chemical Engineering Transactions, 43, 625–630. https://doi.org/10.3303/CET1543105 | spa |
dc.relation.references | Amesho, K. T. T., Lin, Y. C., Mohan, S. V., Halder, S., Ponnusamy, V. K., & Jhang, S. R. (2023). Deep eutectic solvents in the transformation of biomass into biofuels and fine chemicals: a review. In Environmental Chemistry Letters (Vol. 21, Issue 1). Springer International Publishing. https://doi.org/10.1007/s10311-022-01521-x | spa |
dc.relation.references | Ang, P., Mothe, S. R., Chennamaneni, L. R., Aidil, F., Khoo, H. H., & Thoniyot, P. (2021). Laboratory-Scale Life-Cycle Assessment: A Comparison of Existing and Emerging Methods of Poly(ϵ-caprolactone) Synthesis. ACS Sustainable Chemistry and Engineering, 9(2), 669–683. https://doi.org/10.1021/acssuschemeng.0c06247 | spa |
dc.relation.references | Antunes, F. A. F., Thomé, L. C., Santos, J. C., Ingle, A. P., Costa, C. B., Anjos, V. Dos, Bell, M. J. V., Rosa, C. A., & Silva, S. S. D. (2021). Multi-scale study of the integrated use of the carbohydrate fractions of sugarcane bagasse for ethanol and xylitol production. Renewable Energy, 163, 1343–1355. https://doi.org/10.1016/j.renene.2020.08.020 | spa |
dc.relation.references | Ardente, F., & Cellura, M. (2011). Economic Allocation in Life Cycle Assessment The State of the Art and Discussion of Examples. 00(0), 1–12. https://doi.org/10.1111/j.1530-9290.2011.00434.x | spa |
dc.relation.references | Aredo, F., Rojas, M. L., Pagador, S., Lescano, L., Sanchez-Gonzalez, J., & Linares, G. (2020). Pre-treatments applied to rice husk enzymatic hydrolysis: Effect on structure, lignocellulosic components, and glucose production kinetics. Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, July, 27–31. https://doi.org/10.18687/LACCEI2020.1.1.42 | spa |
dc.relation.references | Arias, A., Feijoo, G., & Moreira, M. T. (2023). Biorefineries as a driver for sustainability: Key aspects, actual development and future prospects. Journal of Cleaner Production, 418(May), 137925. https://doi.org/10.1016/j.jclepro.2023.137925 | spa |
dc.relation.references | Arismendy, A. M., Felipe, A., Retrepo, V., Alcaraz, W., Chamorro, E. R., & Area, M. C. (2019). Optimización de la hidrólisis enzimática de la cascarilla de arroz Optimisation of the enzymatic hydrolysis of rice husk. Revista de Ciencia y Tecnología: RECyT, 32, 64–70. | spa |
dc.relation.references | Arismendy Pabón, A. M., Felissia, F. E., Mendieta, C. M., Chamorro, E., & Area, M. C. (2020). Improvement of bioethanol production from rice husks. Cellulose Chemistry and Technology, 54(7–8), 689–698. https://doi.org/10.35812/CelluloseChemTechnol.2020.54.68 | spa |
dc.relation.references | Arnling Bååth, J., Jensen, K., Borch, K., Westh, P., & Kari, J. (2022). Sabatier Principle for Rationalizing Enzymatic Hydrolysis of a Synthetic Polyester. JACS Au, 2(5), 1223–1231. https://doi.org/10.1021/jacsau.2c00204 | spa |
dc.relation.references | Aslantürk, Ö. S. (2018). In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages. Genotoxicity - A Predictable Risk to Our Actual World, 1–18. https://doi.org/10.5772/intechopen.71923 | spa |
dc.relation.references | Assabjeu, A. C., Noubissié, E., Desobgo, S. C. Z., & Ali, A. (2020). Optimization of the enzymatic hydrolysis of cellulose of triplochiton scleroxylon sawdust in view of the production of bioethanol. Scientific African, 8. https://doi.org/10.1016/j.sciaf.2020.e00438 | spa |
dc.relation.references | Aulia, M. F. N., & Lestari, P. (2024). Gate-to-gate approach in life cycle assessment of steel pipe products. E3S Web of Conferences, 485, 1–10. https://doi.org/10.1051/e3sconf/202448501008 | spa |
dc.relation.references | Ayala, I. V. (2022). Extracción y caracterización de lignina proveniente de la cáscara de cacao utilizando solventes eutécticos profundos [Universidad Industrial de Santander]. In Tesis. https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders | spa |
dc.relation.references | Azevedo, L. B., Roy, P.-O., Verones, F., Zelm, R. Van, & Huijbregts, M. A. J. (2019). 7. Terrestrial Acidification. LC-IMPACT A Spat. Differ. Life Cycle Impact Assess. Approach, 1–13. | spa |
dc.relation.references | Azevedo, V., Fernanda Lemons e Silva, C., Lemões, J. S., & Faria, S. P. (2016). Caracterização de biomassa visando a produção de etanol de segunda geração. Revista Brasileira de Engenharia e Sustentabilidade, 2(2), 61. https://doi.org/10.15210/rbes.v2i2.8634 | spa |
dc.relation.references | Baksi, S., Ball, A. K., Sarkar, U., Banerjee, D., Wentzel, A., Preisig, H. A., Kuniyal, J. C., Birgen, C., Saha, S., Wittgens, B., & Markussen, S. (2019). Efficacy of a novel sequential enzymatic hydrolysis of lignocellulosic biomass and inhibition characteristics of monosugars. International Journal of Biological Macromolecules, 129, 634–644. https://doi.org/10.1016/j.ijbiomac.2019.01.188 | spa |
dc.relation.references | Balakumar, S., & Arasaratnam, V. (2012). Osmo-, thermo- and ethanol- tolerances of Saccharomyces cerevisiae S1. Brazilian Journal of Microbiology, 43(1), 157–166. https://doi.org/10.1590/S1517-83822012000100017 | spa |
dc.relation.references | Barbosa, M. F. S., de Medeiros, M. B., de Mancilha, I. M., Schneider, H., & Lee, H. (1988). Screening of yeasts for production of xylitol from d-xylose and some factors which affect xylitol yield in Candida guilliermondii. Journal of Industrial Microbiology, 3(4), 241–251. https://doi.org/10.1007/BF01569582 | spa |
dc.relation.references | Bare, J. C., Hofstetter, P., Pennington, D. W., & Udo de Haes, H. A. (2000). Life cycle impact assessment workshop summary. Midpoints versus endpoints: The sacrifices and benefits. International Journal of Life Cycle Assessment, 5(6), 319–326. | spa |
dc.relation.references | Bariani, M., Boix, E., Cassella, F., & Cabrera, M. N. (2021). Furfural production from rice husks within a biorefinery framework. Biomass Conversion and Biorefinery, 11(3), 781–794. https://doi.org/10.1007/s13399-020-00810-1 | spa |
dc.relation.references | Bartee, L., & Brook, J. (2019). MHCC Biology 112: Biology for Health Professions. | spa |
dc.relation.references | Baruah, J., Nath, B. K., Sharma, R., Kumar, S., Deka, R. C., Baruah, D. C., & Kalita, E. (2018). Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Frontiers in Energy Research, 6(DEC), 1–19. https://doi.org/10.3389/fenrg.2018.00141 | spa |
dc.relation.references | Battiston, S., Fiameni, S., Fasolin, S., Barison, S., & Armelao, L. (2023). Life cycle environmental impact assessment of lab-scale preparation of porous alumina pellets as substrate for hydrogen separation metal layer-based membranes. International Journal of Life Cycle Assessment, 28(9), 1117–1131. https://doi.org/10.1007/s11367-023-02179-5 | spa |
dc.relation.references | Batuecas, E., Martínez-Cisneros, C. S., Serrano, D., & Várez, A. (2024). Life cycle assessment of lab-scale solid sodium-ion batteries: A sustainable alternative to liquid lithium-ion batteries. Journal of Energy Storage, 80(September 2023). https://doi.org/10.1016/j.est.2023.110355 | spa |
dc.relation.references | Bautista, S., Enjolras, M., Narvaez, P., Camargo, M., & Morel, L. (2016). Biodiesel-triple bottom line (TBL): A new hierarchical sustainability assessment framework of principles criteria & indicators (PC&I) for biodiesel production. Part II-validation. Ecological Indicators, 69, 803–817. https://doi.org/10.1016/j.ecolind.2016.04.046 | spa |
dc.relation.references | Bazargan, A., Bazargan, M., & McKay, G. (2015). Optimization of rice husk pretreatment for energy production. Renewable Energy, 77, 512–520. https://doi.org/10.1016/j.renene.2014.11.072 | spa |
dc.relation.references | Becerra, I. C., Díaz, A. M., García, E., Maluendas, A. V, Quintero, L. E., Reina, D., Ortegón, M., Samacá, H., & Viveros, J. S. (2019). Análisis situacional cadena productiva del arroz en colombia. Upra, MINAGRICULTURA, 305. http://ediciones.ucc.edu.co/index.php/ucc/catalog/download/33/35/212-1?inline=1 | spa |
dc.relation.references | Belal, E. B. (2013). Bioethanol production from rice straw residues. Brazilian Journal of Microbiology, 44(1), 225–234. https://doi.org/10.1590/S1517-83822013000100033 | spa |
dc.relation.references | Bello, S., Salim, I., Feijoo, G., & Moreira, M. T. (2021). Inventory review and environmental evaluation of first- and second-generation sugars through life cycle assessment. Environmental Science and Pollution Research, 28(21), 27345–27361. https://doi.org/10.1007/s11356-021-12405-y | spa |
dc.relation.references | Ben Taher, I., Fickers, P., Chniti, S., & Hassouna, M. (2017). Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues. Biotechnology Progress, 33(2), 397–406. https://doi.org/10.1002/btpr.2427 | spa |
dc.relation.references | Bhatia, S. K., Jagtap, S. S., Bedekar, A. A., Bhatia, R. K., Patel, A. K., Pant, D., Rajesh Banu, J., Rao, C. V., Kim, Y. G., & Yang, Y. H. (2020). Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. Bioresource Technology, 300(October 2019), 122724. https://doi.org/10.1016/j.biortech.2019.122724 | spa |
dc.relation.references | Bhavana, B. K., Mudliar, S. N., & Debnath, S. (2023). Life cycle assessment of fermentative xylitol production from wheat bran: A comparative evaluation of sulphuric acid and chemical-free wet air oxidation-based pretreatment. Journal of Cleaner Production, 423(March), 138666. https://doi.org/10.1016/j.jclepro.2023.138666 | spa |
dc.relation.references | Bi, H., & Yang, B. (2017). Gene Editing With TALEN and CRISPR/Cas in Rice. Progress in Molecular Biology and Translational Science, 149, 81–98. https://doi.org/10.1016/BS.PMBTS.2017.04.006 | spa |
dc.relation.references | Bianchini, I. de A., Sene, L., da Cunha, M. A. A., & Felipe, M. das G. de A. (2021). Short-term Adaptation Strategy Improved Xylitol Production by Candida guilliermondii on Sugarcane Bagasse Hemicellulosic Hydrolysate. BioEnergy Research 2021, 1–13. https://doi.org/10.1007/S12155-021-10324-X | spa |
dc.relation.references | Bicalho, T., Sauer, I., Rambaud, A., & Altukhova, Y. (2017). LCA data quality : A management science perspective. Journal of Cleaner Production, 156, 888–898. https://doi.org/10.1016/j.jclepro.2017.03.229 | spa |
dc.relation.references | Binderbauer, P. J., Woegerbauer, M., Nagovnak, P., & Kienberger, T. (2023). The effect of “ energy of scale ” on the energy consumption in different industrial sectors. Sustainable Production and Consumption, 41(July), 75–87. https://doi.org/10.1016/j.spc.2023.07.031 | spa |
dc.relation.references | Black, J., Hashimzade, N., & Myles, G. (2009). A Dictionary of Economics. Oxford University Press. https://doi.org/10.1093/acref/9780199237043.001.0001 | spa |
dc.relation.references | Blanco, J., Iglesias, J., Morales, G., Melero, J. A., & Moreno, J. (2020). Comparative life cycle assessment of glucose production from maize starch and woody biomass residues as a feedstock. Applied Sciences (Switzerland), 10(8), 1–3. https://doi.org/10.3390/APP10082946 | spa |
dc.relation.references | Boiko, S. (2021). Optimization of the catalytic process and increase of the Irpex lacteus cellulases yield for saccharification. Bioresource Technology Reports, 15(July), 100780. https://doi.org/10.1016/j.biteb.2021.100780 | spa |
dc.relation.references | Botero Gutiérrez, C. D. (2018). Use of process engineering and life cycle assessment to calculate the environmental impact of butanol production. 123. | spa |
dc.relation.references | Boyd, S., Moalem, M., & Denome, M. (2007). Life Cycle Inventory Modeling. Life Cycle Assessment Handbook: A Guide for Environmentally Sustainable Products, 1–20. | spa |
dc.relation.references | Bueno, C., & Minto, M. (2018). Automation in Construction Comparative analysis between a complete LCA study and results from a BIM-. Automation in Construction, 90(January 2016), 188–200. https://doi.org/10.1016/j.autcon.2018.02.028 | spa |
dc.relation.references | Bunches, F. (2017). Evaluation of Commercial Cellulase Preparations for the Efficient Hydrolysis of Hydrothermally Pretreated Empty Fruit Bunches. 12, 7834–7840. | spa |
dc.relation.references | Cabrera, E., Muñoz, M. J., Martín, R., Caro, I., Curbelo, C., & Díaz, A. B. (2014). Alkaline and alkaline peroxide pretreatments at mild temperature to enhance enzymatic hydrolysis of rice hulls and straw. Bioresource Technology, 167, 1–7. https://doi.org/10.1016/j.biortech.2014.05.103 | spa |
dc.relation.references | Cai, H., Han, J., Wang, M., Davis, R., Biddy, M., & Tan, E. (2018). Life-cycle analysis of integrated biorefineries with co-production of biofuels and bio-based chemicals: co-product handling methods and implications. In Biofuels, Bioproducts and Biorefining (Vol. 12, Issue 5). https://doi.org/10.1002/bbb.1893 | spa |
dc.relation.references | Capela, M. N., Tobaldi, D. M., Seabra, M. P., Tarelho, L. A. C., & Labrincha, J. A. (2022). Characterization of ashes produced from different biomass fuels used in combustion systems in a pulp and paper industry towards its recycling. Biomass and Bioenergy, 166(September 2021), 1–9. https://doi.org/10.1016/j.biombioe.2022.106598 | spa |
dc.relation.references | Capilla, M., San-Valero, P., Izquierdo, M., Penya-roja, J. M., & Gabaldón, C. (2021). The combined effect on initial glucose concentration and pH control strategies for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum DSM 792. Biochemical Engineering Journal, 167, 107910. https://doi.org/10.1016/j.bej.2020.107910 | spa |
dc.relation.references | Carlier, S., & Hermans, S. (2020). Highly Efficient and Recyclable Catalysts for Cellobiose Hydrolysis: Systematic Comparison of Carbon Nanomaterials Functionalized With Benzyl Sulfonic Acids. Frontiers in Chemistry, 8(April), 1–9. https://doi.org/10.3389/fchem.2020.00347 | spa |
dc.relation.references | Carvalho, J., Nascimento, L., Soares, M., Ribeiro, A., Faria, L., Silva, A., Pacheco, N., Ara, J., & Vilarinho, C. (2022). Circular Economy Perspective. | spa |
dc.relation.references | Castillo, J. A. V., Laguado, J. A., López, J., & Gil, N. J. (2016). New sources and methods to isolate vinasse-tolerant wild yeasts efficient in ethanol production. Annals of Microbiology, 66(1), 187–195. https://doi.org/10.1007/s13213-015-1095-0 | spa |
dc.relation.references | Cesário, A. L. L., Da Costa, A. C., & Rabelo, S. C. (2014). Effect of particle size on dilute acid pretreatment and enzymatic hydrolysis of sugarcane bagasse. Chemical Engineering Transactions, 37, 409–414. https://doi.org/10.3303/CET1437069 | spa |
dc.relation.references | Chen, L., Zhang, H., Li, J., Lu, M., Guo, X., & Han, L. (2015). A novel diffusion-biphasic hydrolysis coupled kinetic model for dilute sulfuric acid pretreatment of corn stover. Bioresource Technology, 177, 8–16. https://doi.org/10.1016/j.biortech.2014.11.060 | spa |
dc.relation.references | Chen, X., Jiang, Z. H., Chen, S., & Qin, W. (2010). Microbial and bioconversion production of D-xylitol and its detection and application. International Journal of Biological Sciences, 6(7), 834–844. https://doi.org/10.7150/ijbs.6.834 | spa |
dc.relation.references | Cheng, C. (1998). Cellulase Activity in Different Buffering Media during Waste Paper Hydrolysis by HPLC. Journal of the Chinese Chemical Society, 45(5), 679–688. https://doi.org/10.1002/jccs.199800103 | spa |
dc.relation.references | Cherubini, F., Hammer, A., & Ulgiati, S. (2011). Resources , Conservation and Recycling Influence of allocation methods on the environmental performance of biorefinery products — A case study. 55, 1070–1077. https://doi.org/10.1016/j.resconrec.2011.06.001 | spa |
dc.relation.references | Cherubini, F., Jungmeier, G., Wellisch, M., Willke, T., & Skiadas, I. (2009). Toward a common classifi cation approach for biorefi nery systems. Biofuels, Bioproducts and Biorefining, 8(6), 743. https://doi.org/10.1002/BBB | spa |
dc.relation.references | Cherubini, F., & Ulgiati, S. (2010). Crop residues as raw materials for biorefinery systems - A LCA case study. Applied Energy, 87(1), 47–57. https://doi.org/10.1016/j.apenergy.2009.08.024 | spa |
dc.relation.references | Christopher, M., Mathew, A. K., Kiran Kumar, M., Pandey, A., & Sukumaran, R. K. (2017). A biorefinery-based approach for the production of ethanol from enzymatically hydrolysed cotton stalks. Bioresource Technology, 242, 178–183. https://doi.org/10.1016/j.biortech.2017.03.190 | spa |
dc.relation.references | Cortes Ortiz, W. G., Ibla Gordillo, J. F., Calderon Velasquez, L. M., & Herrera Bueno, A. F. (2015). Cuantificación de azúcares reductores en las cáscaras de naranja y banano. Revista de Tecnología, 12(2). https://doi.org/10.18270/rt.v12i2.772 | spa |
dc.relation.references | Da Silva, A. S. A., Inoue, H., Endo, T., Yano, S., & Bon, E. P. S. (2010). Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresource Technology, 101(19), 7402–7409. https://doi.org/10.1016/j.biortech.2010.05.008 | spa |
dc.relation.references | Dagnino, E. P., Chamorro, E. R., Romano, S. D., Felissia, F. E., & Area, M. C. (2013). Optimization of the acid pretreatment of rice hulls to obtain fermentable sugars for bioethanol production. Industrial Crops and Products, 42(1), 363–368. https://doi.org/10.1016/j.indcrop.2012.06.019 | spa |
dc.relation.references | Dagnino, E. P., Felissia, F. E., Chamorro, E., & Area, M. C. (2017). Optimization of the soda-ethanol delignification stage for a rice husk biorefinery. Industrial Crops and Products, 97, 156–165. https://doi.org/10.1016/j.indcrop.2016.12.016 | spa |
dc.relation.references | Dasgupta, D., Sidana, A., Ghosh, P., Sharma, T., Singh, J., Prabhune, A., More, S., Bhaskar, T., & Ghosh, D. (2021). Energy and life cycle impact assessment for xylitol production from corncob. Journal of Cleaner Production, 278(2021), 123217. https://doi.org/10.1016/j.jclepro.2020.123217 | spa |
dc.relation.references | de Mendiburu, F. (2021). agricolae: Statistical Procedures for Agricultural Research - R package version 1.4.0 (R package version 1.3-5). https://cran.r-project.org/package=agricolae | spa |
dc.relation.references | de Souza, W. R. (2013). Microbial Degradation of Lignocellulosic Biomass. Sustainable Degradation of Lignocellulosic Biomass - Techniques, Applications and Commercialization, May. https://doi.org/10.5772/54325 | spa |
dc.relation.references | Departamento de Agricultura de los Estados Unidos (USDA). (2023). Biofuels Annual Colombia - Report Number: CO2023-0013 (Issue March). https://fas.usda.gov/data/colombia-biofuels-annual-9 | spa |
dc.relation.references | Dheyab, A. S., Bakar, M. F. A., Alomar, M., Sabran, S. F., Hanafi, A. F. M., & Mohamad, A. (2021). Deep eutectic solvents (DESs) as green extraction media of beneficial bioactive phytochemicals. Separations, 8(10). https://doi.org/10.3390/SEPARATIONS8100176 | spa |
dc.relation.references | Du, W., Yu, H., Song, L., Zhang, J., Weng, C., Ma, F., & Zhang, X. (2011). The promoting effect of byproducts from Irpex lacteus on subsequent enzymatic hydrolysis of bio-pretreated cornstalks. Biotechnology for Biofuels, 4(1), 37. https://doi.org/10.1186/1754-6834-4-37 | spa |
dc.relation.references | DuPont. (2012). XIVIATM Xylitol White Paper. XIVIATM Xylitol White Paper, 1, 12. http://www.danisco.com/fileadmin/user_upload/danisco/documents/products/2e_XIVIA_White_Paper.pdf | spa |
dc.relation.references | DuPont. (2013). Accellerase 1500 - Cellulase Enzyme Complex for Lignocellulosic Biomass Hydrolysis. | spa |
dc.relation.references | Ebrahimi, M., Caparanga, A. R., Ordono, E. E., Villaflores, O. B., & Pouriman, M. (2017). Effect of ammonium carbonate pretreatment on the enzymatic digestibility, structural characteristics of rice husk and bioethanol production via simultaneous saccharification and fermentation process with Saccharomyces cerevisiae Hansen 2055. Industrial Crops and Products, 101, 84–91. https://doi.org/10.1016/j.indcrop.2017.03.006 | spa |
dc.relation.references | Ebrahimian, F., Denayer, J. F. M., Mohammadi, A., Khoshnevisan, B., & Karimi, K. (2023). A critical review on pretreatment and detoxification techniques required for biofuel production from the organic fraction of municipal solid waste. Bioresource Technology, 368(January 2023), 128316. https://doi.org/10.1016/j.biortech.2022.128316 | spa |
dc.relation.references | Efrinalia, W., Novia, N., & Melwita, E. (2022). Kinetic Model for Enzymatic Hydrolysis of Cellulose from Pre-Treated Rice Husks. Fermentation, 8(9). https://doi.org/10.3390/fermentation8090417 | spa |
dc.relation.references | El-Baz, A. F., Shetaia, M. Y., & Elkhouli, R. R. (2011a). Xylitol production by candida tropicalis under different statistically optimized growth conditions. African Journal of Biotechnology, 10(68), 15353–15363. https://doi.org/10.5897/AJB10.1575 | spa |
dc.relation.references | El-Baz, A. F., Shetaia, Y. M., & Elkhouli, R. R. (2011b). Kinetic behavior of Candida tropicalis during xylitol production using semi-synthetic and hydrolysate based media. African Journal of Biotechnology, 10(73), 16617–16625. https://doi.org/10.5897/AJB11.1766 | spa |
dc.relation.references | Eraso, L. M., Cuaspud, O., & Arias, M. (2024). Optimization of xylitol production through Candida tropicalis in xylose hydrolysate from rice husk. Biomass Conversion and Biorefinery, 0123456789. https://doi.org/10.1007/s13399-024-05372-0 | spa |
dc.relation.references | Eryasar-Orer, K., & Karasu-Yalcin, S. (2021). Optimization of activated charcoal detoxification and concentration of chestnut shell hydrolysate for xylitol production. Biotechnology Letters, 43(6), 1195–1209. https://doi.org/10.1007/s10529-021-03087-0 | spa |
dc.relation.references | Estrada - Martinez, R. ., Favela - Torres, E., Soto - Cruz, N. O., Saucedo - Castañeda, G., & Martinez - Valdez, F. J. (2023). Respiro-fermentative metabolism in yeast cultivated in solid-state culture: The Crabtree effect and ethanol production. Revista Mexicana de Ingeniería Química, 22(1), 1–13. https://doi.org/10.24275/rmiq/Bio3025 | spa |
dc.relation.references | European Centre for Ecotoxicology and Toxicology of Chemicals. (2016). Freshwater ecotoxicity as an impact category in life cycle assessment. In Technical Report No. 127 (Issue 127). | spa |
dc.relation.references | European Commission, Joint Research Centre, & Institute for Environment and Sustainability. (2010). International Reference Life Cycle Data System ( ILCD ) Handbook : Detailed guidance. EUR 24709 EN. In International Reference Life Cycle Data System ( ILCD ) Handbook (pp. 1–417). https://doi.org/10.2788/38479 | spa |
dc.relation.references | FAO. (2022a). Sustainable bioeconomy and FAO. FAO Publications Catalogue 2022, 4. https://www.fao.org/documents/card/en?details=CB7445EN | spa |
dc.relation.references | FAO. (2022b). World Food and Agriculture – Statistical Yearbook 2022. In World Food and Agriculture – Statistical Yearbook 2022. https://doi.org/10.4060/cc2211en | spa |
dc.relation.references | Farzad, S., Mandegari, M. A., & Görgens, J. F. (2017). Integrated techno-economic and environmental analysis of butadiene production from biomass. Bioresource Technology, 239, 37–48. https://doi.org/10.1016/j.biortech.2017.04.130 | spa |
dc.relation.references | Fedearroz. (2024, March 22). Fedearroz y el DANE entregaron resultados del Quinto Censo Nacional Arrocero 2023. https://fedearroz.com.co/es/noticias/2024/03/22/fedearroz-y-el-dane-entregaron-resultados-del-quinto-censo-nacional-arrocero-2023/#:~:text=589.848 hectáreas se sembraron en,arroz paddy verde se produjeron | spa |
dc.relation.references | Fedearroz, & Fondo Nacional del arroz. (2017). IV Censo Nacional arrocero 2016. | spa |
dc.relation.references | Feher, A., Feher, C., Rozbach, M., & Barta, Z. (2017). Combined approaches to Xylose production from corn Stover by dilute acid hydrolysis. Chemical and Biochemical Engineering Quarterly, 31(1), 77–87. https://doi.org/10.15255/CABEQ.2016.913 | spa |
dc.relation.references | Fernandez, M. C., Grund, S., Phillips, C., Fradet, J., Hage, J., Silk, N., Zeilstra, C., Barnes, C., Hodgson, P., & McKechnie, J. (2024). Attribution of Global Warming Potential impacts in a multifunctional metals industry system using different system expansion and allocation methodologies. International Journal of Life Cycle Assessment, 29(5), 873–889. https://doi.org/10.1007/s11367-023-02274-7 | spa |
dc.relation.references | Flórez Pardo, L. M., Parra Paz, A. S., López Galán, J. E., & Figueroa Oviedo, J. I. (2015). Using a mediator system to increase the delignification of sugarcane residues with fungal enzymes. CT&F - Ciencia, Tecnología y Futuro, 6(2), 81–91. https://doi.org/10.29047/01225383.22 | spa |
dc.relation.references | Foo, K. Y., & Hameed, B. H. (2009). Utilization of rice husk ash as novel adsorbent: A judicious recycling of the colloidal agricultural waste. Advances in Colloid and Interface Science, 152(1–2), 39–47. https://doi.org/10.1016/j.cis.2009.09.005 | spa |
dc.relation.references | Fraterrigo Garofalo, S., Tommasi, T., & Fino, D. (2020). A short review of green extraction technologies for rice bran oil. Biomass Conversion and Biorefinery, 11. https://doi.org/10.1007/s13399-020-00846-3 | spa |
dc.relation.references | Frederick, N. (2013). ScholarWorks @ UARK Biological and Agricultural Engineering Minimizing Wash Water Usage After Acid Hydrolysis Pretreatment of Biomass Minimizing Wash Water Usage After Acid Hydrolysis Pretreatment of Biomass An Undergraduate Honors College Thesis. | spa |
dc.relation.references | Gaffey, J., Collins, M. N., & Styles, D. (2024). Review of methodological decisions in life cycle assessment (LCA) of biorefinery systems across feedstock categories. Journal of Environmental Management, 358(April), 120813. https://doi.org/10.1016/j.jenvman.2024.120813 | spa |
dc.relation.references | Gaikwad, A. (2019). Effect of Particle Size on the Kinetics of Enzymatic Hydrolysis of Microcrystalline Cotton Cellulose: a Modeling and Simulation Study. Applied Biochemistry and Biotechnology, 187(3), 800–816. https://doi.org/10.1007/s12010-018-2856-6 | spa |
dc.relation.references | Galdieri, L., Mehrotra, S., Yu, S., & Vancura, A. (2010). Transcriptional regulation in yeast during diauxic shift and stationary phase. OMICS A Journal of Integrative Biology, 14(6), 629–638. https://doi.org/10.1089/omi.2010.0069 | spa |
dc.relation.references | García, B., Moreno, J., Morales, G., Melero, J. A., & Iglesias, J. (2020). Production of Sorbitol via Catalytic Transfer Hydrogenation of Glucose. Applied Sciences, 10(5), 1843. https://doi.org/10.3390/app10051843 | spa |
dc.relation.references | Ge, X., Chang, C., Zhang, L., Cui, S., Luo, X., Hu, S., Qin, Y., & Li, Y. (2018). Conversion of Lignocellulosic Biomass Into Platform Chemicals for Biobased Polyurethane Application (pp. 161–213). https://doi.org/10.1016/bs.aibe.2018.03.002 | spa |
dc.relation.references | Gerbrandt, K. L. (2014). The Impacts of Xylitol Production from Hemicellulose Residues: Process Design, Life Cycle, and Techno-Economic Assessment by. 1–202. | spa |
dc.relation.references | Germec, M., Ilgın, M., İlhan, E., & Turhan, I. (2016). Optimization of acidic hydrolysis conditions of rice husk for fermentable sugar production. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 38(20), 3103–3108. https://doi.org/10.1080/15567036.2015.1135211 | spa |
dc.relation.references | Ghose, T. K. (1987). MEASUREMENT OF CELLULASE ACTIVITIES. Pure & App!. Chem., 59(2), 257–268. https://doi.org/10.1111/j.1468-2389.1995.tb00038.x | spa |
dc.relation.references | Gnansounou, E., Vaskan, P., & Pachón, E. R. (2015). Comparative techno-economic assessment and LCA of selected integrated sugarcane-based biorefineries. Bioresource Technology, 196, 364–375. https://doi.org/10.1016/j.biortech.2015.07.072 | spa |
dc.relation.references | Goldberg, I., & Rokem, J. S. (2009). Organic and Fatty Acid Production, Microbial. In Encyclopedia of Microbiology (pp. 421–442). Elsevier. https://doi.org/10.1016/B978-012373944-5.00156-5 | spa |
dc.relation.references | Gómez-Soto, J. A., Sánchez-Toro, Ó. J., & Matallana-Pérez, L. G. (2019). Residuos urbanos, agrícolas y pecuarios en el contexto de las biorrefinerías. Revista Facultad de Ingeniería, 28(53), 7–32. https://doi.org/10.19053/01211129.v28.n53.2019.9705 | spa |
dc.relation.references | Gómez, G. (2015). Desarrollo de biorrefinerías en el mundo (Biorefineries development: a worldwide review) SELECT+ PhD Programme View project PoDoCo View project. Ciencia y Desarrollo. Aalto University, May, 34–57. https://www.researchgate.net/publication/277774313 | spa |
dc.relation.references | González-García, S., Morales, P. C., & Gullón, B. (2018). Estimating the environmental impacts of a brewery waste–based biorefinery: Bio-ethanol and xylooligosaccharides joint production case study. Industrial Crops and Products, 123(July), 331–340. https://doi.org/10.1016/j.indcrop.2018.07.003 | spa |
dc.relation.references | Goodman, B. A. (2020). Utilization of waste straw and husks from rice production: A review. Journal of Bioresources and Bioproducts, 5(3), 143–162. https://doi.org/10.1016/j.jobab.2020.07.001 | spa |
dc.relation.references | Grand View Research Inc. (2021). Xylitol Market Size, Share & Trends Analysis Report By Application , By Form , By Region, And Segment Forecasts, 2020 - 2028. https://www.researchandmarkets.com/reports/5450205/xylitol-market-size-share-and-trends-analysis | spa |
dc.relation.references | Guadalupe-Daqui, M., Chen, M., Sarnoski, P. J., Goodrich-Schneider, R. M., & MacIntosh, A. J. (2023). Impacts of Reduced (Vacuum) Pressure on Yeast Fermentation as Assessed Using Standard Methods and Automated Image Analysis. Fermentation, 9(2). https://doi.org/10.3390/fermentation9020155 | spa |
dc.relation.references | Guinée, J. B., Heijungs, R., & Huppes, G. (2004). LCA Methodology Economic Allocation : Examples and Derived Decision Tree. 9(1), 23–33. | spa |
dc.relation.references | Guinee, J., Gorree, M., De Brujin, H., & Van Duin, R. (2004). Handbook on (1st ed.). Kluwer academic publishers. | spa |
dc.relation.references | Guo, H., Chang, Y., & Lee, D. J. (2018). Enzymatic saccharification of lignocellulosic biorefinery: Research focuses. Bioresource Technology, 252(November 2017), 198–215. https://doi.org/10.1016/j.biortech.2017.12.062 | spa |
dc.relation.references | Guo, X., Zhang, R., Li, Z., Dai, D., Li, C., & Zhou, X. (2013). A novel pathway construction in Candida tropicalis for direct xylitol conversion from corncob xylan. Bioresource Technology, 128, 547–552. https://doi.org/10.1016/j.biortech.2012.10.155 | spa |
dc.relation.references | H. A. Aguirre-Villegas, F. X. Milani, S. Kraatz, & D. J. Reinemann. (2012). Life Cycle Impact Assessment and Allocation Methods Development for Cheese and Whey Processing. Transactions of the ASABE, 55(2), 613–627. https://doi.org/10.13031/2013.41363 | spa |
dc.relation.references | Haider, J. Bin, Haque, M. I., Hoque, M., Hossen, M. M., Mottakin, M., Khaleque, M. A., Johir, M. A. H., Zhou, J. L., Ahmed, M. B., & Zargar, M. (2022). Efficient extraction of silica from openly burned rice husk ash as adsorbent for dye removal. Journal of Cleaner Production, 380(P2), 135121. https://doi.org/10.1016/j.jclepro.2022.135121 | spa |
dc.relation.references | Hasan Ba Hamid, H. S., & Ku Ismail, K. S. (2020). Optimization of enzymatic hydrolysis for acid pretreated date seeds into fermentable sugars. Biocatalysis and Agricultural Biotechnology, 24, 101530. https://doi.org/10.1016/j.bcab.2020.101530 | spa |
dc.relation.references | Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology, 262(April), 310–318. https://doi.org/10.1016/j.biortech.2018.04.099 | spa |
dc.relation.references | Hazeena, S. H., Sindhu, R., Pandey, A., & Binod, P. (2020). Lignocellulosic bio-refinery approach for microbial 2,3-Butanediol production. Bioresource Technology, 302(January), 122873. https://doi.org/10.1016/j.biortech.2020.122873 | spa |
dc.relation.references | Heng, K. S., Hatti-Kaul, R., Adam, F., Fukui, T., & Sudesh, K. (2017). Conversion of rice husks to polyhydroxyalkanoates (PHA) via a three-step process: optimized alkaline pretreatment, enzymatic hydrolysis, and biosynthesis by Burkholderia cepacia USM (JCM 15050). Journal of Chemical Technology and Biotechnology, 92(1), 100–108. https://doi.org/10.1002/jctb.4993 | spa |
dc.relation.references | Herazo, I., Ruiz, D., & Arrazola Paternina, G. S. (2009). Bioconversión de Xilosa a Xilitol por Candida Guilliermondii Empleando Cascarilla de Arroz (Oriza sativa). Temas Agrarios, 14(2), 23–32. https://doi.org/10.21897/rta.v14i2.673 | spa |
dc.relation.references | Hernández Pérez, R., Salgado Delgado, R., Olarte Paredes, A., Salgado Delgado, A., García Hernández, E., Medrano Valis, A., & Martínez Candia, F. (2022). Comparing Acid and Enzymatic Hydrolysis Methods for Cellulose Nanocrystals (CNCs) Obtention from Agroindustrial Rice Husk Waste. Journal of Nanotechnology, 2022. https://doi.org/10.1155/2022/5882113 | spa |
dc.relation.references | Herrera-Ruales, F. C., & Arias-Zabala, M. (2014). Bioethanol production by fermentation of hemicellulosic hydrolysates of african palm residues using an adapted strain of Scheffersomyces stipitis. Dyna, 81(185), 204. https://doi.org/10.15446/dyna.v81n185.38552 | spa |
dc.relation.references | Hickert, L. R., Souza-Cruz, P. B. de, Rosa, C. A., & Ayub, M. A. Ô. Z. (2013). Simultaneous saccharification and co-fermentation of un-detoxified rice hull hydrolysate by Saccharomyces cerevisiae ICV D254 and Spathaspora arborariae NRRL Y-48658 for the production of ethanol and xylitol. Bioresource Technology, 143, 112–116. https://doi.org/10.1016/j.biortech.2013.05.123 | spa |
dc.relation.references | Hu, L., He, Z., & Zhang, S. (2020). Sustainable use of rice husk ash in cement-based materials: Environmental evaluation and performance improvement. Journal of Cleaner Production, 264, 121744. https://doi.org/10.1016/j.jclepro.2020.121744 | spa |
dc.relation.references | Huang, C., Jeuck, B., & Yong, Q. (2017). Using Pretreatment and Enzymatic Saccharification Technologies to Produce Fermentable Sugars from Agricultural Wastes. In L. Singh & V. C. Kalia (Eds.), Waste Biomass Management -- A Holistic Approach (pp. 15–38). Springer International Publishing. https://doi.org/10.1007/978-3-319-49595-8_2 | spa |
dc.relation.references | Huang, C., Zhao, X., Zheng, Y., Lin, W., Lai, C., Yong, Q., Ragauskas, A. J., & Meng, X. (2022). Revealing the mechanism of surfactant-promoted enzymatic hydrolysis of dilute acid pretreated bamboo. Bioresource Technology, 360(June), 127524. https://doi.org/10.1016/j.biortech.2022.127524 | spa |
dc.relation.references | Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & van Zelm, R. (2017). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. International Journal of Life Cycle Assessment, 22(2), 138–147. https://doi.org/10.1007/s11367-016-1246-y | spa |
dc.relation.references | Idowu, S. O. (2013). Encyclopedia of Corporate Social Responsibility (S. O. Idowu, N. Capaldi, L. Zu, & A. Das Gupta (eds.)). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-28036-8 | spa |
dc.relation.references | IEA Bioenergy. (2009). Task 42. Technical Typing Tasks, 126–126. https://doi.org/10.1007/978-1-349-06888-3_42 | spa |
dc.relation.references | IEA BIOENERGY. (2022). How bioenergy contributes to a sustainable future. In IEA Bioenergy Report 2023. https://www.ieabioenergyreview.org/wp-content/uploads/2022/12/IEA_BIOENERGY_REPORT.pdf | spa |
dc.relation.references | Ingrao, C., Vesce, E., Evola, R. S., Rebba, E., Arcidiacono, C., Martra, G., & Beltramo, R. (2021). Chemistry behind leather: Life Cycle Assessment of nano-hydroxyapatite preparation on the lab-scale for fireproofing applications. Journal of Cleaner Production, 279, 123837. https://doi.org/10.1016/j.jclepro.2020.123837 | spa |
dc.relation.references | International renewable energy agency. (2012). Renewable energy technologies: cost analysis series. In Irena working paper (Vol. 1, Issue 1/5). | spa |
dc.relation.references | Irfan, M., Nadeem, M., & Syed, Q. (2014). Ethanol production from agricultural wastes using Sacchromyces cervisae. Brazilian Journal of Microbiology, 45(2), 457–465. https://doi.org/10.1590/S1517-83822014000200012 | spa |
dc.relation.references | Isikgor, F. H., & Becer, C. R. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6(25), 4497–4559. https://doi.org/10.1039/c5py00263j | spa |
dc.relation.references | Iye, E. L., & Bilsborrow, P. E. (2013). Assessment of the availability of agricultural residues on a zonal basis for medium- to large-scale bioenergy production in Nigeria. Biomass and Bioenergy, 48, 66–74. https://doi.org/10.1016/j.biombioe.2012.11.015 | spa |
dc.relation.references | Javanmard, A., Wan Daud, W. M. A., Patah, M. F. A., Zuki, F. M., Ai, S. P., Azman, D. Q., & Chen, W. H. (2024). Breaking Barriers for a Green Future: A Comprehensive Study on Pre-treatment Techniques for Empty Fruit Bunches in the Bio-Based Economy. Process Safety and Environmental Protection, 182(December 2023), 535–558. https://doi.org/10.1016/j.psep.2023.11.053 | spa |
dc.relation.references | Jensen, C. U., Rodriguez Guerrero, J. K., Karatzos, S., Olofsson, G., & Iversen, S. B. (2017). Fundamentals of HydrofactionTM: Renewable crude oil from woody biomass. Biomass Conversion and Biorefinery, 7(4), 495–509. https://doi.org/10.1007/s13399-017-0248-8 | spa |
dc.relation.references | Ji, Q., Yu, X., Yagoub, A. E. G. A., Chen, L., & Zhou, C. (2020). Efficient removal of lignin from vegetable wastes by ultrasonic and microwave-assisted treatment with ternary deep eutectic solvent. Industrial Crops and Products, 149(March), 112357. https://doi.org/10.1016/j.indcrop.2020.112357 | spa |
dc.relation.references | Jiang, L., Wu, N., Zheng, A., Zhao, Z., He, F., & Li, H. (2016). The integration of dilute acid hydrolysis of xylan and fast pyrolysis of glucan to obtain fermentable sugars. Biotechnology for Biofuels, 9(1), 1–10. https://doi.org/10.1186/s13068-016-0612-0 | spa |
dc.relation.references | Jin, D., Ma, J., Li, Y., Jiao, G., Liu, K., Sun, S., Zhou, J., & Sun, R. (2022). Development of the synthesis and applications of xylonic acid: A mini-review. Fuel, 314(October 2021), 122773. https://doi.org/10.1016/j.fuel.2021.122773 | spa |
dc.relation.references | Joshi, S. M., & Gogate, P. R. (2017). Intensified Synthesis of Bioethanol from Sustainable Biomass. In L. Singh & V. C. Kalia (Eds.), Waste Biomass Management -- A Holistic Approach (pp. 251–287). Springer International Publishing. https://doi.org/10.1007/978-3-319-49595-8_12 | spa |
dc.relation.references | Jung, W., Sharma, R., Sunkyu, S., & Praveen, P. (2020). Effect of cellulolytic enzyme binding on lignin isolated from alkali and acid pretreated switchgrass on enzymatic hydrolysis. 3 Biotech, 10(1), 1–10. https://doi.org/10.1007/s13205-019-1978-z | spa |
dc.relation.references | Kamiloglu, S., Sari, G., Ozdal, T., & Capanoglu, E. (2020). Guidelines for cell viability assays. Food Frontiers, 1(3), 332–349. https://doi.org/10.1002/fft2.44 | spa |
dc.relation.references | Kang, S., Fu, J., & Zhang, G. (2018). From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renewable and Sustainable Energy Reviews, 94(June), 340–362. https://doi.org/10.1016/j.rser.2018.06.016 | spa |
dc.relation.references | Karka, P., Papadokonstantakis, S., Hungerbühler, K., & Kokossis, A. (2015). Life Cycle Assessment of Biorefinery Products Based on Different Allocation Approaches. In Computer Aided Chemical Engineering (Vol. 37, Issue June). Elsevier. https://doi.org/10.1016/B978-0-444-63576-1.50123-0 | spa |
dc.relation.references | Karlsson, H. (2014). Biorefinery systems for energy and feed production : greenhouse gas performance and energy balances. | spa |
dc.relation.references | Kastner, J. R., Eiteman, M. A., & Lee, S. A. (2001). Glucose repression of xylitol production in Candida tropicalis mixed-sugar fermentations. Biotechnology Letters, 23(20), 1663–1667. https://doi.org/10.1023/A:1012435413933 | spa |
dc.relation.references | Kaur, S., Guleria, P., & Yadav, S. K. (2023). Evaluation of Fermentative Xylitol Production Potential of Adapted Strains of Meyerozyma caribbica and Candida tropicalis from Rice Straw Hemicellulosic Hydrolysate. | spa |
dc.relation.references | Keller, F., Lee, R. P., & Meyer, B. (2020). Life cycle assessment of global warming potential, resource depletion and acidification potential of fossil, renewable and secondary feedstock for olefin production in Germany. Journal of Cleaner Production, 250, 119484. https://doi.org/10.1016/j.jclepro.2019.119484 | spa |
dc.relation.references | Khan, N., Sudhakar, K., & Mamat, R. (2021). Role of biofuels in energy transition, green economy and carbon neutrality. Sustainability (Switzerland), 13(22). https://doi.org/10.3390/su132212374 | spa |
dc.relation.references | Kim, R., & Tae, S. (2019). Calculation of particulate matter formation of major building material in construction phase through life cycle impact assessment. International Journal of Sustainable Building Technology and Urban Development, 10(2), 65–72. https://doi.org/10.22712/susb.20190008 | spa |
dc.relation.references | Kklaif, H. F., Nasser, J. M., & Shakir, K. A. (2020). Production of Xylose Reductase and Xylitol by Candida Guilliermondii Using Wheat Straw Hydrolysates. Iraqi Journal of Agricultural Sciences, 51(6), 1653–1660. https://doi.org/10.36103/IJAS.V51I6.1192 | spa |
dc.relation.references | Kopsahelis, A., Kourmentza, C., Zafiri, C., & Kornaros, M. (2018). Gate-to-gate life cycle assessment of biosurfactants and bioplasticizers production via biotechnological exploitation of fats and waste oils. Journal of Chemical Technology and Biotechnology, 93(10), 2833–2841. https://doi.org/10.1002/jctb.5633 | spa |
dc.relation.references | Kumar, K., Singh, E., & Shrivastava, S. (2022). Microbial xylitol production. Applied Microbiology and Biotechnology, 106(3), 971–979. https://doi.org/10.1007/s00253-022-11793-6 | spa |
dc.relation.references | Lamb, C. de C., Silva, B. M. Z. da, de Souza, D., Fornasier, F., Riça, L. B., & Schneider, R. de C. de S. (2018). Bioethanol production from rice hull and evaluation of the final solid residue. Chemical Engineering Communications, 205(6), 833–845. https://doi.org/10.1080/00986445.2017.1422495 | spa |
dc.relation.references | Lau, B. B. Y., Luis, E. T., Hossain, M. M., Hart, W. E. S., Cencia-Lay, B., Black, J. J., To, T. Q., & Aldous, L. (2015). Facile, room-temperature pre-treatment of rice husks with tetrabutylphosphonium hydroxide: Enhanced enzymatic and acid hydrolysis yields. Bioresource Technology, 197, 252–259. https://doi.org/10.1016/j.biortech.2015.08.056 | spa |
dc.relation.references | Lei, S., & Yuan, L. (2019). Rice Bran Usage in Diarrhea. Dietary Interventions in Gastrointestinal Diseases: Foods, Nutrients, and Dietary Supplements, 257–263. https://doi.org/10.1016/B978-0-12-814468-8.00021-1 | spa |
dc.relation.references | Lenihan, P., Orozco, A., O’Neill, E., Ahmad, M. N. M., Rooney, D. W., & Walker, G. M. (2010). Dilute acid hydrolysis of lignocellulosic biomass. Chemical Engineering Journal, 156(2), 395–403. https://doi.org/10.1016/j.cej.2009.10.061 | spa |
dc.relation.references | Leonel, L. V., Sene, L., da Cunha, M. A. A., Dalanhol, K. C. F., & de Almeida Felipe, M. das G. (2020). Valorization of apple pomace using bio-based technology for the production of xylitol and 2G ethanol. Bioprocess and Biosystems Engineering, 43(12), 2153–2163. https://doi.org/10.1007/s00449-020-02401-w | spa |
dc.relation.references | Li, A., Xie, H., Qiu, Y., Liu, L., Lu, T., Wang, W., & Qiu, G. (2022). Resource utilization of rice husk biomass: Preparation of MgO flake-modified biochar for simultaneous removal of heavy metals from aqueous solution and polluted soil. Environmental Pollution, 310(June), 119869. https://doi.org/10.1016/j.envpol.2022.119869 | spa |
dc.relation.references | Li, X., Wu, L., Geng, X., Xia, X., Wang, X., Xu, Z., & Xu, Q. (2018). Deciphering the Environmental Impacts on Rice Quality for Different Rice Cultivated Areas. Rice, 11(1), 1–10. https://doi.org/10.1186/s12284-018-0198-1 | spa |
dc.relation.references | Lin, Y., Zhang, W., Li, C., Sakakibara, K., Tanaka, S., & Kong, H. (2014). Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass and Bioenergy, 47, 395–401. https://doi.org/10.1016/j.biombioe.2012.09.019 | spa |
dc.relation.references | Lindstrom, J. K., Ghosh, A., Rollag, S., & Brown, R. C. (2020). Production of sugars from lignocellulosic biomass: a critical review of biological and thermochemical routes. Submitted, Submitted(February), 1–34. https://doi.org/10.3389/fenrg.2024.1347373 | spa |
dc.relation.references | Ling, H., Cheng, K., Ge, J., & Ping, W. (2011). Statistical optimization of xylitol production from corncob hemicellulose hydrolysate by Candida tropicalis HDY-02. New Biotechnology, 28(6), 673–678. https://doi.org/10.1016/j.nbt.2010.05.004 | spa |
dc.relation.references | Liu, C. G., Xiao, Y., Xia, X. X., Zhao, X. Q., Peng, L., Srinophakun, P., & Bai, F. W. (2019). Cellulosic ethanol production: Progress, challenges and strategies for solutions. Biotechnology Advances, 37(3), 491–504. https://doi.org/10.1016/j.biotechadv.2019.03.002 | spa |
dc.relation.references | Liu, Y., Lyu, Y., Tian, J., Zhao, J., Ye, N., Zhang, Y., & Chen, L. (2021). Review of waste biorefinery development towards a circular economy: From the perspective of a life cycle assessment. Renewable and Sustainable Energy Reviews, 139(April 2020), 110716. https://doi.org/10.1016/j.rser.2021.110716 | spa |
dc.relation.references | Llano, T., Rueda, C., Dosal, E., Andrés, A., & Coz, A. (2021). Multi-criteria analysis of detoxification alternatives: Techno-economic and socio-environmental assessment. Biomass and Bioenergy, 154(October). https://doi.org/10.1016/j.biombioe.2021.106274 | spa |
dc.relation.references | Longati, A. A., Cavalett, O., & Cruz, A. J. G. (2017). Life Cycle Assessment of vinasse biogas production in sugarcane biorefineries. In Computer Aided Chemical Engineering (Vol. 40). Elsevier Masson SAS. https://doi.org/10.1016/B978-0-444-63965-3.50338-X | spa |
dc.relation.references | López-Gutiérrez, I., Razo-Flores, E., Méndez-Acosta, H. O., Amaya-Delgado, L., & Alatriste-Mondragón, F. (2021). Optimization by response surface methodology of the enzymatic hydrolysis of non-pretreated agave bagasse with binary mixtures of commercial enzymatic preparations. Biomass Conversion and Biorefinery, 11(6), 2923–2935. https://doi.org/10.1007/s13399-020-00698-x | spa |
dc.relation.references | López-Linares, J. C., Romero, I., Cara, C., Castro, E., & Mussatto, S. I. (2018). Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresource Technology, 247(September 2017), 736–743. https://doi.org/10.1016/j.biortech.2017.09.139 | spa |
dc.relation.references | López, Y., García, A., Karimi, K., Taherzadeh, M. J., & Martín, C. (2010). Chemical characterisation and dilute-acid hydrolysis of rice hulls from an Artisan Mill. BioResources, 5(4), 2268–2277. | spa |
dc.relation.references | Lorenci Woiciechowski, A., Dalmas Neto, C. J., Porto de Souza Vandenberghe, L., de Carvalho Neto, D. P., Novak Sydney, A. C., Letti, L. A. J., Karp, S. G., Zevallos Torres, L. A., & Soccol, C. R. (2020). Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance – Conventional processing and recent advances. Bioresource Technology, 304(122848), 1–9. https://doi.org/10.1016/j.biortech.2020.122848 | spa |
dc.relation.references | Lozano, C. (2020). Alternativa de usos de la cascarilla de arroz (Oriza sativa) en Colombia para el mejoramiento del sector productivo y la industria. 67. | spa |
dc.relation.references | Łukajtis, R., Kucharska, K., Hołowacz, I., Rybarczyk, P., Wychodnik, K., Słupek, E., Nowak, P., & Kamínski, M. (2018). Comparison and optimization of saccharification conditions of alkaline pre-Treated triticale straw for acid and enzymatic hydrolysis followed by ethanol fermentation. Energies, 11(3). https://doi.org/10.3390/en11030639 | spa |
dc.relation.references | Malairuang, K., Krajang, M., Sukna, J., Rattanapradit, K., & Chamsart, S. (2020). High cell density cultivation of saccharomyces cerevisiae with intensive multiple sequential batches together with a novel technique of fed-batch at cell level (FBC). Processes, 8(10), 1–26. https://doi.org/10.3390/pr8101321 | spa |
dc.relation.references | Manishimwe, C., Feng, Y., Sun, J., Pan, R., Jiang, Y., Jiang, W., Zhang, W., Xin, F., & Jiang, M. (2022). Biological production of xylitol by using nonconventional microbial strains. World Journal of Microbiology and Biotechnology, 38(12), 1–13. https://doi.org/10.1007/s11274-022-03437-8 | spa |
dc.relation.references | Manjarres-Pinzón, K., Barrios-Ziolo, L., Arias-Zabala, M., Correa-Londoño, G., & Rodríguez-Sandoval, E. (2021). Kinetic study and modeling of xylitol production using Candida tropicalis in different culture media using unstructured models. Revista Facultad Nacional de Agronomia Medellin, 74(2), 9583–9592. https://doi.org/10.15446/rfnam.v74n2.92270 | spa |
dc.relation.references | Manjarres-Pinzón, K., Otero-Guzmán, N. C., Rodríguez-Sandoval, E., Correa-Londoño, G., & Arias-Zabala, M. (2021). Xylitol production from hydrolyzed oil palm empty fruit bunch by Candida tropicalis: Optimization of fermentation conditions. Revista U.D.C.A Actualidad and Divulgacion Cientifica, 24(2). https://doi.org/10.31910/RUDCA.V24.N2.2021.1894 | spa |
dc.relation.references | Manjarrés, J. K. (2019). PRODUCCIÓN BIOTECNOLÓGICA DE XILITOL A PARTIR DE HIDROLIZADOS DE RAQUIS DE PALMA CON LEVADURAS DEL GÉNERO Candida sp. 9–130. | spa |
dc.relation.references | Manjarres, K., Bravo, A., Arias, J. P., Ortega, I., Vasquez, A., & Arias, M. (2018). Biotechnological Production of Xylitol from Oil Palm Empty Fruit Bunches Hydrolysate. Advance Journal of Food Science and Technology, 16(SPL), 134–137. https://doi.org/10.19026/ajfst.16.5945 | spa |
dc.relation.references | Margni, M., & Curran, M. A. (2012). Life Cycle Impact Assessment. Life Cycle Assessment Handbook: A Guide for Environmentally Sustainable Products, 67–103. https://doi.org/10.1002/9781118528372.ch4 | spa |
dc.relation.references | Martín, C., Jackson de Moraes, G., & Ribeiro Alves dos Santos, J. (2012). ENZYME LOADING DEPENDENCE OF CELLULOSE HYDROLYSIS OF SUGARCANE BAGASSE Carlos. Quim. Nova, 35(10), 1927–1930. | spa |
dc.relation.references | Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030 | spa |
dc.relation.references | Misra, S., Raghuwanshi, S., & Saxena, R. K. (2013). Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Carbohydrate Polymers, 92(2), 1596–1601. https://doi.org/10.1016/j.carbpol.2012.11.033 | spa |
dc.relation.references | Modenbach, A. A., & Nokes, S. E. (2013). Enzymatic hydrolysis of biomass at high-solids loadings - A review. Biomass and Bioenergy, 56, 526–544. https://doi.org/10.1016/j.biombioe.2013.05.031 | spa |
dc.relation.references | Mohamad, N. L., Mustapa Kamal, S. M., Mokhtar, M. N., Husain, S. A., & Abdullah, N. (2016). Dynamic mathematical modelling of reaction kinetics for xylitol fermentation using Candida tropicalis. Biochemical Engineering Journal, 111, 10–17. https://doi.org/10.1016/j.bej.2016.02.017 | spa |
dc.relation.references | Mohapatra, S., Mishra, C., Behera, S. S., & Thatoi, H. (2017). Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass – A review. Renewable and Sustainable Energy Reviews, 78(November 2016), 1007–1032. https://doi.org/10.1016/j.rser.2017.05.026 | spa |
dc.relation.references | Moni, S. M. (2020). A Framework for Lif amework for Life Cycle Assessment (L cle Assessment (LCA) of Emer CA) of Emerging Technologies at Low Technology Readiness Levels. Clemson University, May. | spa |
dc.relation.references | Morais, A. R., & Bogel-Lukasik, R. (2013). Green chemistry and the biorefinery concept. Sustainable Chemical Processes, 1(1), 1. https://doi.org/10.1186/2043-7129-1-18 | spa |
dc.relation.references | Moreno, J., Iglesias, J., Blanco, J., Montero, M., Morales, G., & Melero, J. A. (2020). Life-cycle sustainability of biomass-derived sorbitol: Proposing technological alternatives for improving the environmental profile of a bio-refinery platform molecule. Journal of Cleaner Production, 250, 119568. https://doi.org/10.1016/j.jclepro.2019.119568 | spa |
dc.relation.references | Morinelly, J. E., Jensen, J. R., Browne, M., Co, T. B., & Shonnard, D. R. (2009). Kinetic characterization of xylose monomer and oligomer concentrations during dilute acid pretreatment of lignocellulosic biomass from forests and switchgrass. Industrial and Engineering Chemistry Research, 48(22), 9877–9884. https://doi.org/10.1021/ie900793p | spa |
dc.relation.references | Moya, E. B., Syhler, B., Manso, J. O., Dragone, G., & Mussatto, S. I. (2023). Enzymatic hydrolysis cocktail optimization for the intensification of sugar extraction from sugarcane bagasse. International Journal of Biological Macromolecules, 242(P3), 125051. https://doi.org/10.1016/j.ijbiomac.2023.125051 | spa |
dc.relation.references | Muhamad, H., Sahid, I. Bin, Surif, S., Ai, T. Y., & May, C. Y. (2012). A gate-to-gate case study of the life cycle assessment of an oil palm seedling. Tropical Life Sciences Research, 23(1), 15–23. | spa |
dc.relation.references | Munna, S., Humayun, S., & Noor, R. (2015). Influence of heat shock and osmotic stresses on the growth and viability of Saccharomyces cerevisiae SUBSC01. BMC Research Notes, August. https://doi.org/10.1186/s13104-015-1355-x | spa |
dc.relation.references | Mussatto, S. I., & Roberto, I. C. (2008). Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer’s spent grain hydrolysate for xylitol production by Candida guilliermondii. Process Biochemistry, 43(5), 540–546. https://doi.org/10.1016/j.procbio.2008.01.013 | spa |
dc.relation.references | Nagarajan, A., Thulasinathan, B., Arivalagan, P., Alagarsamy, A., Muthuramalingam, J. B., Thangarasu, S. D., & Thangavel, K. (2021). Particle size influence on the composition of sugars in corncob hemicellulose hydrolysate for xylose fermentation by Meyerozyma caribbica. Bioresource Technology, 340(July), 125677. https://doi.org/10.1016/j.biortech.2021.125677 | spa |
dc.relation.references | Newton, J. M., Schofield, D., Vlahopoulou, J., & Zhou, Y. (2016). Detecting cell lysis using viscosity monitoring in E. coli fermentation to prevent product loss. Biotechnology Progress, 32(4), 1069–1076. https://doi.org/10.1002/btpr.2292 | spa |
dc.relation.references | Nguyen, H. P., Le, H. Du, & Le, V. V. M. (2015). Effect of Ethanol Stress on Fermentation Performance of Saccharomyces cerevisiae Cells Immobilized on Nypa fruticans Leaf Sheath Pieces Hoang. Food Technol. Biotechnol, 53(1), 96–101. https://doi.org/10.17113/? b.53.01.15.3617 scientifi | spa |
dc.relation.references | Nikzad, M., Movagharnejad, K., Najafpour, G. D., & Talebnia, F. (2013). Comparative studies on the effect of pretreatment of rice husk on enzymatic digestibility and bioethanol production. International Journal of Engineering, Transactions B: Applications, 26(5), 455–464. https://doi.org/10.5829/idosi.ije.2013.26.05b.01 | spa |
dc.relation.references | Nizami, A. S., Rehan, M., Waqas, M., Naqvi, M., Ouda, O. K. M., Shahzad, K., Miandad, R., Khan, M. Z., Syamsiro, M., Ismail, I. M. I., & Pant, D. (2017). Waste biorefineries: Enabling circular economies in developing countries. Bioresource Technology, 241, 1101–1117. https://doi.org/10.1016/j.biortech.2017.05.097 | spa |
dc.relation.references | Nolleau, V., Preziosi-Belloy, L., Delgenes, J. P., & Navarro, J. M. (1993). Xylitol production from xylose by two yeast strains: Sugar tolerance. Current Microbiology, 27(4), 191–197. https://doi.org/10.1007/BF01692875 | spa |
dc.relation.references | Noor, R. M., Yahya, A., Hussin, H., Galadima, I., & Sustainability, R. (2020). Optimization of microwave pre-treatment conditions for maximum lignin recovery from rice husk using central composite design (CCD) by response surface methodology (RSM). 1(2), 61–83. | spa |
dc.relation.references | Nour, S. A., El-Sayed, G. M., Taie, H. A. A., Emam, M. T. H., El-Sayed, A. F., & Salim, R. G. (2022). Safe production of Aspergillus terreus xylanase from Ricinus communis: gene identification, molecular docking, characterization, production of xylooligosaccharides, and its biological activities. Journal of Genetic Engineering and Biotechnology, 20(1), 121. https://doi.org/10.1186/s43141-022-00390-9 | spa |
dc.relation.references | Nuanpeng, S., Thanonkeo, S., Klanrit, P., Yamada, M., & Thanonkeo, P. (2023). Optimization Conditions for Ethanol Production from Sweet Sorghum Juice by Thermotolerant Yeast Saccharomyces cerevisiae: Using a Statistical Experimental Design. Fermentation, 9(5). https://doi.org/10.3390/fermentation9050450 | spa |
dc.relation.references | Obydenkova, S. V, Kouris, P. D., Smeulders, D. M. J., Boot, M. D., & Van der Meer, Y. (2021). Modeling life-cycle inventory for multi-product biorefinery: tracking environmental burdens and evaluation of uncertainty caused by allocation procedure. Biofuels, Bioproducts and Biorefining, 15, 1281–1300. https://doi.org/10.1002/bbb.2214 | spa |
dc.relation.references | Ojo, A. O. (2023). An Overview of Lignocellulose and Its Biotechnological Importance in High-Value Product Production. Fermentation, 9(11). https://doi.org/10.3390/fermentation9110990 | spa |
dc.relation.references | Oktaviani, M., Mangunwardoyo, W., & Hermiati, E. (2021). Characteristics of adapted and non-adapted Candida tropicalis InaCC Y799 during fermentation of detoxified and undetoxified hemicellulosic hydrolysate from sugarcane trash for xylitol production. Biomass Conversion and Biorefinery, 0123456789. https://doi.org/10.1007/s13399-021-02087-4 | spa |
dc.relation.references | OLADE. (2021). Panorama Energético De América Latina Y El Caribe. https://biblioteca.olade.org/opac-tmpl/Documentos/old0442a.pdf | spa |
dc.relation.references | Oriez, V., Peydecastaing, J., & Pontalier, P. Y. (2019). Lignocellulosic biomass fractionation by mineral acids and resulting extract purification processes: Conditions, yields, and purities. Molecules, 24(23). https://doi.org/10.3390/molecules24234273 | spa |
dc.relation.references | Ortiz-Sanchez, M., & Cardona Alzate, C. A. (2024). Biorefinery approaches for a comprehensive recovery of retailed organic food waste: Sustainability analysis of different configurations. Bioresource Technology Reports, 25(February), 101778. https://doi.org/10.1016/j.biteb.2024.101778 | spa |
dc.relation.references | Pachapur, V. L., Sarma, S. J., Maiti, S., & Brar, S. K. (2016). Case Studies on the Industrial Production of Renewable Platform Chemicals. In Platform Chemical Biorefinery: Future Green Chemistry. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802980-0.00026-2 | spa |
dc.relation.references | Pachón, E. R., Mandade, P., & Gnansounou, E. (2020). Conversion of vine shoots into bioethanol and chemicals: Prospective LCA of biorefinery concept. Bioresource Technology, 303(January). https://doi.org/10.1016/j.biortech.2020.122946 | spa |
dc.relation.references | Pallas, G., Vijver, M. G., Peijnenburg, W. J. G. M., & Guinée, J. (2020). Life cycle assessment of emerging technologies at the lab scale: The case of nanowire-based solar cells. Journal of Industrial Ecology, 24(1), 193–204. https://doi.org/10.1111/jiec.12855 | spa |
dc.relation.references | Pedroso, G. B., Philippsen, M. R., Saldanha, L. F., Araujo, R. B., & Martins, A. F. (2019). Strategies for Fermentable Sugar Production by Using Pressurized Acid Hydrolysis for Rice Husks. Rice Science, 26(5), 319–330. https://doi.org/10.1016/j.rsci.2019.08.006 | spa |
dc.relation.references | Pengilly, C., García-Aparicio, M. P., Diedericks, D., Brienzo, M., & Görgens, J. F. (2015). Enzymatic hydrolysis of steam-pretreated sweet sorghum bagasse by combinations of cellulase and endo-xylanase. Fuel, 154, 352–360. https://doi.org/10.1016/j.fuel.2015.03.072 | spa |
dc.relation.references | Pengilly, C., García-Aparicio, M. P., Diedericks, D., & Görgens, J. F. (2016). Optimization of Enzymatic Hydrolysis of Steam Pretreated Triticale Straw. Bioenergy Research, 9(3), 851–863. https://doi.org/10.1007/s12155-016-9741-3 | spa |
dc.relation.references | Pérez-López, P., González-García, S., Jeffryes, C., Agathos, S. N., McHugh, E., Walsh, D., Murray, P., Moane, S., Feijoo, G., & Moreira, M. T. (2014). Life cycle assessment of the production of the red antioxidant carotenoid astaxanthin by microalgae: From lab to pilot scale. Journal of Cleaner Production, 64, 332–344. https://doi.org/10.1016/j.jclepro.2013.07.011 | spa |
dc.relation.references | Pfeiffer, T., & Morley, A. (2014). An evolutionary perspective on the Crabtree effect. Frontiers in Molecular Biosciences, 1(OCT), 1–6. https://doi.org/10.3389/fmolb.2014.00017 | spa |
dc.relation.references | Phannarangsee, Y., Jiawkhangphlu, B., Thanonkeo, S., Klanrit, P., Yamada, M., & Thanonkeo, P. (2024). Sorbitol production from mixtures of molasses and sugarcane bagasse hydrolysate using the thermally adapted Zymomonas mobilis ZM AD41. Scientific Reports, 14(1), 5563. https://doi.org/10.1038/s41598-024-56307-8 | spa |
dc.relation.references | Piccinno, F., Hischier, R., Seeger, S., & Som, C. (2016). From laboratory to industrial scale: a scale-up framework for chemical processes in life cycle assessment studies. Journal of Cleaner Production, 135, 1085–1097. https://doi.org/10.1016/j.jclepro.2016.06.164 | spa |
dc.relation.references | Piccinno, F., Hischier, R., Seeger, S., & Som, C. (2018). Predicting the environmental impact of a future nanocellulose production at industrial scale: Application of the life cycle assessment scale-up framework. Journal of Cleaner Production, 174, 283–295. https://doi.org/10.1016/j.jclepro.2017.10.226 | spa |
dc.relation.references | Piedrahita-Rodríguez, S., Cardona Urrea, S., Escobar García, D. A., Ortiz-Sánchez, M., Solarte-Toro, J. C., & Cardona Alzate, C. A. (2023). Life cycle assessment and potential geolocation of a multi-feedstock biorefinery: Integration of the avocado and plantain value chains in rural zones. Bioresource Technology Reports, 21(December 2022). https://doi.org/10.1016/j.biteb.2022.101318 | spa |
dc.relation.references | Pieragostini, C., Aguirre, P., & Mussati, M. C. (2014). Life cycle assessment of corn-based ethanol production in Argentina. Science of the Total Environment, 472, 212–225. https://doi.org/10.1016/j.scitotenv.2013.11.012 | spa |
dc.relation.references | Piñeros-castro, Y., Velasco, G. A., Cortes Ortiz, W. G., & Proaños, J. (2011). Producción de azúcares fermentables por hidrólisis enzimática de cascarilla de arroz pretratada mediante explosión con vapor. Revista Ión, 24(2), 23–28. | spa |
dc.relation.references | Piñeros Castro, Y. (2017). Aplicación de tecnoloǵıas para el aprovechamiento de la cascarilla de arroz. | spa |
dc.relation.references | Platt, R., Bauen, A., Reumerman, P., Geier, C., Ree, R. Van, Gursel, I. V., Garcia, L., Behrens, M., Bothmer, P. von, Howes, J., Panchaksharam, Y., Vikla, K., Sartorius, V., & Annevelink, B. (2021). EU Biorefinery Outlook to 2030 (Issue February). https://doi.org/10.2777/103465 | spa |
dc.relation.references | Precedence research. (2023). Glucose Market (By Form: Solid, Syrup; By Application: Food & Beverages, Pharmaceutical, Cosmetic & Personal Care, Pulp & Paper, Others) - Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2023-2032. https://www.precedenceresearch.com/table-of-content/2694 | spa |
dc.relation.references | Puligundla, P., Poludasu, R. M., Rai, J. K., & Reddy Obulam, V. S. (2011). Repeated batch ethanolic fermentation of very high gravity medium by immobilized Saccharomyces cerevisiae. Annals of Microbiology, 61(4), 863–869. https://doi.org/10.1007/s13213-011-0207-8 | spa |
dc.relation.references | Qing, Q., Yang, B., & Wyman, C. E. (2010). Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresource Technology, 101(24), 9624–9630. https://doi.org/10.1016/j.biortech.2010.06.137 | spa |
dc.relation.references | Queiroz, S. S., Jofre, F. M., Mussatto, S. I., & Felipe, M. das G. A. (2022). Scaling up xylitol bioproduction: Challenges to achieve a profitable bioprocess. Renewable and Sustainable Energy Reviews, 154, 111789. https://doi.org/10.1016/j.rser.2021.111789 | spa |
dc.relation.references | Quintero, J. A., Moncada, J., & Cardona, C. A. (2013). Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: A process simulation approach. Bioresource Technology, 139, 300–307. https://doi.org/10.1016/j.biortech.2013.04.048 | spa |
dc.relation.references | R Core Team. (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org/ | spa |
dc.relation.references | Rabemanolontsoa, H., & Saka, S. (2016). Various pretreatments of lignocellulosics. Bioresource Technology, 199, 83–91. https://doi.org/10.1016/j.biortech.2015.08.029 | spa |
dc.relation.references | Rafiqul, I. S. M., Sakinah, A. M. M., & Zularisam, A. W. (2015). Inhibition by toxic compounds in the hemicellulosic hydrolysates on the activity of xylose reductase from Candida tropicalis. Biotechnology Letters, 37(1), 191–196. https://doi.org/10.1007/s10529-014-1672-5 | spa |
dc.relation.references | Rafiqul, I. S. M., Sakinah, A. M. M., & Zularisam, A. W. (2017). Hydrolysis of Lignocellulosic Biomass for Recovering Hemicellulose: State of the Art. In L. Singh & V. C. Kalia (Eds.), Waste Biomass Management -- A Holistic Approach (pp. 73–106). Springer International Publishing. https://doi.org/10.1007/978-3-319-49595-8_4 | spa |
dc.relation.references | Rambo, M. K. D., Bevilaqua, D. B., Brenner, C. G. B., Martins, A. F., Mario, D. N., Alves, S. H., & Mallmann, C. A. (2013). Xylitol from rice husks by acid hydrolysis and candida yeast fermentation. Quimica Nova, 36(5), 634–639. https://doi.org/10.1590/S0100-40422013000500004 | spa |
dc.relation.references | Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W. P., Suh, S., Weidema, B. P., & Pennington, D. W. (2004). Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment International, 30(5), 701–720. https://doi.org/10.1016/j.envint.2003.11.005 | spa |
dc.relation.references | Reis, V. R., Paula, A., Bassi, G., Carolina, J., & Ceccato-antonini, S. R. (2013). Characteristics of Saccharomyces cerevisiae yeasts exhibiting rough colonies and pseudohyphal morphology with respect to alcoholic fermentation. 1131, 1121–1131. | spa |
dc.relation.references | Ribeiro-Filho, N., Linforth, R., Powell, C. D., & Fisk, I. D. (2021). Influence of essential inorganic elements on flavour formation during yeast fermentation. Food Chemistry, 361(September 2020), 130025. https://doi.org/10.1016/j.foodchem.2021.130025 | spa |
dc.relation.references | Ríos-Badrán, I. M., Luzardo-Ocampo, I., García-Trejo, J. F., Santos-Cruz, J., & Gutiérrez-Antonio, C. (2020). Production and characterization of fuel pellets from rice husk and wheat straw. Renewable Energy, 145, 500–507. https://doi.org/10.1016/j.renene.2019.06.048 | spa |
dc.relation.references | Rodriguez, G., Romar, C., & Sabalsagaray, S. (2013). Valorización Del Residuo Obtenido De La Quema De La Cáscara De Arroz. In Inia (Vol. 45). http://www.inia.org.uy | spa |
dc.relation.references | Rosales-calderon, O., Trajano, H. L., & Du, S. J. B. (2014). Stability of commercial glucanase and β -glucosidase preparations under hydrolysis conditions. https://doi.org/10.7717/peerj.402 | spa |
dc.relation.references | Rosario-Martinez, H. (2015). phia: Post-Hoc Interaction Analysis (R package version 0.2-1). https://cran.r-project.org/package=phia | spa |
dc.relation.references | Rossi, E., Pasciucco, F., Iannelli, R., & Pecorini, I. (2022). Environmental impacts of dry anaerobic biorefineries in a Life Cycle Assessment (LCA) approach. Journal of Cleaner Production, 371(August), 133692. https://doi.org/10.1016/j.jclepro.2022.133692 | spa |
dc.relation.references | Ruchala, J., Kurylenko, O. O., Dmytruk, K. V, & Sibirny, A. A. (2020). Construction of advanced producers of first ‑ and second ‑ generation ethanol in Saccharomyces cerevisiae and selected species of non ‑ conventional yeasts ( Scheffersomyces stipitis , Ogataea polymorpha ). Journal of Industrial Microbiology & Biotechnology, 47(1), 109–132. https://doi.org/10.1007/s10295-019-02242-x | spa |
dc.relation.references | Saavedra del Oso, M., Mauricio-Iglesias, M., Hospido, A., & Steubing, B. (2023). Prospective LCA to provide environmental guidance for developing waste-to-PHA biorefineries. Journal of Cleaner Production, 383(November 2022), 135331. https://doi.org/10.1016/j.jclepro.2022.135331 | spa |
dc.relation.references | Sailer-Kronlachner, W., Thoma, C., Böhmdorfer, S., Bacher, M., Konnerth, J., Rosenau, T., Potthast, A., Solt, P., & Van Herwijnen, H. W. G. (2021). Sulfuric Acid-Catalyzed Dehydratization of Carbohydrates for the Production of Adhesive Precursors. ACS Omega. https://doi.org/10.1021/acsomega.1c02075 | spa |
dc.relation.references | Saleem, M. E., Omar, R., Kamal, S. M. M., & Biak, D. R. A. (2015). Microwave-assisted pretreatment of lignocellulosic biomass: A review. Journal of Engineering Science and Technology, 10, 97–109. | spa |
dc.relation.references | Sandin, G., Røyne, F., Berlin, J., Peters, G. M., & Svanström, M. (2015). Allocation in LCAs of biorefinery products: Implications for results and decision-making. Journal of Cleaner Production, 93, 213–221. https://doi.org/10.1016/j.jclepro.2015.01.013 | spa |
dc.relation.references | Santana, N. B., Teixeira Dias, J. C., Rezende, R. P., Franco, M., Silva Oliveira, L. K., & Souza, L. O. (2018). Production of xylitol and bio-detoxification of cocoa pod husk hemicellulose hydrolysate by Candida boidinii XM02G. PLoS ONE, 13(4), 1–15. https://doi.org/10.1371/journal.pone.0195206 | spa |
dc.relation.references | Sarip, H., Hossain, M. S., Mohamad Azemi, M. N., & Allaf, K. (2016). A review of the thermal pretreatment of lignocellulosic biomass towards glucose production: Autohydrolysis with DIC technology. BioResources, 11(4), 10625–10653. https://doi.org/10.15376/biores.11.4.sarip | spa |
dc.relation.references | Sarma, S. J., Brar, S. K., & Ayadi, M. (2016). Biorefinery. Platform Chemical Biorefinery: Future Green Chemistry, 21–32. https://doi.org/10.1016/B978-0-12-802980-0.00002-X | spa |
dc.relation.references | Scelsi, E., Angelini, A., & Pastore, C. (2021). Deep Eutectic Solvents for the Valorisation of Lignocellulosic Biomasses towards Fine Chemicals. Biomass (Switzerland), 1(1), 29–59. https://doi.org/10.3390/biomass1010003 | spa |
dc.relation.references | Schrijvers, D. L., Loubet, P., & Sonnemann, G. (2016). Developing a systematic framework for consistent allocation in LCA. In International Journal of Life Cycle Assessment (Vol. 21, Issue 7). https://doi.org/10.1007/s11367-016-1063-3 | spa |
dc.relation.references | Shackley, S., Carter, S., Knowles, T., Middelink, E., Haefele, S., & Haszeldine, S. (2012). Sustainable gasification-biochar systems? A case-study of rice-husk gasification in Cambodia, Part II: Field trial results, carbon abatement, economic assessment and conclusions. Energy Policy, 41, 618–623. https://doi.org/10.1016/j.enpol.2011.11.023 | spa |
dc.relation.references | Shen, L., & Patel, M. K. (2010). Life cycle assessment of man-made cellulose fibres. Lenzinger Berichte, 88(88), 1–59. | spa |
dc.relation.references | Sherwood, J. (2020). The significance of biomass in a circular economy. Bioresource Technology, 300(January). https://doi.org/10.1016/j.biortech.2020.122755 | spa |
dc.relation.references | Shinde, P. N., Mandavgane, S. A., & Karadbhajane, V. (2020). Process development and life cycle assessment of pomegranate biorefinery. Environmental Science and Pollution Research, 27(20), 25785–25793. https://doi.org/10.1007/s11356-020-08957-0 | spa |
dc.relation.references | Shukla, S. S., Chava, R., Appari, S., A, B., & Kuncharam, B. V. R. (2022). Sustainable use of rice husk for the cleaner production of value-added products. Journal of Environmental Chemical Engineering, 10(1), 106899. https://doi.org/10.1016/j.jece.2021.106899 | spa |
dc.relation.references | Siccama, J. W., Oudejans, R., Zhang, L., Kabel, M. A., Maarten, A., & Schutyser, I. (2022). Steering the formation of cellobiose and oligosaccharides during enzymatic hydrolysis of asparagus fibre. LWT, 160(November 2021), 113273. https://doi.org/10.1016/j.lwt.2022.113273 | spa |
dc.relation.references | Silalertruksa, T., Pongpat, P., & Gheewala, S. H. (2017). Life cycle assessment for enhancing environmental sustainability of sugarcane biorefinery in Thailand. Journal of Cleaner Production, 140, 906–913. https://doi.org/10.1016/j.jclepro.2016.06.010 | spa |
dc.relation.references | SimaPro. (2013). Introduction to LCA with SimaPro Colophon. November. | spa |
dc.relation.references | Sindhu, R., Binod, P., & Pandey, A. (2016). Biological pretreatment of lignocellulosic biomass - An overview. Bioresource Technology, 199, 76–82. https://doi.org/10.1016/j.biortech.2015.08.030 | spa |
dc.relation.references | Singh, A., Bajar, S., & Bishnoi, N. R. (2014). Enzymatic hydrolysis of microwave alkali pretreated rice husk for ethanol production by Saccharomyces cerevisiae, Scheffersomyces stipitis and their co-culture. Fuel, 116(September), 699–702. https://doi.org/10.1016/j.fuel.2013.08.072 | spa |
dc.relation.references | Singh, A., Bajar, S., Devi, A., & Pant, D. (2021). An overview on the recent developments in fungal cellulase production and their industrial applications. Bioresource Technology Reports, 14(February), 100652. https://doi.org/10.1016/j.biteb.2021.100652 | spa |
dc.relation.references | Singh, A., & Bishnoi, N. R. (2012). Optimization of ethanol production from microwave alkali pretreated rice straw using statistical experimental designs by Saccharomyces cerevisiae. Industrial Crops and Products, 37(1), 334–341. https://doi.org/10.1016/j.indcrop.2011.12.033 | spa |
dc.relation.references | Singh, A. D., Upadhyay, A., Shrivastava, S., & Vivekanand, V. (2020). Life-cycle assessment of sewage sludge-based large-scale biogas plant. Bioresource Technology, 309(January), 123373. https://doi.org/10.1016/j.biortech.2020.123373 | spa |
dc.relation.references | Singh, A. K., Deeba, F., Kumar, M., Kumari, S., Wani, S. A., Paul, T., & Gaur, N. A. (2023). Development of engineered Candida tropicalis strain for efficient corncob-based xylitol-ethanol biorefinery. Microbial Cell Factories, 22(1), 1–16. https://doi.org/10.1186/s12934-023-02190-3 | spa |
dc.relation.references | Singh, B. (2018). Rice husk ash. Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications, 417–460. https://doi.org/10.1016/B978-0-08-102156-9.00013-4 | spa |
dc.relation.references | Singh, L., & Kalia, V. C. (2017). Waste biomass management - A holistic approach. In Waste Biomass Management - A Holistic Approach. https://doi.org/10.1007/978-3-319-49595-8 | spa |
dc.relation.references | Singh, S., Arya, S. K., & Krishania, M. (2024). Bioprocess optimization for enhanced xylitol synthesis by new isolate Meyerozyma caribbica CP02 using rice straw. Biotechnology for Biofuels and Bioproducts, 17(1), 1–16. https://doi.org/10.1186/s13068-024-02475-8 | spa |
dc.relation.references | Singh, S., Kaur, D., Yadav, S. K., & Krishania, M. (2021). Process scale-up of an efficient acid-catalyzed steam pretreatment of rice straw for xylitol production by C. Tropicalis MTCC 6192. Bioresource Technology, 320(124422), 1–9. https://doi.org/10.1016/j.biortech.2020.124422 | spa |
dc.relation.references | Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2006). Determination of Sugars , Byproducts , and Degradation Products in Liquid Fraction Process Samples - NREL/TP-510-42623. National Renewable Energy Laboratory, January, 14. | spa |
dc.relation.references | Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of Ash in Biomass - NREL/TP-510-42622. In National Renewable Energy Laboratory. | spa |
dc.relation.references | Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2012). Determination of structural carbohydrates and lignin in Biomass - NREL/TP-510-42618. In National Renewable Energy Laboratory (Issue April 2008). http://www.nrel.gov/docs/gen/fy13/42618.pdf | spa |
dc.relation.references | Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of Extractives in Biomass: Laboratory Analytical Procedure (LAP); Issue Date 7/17/2005. http://www.nrel.gov/biomass/analytical_procedures.html | spa |
dc.relation.references | Soam, S., Kapoor, M., Kumar, R., Gupta, R. P., Puri, S. K., & Ramakumar, S. S. V. (2018). Life cycle assessment and life cycle costing of conventional and modified dilute acid pretreatment for fuel ethanol production from rice straw in India. Journal of Cleaner Production, 197, 732–741. https://doi.org/10.1016/j.jclepro.2018.06.204 | spa |
dc.relation.references | Solarte-Toro, J. C., & Cardona Alzate, C. A. (2023). Sustainability of Biorefineries: Challenges and Perspectives. Energies, 16(9). https://doi.org/10.3390/en16093786 | spa |
dc.relation.references | Solarte Toro, J. C. (2022). Sustainability assessment of different biorefinery schemes to enhance the development of post-conflict areas in the Colombian context: The Montes de Maria case. In Chemical Engineering and Technology (Vol. 42, Issue 12). | spa |
dc.relation.references | Soltani, N., Bahrami, A., Pech-Canul, M. I., & González, L. A. (2015). Review on the physicochemical treatments of rice husk for production of advanced materials. Chemical Engineering Journal, 264, 899–935. https://doi.org/10.1016/j.cej.2014.11.056 | spa |
dc.relation.references | Sreekumar, A., Shastri, Y., Wadekar, P., Patil, M., & Lali, A. (2020). Life cycle assessment of ethanol production in a rice-straw-based biorefinery in India. Clean Technologies and Environmental Policy, 22(2), 409–422. https://doi.org/10.1007/s10098-019-01791-0 | spa |
dc.relation.references | Styles, D., Gaffey, J., Collins, M. N., & Styles, D. (2024). Review of methodological decisions in life cycle assessment ( LCA ) of biorefinery systems across feedstock categories Review of methodological decisions in life cycle assessment ( LCA ) of biorefinery systems across feedstock categories. Journal of Environmental Management, 358(April), 120813. https://doi.org/10.1016/j.jenvman.2024.120813 | spa |
dc.relation.references | Suarez Lizarazoa, F. U., Guimarães Pereira, G. A., & da Silveira Bezerra de Mell, F. (2022). STRATEGIES FOR IMPROVED XYLITOL PRODUCTION IN BATCH FERMENTATION OF SUGARCANE HYDROLYSATE USING SACCHAROMYCES CEREVISIAE. BioRxiv. https://doi.org/10.1101/2022.05.25.493426 | spa |
dc.relation.references | Svensson, I., Roncal, T., Winter, K. De, Canneyt, A. Van, & Tamminen, T. (2020). Industrial Crops & Products VALORISATION OF HYDROLYSIS LIGNIN REST FROM BIOETHANOL PILOT PLANT : PROCESS DEVELOPMENT AND UPSCALING. Industrial Crops & Products, 156(July), 112869. https://doi.org/10.1016/j.indcrop.2020.112869 | spa |
dc.relation.references | Świątek, K., Gaag, S., Klier, A., Kruse, A., Sauer, J., & Steinbach, D. (2020). Acid hydrolysis of lignocellulosic biomass: Sugars and furfurals formation. Catalysts, 10(4), 1–18. https://doi.org/10.3390/catal10040437 | spa |
dc.relation.references | Tamburini, E., Costa, S., Marchetti, M. G., & Pedrini, P. (2015). Optimized production of xylitol from xylose using a hyper-acidophilic Candida tropicalis. Biomolecules, 5(3), 1979–1989. https://doi.org/10.3390/biom5031979 | spa |
dc.relation.references | TAPPI. (2006). Lignin in Wood and Pulp - Test Method 222 Om-02. | spa |
dc.relation.references | Tasselli, G., Filippucci, S., D’Antonio, S., Cavalaglio, G., Turchetti, B., Cotana, F., & Buzzini, P. (2019). Optimization of enzymatic hydrolysis of cellulosic fraction obtained from stranded driftwood feedstocks for lipid production by Solicoccozyma terricola. Biotechnology Reports, 24. https://doi.org/10.1016/j.btre.2019.e00367 | spa |
dc.relation.references | Technical Committee ISO/TC 207. (2006a). Environmental management — Life cycle assessment — Requirements and guidelines. 2006. | spa |
dc.relation.references | Technical Committee ISO/TC 207. (2006b). ISO 14040:2006 Environmental management — Life cycle assessment — Principles and framework. 1997. | spa |
dc.relation.references | Temiz, E., & Akpinar, O. (2017). The Effect of Severity Factor on the Release of Xylose and Phenolics from Rice Husk and Rice Straw. Waste and Biomass Valorization, 8(2), 505–516. https://doi.org/10.1007/s12649-016-9608-z | spa |
dc.relation.references | The MathWorks Inc. (2022). MATLAB version: 9.13.0 (R2022b). The MathWorks Inc. https://www.mathworks.com | spa |
dc.relation.references | Thielemans, K., De Bondt, Y., Comer, L., Raes, J., Everaert, N., Sels, B. F., & Courtin, C. M. (2023). Decreasing the Crystallinity and Degree of Polymerization of Cellulose Increases Its Susceptibility to Enzymatic Hydrolysis and Fermentation by Colon Microbiota. Foods, 12(5), 1100. https://doi.org/10.3390/foods12051100 | spa |
dc.relation.references | Tian, S. Q., Zhao, R. Y., & Chen, Z. C. (2018). Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renewable and Sustainable Energy Reviews, 91(June 2017), 483–489. https://doi.org/10.1016/j.rser.2018.03.113 | spa |
dc.relation.references | Tiwari, S., & Baghela, A. (2020). Challenges and prospects of xylitol production by conventional and non-conventional yeasts. In New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier B.V. https://doi.org/10.1016/b978-0-12-821007-9.00016-4 | spa |
dc.relation.references | Torrado, I., & Bandeira, F. (2014). The Impact of Particle Size on the Dilute Acid Hydrolysis of Giant Reed Biomass. Electronic Journal of …, 2(1), 1–9. https://doi.org/10.7770/ejee-V2N1-art598 | spa |
dc.relation.references | Trivedi, J., Bhonsle, A. K., & Atray, N. (2020). Processing food waste for the production of platform chemicals. Refining Biomass Residues for Sustainable Energy and Bioproducts: Technology, Advances, Life Cycle Assessment, and Economics, 427–448. https://doi.org/10.1016/B978-0-12-818996-2.00019-3 | spa |
dc.relation.references | Tsai, C., & Meyer, A. S. (2014). Enzymatic Cellulose Hydrolysis: Enzyme Reusability and Visualization of β-Glucosidase Immobilized in Calcium Alginate. https://doi.org/10.3390/molecules191219390 | spa |
dc.relation.references | Ubando, A. T., Felix, C. B., & Chen, W. H. (2020). Biorefineries in circular bioeconomy: A comprehensive review. Bioresource Technology, 299(November 2019). https://doi.org/10.1016/j.biortech.2019.122585 | spa |
dc.relation.references | Umai, D., Kayalvizhi, R., Kumar, V., & Jacob, S. (2022). Xylitol: Bioproduction and Applications-A Review. Frontiers in Sustainability, 3(February), 1–16. https://doi.org/10.3389/frsus.2022.826190 | spa |
dc.relation.references | Vallejos, M. E., Chade, M., Mereles, E. B., Bengoechea, D. I., Brizuela, J. G., Felissia, F. E., & Area, M. C. (2016). Strategies of detoxification and fermentation for biotechnological production of xylitol from sugarcane bagasse. Industrial Crops and Products, 91, 161–169. https://doi.org/10.1016/j.indcrop.2016.07.007 | spa |
dc.relation.references | Vardhan, H., Sasamal, S., & Mohanty, K. (2022). Fermentation process optimisation based on ANN and RSM for xylitol production from areca nut husk followed by xylitol crystal characterisation. Process Biochemistry, 122(P2), 146–159. https://doi.org/10.1016/j.procbio.2022.10.005 | spa |
dc.relation.references | Vardhan, H., Sasmal, S., & Mohanty, K. (2023). Xylitol Production by Candida tropicalis from Areca Nut Husk Enzymatic Hydrolysate and Crystallization. Applied Biochemistry and Biotechnology, 195(12), 7298–7321. https://doi.org/10.1007/s12010-023-04469-y | spa |
dc.relation.references | Vardhan, H., Sasmal, S., & Mohanty, K. (2024). Detoxification of areca nut acid hydrolysate and production of xylitol by Candida tropicalis (MTCC 6192). Preparative Biochemistry and Biotechnology, 54(1), 1–12. https://doi.org/10.1080/10826068.2023.2207093 | spa |
dc.relation.references | Venkateswar Rao, L., Goli, J. K., Gentela, J., & Koti, S. (2016). Bioconversion of lignocellulosic biomass to xylitol: An overview. Bioresource Technology, 213, 299–310. https://doi.org/10.1016/j.biortech.2016.04.092 | spa |
dc.relation.references | Verardi, A., De, I., Ricca, E., & Calabr, V. (2012). Hydrolysis of Lignocellulosic Biomass: Current Status of Processes and Technologies and Future Perspectives. Bioethanol. https://doi.org/10.5772/23987 | spa |
dc.relation.references | Verardi, A., De, I., Ricca, E., & Calabr, V. (2019). Hydrolysis of Lignocellulosic Biomass: Current Status of Processes and Technologies and Future Perspectives. Bioresource Technology, 149(1), 319–330. https://doi.org/10.1016/j.biortech.2019.121726 | spa |
dc.relation.references | Verones, F., Huijbregts, M. A. J., Azevedo, L. B., Chaudhary, A., Baan, L. De, Fantke, P., Hauschild, M., Henderson, A. D., Mutel, C. L., Owsianiak, M., Pfister, S., Preiss, P., Roy, O., Scherer, L., Steinmann, Z., Zelm, R. Van, & Dingenen, R. Van. (2020). A spatially differentiated life cycle impact assessment approach. Life Cycle Impact Assessment, 1(1), 1–184. | spa |
dc.relation.references | Villalba-Cadavid, M., Vélez - Uribe, T., Arias, M., & Arrázola, G. (2009). Producción de xilitol a partir de cascarilla de arroz utilizando Candida guilliermondii. Revista Facultad Nacional de Agronomía Medellin, 62(1), 4897–4905. | spa |
dc.relation.references | Villarreal, M. L. M., Prata, A. M. R., Felipe, M. G. A., & Almeida E Silva, J. B. (2006). Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzyme and Microbial Technology, 40(1), 17–24. https://doi.org/10.1016/j.enzmictec.2005.10.032 | spa |
dc.relation.references | Vollmer, N. I., Gargalo, C. L., Gernaey, K. V., Olsen, S. I., & Sin, G. (2023). Life cycle assessment of an integrated xylitol biorefinery with value-added co-products. International Journal of Life Cycle Assessment, 28(9), 1155–1168. https://doi.org/10.1007/s11367-023-02194-6 | spa |
dc.relation.references | Vu, H. P., Nguyen, L. N., Vu, M. T., Johir, M. A. H., McLaughlan, R., & Nghiem, L. D. (2020). A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks. Science of the Total Environment, 743, 140630. https://doi.org/10.1016/j.scitotenv.2020.140630 | spa |
dc.relation.references | Waghmare, P. R., Khandare, R. V., Jeon, B. H., & Govindwar, S. P. (2018). Enzymatic hydrolysis of biologically pretreated sorghum husk for bioethanol production. Biofuel Research Journal, 5(3), 846–853. https://doi.org/10.18331/BRJ2018.5.3.4 | spa |
dc.relation.references | Wang, C., Lu, X., Gao, J., Li, X., & Zhao, J. (2018). Xylo-oligosaccharides Inhibit Enzymatic Hydrolysis by Influencing Enzymatic Activity of Cellulase from Penicillium oxalicum [Research-article]. Energy and Fuels, 32(9), 9427–9437. https://doi.org/10.1021/acs.energyfuels.8b01424 | spa |
dc.relation.references | Wang, D., Ju, X., Zhou, D., & Wei, G. (2014). Efficient production of pullulan using rice hull hydrolysate by adaptive laboratory evolution of Aureobasidium pullulans. Bioresource Technology, 164, 12–19. https://doi.org/10.1016/j.biortech.2014.04.036 | spa |
dc.relation.references | Wang, J., Xi, J., & Wang, Y. (2015). Recent advances in the catalytic production of glucose from lignocellulosic biomass. Green Chemistry, 17(2), 737–751. https://doi.org/10.1039/c4gc02034k | spa |
dc.relation.references | Wang, J., Xiao, W., Zhang, J., Quan, X., Chu, J., Meng, X., Pu, Y., & Ragauskas, A. J. (2023). Beneficial effect of surfactant in adsorption/desorption of lignocellulose-degrading enzymes on/from lignin with different structure. Industrial Crops and Products, 191(PA), 115904. https://doi.org/10.1016/j.indcrop.2022.115904 | spa |
dc.relation.references | Wang, J., & Yin, Y. (2021). Clostridium species for fermentative hydrogen production: An overview. International Journal of Hydrogen Energy, 46(70), 34599–34625. https://doi.org/10.1016/j.ijhydene.2021.08.052 | spa |
dc.relation.references | Wang, L., Qi, A., Liu, J., Shen, Y., & Wang, J. (2023). Comparative metabolic analysis of the adaptive Candida tropicalis to furfural stress response. Chemical Engineering Science, 267, 118348. https://doi.org/10.1016/j.ces.2022.118348 | spa |
dc.relation.references | Wang, S., Cheng, G., Joshua, C., He, Z., Sun, X., Li, R., & Liu, L. (2016). Biotechnology for Biofuels Furfural tolerance and detoxification mechanism in Candida tropicalis. Biotechnology for Biofuels, 1–11. https://doi.org/10.1186/s13068-016-0668-x | spa |
dc.relation.references | Wang, S., He, Z., & Yuan, Q. (2017). Xylose enhances furfural tolerance in Candida tropicalis by improving NADH recycle. Chemical Engineering Science, 158(15), 37–40. https://doi.org/10.1016/j.ces.2016.09.026 | spa |
dc.relation.references | Wang, S., Li, H., Fan, X., Zhang, J., Tang, P., & Yuan, Q. (2015). Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion. FUNGAL GENETICS AND BIOLOGY, 82, 1–8. https://doi.org/10.1016/j.fgb.2015.04.022 | spa |
dc.relation.references | Wei, G. Y., Lee, Y. J., Kim, Y. J., Jin, I. H., Lee, J. H., Chung, C. H., & Lee, J. W. (2010). Kinetic study on the pretreatment and enzymatic saccharification of rice hull for the production of fermentable sugars. Applied Biochemistry and Biotechnology, 162(5), 1471–1482. https://doi.org/10.1007/s12010-010-8926-z | spa |
dc.relation.references | Wertz, J. L., & Bédué, O. (2013). Lignocellulosic biorefineries. In Lignocellulosic Biorefineries. https://doi.org/10.1201/b15443 | spa |
dc.relation.references | Wertz, J. L., Deleu, M., Coppée, S., & Richel, A. (2018). Hemicelluloses and lignin in biorefineries. In Green chemistry and chemical engineering (first). Taylor & Francis. | spa |
dc.relation.references | Wu, G., Qu, P., Sun, E., Chang, Z., Xu, Y., & Huang, H. (2015). Physical, chemical, and rheological properties of rice husks treated by composting process. BioResources, 10(1), 227–239. https://doi.org/10.15376/biores.10.1.227-239 | spa |
dc.relation.references | Wu, H., Dai, X., Zhou, S. L., Gan, Y. Y., Xiong, Z. Y., Qin, Y. H., Ma, J., Yang, L., Wu, Z. K., Wang, T. L., Wang, W. G., & Wang, C. W. (2017). Ultrasound-assisted alkaline pretreatment for enhancing the enzymatic hydrolysis of rice straw by using the heat energy dissipated from ultrasonication. Bioresource Technology, 241, 70–74. https://doi.org/10.1016/j.biortech.2017.05.090 | spa |
dc.relation.references | Wu, J., Elliston, A., Le Gall, G., Colquhoun, I. J., Collins, S. R. A., Wood, I. P., Dicks, J., Roberts, I. N., & Waldron, K. W. (2018). Optimising conditions for bioethanol production from rice husk and rice straw: Effects of pre-treatment on liquor composition and fermentation inhibitors. Biotechnology for Biofuels, 11(1), 1–13. https://doi.org/10.1186/s13068-018-1062-7 | spa |
dc.relation.references | Wu, W., Li, P., Huang, L., Wei, Y., Li, J., Zhang, L., & Jin, Y. (2023). The Role of Lignin Structure on Cellulase Adsorption and Enzymatic Hydrolysis. Biomass, 3(1), 96–107. https://doi.org/10.3390/biomass3010007 | spa |
dc.relation.references | Xing, A., Tian, S., Tang, H., Losic, D., & Bao, Z. (2013). Mesoporous silicon engineered by the reduction of biosilica from rice husk as a high-performance anode for lithium-ion batteries. RSC Advances, 3(26), 10145–10149. https://doi.org/10.1039/c3ra41889h | spa |
dc.relation.references | Xu, L., Liu, L., Li, S., Zheng, W., Cui, Y., Liu, R., & Sun, W. (2019). Xylitol Production by Candida tropicalis 31949 from Sugarcane Bagasse Hydrolysate. Sugar Tech, 21(2), 341–347. https://doi.org/10.1007/s12355-018-0650-y | spa |
dc.relation.references | Xu, Y., Chi, P., Bilal, M., & Cheng, H. (2019). Biosynthetic strategies to produce xylitol: an economical venture. Applied Microbiology and Biotechnology, 103(13), 5143–5160. https://doi.org/10.1007/s00253-019-09881-1 | spa |
dc.relation.references | Yang, C. Y., & Fang, T. J. (2015). Kinetics for enzymatic hydrolysis of rice hulls by the ultrasonic pretreatment with a bio-based basic ionic liquid. Biochemical Engineering Journal, 100, 23–29. https://doi.org/10.1016/j.bej.2015.04.012 | spa |
dc.relation.references | Yeh, A. I., Huang, Y. C., & Chen, S. H. (2010). Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydrate Polymers, 79(1), 192–199. https://doi.org/10.1016/j.carbpol.2009.07.049 | spa |
dc.relation.references | Yewale, T., Panchwagh, S., Sawale, S., Jain, R., & Dhamole, P. B. (2017). Xylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components. 3 Biotech, 7(1), 1–9. https://doi.org/10.1007/s13205-017-0700-2 | spa |
dc.relation.references | Yoon, S. J., Son, Y. Il, Kim, Y. K., & Lee, J. G. (2012). Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier. Renewable Energy, 42, 163–167. https://doi.org/10.1016/j.renene.2011.08.028 | spa |
dc.relation.references | Yuan, Q., Liu, S., Ma, M. G., Ji, X. X., Choi, S. E., & Si, C. (2021). The Kinetics Studies on Hydrolysis of Hemicellulose. Frontiers in Chemistry, 9(November), 1–12. https://doi.org/10.3389/fchem.2021.781291 | spa |
dc.relation.references | Yuan, W. C., Wu, T. Y., Chu, P. Y., Chang, F. R., & Wu, Y. C. (2023). High-Purity Bioactive Ingredient—3S,3′S-Astaxanthin: A New Preparation from Genetically Modified Kluyveromyces marxianus without Column Chromatography and Gel Filtration. Antioxidants, 12(4). https://doi.org/10.3390/antiox12040875 | spa |
dc.relation.references | Yücel, Y., & Göycıncık, S. (2015). Optimization and Modelling of Process Conditions Using Response Surface Methodology (RSM) for Enzymatic Saccharification of Spent Tea Waste (STW). Waste and Biomass Valorization, 6(6), 1077–1084. https://doi.org/10.1007/s12649-015-9395-y | spa |
dc.relation.references | Zahed, O., Jouzani, G. S., Abbasalizadeh, S., Khodaiyan, F., & Tabatabaei, M. (2016). Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor. Folia Microbiologica, 61(3), 179–189. https://doi.org/10.1007/s12223-015-0420-0 | spa |
dc.relation.references | Zelm, R. Van, Preiss, P., Dingenen, R. Van, & Huijbregts, M. (2016). Chapter 6: Particulate Matter Formation. LC-Impact Version 0.5, 52–60. http://lc-impact.eu/downloads-method | spa |
dc.relation.references | Zerbino, R., Giaccio, G., & Isaia, G. C. (2011). Concrete incorporating rice-husk ash without processing. Construction and Building Materials, 25(1), 371–378. https://doi.org/10.1016/j.conbuildmat.2010.06.016 | spa |
dc.relation.references | Zhai, L., Zhou, Y., Wu, Y., Jin, Y., Zhu, Q., Gao, S., Li, X., Sun, Z., Xiao, Y., Huang, B., & Tian, K. (2021). Isolation and identification of Candida tropicalis in sows with fatal infection: a case report. BMC Veterinary Research, 17(1), 1–4. https://doi.org/10.1186/s12917-021-02821-0 | spa |
dc.relation.references | Zhai, R., Hu, J., & Saddler, J. N. (2018). The inhibition of hemicellulosic sugars on cellulose hydrolysis are highly dependant on the cellulase productive binding, processivity, and substrate surface charges. Bioresource Technology, 258(November 2017), 79–87. https://doi.org/10.1016/j.biortech.2017.12.006 | spa |
dc.relation.references | Zhang, C., Zhu, X., Zhang, F., Yang, X., Ni, L., Zhang, W., Liu, Z., & Zhang, Y. (2020). Improving viscosity and gelling properties of leaf pectin by comparing five pectin extraction methods using green tea leaf as a model material. Food Hydrocolloids, 98(May 2019). https://doi.org/10.1016/j.foodhyd.2019.105246 | spa |
dc.relation.references | Zhang, M., Wang, Y., Hui, K. S., Liu, L., & Zhang, C. (2020). Microwave-assisted Acid-catalyzed Hydrolysis of Hemicelluloses in Rice Husk into Xylose. IOP Conference Series: Earth and Environmental Science, 513(1). https://doi.org/10.1088/1755-1315/513/1/012016 | spa |
dc.relation.references | Zhao, J., Yang, Y., Zhang, M., & Wang, D. (2021). Effects of post-washing on pretreated biomass and hydrolysis of the mixture of acetic acid and sodium hydroxide pretreated biomass and their mixed filtrate. Bioresource Technology, 339(July), 125605. https://doi.org/10.1016/j.biortech.2021.125605 | spa |
dc.relation.references | Zhao, Y., Wu, B., Yan, B., & Gao, P. (2004). Mechanism of cellobiose inhibition in cellulose hydrolysis by cellobiohydrolase. Science in China, Series C: Life Sciences, 47(1), 18–24. https://doi.org/10.1360/02yc0163 | spa |
dc.relation.references | Zhuang, X., Wang, W., Yu, Q., Qi, W., Wang, Q., Tan, X., Zhou, G., & Yuan, Z. (2016). Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresource Technology, 199, 68–75. https://doi.org/10.1016/j.biortech.2015.08.051 | spa |
dc.relation.references | Zoghlami, A., & Paës, G. (2019). Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Frontiers in Chemistry, 7(December). https://doi.org/10.3389/fchem.2019.00874 | spa |
dc.relation.references | Zuza-Alves, D. L., de Medeiros, S. S. T. Q., de Souza, L. B. F. C., Silva-Rocha, W. P., Francisco, E. C., de Araújo, M. C. B., Lima-Neto, R. G., Neves, R. P., Melo, A. S. d. A., & Chaves, G. M. (2016). Evaluation of virulence factors in vitro, resistance to osmotic stress and antifungal susceptibility of Candida tropicalis isolated from the coastal environment of northeast Brazil. Frontiers in Microbiology, 7(NOV), 1–13. https://doi.org/10.3389/fmicb.2016.01783 | spa |
dc.relation.references | Zuza-Alves, D. L., Silva-Rocha, W. P., & Chaves, G. M. (2017). An update on Candida tropicalis based on basic and clinical approaches. Frontiers in Microbiology, 8(OCT), 1–25. https://doi.org/10.3389/fmicb.2017.01927 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.armarc | Hidrólisis enzimática | |
dc.subject.ddc | 660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados | spa |
dc.subject.ddc | 660 - Ingeniería química::661 - Tecnología de químicos industriales | spa |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | spa |
dc.subject.lemb | Cascarilla de arroz | |
dc.subject.proposal | residuos agrícolas | spa |
dc.subject.proposal | xilitol | spa |
dc.subject.proposal | glucosa | spa |
dc.subject.proposal | sacarificación | spa |
dc.subject.proposal | cascarilla de arroz | spa |
dc.subject.proposal | residuos lignocelulósicos | spa |
dc.subject.proposal | Agricultural residues | eng |
dc.subject.proposal | xylitol | eng |
dc.subject.proposal | glucose | eng |
dc.subject.proposal | saccharification | eng |
dc.subject.proposal | rice husk | eng |
dc.subject.proposal | lignocellulosic residues | eng |
dc.subject.wikidata | Xilosa | |
dc.title | Valorización de cascarilla de arroz a través de una estrategia de biorrefinería y determinación del impacto ambiental mediante el análisis de ciclo de vida del proceso | spa |
dc.title.translated | Rice husk valorization through a biorefinery strategy and determination of environmental impact through process life cycle assessment | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Grupos comunitarios | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Valorización biotecnológica de residuos industriales y determinación del impacto ambiental del proceso – Proyecto HERMES 49639 | spa |
oaire.fundername | Universidad Nacional de Colombia | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1085326521.2025.pdf
- Tamaño:
- 3.68 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Biotecnología
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: