Valorización de cascarilla de arroz a través de una estrategia de biorrefinería y determinación del impacto ambiental mediante el análisis de ciclo de vida del proceso

dc.contributor.advisorZapata Zapata, Arley David
dc.contributor.authorEraso Calvachi, Lina Maria
dc.contributor.researchgroupBiotecnología Industrialspa
dc.date.accessioned2025-03-31T18:52:02Z
dc.date.available2025-03-31T18:52:02Z
dc.date.issued2025
dc.descriptionIlustracionesspa
dc.description.abstractDebido a la amplia disponibilidad de la cascarilla de arroz, su bajo costo como subproducto del procesamiento del arroz, la inadecuada disposición actual y su subutilización, surge la necesidad de su valorización. Por ello, en el presente estudio se propone la aplicación de una estrategia de biorrefinería para transformar la cascarilla de arroz en metabolitos de valor agregado como el xilitol y la glucosa, además, de la realización de un análisis ciclo de vida (ACV) para determinar el impacto ambiental del proceso de biorrefinación propuesto. Para ello, se evaluó el efecto del tamaño de partícula y tiempo de hidrólisis ácida para la producción de xilosa, posteriormente se llevó a cabo la adaptación de la levadura Candida tropicalis y se estudió la concentración de xilosa y de inóculo para la producción de xilitol mediante fermentación. Posteriormente, se determinó el efecto de la carga de enzima FoodPro® CBL y el sustrato en la hidrólisis enzimática para la producción de glucosa. Entre las posibles aplicaciones de la glucosa, se exploró su uso en la producción de etanol y finalmente se realizó un ACV. Los resultados indicaron que las partículas de mayor tamaño generaron la mayor producción de xilosa, siendo la cascarilla de arroz sin moler durante 60 min el tratamiento óptimo, con una concentración de xilosa de 12,846 g/L. Para la producción de xilitol se determinó que la concentración de xilosa es el factor determinante sobre la producción de xilitol, por medio del modelo matemático desarrollado se establecieron condiciones óptimas de 4,41 g/L de inóculo y 68,28 g/L de xilosa, logrando una concentración de xilitol de 36,74 g/L. En cuanto a la producción de glucosa, ambos factores influyeron significativamente, con condiciones óptimas de relación sólido-líquido de 24,57% y dosis de enzima de 22,43 FPU/g, logrando una concentración de glucosa de 10,31 g/L. A partir de la glucosa obtenida, se produjo 4,43 g/L de etanol, destacando su potencial para la generación de biocombustibles. Mediante el ACV, se identificó que el principal punto crítico del proceso es el uso de electricidad, proponiéndose mejoras en su uso y en el proceso en general. Este proyecto demuestra que la cascarilla de arroz puede ser valorizada mediante una estrategia de biorrefinería, obteniendo productos de valor agregado y destacando su potencial como fuente de producción de metabolitos en la industria biotecnológica. Así mismo, proporciona una base para la adopción de tecnologías de biorrefinería en la gestión de residuos agrícolas y reitera la importancia del ACV en la evaluación de nuevos procesos industriales. (Texto tomado de la fuente)spa
dc.description.abstractTitle: Rice husk valorization through a biorefinery strategy and determination of environmental impact through process life cycle assessment Due to the wide availability of rice husk, its low cost as a by-product of rice processing, its inadequate current disposal and its underutilization, the need for its valorization arises. Therefore, in the present study, the application of a biorefinery strategy is proposed to transform rice husk into value-added metabolites such as xylitol and glucose, in addition to the realization of a life cycle analysis (LCA) to determine the environmental impact of the proposed biorefining process. To achieve this, the effect of particle size and acid hydrolysis time to produce xylose was evaluated, then the adaptation of the Candida tropicalis yeast was carried out, and the concentration of xylose and inoculum for the production of xylitol through fermentation were studied. Subsequently, the effect of the FoodPro® CBL enzyme and substrate load on the enzymatic hydrolysis to obtain glucose was determined. Among the possible applications of glucose, its use in ethanol production was explored and finally an LCA was performed. The results indicated that the largest particles generated the highest xylose production, with unmilled rice husk for 60 min being the optimal treatment, with a xylose concentration of 12,846 g/L. For xylitol production, it was determined that xylose concentration is the determining factor on xylitol production. Through the mathematical model, optimal conditions of 4,41 g/L of inoculum and 68,28 g/L of xylose were established, achieving a xylitol concentration of 36,74 g/L. Regarding glucose production, both factors had a significant influence, with optimal conditions of solid-liquid ratio of 24,57% and enzyme dose of 22,43 FPU/g, achieving a glucose concentration of 10,31 g/L. From the glucose obtained, 4,43 g/L of ethanol was produced, highlighting its potential for biofuel generation. Through the LCA, it was identified that the main critical point of the process is the use of electricity, proposing improvements in its use and in the process in general. This project demonstrates that rice husk can be valorized through a biorefinery strategy, obtaining value-added products and highlighting its potential as a source of metabolite production in the biotechnology industry. It also provides a basis for the adoption of biorefinery technologies in agricultural waste management and emphasizes the importance of LCA in the evaluation of new industrial processes.eng
dc.description.curricularareaÁrea curricular Biotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias - Biotecnologíaspa
dc.description.researchareaAprovechamiento biotecnológico de residuos agroindustrialesspa
dc.format.extent154 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87792
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.referencesAbaide, E. R., Tres, M. V., Zabot, G. L., & Mazutti, M. A. (2019). Reasons for processing of rice coproducts: Reality and expectations. Biomass and Bioenergy, 120(November 2018), 240–256. https://doi.org/10.1016/j.biombioe.2018.11.032spa
dc.relation.referencesAbaide, E. R., Ugalde, G., Di Luccio, M., Moreira, R. de F. P. M., Tres, M. V., Zabot, G. L., & Mazutti, M. A. (2019). Obtaining fermentable sugars and bioproducts from rice husks by subcritical water hydrolysis in a semi-continuous mode. Bioresource Technology, 272(October 2018), 510–520. https://doi.org/10.1016/j.biortech.2018.10.075spa
dc.relation.referencesAbbas, A., & Ansumali, S. (2010). Global Potential of Rice Husk as a Renewable Feedstock for Ethanol Biofuel Production. Bioenergy Research, 3(4), 328–334. https://doi.org/10.1007/s12155-010-9088-0spa
dc.relation.referencesAbdou Alio, M., Tugui, O. C., Rusu, L., Pons, A., & Vial, C. (2020). Hydrolysis and fermentation steps of a pretreated sawmill mixed feedstock for bioethanol production in a wood biorefinery. Bioresource Technology, 310(February), 123412. https://doi.org/10.1016/j.biortech.2020.123412spa
dc.relation.referencesAbedi, E., & Hashemi, S. M. B. (2020). Lactic acid production – producing microorganisms and substrates sources-state of art. Heliyon, 6(10), e04974. https://doi.org/10.1016/j.heliyon.2020.e04974spa
dc.relation.referencesAbood Habeeb, G., & Bin Mahmud, H. (2010). Study on Properties of Rice Husk Ash and Its Use as Cement Replacement Material. Materials Research, 13(2), 185–190.spa
dc.relation.referencesAbu Bakar, N. A., Roslan, A. M., Hassan, M. A., Abdul Rahman, M. H., Ibrahim, K. N., Abdul Rahman, M. D., & Mohamad, R. (2022). Development of life cycle inventory and greenhouse gas emissions from damaged paddy grain as fermentation feedstock: A case study in Malaysia. Journal of Cleaner Production, 354(September 2021), 131722. https://doi.org/10.1016/j.jclepro.2022.131722spa
dc.relation.referencesAcero, A. A. P., Rodríguez, C., & Ciroth, A. (2017). LCIA methods Impact assessment methods in Life Cycle Assessment and their impact categories. February 2014, 1–23.spa
dc.relation.referencesAdney, B., & Baker, J. (2008). Measurement of Cellulase Activities. In NREL (Issue January).spa
dc.relation.referencesAhlgren, S. (2015). Review of methodological choices in LCA of biorefinery systems - key. 606–619. https://doi.org/10.1002/bbbspa
dc.relation.referencesAhlgren, S., Björklund, A., Ekman, A., Karlsson, H., Berlin, J., Börjesson, P., Ekvall, T., Finnveden, G., Janssen, M., & Strid, I. (2013). LCA of biorefineries identification of key issues and methodological recommendations. November 2013, 81. http://f3centre.se/sites/default/files/f3_report_2013-25_lca_biorefineries_140710.pdfspa
dc.relation.referencesAhlgren, S., Björklund, A., Ekman, A., Karlsson, H., Berlin, J., Börjesson, P., Ekvall, T., Finnveden, G., Janssen, M., & Strid, I. (2015). Review of methodological choices in LCA of biorefinery systems - key issues and recommendations. Biofuels, Bioproducts and Biorefining, 9(5), 606–619. https://doi.org/10.1002/bbb.1563spa
dc.relation.referencesAhmad, I., Shim, W. Y., Jeon, W. Y., Yoon, B. H., & Kim, J. H. (2012). Enhancement of xylitol production in Candida tropicalis by co-expression of two genes involved in pentose phosphate pathway. Bioprocess and Biosystems Engineering, 35(1–2), 199–204. https://doi.org/10.1007/s00449-011-0641-9spa
dc.relation.referencesAli, A. A. M., Othman, M. R., Shirai, Y., & Hassan, M. A. (2015). Sustainable and integrated palm oil biorefinery concept with value-addition of biomass and zero emission system. Journal of Cleaner Production, 91, 96–99. https://doi.org/10.1016/j.jclepro.2014.12.030spa
dc.relation.referencesAlmhofer, L., Bischof, R. H., Madera, M., & Paulik, C. (2023). Kinetic and mechanistic aspects of furfural degradation in biorefineries. Canadian Journal of Chemical Engineering, 101(4), 2033–2049. https://doi.org/10.1002/cjce.24593spa
dc.relation.referencesAlvarez, P. A., Maciel Filho, R., Plazas Tovar, L., & Wolf Maciel, M. R. (2015). Kinetics of the acid hydrolysis of sugarcane bagasse using different milling size, high solid load and low pretreatment temperature. Chemical Engineering Transactions, 43, 625–630. https://doi.org/10.3303/CET1543105spa
dc.relation.referencesAmesho, K. T. T., Lin, Y. C., Mohan, S. V., Halder, S., Ponnusamy, V. K., & Jhang, S. R. (2023). Deep eutectic solvents in the transformation of biomass into biofuels and fine chemicals: a review. In Environmental Chemistry Letters (Vol. 21, Issue 1). Springer International Publishing. https://doi.org/10.1007/s10311-022-01521-xspa
dc.relation.referencesAng, P., Mothe, S. R., Chennamaneni, L. R., Aidil, F., Khoo, H. H., & Thoniyot, P. (2021). Laboratory-Scale Life-Cycle Assessment: A Comparison of Existing and Emerging Methods of Poly(ϵ-caprolactone) Synthesis. ACS Sustainable Chemistry and Engineering, 9(2), 669–683. https://doi.org/10.1021/acssuschemeng.0c06247spa
dc.relation.referencesAntunes, F. A. F., Thomé, L. C., Santos, J. C., Ingle, A. P., Costa, C. B., Anjos, V. Dos, Bell, M. J. V., Rosa, C. A., & Silva, S. S. D. (2021). Multi-scale study of the integrated use of the carbohydrate fractions of sugarcane bagasse for ethanol and xylitol production. Renewable Energy, 163, 1343–1355. https://doi.org/10.1016/j.renene.2020.08.020spa
dc.relation.referencesArdente, F., & Cellura, M. (2011). Economic Allocation in Life Cycle Assessment The State of the Art and Discussion of Examples. 00(0), 1–12. https://doi.org/10.1111/j.1530-9290.2011.00434.xspa
dc.relation.referencesAredo, F., Rojas, M. L., Pagador, S., Lescano, L., Sanchez-Gonzalez, J., & Linares, G. (2020). Pre-treatments applied to rice husk enzymatic hydrolysis: Effect on structure, lignocellulosic components, and glucose production kinetics. Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, July, 27–31. https://doi.org/10.18687/LACCEI2020.1.1.42spa
dc.relation.referencesArias, A., Feijoo, G., & Moreira, M. T. (2023). Biorefineries as a driver for sustainability: Key aspects, actual development and future prospects. Journal of Cleaner Production, 418(May), 137925. https://doi.org/10.1016/j.jclepro.2023.137925spa
dc.relation.referencesArismendy, A. M., Felipe, A., Retrepo, V., Alcaraz, W., Chamorro, E. R., & Area, M. C. (2019). Optimización de la hidrólisis enzimática de la cascarilla de arroz Optimisation of the enzymatic hydrolysis of rice husk. Revista de Ciencia y Tecnología: RECyT, 32, 64–70.spa
dc.relation.referencesArismendy Pabón, A. M., Felissia, F. E., Mendieta, C. M., Chamorro, E., & Area, M. C. (2020). Improvement of bioethanol production from rice husks. Cellulose Chemistry and Technology, 54(7–8), 689–698. https://doi.org/10.35812/CelluloseChemTechnol.2020.54.68spa
dc.relation.referencesArnling Bååth, J., Jensen, K., Borch, K., Westh, P., & Kari, J. (2022). Sabatier Principle for Rationalizing Enzymatic Hydrolysis of a Synthetic Polyester. JACS Au, 2(5), 1223–1231. https://doi.org/10.1021/jacsau.2c00204spa
dc.relation.referencesAslantürk, Ö. S. (2018). In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages. Genotoxicity - A Predictable Risk to Our Actual World, 1–18. https://doi.org/10.5772/intechopen.71923spa
dc.relation.referencesAssabjeu, A. C., Noubissié, E., Desobgo, S. C. Z., & Ali, A. (2020). Optimization of the enzymatic hydrolysis of cellulose of triplochiton scleroxylon sawdust in view of the production of bioethanol. Scientific African, 8. https://doi.org/10.1016/j.sciaf.2020.e00438spa
dc.relation.referencesAulia, M. F. N., & Lestari, P. (2024). Gate-to-gate approach in life cycle assessment of steel pipe products. E3S Web of Conferences, 485, 1–10. https://doi.org/10.1051/e3sconf/202448501008spa
dc.relation.referencesAyala, I. V. (2022). Extracción y caracterización de lignina proveniente de la cáscara de cacao utilizando solventes eutécticos profundos [Universidad Industrial de Santander]. In Tesis. https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disordersspa
dc.relation.referencesAzevedo, L. B., Roy, P.-O., Verones, F., Zelm, R. Van, & Huijbregts, M. A. J. (2019). 7. Terrestrial Acidification. LC-IMPACT A Spat. Differ. Life Cycle Impact Assess. Approach, 1–13.spa
dc.relation.referencesAzevedo, V., Fernanda Lemons e Silva, C., Lemões, J. S., & Faria, S. P. (2016). Caracterização de biomassa visando a produção de etanol de segunda geração. Revista Brasileira de Engenharia e Sustentabilidade, 2(2), 61. https://doi.org/10.15210/rbes.v2i2.8634spa
dc.relation.referencesBaksi, S., Ball, A. K., Sarkar, U., Banerjee, D., Wentzel, A., Preisig, H. A., Kuniyal, J. C., Birgen, C., Saha, S., Wittgens, B., & Markussen, S. (2019). Efficacy of a novel sequential enzymatic hydrolysis of lignocellulosic biomass and inhibition characteristics of monosugars. International Journal of Biological Macromolecules, 129, 634–644. https://doi.org/10.1016/j.ijbiomac.2019.01.188spa
dc.relation.referencesBalakumar, S., & Arasaratnam, V. (2012). Osmo-, thermo- and ethanol- tolerances of Saccharomyces cerevisiae S1. Brazilian Journal of Microbiology, 43(1), 157–166. https://doi.org/10.1590/S1517-83822012000100017spa
dc.relation.referencesBarbosa, M. F. S., de Medeiros, M. B., de Mancilha, I. M., Schneider, H., & Lee, H. (1988). Screening of yeasts for production of xylitol from d-xylose and some factors which affect xylitol yield in Candida guilliermondii. Journal of Industrial Microbiology, 3(4), 241–251. https://doi.org/10.1007/BF01569582spa
dc.relation.referencesBare, J. C., Hofstetter, P., Pennington, D. W., & Udo de Haes, H. A. (2000). Life cycle impact assessment workshop summary. Midpoints versus endpoints: The sacrifices and benefits. International Journal of Life Cycle Assessment, 5(6), 319–326.spa
dc.relation.referencesBariani, M., Boix, E., Cassella, F., & Cabrera, M. N. (2021). Furfural production from rice husks within a biorefinery framework. Biomass Conversion and Biorefinery, 11(3), 781–794. https://doi.org/10.1007/s13399-020-00810-1spa
dc.relation.referencesBartee, L., & Brook, J. (2019). MHCC Biology 112: Biology for Health Professions.spa
dc.relation.referencesBaruah, J., Nath, B. K., Sharma, R., Kumar, S., Deka, R. C., Baruah, D. C., & Kalita, E. (2018). Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Frontiers in Energy Research, 6(DEC), 1–19. https://doi.org/10.3389/fenrg.2018.00141spa
dc.relation.referencesBattiston, S., Fiameni, S., Fasolin, S., Barison, S., & Armelao, L. (2023). Life cycle environmental impact assessment of lab-scale preparation of porous alumina pellets as substrate for hydrogen separation metal layer-based membranes. International Journal of Life Cycle Assessment, 28(9), 1117–1131. https://doi.org/10.1007/s11367-023-02179-5spa
dc.relation.referencesBatuecas, E., Martínez-Cisneros, C. S., Serrano, D., & Várez, A. (2024). Life cycle assessment of lab-scale solid sodium-ion batteries: A sustainable alternative to liquid lithium-ion batteries. Journal of Energy Storage, 80(September 2023). https://doi.org/10.1016/j.est.2023.110355spa
dc.relation.referencesBautista, S., Enjolras, M., Narvaez, P., Camargo, M., & Morel, L. (2016). Biodiesel-triple bottom line (TBL): A new hierarchical sustainability assessment framework of principles criteria & indicators (PC&I) for biodiesel production. Part II-validation. Ecological Indicators, 69, 803–817. https://doi.org/10.1016/j.ecolind.2016.04.046spa
dc.relation.referencesBazargan, A., Bazargan, M., & McKay, G. (2015). Optimization of rice husk pretreatment for energy production. Renewable Energy, 77, 512–520. https://doi.org/10.1016/j.renene.2014.11.072spa
dc.relation.referencesBecerra, I. C., Díaz, A. M., García, E., Maluendas, A. V, Quintero, L. E., Reina, D., Ortegón, M., Samacá, H., & Viveros, J. S. (2019). Análisis situacional cadena productiva del arroz en colombia. Upra, MINAGRICULTURA, 305. http://ediciones.ucc.edu.co/index.php/ucc/catalog/download/33/35/212-1?inline=1spa
dc.relation.referencesBelal, E. B. (2013). Bioethanol production from rice straw residues. Brazilian Journal of Microbiology, 44(1), 225–234. https://doi.org/10.1590/S1517-83822013000100033spa
dc.relation.referencesBello, S., Salim, I., Feijoo, G., & Moreira, M. T. (2021). Inventory review and environmental evaluation of first- and second-generation sugars through life cycle assessment. Environmental Science and Pollution Research, 28(21), 27345–27361. https://doi.org/10.1007/s11356-021-12405-yspa
dc.relation.referencesBen Taher, I., Fickers, P., Chniti, S., & Hassouna, M. (2017). Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues. Biotechnology Progress, 33(2), 397–406. https://doi.org/10.1002/btpr.2427spa
dc.relation.referencesBhatia, S. K., Jagtap, S. S., Bedekar, A. A., Bhatia, R. K., Patel, A. K., Pant, D., Rajesh Banu, J., Rao, C. V., Kim, Y. G., & Yang, Y. H. (2020). Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. Bioresource Technology, 300(October 2019), 122724. https://doi.org/10.1016/j.biortech.2019.122724spa
dc.relation.referencesBhavana, B. K., Mudliar, S. N., & Debnath, S. (2023). Life cycle assessment of fermentative xylitol production from wheat bran: A comparative evaluation of sulphuric acid and chemical-free wet air oxidation-based pretreatment. Journal of Cleaner Production, 423(March), 138666. https://doi.org/10.1016/j.jclepro.2023.138666spa
dc.relation.referencesBi, H., & Yang, B. (2017). Gene Editing With TALEN and CRISPR/Cas in Rice. Progress in Molecular Biology and Translational Science, 149, 81–98. https://doi.org/10.1016/BS.PMBTS.2017.04.006spa
dc.relation.referencesBianchini, I. de A., Sene, L., da Cunha, M. A. A., & Felipe, M. das G. de A. (2021). Short-term Adaptation Strategy Improved Xylitol Production by Candida guilliermondii on Sugarcane Bagasse Hemicellulosic Hydrolysate. BioEnergy Research 2021, 1–13. https://doi.org/10.1007/S12155-021-10324-Xspa
dc.relation.referencesBicalho, T., Sauer, I., Rambaud, A., & Altukhova, Y. (2017). LCA data quality : A management science perspective. Journal of Cleaner Production, 156, 888–898. https://doi.org/10.1016/j.jclepro.2017.03.229spa
dc.relation.referencesBinderbauer, P. J., Woegerbauer, M., Nagovnak, P., & Kienberger, T. (2023). The effect of “ energy of scale ” on the energy consumption in different industrial sectors. Sustainable Production and Consumption, 41(July), 75–87. https://doi.org/10.1016/j.spc.2023.07.031spa
dc.relation.referencesBlack, J., Hashimzade, N., & Myles, G. (2009). A Dictionary of Economics. Oxford University Press. https://doi.org/10.1093/acref/9780199237043.001.0001spa
dc.relation.referencesBlanco, J., Iglesias, J., Morales, G., Melero, J. A., & Moreno, J. (2020). Comparative life cycle assessment of glucose production from maize starch and woody biomass residues as a feedstock. Applied Sciences (Switzerland), 10(8), 1–3. https://doi.org/10.3390/APP10082946spa
dc.relation.referencesBoiko, S. (2021). Optimization of the catalytic process and increase of the Irpex lacteus cellulases yield for saccharification. Bioresource Technology Reports, 15(July), 100780. https://doi.org/10.1016/j.biteb.2021.100780spa
dc.relation.referencesBotero Gutiérrez, C. D. (2018). Use of process engineering and life cycle assessment to calculate the environmental impact of butanol production. 123.spa
dc.relation.referencesBoyd, S., Moalem, M., & Denome, M. (2007). Life Cycle Inventory Modeling. Life Cycle Assessment Handbook: A Guide for Environmentally Sustainable Products, 1–20.spa
dc.relation.referencesBueno, C., & Minto, M. (2018). Automation in Construction Comparative analysis between a complete LCA study and results from a BIM-. Automation in Construction, 90(January 2016), 188–200. https://doi.org/10.1016/j.autcon.2018.02.028spa
dc.relation.referencesBunches, F. (2017). Evaluation of Commercial Cellulase Preparations for the Efficient Hydrolysis of Hydrothermally Pretreated Empty Fruit Bunches. 12, 7834–7840.spa
dc.relation.referencesCabrera, E., Muñoz, M. J., Martín, R., Caro, I., Curbelo, C., & Díaz, A. B. (2014). Alkaline and alkaline peroxide pretreatments at mild temperature to enhance enzymatic hydrolysis of rice hulls and straw. Bioresource Technology, 167, 1–7. https://doi.org/10.1016/j.biortech.2014.05.103spa
dc.relation.referencesCai, H., Han, J., Wang, M., Davis, R., Biddy, M., & Tan, E. (2018). Life-cycle analysis of integrated biorefineries with co-production of biofuels and bio-based chemicals: co-product handling methods and implications. In Biofuels, Bioproducts and Biorefining (Vol. 12, Issue 5). https://doi.org/10.1002/bbb.1893spa
dc.relation.referencesCapela, M. N., Tobaldi, D. M., Seabra, M. P., Tarelho, L. A. C., & Labrincha, J. A. (2022). Characterization of ashes produced from different biomass fuels used in combustion systems in a pulp and paper industry towards its recycling. Biomass and Bioenergy, 166(September 2021), 1–9. https://doi.org/10.1016/j.biombioe.2022.106598spa
dc.relation.referencesCapilla, M., San-Valero, P., Izquierdo, M., Penya-roja, J. M., & Gabaldón, C. (2021). The combined effect on initial glucose concentration and pH control strategies for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum DSM 792. Biochemical Engineering Journal, 167, 107910. https://doi.org/10.1016/j.bej.2020.107910spa
dc.relation.referencesCarlier, S., & Hermans, S. (2020). Highly Efficient and Recyclable Catalysts for Cellobiose Hydrolysis: Systematic Comparison of Carbon Nanomaterials Functionalized With Benzyl Sulfonic Acids. Frontiers in Chemistry, 8(April), 1–9. https://doi.org/10.3389/fchem.2020.00347spa
dc.relation.referencesCarvalho, J., Nascimento, L., Soares, M., Ribeiro, A., Faria, L., Silva, A., Pacheco, N., Ara, J., & Vilarinho, C. (2022). Circular Economy Perspective.spa
dc.relation.referencesCastillo, J. A. V., Laguado, J. A., López, J., & Gil, N. J. (2016). New sources and methods to isolate vinasse-tolerant wild yeasts efficient in ethanol production. Annals of Microbiology, 66(1), 187–195. https://doi.org/10.1007/s13213-015-1095-0spa
dc.relation.referencesCesário, A. L. L., Da Costa, A. C., & Rabelo, S. C. (2014). Effect of particle size on dilute acid pretreatment and enzymatic hydrolysis of sugarcane bagasse. Chemical Engineering Transactions, 37, 409–414. https://doi.org/10.3303/CET1437069spa
dc.relation.referencesChen, L., Zhang, H., Li, J., Lu, M., Guo, X., & Han, L. (2015). A novel diffusion-biphasic hydrolysis coupled kinetic model for dilute sulfuric acid pretreatment of corn stover. Bioresource Technology, 177, 8–16. https://doi.org/10.1016/j.biortech.2014.11.060spa
dc.relation.referencesChen, X., Jiang, Z. H., Chen, S., & Qin, W. (2010). Microbial and bioconversion production of D-xylitol and its detection and application. International Journal of Biological Sciences, 6(7), 834–844. https://doi.org/10.7150/ijbs.6.834spa
dc.relation.referencesCheng, C. (1998). Cellulase Activity in Different Buffering Media during Waste Paper Hydrolysis by HPLC. Journal of the Chinese Chemical Society, 45(5), 679–688. https://doi.org/10.1002/jccs.199800103spa
dc.relation.referencesCherubini, F., Hammer, A., & Ulgiati, S. (2011). Resources , Conservation and Recycling Influence of allocation methods on the environmental performance of biorefinery products — A case study. 55, 1070–1077. https://doi.org/10.1016/j.resconrec.2011.06.001spa
dc.relation.referencesCherubini, F., Jungmeier, G., Wellisch, M., Willke, T., & Skiadas, I. (2009). Toward a common classifi cation approach for biorefi nery systems. Biofuels, Bioproducts and Biorefining, 8(6), 743. https://doi.org/10.1002/BBBspa
dc.relation.referencesCherubini, F., & Ulgiati, S. (2010). Crop residues as raw materials for biorefinery systems - A LCA case study. Applied Energy, 87(1), 47–57. https://doi.org/10.1016/j.apenergy.2009.08.024spa
dc.relation.referencesChristopher, M., Mathew, A. K., Kiran Kumar, M., Pandey, A., & Sukumaran, R. K. (2017). A biorefinery-based approach for the production of ethanol from enzymatically hydrolysed cotton stalks. Bioresource Technology, 242, 178–183. https://doi.org/10.1016/j.biortech.2017.03.190spa
dc.relation.referencesCortes Ortiz, W. G., Ibla Gordillo, J. F., Calderon Velasquez, L. M., & Herrera Bueno, A. F. (2015). Cuantificación de azúcares reductores en las cáscaras de naranja y banano. Revista de Tecnología, 12(2). https://doi.org/10.18270/rt.v12i2.772spa
dc.relation.referencesDa Silva, A. S. A., Inoue, H., Endo, T., Yano, S., & Bon, E. P. S. (2010). Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresource Technology, 101(19), 7402–7409. https://doi.org/10.1016/j.biortech.2010.05.008spa
dc.relation.referencesDagnino, E. P., Chamorro, E. R., Romano, S. D., Felissia, F. E., & Area, M. C. (2013). Optimization of the acid pretreatment of rice hulls to obtain fermentable sugars for bioethanol production. Industrial Crops and Products, 42(1), 363–368. https://doi.org/10.1016/j.indcrop.2012.06.019spa
dc.relation.referencesDagnino, E. P., Felissia, F. E., Chamorro, E., & Area, M. C. (2017). Optimization of the soda-ethanol delignification stage for a rice husk biorefinery. Industrial Crops and Products, 97, 156–165. https://doi.org/10.1016/j.indcrop.2016.12.016spa
dc.relation.referencesDasgupta, D., Sidana, A., Ghosh, P., Sharma, T., Singh, J., Prabhune, A., More, S., Bhaskar, T., & Ghosh, D. (2021). Energy and life cycle impact assessment for xylitol production from corncob. Journal of Cleaner Production, 278(2021), 123217. https://doi.org/10.1016/j.jclepro.2020.123217spa
dc.relation.referencesde Mendiburu, F. (2021). agricolae: Statistical Procedures for Agricultural Research - R package version 1.4.0 (R package version 1.3-5). https://cran.r-project.org/package=agricolaespa
dc.relation.referencesde Souza, W. R. (2013). Microbial Degradation of Lignocellulosic Biomass. Sustainable Degradation of Lignocellulosic Biomass - Techniques, Applications and Commercialization, May. https://doi.org/10.5772/54325spa
dc.relation.referencesDepartamento de Agricultura de los Estados Unidos (USDA). (2023). Biofuels Annual Colombia - Report Number: CO2023-0013 (Issue March). https://fas.usda.gov/data/colombia-biofuels-annual-9spa
dc.relation.referencesDheyab, A. S., Bakar, M. F. A., Alomar, M., Sabran, S. F., Hanafi, A. F. M., & Mohamad, A. (2021). Deep eutectic solvents (DESs) as green extraction media of beneficial bioactive phytochemicals. Separations, 8(10). https://doi.org/10.3390/SEPARATIONS8100176spa
dc.relation.referencesDu, W., Yu, H., Song, L., Zhang, J., Weng, C., Ma, F., & Zhang, X. (2011). The promoting effect of byproducts from Irpex lacteus on subsequent enzymatic hydrolysis of bio-pretreated cornstalks. Biotechnology for Biofuels, 4(1), 37. https://doi.org/10.1186/1754-6834-4-37spa
dc.relation.referencesDuPont. (2012). XIVIATM Xylitol White Paper. XIVIATM Xylitol White Paper, 1, 12. http://www.danisco.com/fileadmin/user_upload/danisco/documents/products/2e_XIVIA_White_Paper.pdfspa
dc.relation.referencesDuPont. (2013). Accellerase 1500 - Cellulase Enzyme Complex for Lignocellulosic Biomass Hydrolysis.spa
dc.relation.referencesEbrahimi, M., Caparanga, A. R., Ordono, E. E., Villaflores, O. B., & Pouriman, M. (2017). Effect of ammonium carbonate pretreatment on the enzymatic digestibility, structural characteristics of rice husk and bioethanol production via simultaneous saccharification and fermentation process with Saccharomyces cerevisiae Hansen 2055. Industrial Crops and Products, 101, 84–91. https://doi.org/10.1016/j.indcrop.2017.03.006spa
dc.relation.referencesEbrahimian, F., Denayer, J. F. M., Mohammadi, A., Khoshnevisan, B., & Karimi, K. (2023). A critical review on pretreatment and detoxification techniques required for biofuel production from the organic fraction of municipal solid waste. Bioresource Technology, 368(January 2023), 128316. https://doi.org/10.1016/j.biortech.2022.128316spa
dc.relation.referencesEfrinalia, W., Novia, N., & Melwita, E. (2022). Kinetic Model for Enzymatic Hydrolysis of Cellulose from Pre-Treated Rice Husks. Fermentation, 8(9). https://doi.org/10.3390/fermentation8090417spa
dc.relation.referencesEl-Baz, A. F., Shetaia, M. Y., & Elkhouli, R. R. (2011a). Xylitol production by candida tropicalis under different statistically optimized growth conditions. African Journal of Biotechnology, 10(68), 15353–15363. https://doi.org/10.5897/AJB10.1575spa
dc.relation.referencesEl-Baz, A. F., Shetaia, Y. M., & Elkhouli, R. R. (2011b). Kinetic behavior of Candida tropicalis during xylitol production using semi-synthetic and hydrolysate based media. African Journal of Biotechnology, 10(73), 16617–16625. https://doi.org/10.5897/AJB11.1766spa
dc.relation.referencesEraso, L. M., Cuaspud, O., & Arias, M. (2024). Optimization of xylitol production through Candida tropicalis in xylose hydrolysate from rice husk. Biomass Conversion and Biorefinery, 0123456789. https://doi.org/10.1007/s13399-024-05372-0spa
dc.relation.referencesEryasar-Orer, K., & Karasu-Yalcin, S. (2021). Optimization of activated charcoal detoxification and concentration of chestnut shell hydrolysate for xylitol production. Biotechnology Letters, 43(6), 1195–1209. https://doi.org/10.1007/s10529-021-03087-0spa
dc.relation.referencesEstrada - Martinez, R. ., Favela - Torres, E., Soto - Cruz, N. O., Saucedo - Castañeda, G., & Martinez - Valdez, F. J. (2023). Respiro-fermentative metabolism in yeast cultivated in solid-state culture: The Crabtree effect and ethanol production. Revista Mexicana de Ingeniería Química, 22(1), 1–13. https://doi.org/10.24275/rmiq/Bio3025spa
dc.relation.referencesEuropean Centre for Ecotoxicology and Toxicology of Chemicals. (2016). Freshwater ecotoxicity as an impact category in life cycle assessment. In Technical Report No. 127 (Issue 127).spa
dc.relation.referencesEuropean Commission, Joint Research Centre, & Institute for Environment and Sustainability. (2010). International Reference Life Cycle Data System ( ILCD ) Handbook : Detailed guidance. EUR 24709 EN. In International Reference Life Cycle Data System ( ILCD ) Handbook (pp. 1–417). https://doi.org/10.2788/38479spa
dc.relation.referencesFAO. (2022a). Sustainable bioeconomy and FAO. FAO Publications Catalogue 2022, 4. https://www.fao.org/documents/card/en?details=CB7445ENspa
dc.relation.referencesFAO. (2022b). World Food and Agriculture – Statistical Yearbook 2022. In World Food and Agriculture – Statistical Yearbook 2022. https://doi.org/10.4060/cc2211enspa
dc.relation.referencesFarzad, S., Mandegari, M. A., & Görgens, J. F. (2017). Integrated techno-economic and environmental analysis of butadiene production from biomass. Bioresource Technology, 239, 37–48. https://doi.org/10.1016/j.biortech.2017.04.130spa
dc.relation.referencesFedearroz. (2024, March 22). Fedearroz y el DANE entregaron resultados del Quinto Censo Nacional Arrocero 2023. https://fedearroz.com.co/es/noticias/2024/03/22/fedearroz-y-el-dane-entregaron-resultados-del-quinto-censo-nacional-arrocero-2023/#:~:text=589.848 hectáreas se sembraron en,arroz paddy verde se produjeronspa
dc.relation.referencesFedearroz, & Fondo Nacional del arroz. (2017). IV Censo Nacional arrocero 2016.spa
dc.relation.referencesFeher, A., Feher, C., Rozbach, M., & Barta, Z. (2017). Combined approaches to Xylose production from corn Stover by dilute acid hydrolysis. Chemical and Biochemical Engineering Quarterly, 31(1), 77–87. https://doi.org/10.15255/CABEQ.2016.913spa
dc.relation.referencesFernandez, M. C., Grund, S., Phillips, C., Fradet, J., Hage, J., Silk, N., Zeilstra, C., Barnes, C., Hodgson, P., & McKechnie, J. (2024). Attribution of Global Warming Potential impacts in a multifunctional metals industry system using different system expansion and allocation methodologies. International Journal of Life Cycle Assessment, 29(5), 873–889. https://doi.org/10.1007/s11367-023-02274-7spa
dc.relation.referencesFlórez Pardo, L. M., Parra Paz, A. S., López Galán, J. E., & Figueroa Oviedo, J. I. (2015). Using a mediator system to increase the delignification of sugarcane residues with fungal enzymes. CT&F - Ciencia, Tecnología y Futuro, 6(2), 81–91. https://doi.org/10.29047/01225383.22spa
dc.relation.referencesFoo, K. Y., & Hameed, B. H. (2009). Utilization of rice husk ash as novel adsorbent: A judicious recycling of the colloidal agricultural waste. Advances in Colloid and Interface Science, 152(1–2), 39–47. https://doi.org/10.1016/j.cis.2009.09.005spa
dc.relation.referencesFraterrigo Garofalo, S., Tommasi, T., & Fino, D. (2020). A short review of green extraction technologies for rice bran oil. Biomass Conversion and Biorefinery, 11. https://doi.org/10.1007/s13399-020-00846-3spa
dc.relation.referencesFrederick, N. (2013). ScholarWorks @ UARK Biological and Agricultural Engineering Minimizing Wash Water Usage After Acid Hydrolysis Pretreatment of Biomass Minimizing Wash Water Usage After Acid Hydrolysis Pretreatment of Biomass An Undergraduate Honors College Thesis.spa
dc.relation.referencesGaffey, J., Collins, M. N., & Styles, D. (2024). Review of methodological decisions in life cycle assessment (LCA) of biorefinery systems across feedstock categories. Journal of Environmental Management, 358(April), 120813. https://doi.org/10.1016/j.jenvman.2024.120813spa
dc.relation.referencesGaikwad, A. (2019). Effect of Particle Size on the Kinetics of Enzymatic Hydrolysis of Microcrystalline Cotton Cellulose: a Modeling and Simulation Study. Applied Biochemistry and Biotechnology, 187(3), 800–816. https://doi.org/10.1007/s12010-018-2856-6spa
dc.relation.referencesGaldieri, L., Mehrotra, S., Yu, S., & Vancura, A. (2010). Transcriptional regulation in yeast during diauxic shift and stationary phase. OMICS A Journal of Integrative Biology, 14(6), 629–638. https://doi.org/10.1089/omi.2010.0069spa
dc.relation.referencesGarcía, B., Moreno, J., Morales, G., Melero, J. A., & Iglesias, J. (2020). Production of Sorbitol via Catalytic Transfer Hydrogenation of Glucose. Applied Sciences, 10(5), 1843. https://doi.org/10.3390/app10051843spa
dc.relation.referencesGe, X., Chang, C., Zhang, L., Cui, S., Luo, X., Hu, S., Qin, Y., & Li, Y. (2018). Conversion of Lignocellulosic Biomass Into Platform Chemicals for Biobased Polyurethane Application (pp. 161–213). https://doi.org/10.1016/bs.aibe.2018.03.002spa
dc.relation.referencesGerbrandt, K. L. (2014). The Impacts of Xylitol Production from Hemicellulose Residues: Process Design, Life Cycle, and Techno-Economic Assessment by. 1–202.spa
dc.relation.referencesGermec, M., Ilgın, M., İlhan, E., & Turhan, I. (2016). Optimization of acidic hydrolysis conditions of rice husk for fermentable sugar production. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 38(20), 3103–3108. https://doi.org/10.1080/15567036.2015.1135211spa
dc.relation.referencesGhose, T. K. (1987). MEASUREMENT OF CELLULASE ACTIVITIES. Pure & App!. Chem., 59(2), 257–268. https://doi.org/10.1111/j.1468-2389.1995.tb00038.xspa
dc.relation.referencesGnansounou, E., Vaskan, P., & Pachón, E. R. (2015). Comparative techno-economic assessment and LCA of selected integrated sugarcane-based biorefineries. Bioresource Technology, 196, 364–375. https://doi.org/10.1016/j.biortech.2015.07.072spa
dc.relation.referencesGoldberg, I., & Rokem, J. S. (2009). Organic and Fatty Acid Production, Microbial. In Encyclopedia of Microbiology (pp. 421–442). Elsevier. https://doi.org/10.1016/B978-012373944-5.00156-5spa
dc.relation.referencesGómez-Soto, J. A., Sánchez-Toro, Ó. J., & Matallana-Pérez, L. G. (2019). Residuos urbanos, agrícolas y pecuarios en el contexto de las biorrefinerías. Revista Facultad de Ingeniería, 28(53), 7–32. https://doi.org/10.19053/01211129.v28.n53.2019.9705spa
dc.relation.referencesGómez, G. (2015). Desarrollo de biorrefinerías en el mundo (Biorefineries development: a worldwide review) SELECT+ PhD Programme View project PoDoCo View project. Ciencia y Desarrollo. Aalto University, May, 34–57. https://www.researchgate.net/publication/277774313spa
dc.relation.referencesGonzález-García, S., Morales, P. C., & Gullón, B. (2018). Estimating the environmental impacts of a brewery waste–based biorefinery: Bio-ethanol and xylooligosaccharides joint production case study. Industrial Crops and Products, 123(July), 331–340. https://doi.org/10.1016/j.indcrop.2018.07.003spa
dc.relation.referencesGoodman, B. A. (2020). Utilization of waste straw and husks from rice production: A review. Journal of Bioresources and Bioproducts, 5(3), 143–162. https://doi.org/10.1016/j.jobab.2020.07.001spa
dc.relation.referencesGrand View Research Inc. (2021). Xylitol Market Size, Share & Trends Analysis Report By Application , By Form , By Region, And Segment Forecasts, 2020 - 2028. https://www.researchandmarkets.com/reports/5450205/xylitol-market-size-share-and-trends-analysisspa
dc.relation.referencesGuadalupe-Daqui, M., Chen, M., Sarnoski, P. J., Goodrich-Schneider, R. M., & MacIntosh, A. J. (2023). Impacts of Reduced (Vacuum) Pressure on Yeast Fermentation as Assessed Using Standard Methods and Automated Image Analysis. Fermentation, 9(2). https://doi.org/10.3390/fermentation9020155spa
dc.relation.referencesGuinée, J. B., Heijungs, R., & Huppes, G. (2004). LCA Methodology Economic Allocation : Examples and Derived Decision Tree. 9(1), 23–33.spa
dc.relation.referencesGuinee, J., Gorree, M., De Brujin, H., & Van Duin, R. (2004). Handbook on (1st ed.). Kluwer academic publishers.spa
dc.relation.referencesGuo, H., Chang, Y., & Lee, D. J. (2018). Enzymatic saccharification of lignocellulosic biorefinery: Research focuses. Bioresource Technology, 252(November 2017), 198–215. https://doi.org/10.1016/j.biortech.2017.12.062spa
dc.relation.referencesGuo, X., Zhang, R., Li, Z., Dai, D., Li, C., & Zhou, X. (2013). A novel pathway construction in Candida tropicalis for direct xylitol conversion from corncob xylan. Bioresource Technology, 128, 547–552. https://doi.org/10.1016/j.biortech.2012.10.155spa
dc.relation.referencesH. A. Aguirre-Villegas, F. X. Milani, S. Kraatz, & D. J. Reinemann. (2012). Life Cycle Impact Assessment and Allocation Methods Development for Cheese and Whey Processing. Transactions of the ASABE, 55(2), 613–627. https://doi.org/10.13031/2013.41363spa
dc.relation.referencesHaider, J. Bin, Haque, M. I., Hoque, M., Hossen, M. M., Mottakin, M., Khaleque, M. A., Johir, M. A. H., Zhou, J. L., Ahmed, M. B., & Zargar, M. (2022). Efficient extraction of silica from openly burned rice husk ash as adsorbent for dye removal. Journal of Cleaner Production, 380(P2), 135121. https://doi.org/10.1016/j.jclepro.2022.135121spa
dc.relation.referencesHasan Ba Hamid, H. S., & Ku Ismail, K. S. (2020). Optimization of enzymatic hydrolysis for acid pretreated date seeds into fermentable sugars. Biocatalysis and Agricultural Biotechnology, 24, 101530. https://doi.org/10.1016/j.bcab.2020.101530spa
dc.relation.referencesHassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology, 262(April), 310–318. https://doi.org/10.1016/j.biortech.2018.04.099spa
dc.relation.referencesHazeena, S. H., Sindhu, R., Pandey, A., & Binod, P. (2020). Lignocellulosic bio-refinery approach for microbial 2,3-Butanediol production. Bioresource Technology, 302(January), 122873. https://doi.org/10.1016/j.biortech.2020.122873spa
dc.relation.referencesHeng, K. S., Hatti-Kaul, R., Adam, F., Fukui, T., & Sudesh, K. (2017). Conversion of rice husks to polyhydroxyalkanoates (PHA) via a three-step process: optimized alkaline pretreatment, enzymatic hydrolysis, and biosynthesis by Burkholderia cepacia USM (JCM 15050). Journal of Chemical Technology and Biotechnology, 92(1), 100–108. https://doi.org/10.1002/jctb.4993spa
dc.relation.referencesHerazo, I., Ruiz, D., & Arrazola Paternina, G. S. (2009). Bioconversión de Xilosa a Xilitol por Candida Guilliermondii Empleando Cascarilla de Arroz (Oriza sativa). Temas Agrarios, 14(2), 23–32. https://doi.org/10.21897/rta.v14i2.673spa
dc.relation.referencesHernández Pérez, R., Salgado Delgado, R., Olarte Paredes, A., Salgado Delgado, A., García Hernández, E., Medrano Valis, A., & Martínez Candia, F. (2022). Comparing Acid and Enzymatic Hydrolysis Methods for Cellulose Nanocrystals (CNCs) Obtention from Agroindustrial Rice Husk Waste. Journal of Nanotechnology, 2022. https://doi.org/10.1155/2022/5882113spa
dc.relation.referencesHerrera-Ruales, F. C., & Arias-Zabala, M. (2014). Bioethanol production by fermentation of hemicellulosic hydrolysates of african palm residues using an adapted strain of Scheffersomyces stipitis. Dyna, 81(185), 204. https://doi.org/10.15446/dyna.v81n185.38552spa
dc.relation.referencesHickert, L. R., Souza-Cruz, P. B. de, Rosa, C. A., & Ayub, M. A. Ô. Z. (2013). Simultaneous saccharification and co-fermentation of un-detoxified rice hull hydrolysate by Saccharomyces cerevisiae ICV D254 and Spathaspora arborariae NRRL Y-48658 for the production of ethanol and xylitol. Bioresource Technology, 143, 112–116. https://doi.org/10.1016/j.biortech.2013.05.123spa
dc.relation.referencesHu, L., He, Z., & Zhang, S. (2020). Sustainable use of rice husk ash in cement-based materials: Environmental evaluation and performance improvement. Journal of Cleaner Production, 264, 121744. https://doi.org/10.1016/j.jclepro.2020.121744spa
dc.relation.referencesHuang, C., Jeuck, B., & Yong, Q. (2017). Using Pretreatment and Enzymatic Saccharification Technologies to Produce Fermentable Sugars from Agricultural Wastes. In L. Singh & V. C. Kalia (Eds.), Waste Biomass Management -- A Holistic Approach (pp. 15–38). Springer International Publishing. https://doi.org/10.1007/978-3-319-49595-8_2spa
dc.relation.referencesHuang, C., Zhao, X., Zheng, Y., Lin, W., Lai, C., Yong, Q., Ragauskas, A. J., & Meng, X. (2022). Revealing the mechanism of surfactant-promoted enzymatic hydrolysis of dilute acid pretreated bamboo. Bioresource Technology, 360(June), 127524. https://doi.org/10.1016/j.biortech.2022.127524spa
dc.relation.referencesHuijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & van Zelm, R. (2017). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. International Journal of Life Cycle Assessment, 22(2), 138–147. https://doi.org/10.1007/s11367-016-1246-yspa
dc.relation.referencesIdowu, S. O. (2013). Encyclopedia of Corporate Social Responsibility (S. O. Idowu, N. Capaldi, L. Zu, & A. Das Gupta (eds.)). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-28036-8spa
dc.relation.referencesIEA Bioenergy. (2009). Task 42. Technical Typing Tasks, 126–126. https://doi.org/10.1007/978-1-349-06888-3_42spa
dc.relation.referencesIEA BIOENERGY. (2022). How bioenergy contributes to a sustainable future. In IEA Bioenergy Report 2023. https://www.ieabioenergyreview.org/wp-content/uploads/2022/12/IEA_BIOENERGY_REPORT.pdfspa
dc.relation.referencesIngrao, C., Vesce, E., Evola, R. S., Rebba, E., Arcidiacono, C., Martra, G., & Beltramo, R. (2021). Chemistry behind leather: Life Cycle Assessment of nano-hydroxyapatite preparation on the lab-scale for fireproofing applications. Journal of Cleaner Production, 279, 123837. https://doi.org/10.1016/j.jclepro.2020.123837spa
dc.relation.referencesInternational renewable energy agency. (2012). Renewable energy technologies: cost analysis series. In Irena working paper (Vol. 1, Issue 1/5).spa
dc.relation.referencesIrfan, M., Nadeem, M., & Syed, Q. (2014). Ethanol production from agricultural wastes using Sacchromyces cervisae. Brazilian Journal of Microbiology, 45(2), 457–465. https://doi.org/10.1590/S1517-83822014000200012spa
dc.relation.referencesIsikgor, F. H., & Becer, C. R. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6(25), 4497–4559. https://doi.org/10.1039/c5py00263jspa
dc.relation.referencesIye, E. L., & Bilsborrow, P. E. (2013). Assessment of the availability of agricultural residues on a zonal basis for medium- to large-scale bioenergy production in Nigeria. Biomass and Bioenergy, 48, 66–74. https://doi.org/10.1016/j.biombioe.2012.11.015spa
dc.relation.referencesJavanmard, A., Wan Daud, W. M. A., Patah, M. F. A., Zuki, F. M., Ai, S. P., Azman, D. Q., & Chen, W. H. (2024). Breaking Barriers for a Green Future: A Comprehensive Study on Pre-treatment Techniques for Empty Fruit Bunches in the Bio-Based Economy. Process Safety and Environmental Protection, 182(December 2023), 535–558. https://doi.org/10.1016/j.psep.2023.11.053spa
dc.relation.referencesJensen, C. U., Rodriguez Guerrero, J. K., Karatzos, S., Olofsson, G., & Iversen, S. B. (2017). Fundamentals of HydrofactionTM: Renewable crude oil from woody biomass. Biomass Conversion and Biorefinery, 7(4), 495–509. https://doi.org/10.1007/s13399-017-0248-8spa
dc.relation.referencesJi, Q., Yu, X., Yagoub, A. E. G. A., Chen, L., & Zhou, C. (2020). Efficient removal of lignin from vegetable wastes by ultrasonic and microwave-assisted treatment with ternary deep eutectic solvent. Industrial Crops and Products, 149(March), 112357. https://doi.org/10.1016/j.indcrop.2020.112357spa
dc.relation.referencesJiang, L., Wu, N., Zheng, A., Zhao, Z., He, F., & Li, H. (2016). The integration of dilute acid hydrolysis of xylan and fast pyrolysis of glucan to obtain fermentable sugars. Biotechnology for Biofuels, 9(1), 1–10. https://doi.org/10.1186/s13068-016-0612-0spa
dc.relation.referencesJin, D., Ma, J., Li, Y., Jiao, G., Liu, K., Sun, S., Zhou, J., & Sun, R. (2022). Development of the synthesis and applications of xylonic acid: A mini-review. Fuel, 314(October 2021), 122773. https://doi.org/10.1016/j.fuel.2021.122773spa
dc.relation.referencesJoshi, S. M., & Gogate, P. R. (2017). Intensified Synthesis of Bioethanol from Sustainable Biomass. In L. Singh & V. C. Kalia (Eds.), Waste Biomass Management -- A Holistic Approach (pp. 251–287). Springer International Publishing. https://doi.org/10.1007/978-3-319-49595-8_12spa
dc.relation.referencesJung, W., Sharma, R., Sunkyu, S., & Praveen, P. (2020). Effect of cellulolytic enzyme binding on lignin isolated from alkali and acid pretreated switchgrass on enzymatic hydrolysis. 3 Biotech, 10(1), 1–10. https://doi.org/10.1007/s13205-019-1978-zspa
dc.relation.referencesKamiloglu, S., Sari, G., Ozdal, T., & Capanoglu, E. (2020). Guidelines for cell viability assays. Food Frontiers, 1(3), 332–349. https://doi.org/10.1002/fft2.44spa
dc.relation.referencesKang, S., Fu, J., & Zhang, G. (2018). From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renewable and Sustainable Energy Reviews, 94(June), 340–362. https://doi.org/10.1016/j.rser.2018.06.016spa
dc.relation.referencesKarka, P., Papadokonstantakis, S., Hungerbühler, K., & Kokossis, A. (2015). Life Cycle Assessment of Biorefinery Products Based on Different Allocation Approaches. In Computer Aided Chemical Engineering (Vol. 37, Issue June). Elsevier. https://doi.org/10.1016/B978-0-444-63576-1.50123-0spa
dc.relation.referencesKarlsson, H. (2014). Biorefinery systems for energy and feed production : greenhouse gas performance and energy balances.spa
dc.relation.referencesKastner, J. R., Eiteman, M. A., & Lee, S. A. (2001). Glucose repression of xylitol production in Candida tropicalis mixed-sugar fermentations. Biotechnology Letters, 23(20), 1663–1667. https://doi.org/10.1023/A:1012435413933spa
dc.relation.referencesKaur, S., Guleria, P., & Yadav, S. K. (2023). Evaluation of Fermentative Xylitol Production Potential of Adapted Strains of Meyerozyma caribbica and Candida tropicalis from Rice Straw Hemicellulosic Hydrolysate.spa
dc.relation.referencesKeller, F., Lee, R. P., & Meyer, B. (2020). Life cycle assessment of global warming potential, resource depletion and acidification potential of fossil, renewable and secondary feedstock for olefin production in Germany. Journal of Cleaner Production, 250, 119484. https://doi.org/10.1016/j.jclepro.2019.119484spa
dc.relation.referencesKhan, N., Sudhakar, K., & Mamat, R. (2021). Role of biofuels in energy transition, green economy and carbon neutrality. Sustainability (Switzerland), 13(22). https://doi.org/10.3390/su132212374spa
dc.relation.referencesKim, R., & Tae, S. (2019). Calculation of particulate matter formation of major building material in construction phase through life cycle impact assessment. International Journal of Sustainable Building Technology and Urban Development, 10(2), 65–72. https://doi.org/10.22712/susb.20190008spa
dc.relation.referencesKklaif, H. F., Nasser, J. M., & Shakir, K. A. (2020). Production of Xylose Reductase and Xylitol by Candida Guilliermondii Using Wheat Straw Hydrolysates. Iraqi Journal of Agricultural Sciences, 51(6), 1653–1660. https://doi.org/10.36103/IJAS.V51I6.1192spa
dc.relation.referencesKopsahelis, A., Kourmentza, C., Zafiri, C., & Kornaros, M. (2018). Gate-to-gate life cycle assessment of biosurfactants and bioplasticizers production via biotechnological exploitation of fats and waste oils. Journal of Chemical Technology and Biotechnology, 93(10), 2833–2841. https://doi.org/10.1002/jctb.5633spa
dc.relation.referencesKumar, K., Singh, E., & Shrivastava, S. (2022). Microbial xylitol production. Applied Microbiology and Biotechnology, 106(3), 971–979. https://doi.org/10.1007/s00253-022-11793-6spa
dc.relation.referencesLamb, C. de C., Silva, B. M. Z. da, de Souza, D., Fornasier, F., Riça, L. B., & Schneider, R. de C. de S. (2018). Bioethanol production from rice hull and evaluation of the final solid residue. Chemical Engineering Communications, 205(6), 833–845. https://doi.org/10.1080/00986445.2017.1422495spa
dc.relation.referencesLau, B. B. Y., Luis, E. T., Hossain, M. M., Hart, W. E. S., Cencia-Lay, B., Black, J. J., To, T. Q., & Aldous, L. (2015). Facile, room-temperature pre-treatment of rice husks with tetrabutylphosphonium hydroxide: Enhanced enzymatic and acid hydrolysis yields. Bioresource Technology, 197, 252–259. https://doi.org/10.1016/j.biortech.2015.08.056spa
dc.relation.referencesLei, S., & Yuan, L. (2019). Rice Bran Usage in Diarrhea. Dietary Interventions in Gastrointestinal Diseases: Foods, Nutrients, and Dietary Supplements, 257–263. https://doi.org/10.1016/B978-0-12-814468-8.00021-1spa
dc.relation.referencesLenihan, P., Orozco, A., O’Neill, E., Ahmad, M. N. M., Rooney, D. W., & Walker, G. M. (2010). Dilute acid hydrolysis of lignocellulosic biomass. Chemical Engineering Journal, 156(2), 395–403. https://doi.org/10.1016/j.cej.2009.10.061spa
dc.relation.referencesLeonel, L. V., Sene, L., da Cunha, M. A. A., Dalanhol, K. C. F., & de Almeida Felipe, M. das G. (2020). Valorization of apple pomace using bio-based technology for the production of xylitol and 2G ethanol. Bioprocess and Biosystems Engineering, 43(12), 2153–2163. https://doi.org/10.1007/s00449-020-02401-wspa
dc.relation.referencesLi, A., Xie, H., Qiu, Y., Liu, L., Lu, T., Wang, W., & Qiu, G. (2022). Resource utilization of rice husk biomass: Preparation of MgO flake-modified biochar for simultaneous removal of heavy metals from aqueous solution and polluted soil. Environmental Pollution, 310(June), 119869. https://doi.org/10.1016/j.envpol.2022.119869spa
dc.relation.referencesLi, X., Wu, L., Geng, X., Xia, X., Wang, X., Xu, Z., & Xu, Q. (2018). Deciphering the Environmental Impacts on Rice Quality for Different Rice Cultivated Areas. Rice, 11(1), 1–10. https://doi.org/10.1186/s12284-018-0198-1spa
dc.relation.referencesLin, Y., Zhang, W., Li, C., Sakakibara, K., Tanaka, S., & Kong, H. (2014). Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass and Bioenergy, 47, 395–401. https://doi.org/10.1016/j.biombioe.2012.09.019spa
dc.relation.referencesLindstrom, J. K., Ghosh, A., Rollag, S., & Brown, R. C. (2020). Production of sugars from lignocellulosic biomass: a critical review of biological and thermochemical routes. Submitted, Submitted(February), 1–34. https://doi.org/10.3389/fenrg.2024.1347373spa
dc.relation.referencesLing, H., Cheng, K., Ge, J., & Ping, W. (2011). Statistical optimization of xylitol production from corncob hemicellulose hydrolysate by Candida tropicalis HDY-02. New Biotechnology, 28(6), 673–678. https://doi.org/10.1016/j.nbt.2010.05.004spa
dc.relation.referencesLiu, C. G., Xiao, Y., Xia, X. X., Zhao, X. Q., Peng, L., Srinophakun, P., & Bai, F. W. (2019). Cellulosic ethanol production: Progress, challenges and strategies for solutions. Biotechnology Advances, 37(3), 491–504. https://doi.org/10.1016/j.biotechadv.2019.03.002spa
dc.relation.referencesLiu, Y., Lyu, Y., Tian, J., Zhao, J., Ye, N., Zhang, Y., & Chen, L. (2021). Review of waste biorefinery development towards a circular economy: From the perspective of a life cycle assessment. Renewable and Sustainable Energy Reviews, 139(April 2020), 110716. https://doi.org/10.1016/j.rser.2021.110716spa
dc.relation.referencesLlano, T., Rueda, C., Dosal, E., Andrés, A., & Coz, A. (2021). Multi-criteria analysis of detoxification alternatives: Techno-economic and socio-environmental assessment. Biomass and Bioenergy, 154(October). https://doi.org/10.1016/j.biombioe.2021.106274spa
dc.relation.referencesLongati, A. A., Cavalett, O., & Cruz, A. J. G. (2017). Life Cycle Assessment of vinasse biogas production in sugarcane biorefineries. In Computer Aided Chemical Engineering (Vol. 40). Elsevier Masson SAS. https://doi.org/10.1016/B978-0-444-63965-3.50338-Xspa
dc.relation.referencesLópez-Gutiérrez, I., Razo-Flores, E., Méndez-Acosta, H. O., Amaya-Delgado, L., & Alatriste-Mondragón, F. (2021). Optimization by response surface methodology of the enzymatic hydrolysis of non-pretreated agave bagasse with binary mixtures of commercial enzymatic preparations. Biomass Conversion and Biorefinery, 11(6), 2923–2935. https://doi.org/10.1007/s13399-020-00698-xspa
dc.relation.referencesLópez-Linares, J. C., Romero, I., Cara, C., Castro, E., & Mussatto, S. I. (2018). Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresource Technology, 247(September 2017), 736–743. https://doi.org/10.1016/j.biortech.2017.09.139spa
dc.relation.referencesLópez, Y., García, A., Karimi, K., Taherzadeh, M. J., & Martín, C. (2010). Chemical characterisation and dilute-acid hydrolysis of rice hulls from an Artisan Mill. BioResources, 5(4), 2268–2277.spa
dc.relation.referencesLorenci Woiciechowski, A., Dalmas Neto, C. J., Porto de Souza Vandenberghe, L., de Carvalho Neto, D. P., Novak Sydney, A. C., Letti, L. A. J., Karp, S. G., Zevallos Torres, L. A., & Soccol, C. R. (2020). Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance – Conventional processing and recent advances. Bioresource Technology, 304(122848), 1–9. https://doi.org/10.1016/j.biortech.2020.122848spa
dc.relation.referencesLozano, C. (2020). Alternativa de usos de la cascarilla de arroz (Oriza sativa) en Colombia para el mejoramiento del sector productivo y la industria. 67.spa
dc.relation.referencesŁukajtis, R., Kucharska, K., Hołowacz, I., Rybarczyk, P., Wychodnik, K., Słupek, E., Nowak, P., & Kamínski, M. (2018). Comparison and optimization of saccharification conditions of alkaline pre-Treated triticale straw for acid and enzymatic hydrolysis followed by ethanol fermentation. Energies, 11(3). https://doi.org/10.3390/en11030639spa
dc.relation.referencesMalairuang, K., Krajang, M., Sukna, J., Rattanapradit, K., & Chamsart, S. (2020). High cell density cultivation of saccharomyces cerevisiae with intensive multiple sequential batches together with a novel technique of fed-batch at cell level (FBC). Processes, 8(10), 1–26. https://doi.org/10.3390/pr8101321spa
dc.relation.referencesManishimwe, C., Feng, Y., Sun, J., Pan, R., Jiang, Y., Jiang, W., Zhang, W., Xin, F., & Jiang, M. (2022). Biological production of xylitol by using nonconventional microbial strains. World Journal of Microbiology and Biotechnology, 38(12), 1–13. https://doi.org/10.1007/s11274-022-03437-8spa
dc.relation.referencesManjarres-Pinzón, K., Barrios-Ziolo, L., Arias-Zabala, M., Correa-Londoño, G., & Rodríguez-Sandoval, E. (2021). Kinetic study and modeling of xylitol production using Candida tropicalis in different culture media using unstructured models. Revista Facultad Nacional de Agronomia Medellin, 74(2), 9583–9592. https://doi.org/10.15446/rfnam.v74n2.92270spa
dc.relation.referencesManjarres-Pinzón, K., Otero-Guzmán, N. C., Rodríguez-Sandoval, E., Correa-Londoño, G., & Arias-Zabala, M. (2021). Xylitol production from hydrolyzed oil palm empty fruit bunch by Candida tropicalis: Optimization of fermentation conditions. Revista U.D.C.A Actualidad and Divulgacion Cientifica, 24(2). https://doi.org/10.31910/RUDCA.V24.N2.2021.1894spa
dc.relation.referencesManjarrés, J. K. (2019). PRODUCCIÓN BIOTECNOLÓGICA DE XILITOL A PARTIR DE HIDROLIZADOS DE RAQUIS DE PALMA CON LEVADURAS DEL GÉNERO Candida sp. 9–130.spa
dc.relation.referencesManjarres, K., Bravo, A., Arias, J. P., Ortega, I., Vasquez, A., & Arias, M. (2018). Biotechnological Production of Xylitol from Oil Palm Empty Fruit Bunches Hydrolysate. Advance Journal of Food Science and Technology, 16(SPL), 134–137. https://doi.org/10.19026/ajfst.16.5945spa
dc.relation.referencesMargni, M., & Curran, M. A. (2012). Life Cycle Impact Assessment. Life Cycle Assessment Handbook: A Guide for Environmentally Sustainable Products, 67–103. https://doi.org/10.1002/9781118528372.ch4spa
dc.relation.referencesMartín, C., Jackson de Moraes, G., & Ribeiro Alves dos Santos, J. (2012). ENZYME LOADING DEPENDENCE OF CELLULOSE HYDROLYSIS OF SUGARCANE BAGASSE Carlos. Quim. Nova, 35(10), 1927–1930.spa
dc.relation.referencesMiller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030spa
dc.relation.referencesMisra, S., Raghuwanshi, S., & Saxena, R. K. (2013). Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Carbohydrate Polymers, 92(2), 1596–1601. https://doi.org/10.1016/j.carbpol.2012.11.033spa
dc.relation.referencesModenbach, A. A., & Nokes, S. E. (2013). Enzymatic hydrolysis of biomass at high-solids loadings - A review. Biomass and Bioenergy, 56, 526–544. https://doi.org/10.1016/j.biombioe.2013.05.031spa
dc.relation.referencesMohamad, N. L., Mustapa Kamal, S. M., Mokhtar, M. N., Husain, S. A., & Abdullah, N. (2016). Dynamic mathematical modelling of reaction kinetics for xylitol fermentation using Candida tropicalis. Biochemical Engineering Journal, 111, 10–17. https://doi.org/10.1016/j.bej.2016.02.017spa
dc.relation.referencesMohapatra, S., Mishra, C., Behera, S. S., & Thatoi, H. (2017). Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass – A review. Renewable and Sustainable Energy Reviews, 78(November 2016), 1007–1032. https://doi.org/10.1016/j.rser.2017.05.026spa
dc.relation.referencesMoni, S. M. (2020). A Framework for Lif amework for Life Cycle Assessment (L cle Assessment (LCA) of Emer CA) of Emerging Technologies at Low Technology Readiness Levels. Clemson University, May.spa
dc.relation.referencesMorais, A. R., & Bogel-Lukasik, R. (2013). Green chemistry and the biorefinery concept. Sustainable Chemical Processes, 1(1), 1. https://doi.org/10.1186/2043-7129-1-18spa
dc.relation.referencesMoreno, J., Iglesias, J., Blanco, J., Montero, M., Morales, G., & Melero, J. A. (2020). Life-cycle sustainability of biomass-derived sorbitol: Proposing technological alternatives for improving the environmental profile of a bio-refinery platform molecule. Journal of Cleaner Production, 250, 119568. https://doi.org/10.1016/j.jclepro.2019.119568spa
dc.relation.referencesMorinelly, J. E., Jensen, J. R., Browne, M., Co, T. B., & Shonnard, D. R. (2009). Kinetic characterization of xylose monomer and oligomer concentrations during dilute acid pretreatment of lignocellulosic biomass from forests and switchgrass. Industrial and Engineering Chemistry Research, 48(22), 9877–9884. https://doi.org/10.1021/ie900793pspa
dc.relation.referencesMoya, E. B., Syhler, B., Manso, J. O., Dragone, G., & Mussatto, S. I. (2023). Enzymatic hydrolysis cocktail optimization for the intensification of sugar extraction from sugarcane bagasse. International Journal of Biological Macromolecules, 242(P3), 125051. https://doi.org/10.1016/j.ijbiomac.2023.125051spa
dc.relation.referencesMuhamad, H., Sahid, I. Bin, Surif, S., Ai, T. Y., & May, C. Y. (2012). A gate-to-gate case study of the life cycle assessment of an oil palm seedling. Tropical Life Sciences Research, 23(1), 15–23.spa
dc.relation.referencesMunna, S., Humayun, S., & Noor, R. (2015). Influence of heat shock and osmotic stresses on the growth and viability of Saccharomyces cerevisiae SUBSC01. BMC Research Notes, August. https://doi.org/10.1186/s13104-015-1355-xspa
dc.relation.referencesMussatto, S. I., & Roberto, I. C. (2008). Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer’s spent grain hydrolysate for xylitol production by Candida guilliermondii. Process Biochemistry, 43(5), 540–546. https://doi.org/10.1016/j.procbio.2008.01.013spa
dc.relation.referencesNagarajan, A., Thulasinathan, B., Arivalagan, P., Alagarsamy, A., Muthuramalingam, J. B., Thangarasu, S. D., & Thangavel, K. (2021). Particle size influence on the composition of sugars in corncob hemicellulose hydrolysate for xylose fermentation by Meyerozyma caribbica. Bioresource Technology, 340(July), 125677. https://doi.org/10.1016/j.biortech.2021.125677spa
dc.relation.referencesNewton, J. M., Schofield, D., Vlahopoulou, J., & Zhou, Y. (2016). Detecting cell lysis using viscosity monitoring in E. coli fermentation to prevent product loss. Biotechnology Progress, 32(4), 1069–1076. https://doi.org/10.1002/btpr.2292spa
dc.relation.referencesNguyen, H. P., Le, H. Du, & Le, V. V. M. (2015). Effect of Ethanol Stress on Fermentation Performance of Saccharomyces cerevisiae Cells Immobilized on Nypa fruticans Leaf Sheath Pieces Hoang. Food Technol. Biotechnol, 53(1), 96–101. https://doi.org/10.17113/? b.53.01.15.3617 scientifispa
dc.relation.referencesNikzad, M., Movagharnejad, K., Najafpour, G. D., & Talebnia, F. (2013). Comparative studies on the effect of pretreatment of rice husk on enzymatic digestibility and bioethanol production. International Journal of Engineering, Transactions B: Applications, 26(5), 455–464. https://doi.org/10.5829/idosi.ije.2013.26.05b.01spa
dc.relation.referencesNizami, A. S., Rehan, M., Waqas, M., Naqvi, M., Ouda, O. K. M., Shahzad, K., Miandad, R., Khan, M. Z., Syamsiro, M., Ismail, I. M. I., & Pant, D. (2017). Waste biorefineries: Enabling circular economies in developing countries. Bioresource Technology, 241, 1101–1117. https://doi.org/10.1016/j.biortech.2017.05.097spa
dc.relation.referencesNolleau, V., Preziosi-Belloy, L., Delgenes, J. P., & Navarro, J. M. (1993). Xylitol production from xylose by two yeast strains: Sugar tolerance. Current Microbiology, 27(4), 191–197. https://doi.org/10.1007/BF01692875spa
dc.relation.referencesNoor, R. M., Yahya, A., Hussin, H., Galadima, I., & Sustainability, R. (2020). Optimization of microwave pre-treatment conditions for maximum lignin recovery from rice husk using central composite design (CCD) by response surface methodology (RSM). 1(2), 61–83.spa
dc.relation.referencesNour, S. A., El-Sayed, G. M., Taie, H. A. A., Emam, M. T. H., El-Sayed, A. F., & Salim, R. G. (2022). Safe production of Aspergillus terreus xylanase from Ricinus communis: gene identification, molecular docking, characterization, production of xylooligosaccharides, and its biological activities. Journal of Genetic Engineering and Biotechnology, 20(1), 121. https://doi.org/10.1186/s43141-022-00390-9spa
dc.relation.referencesNuanpeng, S., Thanonkeo, S., Klanrit, P., Yamada, M., & Thanonkeo, P. (2023). Optimization Conditions for Ethanol Production from Sweet Sorghum Juice by Thermotolerant Yeast Saccharomyces cerevisiae: Using a Statistical Experimental Design. Fermentation, 9(5). https://doi.org/10.3390/fermentation9050450spa
dc.relation.referencesObydenkova, S. V, Kouris, P. D., Smeulders, D. M. J., Boot, M. D., & Van der Meer, Y. (2021). Modeling life-cycle inventory for multi-product biorefinery: tracking environmental burdens and evaluation of uncertainty caused by allocation procedure. Biofuels, Bioproducts and Biorefining, 15, 1281–1300. https://doi.org/10.1002/bbb.2214spa
dc.relation.referencesOjo, A. O. (2023). An Overview of Lignocellulose and Its Biotechnological Importance in High-Value Product Production. Fermentation, 9(11). https://doi.org/10.3390/fermentation9110990spa
dc.relation.referencesOktaviani, M., Mangunwardoyo, W., & Hermiati, E. (2021). Characteristics of adapted and non-adapted Candida tropicalis InaCC Y799 during fermentation of detoxified and undetoxified hemicellulosic hydrolysate from sugarcane trash for xylitol production. Biomass Conversion and Biorefinery, 0123456789. https://doi.org/10.1007/s13399-021-02087-4spa
dc.relation.referencesOLADE. (2021). Panorama Energético De América Latina Y El Caribe. https://biblioteca.olade.org/opac-tmpl/Documentos/old0442a.pdfspa
dc.relation.referencesOriez, V., Peydecastaing, J., & Pontalier, P. Y. (2019). Lignocellulosic biomass fractionation by mineral acids and resulting extract purification processes: Conditions, yields, and purities. Molecules, 24(23). https://doi.org/10.3390/molecules24234273spa
dc.relation.referencesOrtiz-Sanchez, M., & Cardona Alzate, C. A. (2024). Biorefinery approaches for a comprehensive recovery of retailed organic food waste: Sustainability analysis of different configurations. Bioresource Technology Reports, 25(February), 101778. https://doi.org/10.1016/j.biteb.2024.101778spa
dc.relation.referencesPachapur, V. L., Sarma, S. J., Maiti, S., & Brar, S. K. (2016). Case Studies on the Industrial Production of Renewable Platform Chemicals. In Platform Chemical Biorefinery: Future Green Chemistry. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802980-0.00026-2spa
dc.relation.referencesPachón, E. R., Mandade, P., & Gnansounou, E. (2020). Conversion of vine shoots into bioethanol and chemicals: Prospective LCA of biorefinery concept. Bioresource Technology, 303(January). https://doi.org/10.1016/j.biortech.2020.122946spa
dc.relation.referencesPallas, G., Vijver, M. G., Peijnenburg, W. J. G. M., & Guinée, J. (2020). Life cycle assessment of emerging technologies at the lab scale: The case of nanowire-based solar cells. Journal of Industrial Ecology, 24(1), 193–204. https://doi.org/10.1111/jiec.12855spa
dc.relation.referencesPedroso, G. B., Philippsen, M. R., Saldanha, L. F., Araujo, R. B., & Martins, A. F. (2019). Strategies for Fermentable Sugar Production by Using Pressurized Acid Hydrolysis for Rice Husks. Rice Science, 26(5), 319–330. https://doi.org/10.1016/j.rsci.2019.08.006spa
dc.relation.referencesPengilly, C., García-Aparicio, M. P., Diedericks, D., Brienzo, M., & Görgens, J. F. (2015). Enzymatic hydrolysis of steam-pretreated sweet sorghum bagasse by combinations of cellulase and endo-xylanase. Fuel, 154, 352–360. https://doi.org/10.1016/j.fuel.2015.03.072spa
dc.relation.referencesPengilly, C., García-Aparicio, M. P., Diedericks, D., & Görgens, J. F. (2016). Optimization of Enzymatic Hydrolysis of Steam Pretreated Triticale Straw. Bioenergy Research, 9(3), 851–863. https://doi.org/10.1007/s12155-016-9741-3spa
dc.relation.referencesPérez-López, P., González-García, S., Jeffryes, C., Agathos, S. N., McHugh, E., Walsh, D., Murray, P., Moane, S., Feijoo, G., & Moreira, M. T. (2014). Life cycle assessment of the production of the red antioxidant carotenoid astaxanthin by microalgae: From lab to pilot scale. Journal of Cleaner Production, 64, 332–344. https://doi.org/10.1016/j.jclepro.2013.07.011spa
dc.relation.referencesPfeiffer, T., & Morley, A. (2014). An evolutionary perspective on the Crabtree effect. Frontiers in Molecular Biosciences, 1(OCT), 1–6. https://doi.org/10.3389/fmolb.2014.00017spa
dc.relation.referencesPhannarangsee, Y., Jiawkhangphlu, B., Thanonkeo, S., Klanrit, P., Yamada, M., & Thanonkeo, P. (2024). Sorbitol production from mixtures of molasses and sugarcane bagasse hydrolysate using the thermally adapted Zymomonas mobilis ZM AD41. Scientific Reports, 14(1), 5563. https://doi.org/10.1038/s41598-024-56307-8spa
dc.relation.referencesPiccinno, F., Hischier, R., Seeger, S., & Som, C. (2016). From laboratory to industrial scale: a scale-up framework for chemical processes in life cycle assessment studies. Journal of Cleaner Production, 135, 1085–1097. https://doi.org/10.1016/j.jclepro.2016.06.164spa
dc.relation.referencesPiccinno, F., Hischier, R., Seeger, S., & Som, C. (2018). Predicting the environmental impact of a future nanocellulose production at industrial scale: Application of the life cycle assessment scale-up framework. Journal of Cleaner Production, 174, 283–295. https://doi.org/10.1016/j.jclepro.2017.10.226spa
dc.relation.referencesPiedrahita-Rodríguez, S., Cardona Urrea, S., Escobar García, D. A., Ortiz-Sánchez, M., Solarte-Toro, J. C., & Cardona Alzate, C. A. (2023). Life cycle assessment and potential geolocation of a multi-feedstock biorefinery: Integration of the avocado and plantain value chains in rural zones. Bioresource Technology Reports, 21(December 2022). https://doi.org/10.1016/j.biteb.2022.101318spa
dc.relation.referencesPieragostini, C., Aguirre, P., & Mussati, M. C. (2014). Life cycle assessment of corn-based ethanol production in Argentina. Science of the Total Environment, 472, 212–225. https://doi.org/10.1016/j.scitotenv.2013.11.012spa
dc.relation.referencesPiñeros-castro, Y., Velasco, G. A., Cortes Ortiz, W. G., & Proaños, J. (2011). Producción de azúcares fermentables por hidrólisis enzimática de cascarilla de arroz pretratada mediante explosión con vapor. Revista Ión, 24(2), 23–28.spa
dc.relation.referencesPiñeros Castro, Y. (2017). Aplicación de tecnoloǵıas para el aprovechamiento de la cascarilla de arroz.spa
dc.relation.referencesPlatt, R., Bauen, A., Reumerman, P., Geier, C., Ree, R. Van, Gursel, I. V., Garcia, L., Behrens, M., Bothmer, P. von, Howes, J., Panchaksharam, Y., Vikla, K., Sartorius, V., & Annevelink, B. (2021). EU Biorefinery Outlook to 2030 (Issue February). https://doi.org/10.2777/103465spa
dc.relation.referencesPrecedence research. (2023). Glucose Market (By Form: Solid, Syrup; By Application: Food & Beverages, Pharmaceutical, Cosmetic & Personal Care, Pulp & Paper, Others) - Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2023-2032. https://www.precedenceresearch.com/table-of-content/2694spa
dc.relation.referencesPuligundla, P., Poludasu, R. M., Rai, J. K., & Reddy Obulam, V. S. (2011). Repeated batch ethanolic fermentation of very high gravity medium by immobilized Saccharomyces cerevisiae. Annals of Microbiology, 61(4), 863–869. https://doi.org/10.1007/s13213-011-0207-8spa
dc.relation.referencesQing, Q., Yang, B., & Wyman, C. E. (2010). Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresource Technology, 101(24), 9624–9630. https://doi.org/10.1016/j.biortech.2010.06.137spa
dc.relation.referencesQueiroz, S. S., Jofre, F. M., Mussatto, S. I., & Felipe, M. das G. A. (2022). Scaling up xylitol bioproduction: Challenges to achieve a profitable bioprocess. Renewable and Sustainable Energy Reviews, 154, 111789. https://doi.org/10.1016/j.rser.2021.111789spa
dc.relation.referencesQuintero, J. A., Moncada, J., & Cardona, C. A. (2013). Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: A process simulation approach. Bioresource Technology, 139, 300–307. https://doi.org/10.1016/j.biortech.2013.04.048spa
dc.relation.referencesR Core Team. (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org/spa
dc.relation.referencesRabemanolontsoa, H., & Saka, S. (2016). Various pretreatments of lignocellulosics. Bioresource Technology, 199, 83–91. https://doi.org/10.1016/j.biortech.2015.08.029spa
dc.relation.referencesRafiqul, I. S. M., Sakinah, A. M. M., & Zularisam, A. W. (2015). Inhibition by toxic compounds in the hemicellulosic hydrolysates on the activity of xylose reductase from Candida tropicalis. Biotechnology Letters, 37(1), 191–196. https://doi.org/10.1007/s10529-014-1672-5spa
dc.relation.referencesRafiqul, I. S. M., Sakinah, A. M. M., & Zularisam, A. W. (2017). Hydrolysis of Lignocellulosic Biomass for Recovering Hemicellulose: State of the Art. In L. Singh & V. C. Kalia (Eds.), Waste Biomass Management -- A Holistic Approach (pp. 73–106). Springer International Publishing. https://doi.org/10.1007/978-3-319-49595-8_4spa
dc.relation.referencesRambo, M. K. D., Bevilaqua, D. B., Brenner, C. G. B., Martins, A. F., Mario, D. N., Alves, S. H., & Mallmann, C. A. (2013). Xylitol from rice husks by acid hydrolysis and candida yeast fermentation. Quimica Nova, 36(5), 634–639. https://doi.org/10.1590/S0100-40422013000500004spa
dc.relation.referencesRebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W. P., Suh, S., Weidema, B. P., & Pennington, D. W. (2004). Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment International, 30(5), 701–720. https://doi.org/10.1016/j.envint.2003.11.005spa
dc.relation.referencesReis, V. R., Paula, A., Bassi, G., Carolina, J., & Ceccato-antonini, S. R. (2013). Characteristics of Saccharomyces cerevisiae yeasts exhibiting rough colonies and pseudohyphal morphology with respect to alcoholic fermentation. 1131, 1121–1131.spa
dc.relation.referencesRibeiro-Filho, N., Linforth, R., Powell, C. D., & Fisk, I. D. (2021). Influence of essential inorganic elements on flavour formation during yeast fermentation. Food Chemistry, 361(September 2020), 130025. https://doi.org/10.1016/j.foodchem.2021.130025spa
dc.relation.referencesRíos-Badrán, I. M., Luzardo-Ocampo, I., García-Trejo, J. F., Santos-Cruz, J., & Gutiérrez-Antonio, C. (2020). Production and characterization of fuel pellets from rice husk and wheat straw. Renewable Energy, 145, 500–507. https://doi.org/10.1016/j.renene.2019.06.048spa
dc.relation.referencesRodriguez, G., Romar, C., & Sabalsagaray, S. (2013). Valorización Del Residuo Obtenido De La Quema De La Cáscara De Arroz. In Inia (Vol. 45). http://www.inia.org.uyspa
dc.relation.referencesRosales-calderon, O., Trajano, H. L., & Du, S. J. B. (2014). Stability of commercial glucanase and β -glucosidase preparations under hydrolysis conditions. https://doi.org/10.7717/peerj.402spa
dc.relation.referencesRosario-Martinez, H. (2015). phia: Post-Hoc Interaction Analysis (R package version 0.2-1). https://cran.r-project.org/package=phiaspa
dc.relation.referencesRossi, E., Pasciucco, F., Iannelli, R., & Pecorini, I. (2022). Environmental impacts of dry anaerobic biorefineries in a Life Cycle Assessment (LCA) approach. Journal of Cleaner Production, 371(August), 133692. https://doi.org/10.1016/j.jclepro.2022.133692spa
dc.relation.referencesRuchala, J., Kurylenko, O. O., Dmytruk, K. V, & Sibirny, A. A. (2020). Construction of advanced producers of first ‑ and second ‑ generation ethanol in Saccharomyces cerevisiae and selected species of non ‑ conventional yeasts ( Scheffersomyces stipitis , Ogataea polymorpha ). Journal of Industrial Microbiology & Biotechnology, 47(1), 109–132. https://doi.org/10.1007/s10295-019-02242-xspa
dc.relation.referencesSaavedra del Oso, M., Mauricio-Iglesias, M., Hospido, A., & Steubing, B. (2023). Prospective LCA to provide environmental guidance for developing waste-to-PHA biorefineries. Journal of Cleaner Production, 383(November 2022), 135331. https://doi.org/10.1016/j.jclepro.2022.135331spa
dc.relation.referencesSailer-Kronlachner, W., Thoma, C., Böhmdorfer, S., Bacher, M., Konnerth, J., Rosenau, T., Potthast, A., Solt, P., & Van Herwijnen, H. W. G. (2021). Sulfuric Acid-Catalyzed Dehydratization of Carbohydrates for the Production of Adhesive Precursors. ACS Omega. https://doi.org/10.1021/acsomega.1c02075spa
dc.relation.referencesSaleem, M. E., Omar, R., Kamal, S. M. M., & Biak, D. R. A. (2015). Microwave-assisted pretreatment of lignocellulosic biomass: A review. Journal of Engineering Science and Technology, 10, 97–109.spa
dc.relation.referencesSandin, G., Røyne, F., Berlin, J., Peters, G. M., & Svanström, M. (2015). Allocation in LCAs of biorefinery products: Implications for results and decision-making. Journal of Cleaner Production, 93, 213–221. https://doi.org/10.1016/j.jclepro.2015.01.013spa
dc.relation.referencesSantana, N. B., Teixeira Dias, J. C., Rezende, R. P., Franco, M., Silva Oliveira, L. K., & Souza, L. O. (2018). Production of xylitol and bio-detoxification of cocoa pod husk hemicellulose hydrolysate by Candida boidinii XM02G. PLoS ONE, 13(4), 1–15. https://doi.org/10.1371/journal.pone.0195206spa
dc.relation.referencesSarip, H., Hossain, M. S., Mohamad Azemi, M. N., & Allaf, K. (2016). A review of the thermal pretreatment of lignocellulosic biomass towards glucose production: Autohydrolysis with DIC technology. BioResources, 11(4), 10625–10653. https://doi.org/10.15376/biores.11.4.saripspa
dc.relation.referencesSarma, S. J., Brar, S. K., & Ayadi, M. (2016). Biorefinery. Platform Chemical Biorefinery: Future Green Chemistry, 21–32. https://doi.org/10.1016/B978-0-12-802980-0.00002-Xspa
dc.relation.referencesScelsi, E., Angelini, A., & Pastore, C. (2021). Deep Eutectic Solvents for the Valorisation of Lignocellulosic Biomasses towards Fine Chemicals. Biomass (Switzerland), 1(1), 29–59. https://doi.org/10.3390/biomass1010003spa
dc.relation.referencesSchrijvers, D. L., Loubet, P., & Sonnemann, G. (2016). Developing a systematic framework for consistent allocation in LCA. In International Journal of Life Cycle Assessment (Vol. 21, Issue 7). https://doi.org/10.1007/s11367-016-1063-3spa
dc.relation.referencesShackley, S., Carter, S., Knowles, T., Middelink, E., Haefele, S., & Haszeldine, S. (2012). Sustainable gasification-biochar systems? A case-study of rice-husk gasification in Cambodia, Part II: Field trial results, carbon abatement, economic assessment and conclusions. Energy Policy, 41, 618–623. https://doi.org/10.1016/j.enpol.2011.11.023spa
dc.relation.referencesShen, L., & Patel, M. K. (2010). Life cycle assessment of man-made cellulose fibres. Lenzinger Berichte, 88(88), 1–59.spa
dc.relation.referencesSherwood, J. (2020). The significance of biomass in a circular economy. Bioresource Technology, 300(January). https://doi.org/10.1016/j.biortech.2020.122755spa
dc.relation.referencesShinde, P. N., Mandavgane, S. A., & Karadbhajane, V. (2020). Process development and life cycle assessment of pomegranate biorefinery. Environmental Science and Pollution Research, 27(20), 25785–25793. https://doi.org/10.1007/s11356-020-08957-0spa
dc.relation.referencesShukla, S. S., Chava, R., Appari, S., A, B., & Kuncharam, B. V. R. (2022). Sustainable use of rice husk for the cleaner production of value-added products. Journal of Environmental Chemical Engineering, 10(1), 106899. https://doi.org/10.1016/j.jece.2021.106899spa
dc.relation.referencesSiccama, J. W., Oudejans, R., Zhang, L., Kabel, M. A., Maarten, A., & Schutyser, I. (2022). Steering the formation of cellobiose and oligosaccharides during enzymatic hydrolysis of asparagus fibre. LWT, 160(November 2021), 113273. https://doi.org/10.1016/j.lwt.2022.113273spa
dc.relation.referencesSilalertruksa, T., Pongpat, P., & Gheewala, S. H. (2017). Life cycle assessment for enhancing environmental sustainability of sugarcane biorefinery in Thailand. Journal of Cleaner Production, 140, 906–913. https://doi.org/10.1016/j.jclepro.2016.06.010spa
dc.relation.referencesSimaPro. (2013). Introduction to LCA with SimaPro Colophon. November.spa
dc.relation.referencesSindhu, R., Binod, P., & Pandey, A. (2016). Biological pretreatment of lignocellulosic biomass - An overview. Bioresource Technology, 199, 76–82. https://doi.org/10.1016/j.biortech.2015.08.030spa
dc.relation.referencesSingh, A., Bajar, S., & Bishnoi, N. R. (2014). Enzymatic hydrolysis of microwave alkali pretreated rice husk for ethanol production by Saccharomyces cerevisiae, Scheffersomyces stipitis and their co-culture. Fuel, 116(September), 699–702. https://doi.org/10.1016/j.fuel.2013.08.072spa
dc.relation.referencesSingh, A., Bajar, S., Devi, A., & Pant, D. (2021). An overview on the recent developments in fungal cellulase production and their industrial applications. Bioresource Technology Reports, 14(February), 100652. https://doi.org/10.1016/j.biteb.2021.100652spa
dc.relation.referencesSingh, A., & Bishnoi, N. R. (2012). Optimization of ethanol production from microwave alkali pretreated rice straw using statistical experimental designs by Saccharomyces cerevisiae. Industrial Crops and Products, 37(1), 334–341. https://doi.org/10.1016/j.indcrop.2011.12.033spa
dc.relation.referencesSingh, A. D., Upadhyay, A., Shrivastava, S., & Vivekanand, V. (2020). Life-cycle assessment of sewage sludge-based large-scale biogas plant. Bioresource Technology, 309(January), 123373. https://doi.org/10.1016/j.biortech.2020.123373spa
dc.relation.referencesSingh, A. K., Deeba, F., Kumar, M., Kumari, S., Wani, S. A., Paul, T., & Gaur, N. A. (2023). Development of engineered Candida tropicalis strain for efficient corncob-based xylitol-ethanol biorefinery. Microbial Cell Factories, 22(1), 1–16. https://doi.org/10.1186/s12934-023-02190-3spa
dc.relation.referencesSingh, B. (2018). Rice husk ash. Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications, 417–460. https://doi.org/10.1016/B978-0-08-102156-9.00013-4spa
dc.relation.referencesSingh, L., & Kalia, V. C. (2017). Waste biomass management - A holistic approach. In Waste Biomass Management - A Holistic Approach. https://doi.org/10.1007/978-3-319-49595-8spa
dc.relation.referencesSingh, S., Arya, S. K., & Krishania, M. (2024). Bioprocess optimization for enhanced xylitol synthesis by new isolate Meyerozyma caribbica CP02 using rice straw. Biotechnology for Biofuels and Bioproducts, 17(1), 1–16. https://doi.org/10.1186/s13068-024-02475-8spa
dc.relation.referencesSingh, S., Kaur, D., Yadav, S. K., & Krishania, M. (2021). Process scale-up of an efficient acid-catalyzed steam pretreatment of rice straw for xylitol production by C. Tropicalis MTCC 6192. Bioresource Technology, 320(124422), 1–9. https://doi.org/10.1016/j.biortech.2020.124422spa
dc.relation.referencesSluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2006). Determination of Sugars , Byproducts , and Degradation Products in Liquid Fraction Process Samples - NREL/TP-510-42623. National Renewable Energy Laboratory, January, 14.spa
dc.relation.referencesSluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of Ash in Biomass - NREL/TP-510-42622. In National Renewable Energy Laboratory.spa
dc.relation.referencesSluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2012). Determination of structural carbohydrates and lignin in Biomass - NREL/TP-510-42618. In National Renewable Energy Laboratory (Issue April 2008). http://www.nrel.gov/docs/gen/fy13/42618.pdfspa
dc.relation.referencesSluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of Extractives in Biomass: Laboratory Analytical Procedure (LAP); Issue Date 7/17/2005. http://www.nrel.gov/biomass/analytical_procedures.htmlspa
dc.relation.referencesSoam, S., Kapoor, M., Kumar, R., Gupta, R. P., Puri, S. K., & Ramakumar, S. S. V. (2018). Life cycle assessment and life cycle costing of conventional and modified dilute acid pretreatment for fuel ethanol production from rice straw in India. Journal of Cleaner Production, 197, 732–741. https://doi.org/10.1016/j.jclepro.2018.06.204spa
dc.relation.referencesSolarte-Toro, J. C., & Cardona Alzate, C. A. (2023). Sustainability of Biorefineries: Challenges and Perspectives. Energies, 16(9). https://doi.org/10.3390/en16093786spa
dc.relation.referencesSolarte Toro, J. C. (2022). Sustainability assessment of different biorefinery schemes to enhance the development of post-conflict areas in the Colombian context: The Montes de Maria case. In Chemical Engineering and Technology (Vol. 42, Issue 12).spa
dc.relation.referencesSoltani, N., Bahrami, A., Pech-Canul, M. I., & González, L. A. (2015). Review on the physicochemical treatments of rice husk for production of advanced materials. Chemical Engineering Journal, 264, 899–935. https://doi.org/10.1016/j.cej.2014.11.056spa
dc.relation.referencesSreekumar, A., Shastri, Y., Wadekar, P., Patil, M., & Lali, A. (2020). Life cycle assessment of ethanol production in a rice-straw-based biorefinery in India. Clean Technologies and Environmental Policy, 22(2), 409–422. https://doi.org/10.1007/s10098-019-01791-0spa
dc.relation.referencesStyles, D., Gaffey, J., Collins, M. N., & Styles, D. (2024). Review of methodological decisions in life cycle assessment ( LCA ) of biorefinery systems across feedstock categories Review of methodological decisions in life cycle assessment ( LCA ) of biorefinery systems across feedstock categories. Journal of Environmental Management, 358(April), 120813. https://doi.org/10.1016/j.jenvman.2024.120813spa
dc.relation.referencesSuarez Lizarazoa, F. U., Guimarães Pereira, G. A., & da Silveira Bezerra de Mell, F. (2022). STRATEGIES FOR IMPROVED XYLITOL PRODUCTION IN BATCH FERMENTATION OF SUGARCANE HYDROLYSATE USING SACCHAROMYCES CEREVISIAE. BioRxiv. https://doi.org/10.1101/2022.05.25.493426spa
dc.relation.referencesSvensson, I., Roncal, T., Winter, K. De, Canneyt, A. Van, & Tamminen, T. (2020). Industrial Crops & Products VALORISATION OF HYDROLYSIS LIGNIN REST FROM BIOETHANOL PILOT PLANT : PROCESS DEVELOPMENT AND UPSCALING. Industrial Crops & Products, 156(July), 112869. https://doi.org/10.1016/j.indcrop.2020.112869spa
dc.relation.referencesŚwiątek, K., Gaag, S., Klier, A., Kruse, A., Sauer, J., & Steinbach, D. (2020). Acid hydrolysis of lignocellulosic biomass: Sugars and furfurals formation. Catalysts, 10(4), 1–18. https://doi.org/10.3390/catal10040437spa
dc.relation.referencesTamburini, E., Costa, S., Marchetti, M. G., & Pedrini, P. (2015). Optimized production of xylitol from xylose using a hyper-acidophilic Candida tropicalis. Biomolecules, 5(3), 1979–1989. https://doi.org/10.3390/biom5031979spa
dc.relation.referencesTAPPI. (2006). Lignin in Wood and Pulp - Test Method 222 Om-02.spa
dc.relation.referencesTasselli, G., Filippucci, S., D’Antonio, S., Cavalaglio, G., Turchetti, B., Cotana, F., & Buzzini, P. (2019). Optimization of enzymatic hydrolysis of cellulosic fraction obtained from stranded driftwood feedstocks for lipid production by Solicoccozyma terricola. Biotechnology Reports, 24. https://doi.org/10.1016/j.btre.2019.e00367spa
dc.relation.referencesTechnical Committee ISO/TC 207. (2006a). Environmental management — Life cycle assessment — Requirements and guidelines. 2006.spa
dc.relation.referencesTechnical Committee ISO/TC 207. (2006b). ISO 14040:2006 Environmental management — Life cycle assessment — Principles and framework. 1997.spa
dc.relation.referencesTemiz, E., & Akpinar, O. (2017). The Effect of Severity Factor on the Release of Xylose and Phenolics from Rice Husk and Rice Straw. Waste and Biomass Valorization, 8(2), 505–516. https://doi.org/10.1007/s12649-016-9608-zspa
dc.relation.referencesThe MathWorks Inc. (2022). MATLAB version: 9.13.0 (R2022b). The MathWorks Inc. https://www.mathworks.comspa
dc.relation.referencesThielemans, K., De Bondt, Y., Comer, L., Raes, J., Everaert, N., Sels, B. F., & Courtin, C. M. (2023). Decreasing the Crystallinity and Degree of Polymerization of Cellulose Increases Its Susceptibility to Enzymatic Hydrolysis and Fermentation by Colon Microbiota. Foods, 12(5), 1100. https://doi.org/10.3390/foods12051100spa
dc.relation.referencesTian, S. Q., Zhao, R. Y., & Chen, Z. C. (2018). Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renewable and Sustainable Energy Reviews, 91(June 2017), 483–489. https://doi.org/10.1016/j.rser.2018.03.113spa
dc.relation.referencesTiwari, S., & Baghela, A. (2020). Challenges and prospects of xylitol production by conventional and non-conventional yeasts. In New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier B.V. https://doi.org/10.1016/b978-0-12-821007-9.00016-4spa
dc.relation.referencesTorrado, I., & Bandeira, F. (2014). The Impact of Particle Size on the Dilute Acid Hydrolysis of Giant Reed Biomass. Electronic Journal of …, 2(1), 1–9. https://doi.org/10.7770/ejee-V2N1-art598spa
dc.relation.referencesTrivedi, J., Bhonsle, A. K., & Atray, N. (2020). Processing food waste for the production of platform chemicals. Refining Biomass Residues for Sustainable Energy and Bioproducts: Technology, Advances, Life Cycle Assessment, and Economics, 427–448. https://doi.org/10.1016/B978-0-12-818996-2.00019-3spa
dc.relation.referencesTsai, C., & Meyer, A. S. (2014). Enzymatic Cellulose Hydrolysis: Enzyme Reusability and Visualization of β-Glucosidase Immobilized in Calcium Alginate. https://doi.org/10.3390/molecules191219390spa
dc.relation.referencesUbando, A. T., Felix, C. B., & Chen, W. H. (2020). Biorefineries in circular bioeconomy: A comprehensive review. Bioresource Technology, 299(November 2019). https://doi.org/10.1016/j.biortech.2019.122585spa
dc.relation.referencesUmai, D., Kayalvizhi, R., Kumar, V., & Jacob, S. (2022). Xylitol: Bioproduction and Applications-A Review. Frontiers in Sustainability, 3(February), 1–16. https://doi.org/10.3389/frsus.2022.826190spa
dc.relation.referencesVallejos, M. E., Chade, M., Mereles, E. B., Bengoechea, D. I., Brizuela, J. G., Felissia, F. E., & Area, M. C. (2016). Strategies of detoxification and fermentation for biotechnological production of xylitol from sugarcane bagasse. Industrial Crops and Products, 91, 161–169. https://doi.org/10.1016/j.indcrop.2016.07.007spa
dc.relation.referencesVardhan, H., Sasamal, S., & Mohanty, K. (2022). Fermentation process optimisation based on ANN and RSM for xylitol production from areca nut husk followed by xylitol crystal characterisation. Process Biochemistry, 122(P2), 146–159. https://doi.org/10.1016/j.procbio.2022.10.005spa
dc.relation.referencesVardhan, H., Sasmal, S., & Mohanty, K. (2023). Xylitol Production by Candida tropicalis from Areca Nut Husk Enzymatic Hydrolysate and Crystallization. Applied Biochemistry and Biotechnology, 195(12), 7298–7321. https://doi.org/10.1007/s12010-023-04469-yspa
dc.relation.referencesVardhan, H., Sasmal, S., & Mohanty, K. (2024). Detoxification of areca nut acid hydrolysate and production of xylitol by Candida tropicalis (MTCC 6192). Preparative Biochemistry and Biotechnology, 54(1), 1–12. https://doi.org/10.1080/10826068.2023.2207093spa
dc.relation.referencesVenkateswar Rao, L., Goli, J. K., Gentela, J., & Koti, S. (2016). Bioconversion of lignocellulosic biomass to xylitol: An overview. Bioresource Technology, 213, 299–310. https://doi.org/10.1016/j.biortech.2016.04.092spa
dc.relation.referencesVerardi, A., De, I., Ricca, E., & Calabr, V. (2012). Hydrolysis of Lignocellulosic Biomass: Current Status of Processes and Technologies and Future Perspectives. Bioethanol. https://doi.org/10.5772/23987spa
dc.relation.referencesVerardi, A., De, I., Ricca, E., & Calabr, V. (2019). Hydrolysis of Lignocellulosic Biomass: Current Status of Processes and Technologies and Future Perspectives. Bioresource Technology, 149(1), 319–330. https://doi.org/10.1016/j.biortech.2019.121726spa
dc.relation.referencesVerones, F., Huijbregts, M. A. J., Azevedo, L. B., Chaudhary, A., Baan, L. De, Fantke, P., Hauschild, M., Henderson, A. D., Mutel, C. L., Owsianiak, M., Pfister, S., Preiss, P., Roy, O., Scherer, L., Steinmann, Z., Zelm, R. Van, & Dingenen, R. Van. (2020). A spatially differentiated life cycle impact assessment approach. Life Cycle Impact Assessment, 1(1), 1–184.spa
dc.relation.referencesVillalba-Cadavid, M., Vélez - Uribe, T., Arias, M., & Arrázola, G. (2009). Producción de xilitol a partir de cascarilla de arroz utilizando Candida guilliermondii. Revista Facultad Nacional de Agronomía Medellin, 62(1), 4897–4905.spa
dc.relation.referencesVillarreal, M. L. M., Prata, A. M. R., Felipe, M. G. A., & Almeida E Silva, J. B. (2006). Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzyme and Microbial Technology, 40(1), 17–24. https://doi.org/10.1016/j.enzmictec.2005.10.032spa
dc.relation.referencesVollmer, N. I., Gargalo, C. L., Gernaey, K. V., Olsen, S. I., & Sin, G. (2023). Life cycle assessment of an integrated xylitol biorefinery with value-added co-products. International Journal of Life Cycle Assessment, 28(9), 1155–1168. https://doi.org/10.1007/s11367-023-02194-6spa
dc.relation.referencesVu, H. P., Nguyen, L. N., Vu, M. T., Johir, M. A. H., McLaughlan, R., & Nghiem, L. D. (2020). A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks. Science of the Total Environment, 743, 140630. https://doi.org/10.1016/j.scitotenv.2020.140630spa
dc.relation.referencesWaghmare, P. R., Khandare, R. V., Jeon, B. H., & Govindwar, S. P. (2018). Enzymatic hydrolysis of biologically pretreated sorghum husk for bioethanol production. Biofuel Research Journal, 5(3), 846–853. https://doi.org/10.18331/BRJ2018.5.3.4spa
dc.relation.referencesWang, C., Lu, X., Gao, J., Li, X., & Zhao, J. (2018). Xylo-oligosaccharides Inhibit Enzymatic Hydrolysis by Influencing Enzymatic Activity of Cellulase from Penicillium oxalicum [Research-article]. Energy and Fuels, 32(9), 9427–9437. https://doi.org/10.1021/acs.energyfuels.8b01424spa
dc.relation.referencesWang, D., Ju, X., Zhou, D., & Wei, G. (2014). Efficient production of pullulan using rice hull hydrolysate by adaptive laboratory evolution of Aureobasidium pullulans. Bioresource Technology, 164, 12–19. https://doi.org/10.1016/j.biortech.2014.04.036spa
dc.relation.referencesWang, J., Xi, J., & Wang, Y. (2015). Recent advances in the catalytic production of glucose from lignocellulosic biomass. Green Chemistry, 17(2), 737–751. https://doi.org/10.1039/c4gc02034kspa
dc.relation.referencesWang, J., Xiao, W., Zhang, J., Quan, X., Chu, J., Meng, X., Pu, Y., & Ragauskas, A. J. (2023). Beneficial effect of surfactant in adsorption/desorption of lignocellulose-degrading enzymes on/from lignin with different structure. Industrial Crops and Products, 191(PA), 115904. https://doi.org/10.1016/j.indcrop.2022.115904spa
dc.relation.referencesWang, J., & Yin, Y. (2021). Clostridium species for fermentative hydrogen production: An overview. International Journal of Hydrogen Energy, 46(70), 34599–34625. https://doi.org/10.1016/j.ijhydene.2021.08.052spa
dc.relation.referencesWang, L., Qi, A., Liu, J., Shen, Y., & Wang, J. (2023). Comparative metabolic analysis of the adaptive Candida tropicalis to furfural stress response. Chemical Engineering Science, 267, 118348. https://doi.org/10.1016/j.ces.2022.118348spa
dc.relation.referencesWang, S., Cheng, G., Joshua, C., He, Z., Sun, X., Li, R., & Liu, L. (2016). Biotechnology for Biofuels Furfural tolerance and detoxification mechanism in Candida tropicalis. Biotechnology for Biofuels, 1–11. https://doi.org/10.1186/s13068-016-0668-xspa
dc.relation.referencesWang, S., He, Z., & Yuan, Q. (2017). Xylose enhances furfural tolerance in Candida tropicalis by improving NADH recycle. Chemical Engineering Science, 158(15), 37–40. https://doi.org/10.1016/j.ces.2016.09.026spa
dc.relation.referencesWang, S., Li, H., Fan, X., Zhang, J., Tang, P., & Yuan, Q. (2015). Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion. FUNGAL GENETICS AND BIOLOGY, 82, 1–8. https://doi.org/10.1016/j.fgb.2015.04.022spa
dc.relation.referencesWei, G. Y., Lee, Y. J., Kim, Y. J., Jin, I. H., Lee, J. H., Chung, C. H., & Lee, J. W. (2010). Kinetic study on the pretreatment and enzymatic saccharification of rice hull for the production of fermentable sugars. Applied Biochemistry and Biotechnology, 162(5), 1471–1482. https://doi.org/10.1007/s12010-010-8926-zspa
dc.relation.referencesWertz, J. L., & Bédué, O. (2013). Lignocellulosic biorefineries. In Lignocellulosic Biorefineries. https://doi.org/10.1201/b15443spa
dc.relation.referencesWertz, J. L., Deleu, M., Coppée, S., & Richel, A. (2018). Hemicelluloses and lignin in biorefineries. In Green chemistry and chemical engineering (first). Taylor & Francis.spa
dc.relation.referencesWu, G., Qu, P., Sun, E., Chang, Z., Xu, Y., & Huang, H. (2015). Physical, chemical, and rheological properties of rice husks treated by composting process. BioResources, 10(1), 227–239. https://doi.org/10.15376/biores.10.1.227-239spa
dc.relation.referencesWu, H., Dai, X., Zhou, S. L., Gan, Y. Y., Xiong, Z. Y., Qin, Y. H., Ma, J., Yang, L., Wu, Z. K., Wang, T. L., Wang, W. G., & Wang, C. W. (2017). Ultrasound-assisted alkaline pretreatment for enhancing the enzymatic hydrolysis of rice straw by using the heat energy dissipated from ultrasonication. Bioresource Technology, 241, 70–74. https://doi.org/10.1016/j.biortech.2017.05.090spa
dc.relation.referencesWu, J., Elliston, A., Le Gall, G., Colquhoun, I. J., Collins, S. R. A., Wood, I. P., Dicks, J., Roberts, I. N., & Waldron, K. W. (2018). Optimising conditions for bioethanol production from rice husk and rice straw: Effects of pre-treatment on liquor composition and fermentation inhibitors. Biotechnology for Biofuels, 11(1), 1–13. https://doi.org/10.1186/s13068-018-1062-7spa
dc.relation.referencesWu, W., Li, P., Huang, L., Wei, Y., Li, J., Zhang, L., & Jin, Y. (2023). The Role of Lignin Structure on Cellulase Adsorption and Enzymatic Hydrolysis. Biomass, 3(1), 96–107. https://doi.org/10.3390/biomass3010007spa
dc.relation.referencesXing, A., Tian, S., Tang, H., Losic, D., & Bao, Z. (2013). Mesoporous silicon engineered by the reduction of biosilica from rice husk as a high-performance anode for lithium-ion batteries. RSC Advances, 3(26), 10145–10149. https://doi.org/10.1039/c3ra41889hspa
dc.relation.referencesXu, L., Liu, L., Li, S., Zheng, W., Cui, Y., Liu, R., & Sun, W. (2019). Xylitol Production by Candida tropicalis 31949 from Sugarcane Bagasse Hydrolysate. Sugar Tech, 21(2), 341–347. https://doi.org/10.1007/s12355-018-0650-yspa
dc.relation.referencesXu, Y., Chi, P., Bilal, M., & Cheng, H. (2019). Biosynthetic strategies to produce xylitol: an economical venture. Applied Microbiology and Biotechnology, 103(13), 5143–5160. https://doi.org/10.1007/s00253-019-09881-1spa
dc.relation.referencesYang, C. Y., & Fang, T. J. (2015). Kinetics for enzymatic hydrolysis of rice hulls by the ultrasonic pretreatment with a bio-based basic ionic liquid. Biochemical Engineering Journal, 100, 23–29. https://doi.org/10.1016/j.bej.2015.04.012spa
dc.relation.referencesYeh, A. I., Huang, Y. C., & Chen, S. H. (2010). Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydrate Polymers, 79(1), 192–199. https://doi.org/10.1016/j.carbpol.2009.07.049spa
dc.relation.referencesYewale, T., Panchwagh, S., Sawale, S., Jain, R., & Dhamole, P. B. (2017). Xylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components. 3 Biotech, 7(1), 1–9. https://doi.org/10.1007/s13205-017-0700-2spa
dc.relation.referencesYoon, S. J., Son, Y. Il, Kim, Y. K., & Lee, J. G. (2012). Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier. Renewable Energy, 42, 163–167. https://doi.org/10.1016/j.renene.2011.08.028spa
dc.relation.referencesYuan, Q., Liu, S., Ma, M. G., Ji, X. X., Choi, S. E., & Si, C. (2021). The Kinetics Studies on Hydrolysis of Hemicellulose. Frontiers in Chemistry, 9(November), 1–12. https://doi.org/10.3389/fchem.2021.781291spa
dc.relation.referencesYuan, W. C., Wu, T. Y., Chu, P. Y., Chang, F. R., & Wu, Y. C. (2023). High-Purity Bioactive Ingredient—3S,3′S-Astaxanthin: A New Preparation from Genetically Modified Kluyveromyces marxianus without Column Chromatography and Gel Filtration. Antioxidants, 12(4). https://doi.org/10.3390/antiox12040875spa
dc.relation.referencesYücel, Y., & Göycıncık, S. (2015). Optimization and Modelling of Process Conditions Using Response Surface Methodology (RSM) for Enzymatic Saccharification of Spent Tea Waste (STW). Waste and Biomass Valorization, 6(6), 1077–1084. https://doi.org/10.1007/s12649-015-9395-yspa
dc.relation.referencesZahed, O., Jouzani, G. S., Abbasalizadeh, S., Khodaiyan, F., & Tabatabaei, M. (2016). Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor. Folia Microbiologica, 61(3), 179–189. https://doi.org/10.1007/s12223-015-0420-0spa
dc.relation.referencesZelm, R. Van, Preiss, P., Dingenen, R. Van, & Huijbregts, M. (2016). Chapter 6: Particulate Matter Formation. LC-Impact Version 0.5, 52–60. http://lc-impact.eu/downloads-methodspa
dc.relation.referencesZerbino, R., Giaccio, G., & Isaia, G. C. (2011). Concrete incorporating rice-husk ash without processing. Construction and Building Materials, 25(1), 371–378. https://doi.org/10.1016/j.conbuildmat.2010.06.016spa
dc.relation.referencesZhai, L., Zhou, Y., Wu, Y., Jin, Y., Zhu, Q., Gao, S., Li, X., Sun, Z., Xiao, Y., Huang, B., & Tian, K. (2021). Isolation and identification of Candida tropicalis in sows with fatal infection: a case report. BMC Veterinary Research, 17(1), 1–4. https://doi.org/10.1186/s12917-021-02821-0spa
dc.relation.referencesZhai, R., Hu, J., & Saddler, J. N. (2018). The inhibition of hemicellulosic sugars on cellulose hydrolysis are highly dependant on the cellulase productive binding, processivity, and substrate surface charges. Bioresource Technology, 258(November 2017), 79–87. https://doi.org/10.1016/j.biortech.2017.12.006spa
dc.relation.referencesZhang, C., Zhu, X., Zhang, F., Yang, X., Ni, L., Zhang, W., Liu, Z., & Zhang, Y. (2020). Improving viscosity and gelling properties of leaf pectin by comparing five pectin extraction methods using green tea leaf as a model material. Food Hydrocolloids, 98(May 2019). https://doi.org/10.1016/j.foodhyd.2019.105246spa
dc.relation.referencesZhang, M., Wang, Y., Hui, K. S., Liu, L., & Zhang, C. (2020). Microwave-assisted Acid-catalyzed Hydrolysis of Hemicelluloses in Rice Husk into Xylose. IOP Conference Series: Earth and Environmental Science, 513(1). https://doi.org/10.1088/1755-1315/513/1/012016spa
dc.relation.referencesZhao, J., Yang, Y., Zhang, M., & Wang, D. (2021). Effects of post-washing on pretreated biomass and hydrolysis of the mixture of acetic acid and sodium hydroxide pretreated biomass and their mixed filtrate. Bioresource Technology, 339(July), 125605. https://doi.org/10.1016/j.biortech.2021.125605spa
dc.relation.referencesZhao, Y., Wu, B., Yan, B., & Gao, P. (2004). Mechanism of cellobiose inhibition in cellulose hydrolysis by cellobiohydrolase. Science in China, Series C: Life Sciences, 47(1), 18–24. https://doi.org/10.1360/02yc0163spa
dc.relation.referencesZhuang, X., Wang, W., Yu, Q., Qi, W., Wang, Q., Tan, X., Zhou, G., & Yuan, Z. (2016). Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresource Technology, 199, 68–75. https://doi.org/10.1016/j.biortech.2015.08.051spa
dc.relation.referencesZoghlami, A., & Paës, G. (2019). Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Frontiers in Chemistry, 7(December). https://doi.org/10.3389/fchem.2019.00874spa
dc.relation.referencesZuza-Alves, D. L., de Medeiros, S. S. T. Q., de Souza, L. B. F. C., Silva-Rocha, W. P., Francisco, E. C., de Araújo, M. C. B., Lima-Neto, R. G., Neves, R. P., Melo, A. S. d. A., & Chaves, G. M. (2016). Evaluation of virulence factors in vitro, resistance to osmotic stress and antifungal susceptibility of Candida tropicalis isolated from the coastal environment of northeast Brazil. Frontiers in Microbiology, 7(NOV), 1–13. https://doi.org/10.3389/fmicb.2016.01783spa
dc.relation.referencesZuza-Alves, D. L., Silva-Rocha, W. P., & Chaves, G. M. (2017). An update on Candida tropicalis based on basic and clinical approaches. Frontiers in Microbiology, 8(OCT), 1–25. https://doi.org/10.3389/fmicb.2017.01927spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.armarcHidrólisis enzimática
dc.subject.ddc660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionadosspa
dc.subject.ddc660 - Ingeniería química::661 - Tecnología de químicos industrialesspa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.lembCascarilla de arroz
dc.subject.proposalresiduos agrícolasspa
dc.subject.proposalxilitolspa
dc.subject.proposalglucosaspa
dc.subject.proposalsacarificaciónspa
dc.subject.proposalcascarilla de arrozspa
dc.subject.proposalresiduos lignocelulósicosspa
dc.subject.proposalAgricultural residueseng
dc.subject.proposalxylitoleng
dc.subject.proposalglucoseeng
dc.subject.proposalsaccharificationeng
dc.subject.proposalrice huskeng
dc.subject.proposallignocellulosic residueseng
dc.subject.wikidataXilosa
dc.titleValorización de cascarilla de arroz a través de una estrategia de biorrefinería y determinación del impacto ambiental mediante el análisis de ciclo de vida del procesospa
dc.title.translatedRice husk valorization through a biorefinery strategy and determination of environmental impact through process life cycle assessmenteng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleValorización biotecnológica de residuos industriales y determinación del impacto ambiental del proceso – Proyecto HERMES 49639spa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1085326521.2025.pdf
Tamaño:
3.68 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: