Producción de isómeros de sacarosa a partir de la enzima sacarosa isomerasa recombinante de Burkholderia ubonensis en Pichia pastoris

dc.contributor.advisorZapata Zapata, Arley David
dc.contributor.authorBravo Reyes, Carlos Alberto
dc.contributor.researchgroupBiotecnología Industrialspa
dc.date.accessioned2025-04-04T02:05:34Z
dc.date.available2025-04-04T02:05:34Z
dc.date.issued2025-04-02
dc.descriptionIlustracionesspa
dc.description.abstractLa investigación en el campo de la salud ha permitido evidenciar que la sacarosa presente en los alimentos genera diversas patologías como: obesidad, diabetes, enfermedades cardiovasculares entre otras, lo cual promueve la realización de estudios que permitan mitigar estas patologías y obtener nuevas alternativas a la sacarosa. En respuesta a esto se ha encontrado una amplia gama de edulcorantes, tanto artificiales como naturales que brindan perfiles de sabor y propiedades nutricionales variadas, es el caso de los isómeros de sacarosa como la isomaltulosa y trehalulosa que con una estructura molecular similar a la sacarosa, presentan un poder edulcorante respecto a la sacarosa del 50.0% y 60.0 % respectivamente, son de absorción lenta en el cuerpo además no cancerígeno y permiten el cuidado dental, presentando efectos positivos en la salud. Para avanzar en estos estudios se establece la cooperación entre la Universidad Nacional de Quilmes (UNQui) y Universidad Nacional de Colombia (UNAL), que tiene como propósito la producción de isómeros de sacarosa por vía biotecnológica, usando el clon de Burkholderia ubonensis que codifica para la expresión de enzimas sacarosa isomerasa (SIasa), en un microorganismo plataforma como Pichia pastoris, evaluando diferentes condiciones de operación para la producción de SIasa a escala matraz y biorreactor de tanque agitado de 3 L y luego mediante procesos de isomerización obtener los isómeros de sacarosa. Los resultados destacan la influencia significativa de los factores como el inductor metanol al 1 %v/v, con adición de 3 pulsos de este, velocidad de 600 rpm en biorreactor para la expresión de la SIasa con actividades de 95.0 U/mL, los extractos purificados lograron un máximo de 659.0 U/mL, además, de un rendimiento de 43.0 % para la isomaltulosa y de 14.5 % para la trehalulosa en reacciones de isomerización. (Tomado de la fuente)spa
dc.description.abstractResearch in the field of health has shown that sucrose present in food generates various pathologies such as: obesity, diabetes, cardiovascular diseases, among others, which promotes the realization of studies that mitigate these pathologies and obtain new alternatives to sucrose. In response to this, a wide range of sweeteners, both artificial and natural, have been found to provide varied flavor profiles and nutritional properties, as is the case of sucrose isomers such as isomaltulose and trehalulose, which with a molecular structure similar to sucrose, have a sweetening power of 50.0% and 60.0% respectively with respect to sucrose. They are slowly absorbed into the body and are non-carcinogenic and allow dental care, presenting positive effects on health. To advance in these studies, cooperation is established between the National University of Quilmes (UNQui) and the National University of Colombia (UNAL), which has the purpose of producing sucrose isomers by biotechnological means, using the Burkholderia ubonensis clone that codes for the expression of sucrose isomerase (SIase) enzymes, in a platform microorganism such as Pichia pastoris. evaluating different operating conditions for the production of SIase at flask scale and 3 L stirred tank bioreactor and then through isomerization processes obtain the sucrose isomers. The results highlight the significant influence of factors such as the 1 %v/v methanol inducer, with the addition of 3 pulses of this, 600 rpm speed in bioreactor for the expression of SIase with activities of 95.0 U/mL, purified extracts achieved a maximum of 659.0 U/mL, in addition, a yield of 43.0 % for isomaltulose and 14.5 % for trehalulose in isomerization reactions.eng
dc.description.curricularareaBiotecnología.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biotecnologíaspa
dc.description.researchareaProcesos fermentativos y enzimáticosspa
dc.format.extent110 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87844
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAhmad, M., Hirz, M., Pichler, H., & Schwab, H. (2014). Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Applied Microbiology and Biotechnology, 98(12), 5301. https://doi.org/10.1007/S00253-014-5732-5spa
dc.relation.referencesAizemberg, R., Terrazas, W. D. M., Ferreira-Dias, S., Valentini, S., & Gattás, E. A. L. (2011). Optimal Conditions for Biomass and Recombinant Glycerol Kinase Production Using the Yeast Pichia pastoris. Food Technology and Biotechnologyspa
dc.relation.referencesAroonnual, A., Nihira, T., Seki, T., & Panbangred, W. (2007). Role of several key residues in the catalytic activity of sucrose isomerase from Klebsiella pneumoniae NK33-98-8. 40, 1221–1227spa
dc.relation.referencesArraño, N. (2015). Desarrollo de una Estrategia de Operación en Cultivo por Lote Alimentado de Pichia pastoris para la Producción de Lipasa Recombinante. Pontificia Universidad Católica De Valparaísospa
dc.relation.referencesAsocaña. (2023). Endulzando el futuro de Colombia. Informe Anual 2022-2023spa
dc.relation.referencesBach, C. X., Thi Kim Anh, D., Thanh Thuy, N., Tu Anh, T., Thi Dieu Linh, N., & Nguyen Thanh, V. (2020). Cloning of sucrose isomerase encoding gene from Klebsiella singaporensis ISB-36 and its expression in Pichia pastoris. Vietnam Journal of Biotechnology, 17(4), 749–756. https://doi.org/10.15625/1811-4989/17/4/14722spa
dc.relation.referencesBehera, P., & Balaji, S. (2021). The forgotten sugar: A review on multifarious applications of melezitose. Carbohydrate Research, 500, 108248. https://doi.org/10.1016/J.CARRES.2021.108248spa
dc.relation.referencesBerdichevsky, M., d’Anjou, M., Mallem, M. R., Shaikh, S. S., & Potgieter, T. I. (2011). Improved production of monoclonal antibodies through oxygen-limited cultivation of glycoengineered yeast. Journal of Biotechnology, 155(2), 217–224. https://doi.org/10.1016/J.JBIOTEC.2011.06.021spa
dc.relation.referencesBio-Rad. (2012). Aminex HPLC Columns ®. Bulletin 6333 Rev A US/EG, 7–10spa
dc.relation.referencesBoojari, M. A., Rajabi Ghaledari, F., Motamedian, E., Soleimani, M., & Shojaosadati, S. A. (2023). Developing a metabolic model-based fed-batch feeding strategy for Pichia pastoris fermentation through fine-tuning of the methanol utilization pathway. Microbial Biotechnology, 16(6), 1344–1359. https://doi.org/10.1111/1751-7915.14264spa
dc.relation.referencesBradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1006/abio.1976.9999spa
dc.relation.referencesBrenda. (2023). BRENDA. https://www.brenda-enzymes.org/enzyme.php?ecno=5.4.99.11#ORGANISMspa
dc.relation.referencesBurgos Montañez, L. J. (2020). Cuantificación de azúcares reductores del sustrato en residuos de piña con el método del ácido 3,5-dinitrosalicílico. Questionar: Investigación Específica, 7(1), 57–66. https://doi.org/10.29097/23461098.308spa
dc.relation.referencesCabezas, C., Hernández, B., & Vargas, M. (2016). Sugars added in food: Health effects and global regulation. Revista Facultad de Medicina, 64(2), 319–329. https://doi.org/10.15446/revfacmed.v64n2.52143spa
dc.relation.referencesÇalık, P., Ata, Ö., Güneş, H., Massahi, A., Boy, E., Keskin, A., Öztürk, S., Zerze, G. H., & Özdamar, T. H. (2015). Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: From carbon source metabolism to bioreactor operation parameters. Biochemical Engineering Journal, 95, 20–36. https://doi.org/https://doi.org/10.1016/j.bej.2014.12.003spa
dc.relation.referencesCamila, M., & Villanueva, D. (2022). Evaluación de la enzima Iduronato 2-sulfato sulfatasa humana recombinante producida en Komagataella phaffii GS115 en un modelo in vitro de fibroblastos de pacientes con Mucopolisacaridosis tipo II (Síndrome de Hunter)spa
dc.relation.referencesCao, M. E. Á., Becerra Fernández Y María, M., & Siso, I. G. (2017). Optimización de la producción heteróloga de la enzima α-galactosidasa de “Saccharomyces cerevisiae” a partir de residuos agroindustrialesspa
dc.relation.referencesCastro-Muñoz, R., Correa-Delgado, M., Córdova-Almeida, R., Lara-Nava, D., Chávez-Muñoz, M., Velásquez-Chávez, V. F., Hernández-Torres, C. E., Gontarek-Castro, E., & Ahmad, M. Z. (2022). Natural sweeteners: Sources, extraction and current uses in foods and food industries. Food Chemistry, 370, 130991. https://doi.org/10.1016/J.FOODCHEM.2021.130991spa
dc.relation.referencesÇelik, E., Çalik, P., & Oliver, S. G. (2009). A structured kinetic model for recombinant protein production by Mut+ strain of Pichia pastoris. Chemical Engineering Science, 64(23), 5028–5035. https://doi.org/10.1016/J.CES.2009.08.009spa
dc.relation.referencesCha, J., Jung, J. H., Park, S. E., Cho, M. H., Seo, D. H., Ha, S. J., Yoon, J. W., Lee, O. H., Kim, Y. C., & Park, C. S. (2009). Molecular cloning and functional characterization of a sucrose isomerase (isomaltulose synthase) gene from Enterobacter sp. FMB‐1. Journal of Applied Microbiology, 107(4), 1119–1130. https://doi.org/10.1111/J.1365-2672.2009.04295.Xspa
dc.relation.referencesChamorro, N. L., Valero Barranco, F., Montesinos Seguí, J. L., & Universitat Autònoma de Barcelona. Departament d’Enginyeria Química. (2015). Utilización de glicerol proveniente de la industria de biodiesel como fuente de carbono para la producción de lipasas recombinantes en Pichia pastoris. TDX (Tesis Doctorals En Xarxa). https://www.tdx.cat/handle/10803/313455spa
dc.relation.referencesCoetzee, G. (2019). Optimization of Aspergillus fijiensis β-fructofuranosidase expression and production using Pichia pastoris, for the production of fructooligosaccharides from sucrose. April, 170spa
dc.relation.referencesCombes, D., & Monsan, P. (1983). Sucrose hydrolysis by invertase. Characterization of products and substrate inhibition. Carbohydrate Research, 117(C), 215–228. https://doi.org/10.1016/0008-6215(83)88088-4spa
dc.relation.referencesContesini, F. J., Carvalho, P. de O., Grosso, C. R. F., & Sato, H. H. (2013). Single-step purification, characterization and immobilization of a sucrose isomerase from Erwinia sp. Biocatalysis and Agricultural Biotechnology, 2(4), 322–327. https://doi.org/10.1016/J.BCAB.2013.05.006spa
dc.relation.referencesCorzo, N., Alonso, J. ., Azpiroz, F., M. A., C., M., C., R., L., F., L., I., M.-A., F. J., P., & P., R.-M. (2015). Prebióticos; concepto, propiedades y efectos beneficiosos. Nutrición Hospitalaria, 31, 99–118. https://www.redalyc.org/pdf/3092/309238517015.pdfspa
dc.relation.referencesDaly, R., & Hearn, M. T. W. (2005). Expression of heterologous proteins in Pichia pastoris: A useful experimental tool in protein engineenring and production. Journal of Molecular Recognition, 18(2), 119–138. https://doi.org/10.1002/JMR.687spa
dc.relation.referencesDuan, X., Cheng, S., Ai, Y., & Wu, J. (2016). Enhancing the Thermostability of Serratia plymuthica Sucrose Isomerase Using B-Factor-Directed Mutagenesis. PloS One, 11(2). https://doi.org/10.1371/JOURNAL.PONE.0149208spa
dc.relation.referencesEMBL-EBI. (2024). M-CSA Mechanism and Catalytic Site Atlas. https://www.ebi.ac.uk/thornton-srv/m-csa/entry/582/spa
dc.relation.referencesEsperanza, E., & Castillo, F. (2007). Evaluación de melaza de caña como sustrato para la producción de Saccharomyces cerevisiaespa
dc.relation.referencesFakultät, N. (2013). Physiological response of Pichia pastoris to recombinant protein production under methanol induction. Von der Naturwissenschaftlichen Fakultät der Gottfried Wilhelm Leibniz Universität Hannoverspa
dc.relation.referencesFEDNA. (2018). Melaza de Caña. In Fedna. http://www.fundacionfedna.org/ingredientes_para_piensos/melazas-de-cañaspa
dc.relation.referencesFelipe Hernández-Pérez, A., Jofre, F. M., De Souza Queiroz, S., Vaz De Arruda, P., Chandel, A. K., & Felipe, M. D. G. D. A. (2020). Biotechnological production of sweeteners. Biotechnological Production of Bioactive Compounds, 261–292. https://doi.org/10.1016/B978-0-444-64323-0.00009-6spa
dc.relation.referencesFletcher, M. T., Hungerford, N. L., Webber, D., Carpinelli de Jesus, M., Zhang, J., Stone, I. S. J., Blanchfield, J. T., & Zawawi, N. (2020). Stingless bee honey, a novel source of trehalulose: a biologically active disaccharide with health benefits. 10(1). https://doi.org/10.1038/s41598-020-68940-0spa
dc.relation.referencesGao, M., & Shi, Z. (2013). Process control and optimization for heterologous protein production by methylotrophic pichia pastoris. Chinese Journal of Chemical Engineering, 21(2), 216–226. https://doi.org/10.1016/S1004-9541(13)60461-9spa
dc.relation.referencesGao, M., Yang, G., Li, F., Wang, Z., Hu, X., Jiang, Y., Yan, J., Li, Z., & Zhan, X. (2021). Efficient endo-β-1,3-glucanase expression in Pichia pastoris for co-culture with Agrobacterium sp. for direct curdlan oligosaccharide production. International Journal of Biological Macromolecules, 182, 1611–1617. https://doi.org/10.1016/J.IJBIOMAC.2021.05.142spa
dc.relation.referencesGarcía-Almeida, J. M., Gracia, M. ., Casado, F., & García Alemán. J. (2013). Una visión global y actual de los edulcorantes: aspectos de regulación. http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=s0212-16112013001000003spa
dc.relation.referencesGarcia-Ortega, X., Valero, F., & Montesinos-Seguí, J. L. (2017). Physiological state as transferable operating criterion to improve recombinant protein production in Pichia pastoris through oxygen limitation. Journal of Chemical Technology & Biotechnology, 92(10), 2573–2582. https://doi.org/10.1002/JCTB.5272spa
dc.relation.referencesGarcía, J. ;, Santana, Z., Zumalacárregui, L., Quintana, M., González, D. ;, Furrazola, G., & Cruz, O. (2013). Estrategias de obtención de proteínas recombinantes en Escherichia coli. FINLAY Ediciones, 30–39. http://scielo.sld.cu/pdf/vac/v22n2/vac06213.pdfspa
dc.relation.referencesGhosalkar, A., Sahai, V., & Srivastava, A. (2008). Optimization of chemically defined medium for recombinant Pichia pastoris for biomass production. Bioresource Technology, 99(16), 7906–7910. https://doi.org/10.1016/J.BIORTECH.2008.01.059spa
dc.relation.referencesGoulter, K. C., Hashimi, S. M., & Birch, R. G. (2012). Microbial sucrose isomerases: Producing organisms, genes and enzymes. Enzyme and Microbial Technology, 50(1), 57–64. https://doi.org/10.1016/j.enzmictec.2011.09.011spa
dc.relation.referencesGrellet, C., Alejandra, M., Luis Aráoz Martínez, J., Gusils, C., & Zossi, S. (2015). Validación de metodología para determinación de azúcares reductores totales en vinos fermentados. Revista Industrial y Agrícola de Tucumán, 92(2), 33–38. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1851-30182015000200005&lng=es&nrm=iso&tlng=esspa
dc.relation.referencesHamerli, D., & Birch, R. G. (2011). Transgenic expression of trehalulose synthase results in high concentrations of the sucrose isomer trehalulose in mature stems of field-grown sugarcane. Plant Biotechnology Journal, 9(1), 32–37. https://doi.org/10.1111/j.1467-7652.2010.00528.xspa
dc.relation.referencesHernández, F. (2014). Influencia de la biomasa y la concetración de metanol en la producción de la enzima recombinante hexosaminidasa en Pichia pastoris. Pontificia Universidad Javeriana, 91(5), 1689–1699spa
dc.relation.referencesHou, F. ; ;, Wu, X. ;, Zheng, M. ;, Zheng, Y. ;, Lu, F. ;, Liu, F. A., Jing, W., Hou, F., Wu, X., Zheng, M., Zheng, Y., Lu, F., & Liu, F. (2024). A Critical Review on Immobilized Sucrose Isomerase and Cells for Producing Isomaltulose. Foods 2024, Vol. 13, Page 1228, 13(8), 1228. https://doi.org/10.3390/FOODS13081228spa
dc.relation.referencesInvitrogen. (2002). Pichia Fermentation Process Guidelines Overview Overview , continued. Progress in Botany, 67, 1–11spa
dc.relation.referencesJahic, M., Rotticci-Mulder, J., Martinelle, M., Hult, K., & Enfors, S. O. (2002). Modeling of growth and energy metabolism of Pichia pastoris producing a fusion protein. Bioprocess and Biosystems Engineering, 24(6), 385–393. https://link.springer.com/article/10.1007/s00449-001-0274-5spa
dc.relation.referencesJares, F., Oliveira, P. De, Raimundo, C., Grosso, F., & Harumi, H. (2013). Biocatalysis and Agricultural Biotechnology Single-step puri fi cation , characterization and immobilization of a sucrose isomerase from Erwinia sp . Biocatalysis and Agricultural Biotechnology, 2(4), 322–327. https://doi.org/10.1016/j.bcab.2013.05.006spa
dc.relation.referencesJia, L., Tu, T., Huai, Q., Sun, J., Chen, S., Li, X., Shi, Z., & Ding, J. (2017). Enhancing monellin production by Pichia pastoris at low cell induction concentration via effectively regulating methanol metabolism patterns and energy utilization efficiency. PLOS ONE, 12(10), e0184602. https://doi.org/10.1371/JOURNAL.PONE.0184602spa
dc.relation.referencesJung, J. H., Kim, M. J., Jeong, W. S., Seo, D. H., Ha, S. J., Kim, Y. W., & Park, C. S. (2017). Characterization of divergent pseudo-sucrose isomerase from Azotobacter vinelandii: Deciphering the absence of sucrose isomerase activity. Biochemical and Biophysical Research Communications, 483(1), 115–121. https://doi.org/10.1016/J.BBRC.2016.12.184spa
dc.relation.referencesJungo, C., Marison, I., & von Stockar, U. (2007). Regulation of alcohol oxidase of a recombinant Pichia pastoris Mut+ strain in transient continuous cultures. Journal of Biotechnology, 130(3), 236–246. https://doi.org/10.1016/J.JBIOTEC.2007.04.004spa
dc.relation.referencesKatakura, Y., Zhang, W., Zhuang, G., Omasa, T., Kishimoto, M., Goto, Y., & Suga, K. I. (1998). Effect of methanol concentration on the production of human β2-glycoprotein I domain V by a recombinant Pichia pastoris: A simple system for the control of methanol concentration using a semiconductor gas sensor. Journal of Fermentation and Bioengineering, 86(5), 482–487. https://doi.org/10.1016/S0922-338X(98)80156-6spa
dc.relation.referencesKhatri, N. K., & Hoffmann, F. (2006). Impact of methanol concentration on secreted protein production in oxygen‐limited cultures of recombinant Pichia pastoris. Biotechnology and Bioengineering, 93(5), 871–879. https://doi.org/10.1002/BIT.20773spa
dc.relation.referencesKrainer, F. W., Dietzsch, C., Hajek, T., Herwig, C., Spadiut, O., & Glieder, A. (2012). Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway. Microbial Cell Factories, 11(1), 1–14. https://doi.org/10.1186/1475-2859-11-22/TABLES/2spa
dc.relation.referencesKupcsulik, B., & Sevella, B. (2005). Effect of methanol concetntration on the recombinant Pichia pastoris mut s fermentatotion. Periodica Polytechnica Chemical Engineeringspa
dc.relation.referencesLagos, E., & Castro, E. (2019). Sugar cane and by-products of the sugar agro-industry in ruminant feeding: A review. Agronomy Mesoamerican, 30(3), 917–934. https://doi.org/10.15517/am.v30i3.34668spa
dc.relation.referencesLee, H. C., Kim, J. H., Kim, S. Y., & Lee, J. K. (2008). Isomaltose production by modification of the fructose-binding site on the basis of the predicted structure of sucrose isomerase from “Protaminobacter rubrum”. Applied and Environmental Microbiology, 74(16), 5183–5194. https://doi.org/10.1128/AEM.00181-08spa
dc.relation.referencesLi, L., Wang, H., Cheng, H., & Deng, Z. (2017). Isomaltulose production by yeast surface display of sucrose isomerase from Pantoea dispersa on Yarrowia lipolytica. Journal of Functional Foods, 32, 208–217. https://doi.org/10.1016/J.JFF.2017.02.036spa
dc.relation.referencesLiu, L., Yu, S., & Zhao, W. (2021). A novel sucrose isomerase producing isomaltulose from raoultella terrigena. Applied Sciences (Switzerland), 11(12). https://doi.org/10.3390/app11125521spa
dc.relation.referencesLiu, W. C., Gong, T., Wang, Q. H., Liang, X., Chen, J. J., & Zhu, P. (2016). Scaling-up Fermentation of Pichia pastoris to demonstration-scale using new methanol-feeding strategy and increased air pressure instead of pure oxygen supplement. Scientific Reports, 6. https://doi.org/10.1038/SREP18439spa
dc.relation.referencesLiu, W. cang, Zhou, F., Xia, D., & Shiloach, J. (2019). Expression of multidrug transporter P‐glycoprotein in Pichia pastoris affects the host’s methanol metabolism. Microbial Biotechnology, 12(6), 1226–1236. https://doi.org/10.1111/1751-7915.13420spa
dc.relation.referencesLobelo, Y., & Alvarado, M. (2015). Análisis de competitividad y de mercado en la sustitución parcial o total de azúcar por otros edulcorantes en las empresas del sector de bebidas no alcohólicas en Colombia de 2009 a 2014. https://ciencia.lasalle.edu.co/spa
dc.relation.referencesLoveridge, E. J., Jones, C., Bull, M. J., Moody, S. C., Kahl, M. W., Khan, Z., Neilson, L., Tomeva, M., Adams, S. E., Wood, A. C., Rodriguez-Martin, D., Pinel, I., Parkhill, J., Mahenthiralingam, E., & Crosby, J. (2017). Reclassification of the Specialized Metabolite Producer Pseudomonas mesoacidophila ATCC 31433 as a Member of the Burkholderia cepacia Complex. Journal of Bacteriology, 199(13). https://doi.org/10.1128/JB.00125-17spa
dc.relation.referencesLozano, J. E. (2003). SEPARATION AND CLARIFICATION. Encyclopedia of Food Sciences and Nutrition, 5187–5196. https://doi.org/10.1016/B0-12-227055-X/01070-1spa
dc.relation.referencesLucía, M., Micán, M., Andrés, J., Ladino, R., Fernanda, L., Prieto, R., & Coinvestigador, E. (2017). Enzymes: some applications of these “micro-machines” like impellers of green technology. América Semilleros Formación Investigativa, 3(1), 85–90spa
dc.relation.referencesMarín Muñoz, M. A. (2019). Coeficiente volumétrico de transferencia de masa (kla) y potencia gaseada volumétrica (pg/v) como criterios de escalamiento del bioproceso para la producción de dextranasa recombinante en Pichia pastoris [Universidad Autónoma de Aguascalientes]. http://bdigital.dgse.uaa.mx:8080/xmlui/bitstream/handle/11317/1728/437033.pdf?isAllowed=y&sequence=1spa
dc.relation.referencesMercado, sergi monforte. (2019). Systems metabolic engineering for recombinant protein production in Pichia pastorisspa
dc.relation.referencesMiao, M., Jiang, B., Jin, Z., & BeMiller, J. N. (2018). Microbial Starch-Converting Enzymes: Recent Insights and Perspectives. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1238–1260. https://doi.org/10.1111/1541-4337.12381spa
dc.relation.referencesMoraes, A. L. L., Steckelberg, C., Sato, H. H., & Pinheiro, A. (2005). Produção de isomaltulose a partir da transformação enzimática da sacarose, utilizando-se Erwinia sp D12 imobilizada com alginato de cálcio. Food Science and Technology, 25(1), 95–102. https://doi.org/10.1590/S0101-20612005000100016spa
dc.relation.referencesMorales, L. G., Beltran Romero, L., & Garcia Puig, J. (2013). Azúcar y enfermedades cardiovasculares. 28, 88–94. http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-16112013001000011spa
dc.relation.referencesMu, W., Li, W., Wang, X., Zhang, T., & Jiang, B. (2014). Current studies on sucrose isomerase and biological isomaltulose production using sucrose isomerase. Applied Microbiology and Biotechnology, 98(15), 6569–6582. https://doi.org/10.1007/S00253-014-5816-2/METRICSspa
dc.relation.referencesNam, C. H., Seo, D. H., Jung, J. H., Koh, Y. J., Jung, J. S., Heu, S., Oh, C. S., & Park, C. S. (2014). Functional characterization of the sucrose isomerase responsible for trehalulose production in plant-associated Pectobacterium species. Enzyme and Microbial Technology, 55, 100–106. https://doi.org/10.1016/j.enzmictec.2013.10.005spa
dc.relation.referencesOCDE-FAO. (2017). Perspectivas Agrícolas. https://doi.org/10.1787/agr-data-enspa
dc.relation.referencesOCDE‑FAO. (2020). OCDE‑FAO Perspectivas Agrícolas 2020‑2029 (OCDE-FAO Perspectivas Agrícolas). OECD. https://doi.org/10.1787/A0848AC0-ESspa
dc.relation.referencesOCDE‑FAO. (2021). Azúcar | OCDE-FAO Perspectivas Agrícolas 2022-2031 | OECD iLibrary. https://www.oecd-ilibrary.org/sites/99f4c779-es/index.html?itemId=/content/component/99f4c779-es#section-d1e38353spa
dc.relation.referencesOMS. (2015). OMS | Ingesta de azúcares para adultos y niños. WHO, 1–8spa
dc.relation.referencesOMS. (2016). La OMS recomienda aplicar medidas en todo el mundo para reducir el consumo de bebidas azucaradas y sus consecuencias para la salud. https://www.who.int/es/news/item/11-10-2016-who-urges-global-action-to-curtail-consumption-and-health-impacts-of-sugary-drinksspa
dc.relation.referencesPotvin, G., Ahmad, A., & Zhang, Z. (2012). Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: A review. Biochemical Engineering Journal, 64, 91–105. https://doi.org/10.1016/J.BEJ.2010.07.017spa
dc.relation.referencesProteopedia. (2020). Trehalulose synthase. https://proteopedia.org/wiki/index.php/Trehalulose_synthasespa
dc.relation.referencesQueneau, Y., Jarosz, S., Lewandowski, B., & Fitremann, J. (2007). Sucrose Chemistry and Applications of Sucrochemicals. In Advances in Carbohydrate Chemistry and Biochemistry (Vol. 61, pp. 217–292). Adv Carbohydr Chem Biochem. https://doi.org/10.1016/S0065-2318(07)61005-1spa
dc.relation.referencesQuirk, A. V., & Woodrow, J. R. (1983). Tangential flow filtration - A new method for the separation of bacterial enzymes from cell debris. Biotechnology Letters, 5(4), 277–282. https://doi.org/10.1007/BF00161129/METRICSspa
dc.relation.referencesRavaud, S., Robert, X., Watzlawick, H., Haser, R., Mattes, R., & Aghajari, N. (2007). Trehalulose synthase native and carbohydrate complexed structures provide insights into sucrose isomerization. Journal of Biological Chemistry, 282(38), 28126–28136. https://doi.org/10.1074/jbc.M704515200spa
dc.relation.referencesRen, B., Li, S., Xu, H., Feng, X. H., Cai, H., & Ye, Q. (2011). Purification and characterization of a highly selective sucrose isomerase from Erwinia rhapontici NX-5. Bioprocess and Biosystems Engineering, 34(5), 629–637. https://doi.org/10.1007/S00449-010-0512-9spa
dc.relation.referencesRené Rojas Muñoz, V., Giraldo Estrada, C., & Andrea Ramírez Tapias, Y. (2009). Evaluación de métodos de extracción y purificación de enzimas pectinolíticas obtenidas por fermentación en estado semisólido del Aspergillus nigerspa
dc.relation.referencesRhimi, M., Haser, R., & Aghajari, N. (2008). Bacterial sucrose isomerases: properties and structural studies. Section Cellular and Molecular Biology, 63, 1020–1027. https://doi.org/10.2478/s11756-008-0166-0spa
dc.relation.referencesRojas, N. L., Ortiz, G. E., Baruque, D. J., Cavalitto, S. F., & Ghiringhelli, P. D. (2011). Production of heterologous polygalacturonase I from Aspergillus kawachii in Saccharomyces cerevisiae in batch and fed-batch cultures. Journal of Industrial Microbiology & Biotechnology, 38(9), 1437–1447. https://doi.org/10.1007/s10295-010-0929-9spa
dc.relation.referencesRuiz, H., Algecira, N., Poutou-Piñales, R., & Barrera, L. (2003). Revisión de tema: Pichia pastoris, una alternativa para la producción de glicoproteínas humanas de uso terapéutico. Estrategias de fermentación. Revista Colombiana de Biotecnología, ISSN 1909-8758, Vol. 5, No. 2, 2003, Pags. 73-84, 5spa
dc.relation.referencesSarabia, C. M. A., & Mata, I. (2020). Biotecnología enzimática y biotransformaciones de interés industrial | Oficina de Transferencia de Resultados de Investigación. https://www.ucm.es/otri/complutransfer-biotecnologia-enzimatica-y-biotransformaciones-de-interes-industrialspa
dc.relation.referencesSardiña-Peña, A. J., Ballinas-Casarrubias, L., Siqueiros-Cendón, T. S., Espinoza-Sánchez, E. A., Flores-Holguín, N. R., Iglesias-Figueroa, B. F., & Rascón-Cruz, Q. (2023). Thermostability improvement of sucrose isomerase PalI NX-5: a comprehensive strategy. Biotechnology Letters, 45(7), 885–904. https://doi.org/10.1007/S10529-023-03388-6spa
dc.relation.referencesSartorius. (2016). Directions for Use Vivaflow 50|50R|200 (Vol. 06)spa
dc.relation.referencesSu, H. H., Xu, R. Y., Yang, Z. D., Guo, Y. S., Gao, J. Y., Mo, L. Z., Gao, Y. F., Cheng, H., Zhang, P. J., & Huang, J. S. (2021). Green synthesis of isomaltulose from cane molasses by an immobilized recombinant Escherichia coli strain and its prebiotic activity. LWT, 143, 111054. https://doi.org/10.1016/J.LWT.2021.111054spa
dc.relation.referencesTatiana, J., & García, G. (2022). Enseñanza y aprendizaje de conceptos asociados a la cinética enzimática en el contexto de la bioquímica de alimentosspa
dc.relation.referencesTian, Y., Deng, Y., Zhang, W., & Mu, W. (2019). Sucrose isomers as alternative sweeteners: properties, production, and applications. Applied Microbiology and Biotechnology, 103(21–22), 8677–8687. https://doi.org/10.1007/s00253-019-10132-6spa
dc.relation.referencesToshiaki, S., Kenichiro, T., Yukie, M., Tadashi, E., Hideaki, O., Yoshikazu, N., & Kenzo, S. (1991). Process for preparing trehalulose and isomaltulosespa
dc.relation.referencesValidogen. (2022). Pichia pastoris features & facts - VALIDOGEN. https://www.validogen.com/pichia-pastoris/advantagesspa
dc.relation.referencesVanz, A. L., Lünsdorf, H., Adnan, A., Nimtz, M., Gurramkonda, C., Khanna, N., & Rinas, U. (2012). Physiological response of Pichia pastoris GS115 to methanol-induced high level production of the Hepatitis B surface antigen: Catabolic adaptation, stress responses, and autophagic processes. Microbial Cell Factories, 11, 1–11. https://doi.org/10.1186/1475-2859-11-103spa
dc.relation.referencesVenables, M. C., Brouns, F., & Jeukendrup, A. E. (2008). Oxidation of maltose and trehalose during prolonged moderate-intensity exercise. Medicine and Science in Sports and Exercise, 40(9), 1653–1659. https://doi.org/10.1249/MSS.0b013e318175716cspa
dc.relation.referencesVera, P., & Natalia, L. (2013). Evaluación de los niveles de producción de Iduronato 2-Sulfato sulfatasa (IDS) en dos cepas de Pichia pastoris bajo condiciones limitadas de oxígeno y sustrato [Pontificia Universidad Javeriana]. https://repository.javeriana.edu.co/handle/10554/11831spa
dc.relation.referencesVéronèse, T., Bouchu, A., & Perlot, P. (1999). Rapid method for trehalulose production and its purification by preparative high-performance liquid chromatography. Biotechnology Techniques, 13(1), 43–48. https://doi.org/10.1023/A:1008857613103spa
dc.relation.referencesVeronese, T., & Perlot, P. (1998). Proposition for the biochemical mechanism occurring in the sucrose isomerase active site. FEBS Letters, 441(3), 348–352. https://doi.org/10.1016/S0014-5793(98)01582-8spa
dc.relation.referencesVéronèse, T., & Perlot, P. (1999). Mechanism of sucrose conversion by the sucrose isomerase of Serratia plymuthica ATCC 15928. Enzyme and Microbial Technology, 24(5–6), 263–269. https://doi.org/10.1016/S0141-0229(98)00115-Xspa
dc.relation.referencesVillagran, A. J., Huayamave Bravo, C., Lara García, J., Maluk Salem, O., Galindo Velasco Km, G., & Perimetral, V. (2009). Stevia:Produccion y procesamiento de un edulzante alternativo (Issue 1)spa
dc.relation.referencesWang, Q. Q., Yang, M., Hao, J. H., & Ma, Z. C. (2021). Direct Isomaltulose Synthesis From Beet Molasses by Immobilized Sucrose Isomerase. Frontiers in Bioengineering and Biotechnology, 9, 691547. https://doi.org/10.3389/FBIOE.2021.691547/BIBTEXspa
dc.relation.referencesWei, Y., Liang, J., Huang, Y., Lei, P., Du, L., & Huang, R. (2013). Simple, fast, and efficient process for producing and purifying trehalulose. Food Chemistry, 138(2–3), 1183–1188. https://doi.org/10.1016/j.foodchem.2012.11.115spa
dc.relation.referencesWoo, J. H., Liu, Y. Y., & Neville, D. M. (2006). Minimization of aggregation of secreted bivalent anti-human T cell immunotoxin in Pichia pastoris bioreactor culture by optimizing culture conditions for protein secretion. Journal of Biotechnology, 121(1), 75–85. https://doi.org/10.1016/J.JBIOTEC.2005.07.004spa
dc.relation.referencesWu, L., & Birch, R. G. (2005). Characterization of the Highly Efficient Sucrose Isomerase from Pantoea dispersa UQ68J and Cloning of the Sucrose Isomerase Gene. Applied and Environmental Microbiology, 71(3), 1581. https://doi.org/10.1128/AEM.71.3.1581-1590.2005spa
dc.relation.referencesZavec, D., Gasser, B., & Mattanovich, D. (2020). Characterization of methanol utilization negative Pichia pastoris for secreted protein production: New cultivation strategies for current and future applications. Biotechnology and Bioengineering, 117(5), 1394. https://doi.org/10.1002/BIT.27303spa
dc.relation.referencesZepeda, A. B., Figueroa, C. A., Abdalla, D. S. P., Maranhão, A. Q., Ulloa, P. H., Pessoa, A., & Farías, J. G. (2014). Biomarkers to evaluate the effects of temperature and methanol on recombinant Pichia pastoris. Brazilian Journal of Microbiology, 45(2), 475–483. https://doi.org/10.1590/S1517-83822014000200014spa
dc.relation.referencesZhang, D., Li, N., Lok, S. M., Zhang, L. H., & Swaminathan, K. (2003). Isomaltulose synthase (PalI) of Klebsiella sp. LX3: Crystal structure and implication of mechanism. Journal of Biological Chemistry, 278(37), 35428–35434. https://doi.org/10.1074/jbc.M302616200spa
dc.relation.referencesZhang, F., Cheng, F., Jia, D. X., Gu, Y. H., Liu, Z. Q., & Zheng, Y. G. (2021). Characterization of a recombinant sucrose isomerase and its application to enzymatic production of isomaltulose. Biotechnology Letters, 43(1), 261–269. https://doi.org/10.1007/S10529-020-02999-7/FIGURES/5spa
dc.relation.referencesZhang, J. H., Wu, D., Chen, J., & Wu, J. (2011). Enhancing functional expression of β-glucosidase in Pichia pastoris by co-expressing protein disulfide isomerase. Biotechnology and Bioprocess Engineering 2011 16:6, 16(6), 1196–1200. https://doi.org/10.1007/S12257-011-0136-1spa
dc.relation.referencesZhang, P., Wang, Z. P., Liu, S., Wang, Y. L., Zhang, Z. F., Liu, X. M., Du, Y. M., & Yuan, X. L. (2019). Overexpression of secreted sucrose isomerase in Yarrowia lipolytica and its application in isomaltulose production after immobilization. International Journal of Biological Macromolecules, 121, 97–103. https://doi.org/10.1016/J.IJBIOMAC.2018.10.010spa
dc.relation.referencesZheng, Y., Wang, Z., Ji, X., & Sheng, J. (2019). Display of a sucrose isomerase on the cell surface of Yarrowia lipolytica for synthesis of isomaltulose from sugar cane by-products. 3 Biotech, 9(5), 179. https://doi.org/10.1007/S13205-019-1713-9spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.agrovocIsoglucosa
dc.subject.agrovocEdulcorantes
dc.subject.agrovocPichia pastoris
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.lembisómeros
dc.subject.lembBiotecnología
dc.subject.proposalEnzima recombinantespa
dc.subject.proposalsacarosa isomerasaspa
dc.subject.proposaledulcorantespa
dc.subject.proposaltrehalulosaspa
dc.subject.proposalisomaltulosaspa
dc.subject.proposalbiorreactor de tanque agitadospa
dc.subject.proposalRecombinant enzymeeng
dc.subject.proposalSucrose isomeraseeng
dc.subject.proposalSweetenereng
dc.subject.proposalTrehaluloseeng
dc.subject.proposalIsomaltuloseeng
dc.subject.proposalStirred tank bioreactoreng
dc.titleProducción de isómeros de sacarosa a partir de la enzima sacarosa isomerasa recombinante de Burkholderia ubonensis en Pichia pastoris
dc.title.translatedProduction of sucrose isomers from the recombinant sucrose isomerase enzyme of Burkholderia ubonensis in Pichia pastoriseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1061796314.2025.pdf
Tamaño:
1.7 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: