Producción de isómeros de sacarosa a partir de la enzima sacarosa isomerasa recombinante de Burkholderia ubonensis en Pichia pastoris
dc.contributor.advisor | Zapata Zapata, Arley David | |
dc.contributor.author | Bravo Reyes, Carlos Alberto | |
dc.contributor.researchgroup | Biotecnología Industrial | spa |
dc.date.accessioned | 2025-04-04T02:05:34Z | |
dc.date.available | 2025-04-04T02:05:34Z | |
dc.date.issued | 2025-04-02 | |
dc.description | Ilustraciones | spa |
dc.description.abstract | La investigación en el campo de la salud ha permitido evidenciar que la sacarosa presente en los alimentos genera diversas patologías como: obesidad, diabetes, enfermedades cardiovasculares entre otras, lo cual promueve la realización de estudios que permitan mitigar estas patologías y obtener nuevas alternativas a la sacarosa. En respuesta a esto se ha encontrado una amplia gama de edulcorantes, tanto artificiales como naturales que brindan perfiles de sabor y propiedades nutricionales variadas, es el caso de los isómeros de sacarosa como la isomaltulosa y trehalulosa que con una estructura molecular similar a la sacarosa, presentan un poder edulcorante respecto a la sacarosa del 50.0% y 60.0 % respectivamente, son de absorción lenta en el cuerpo además no cancerígeno y permiten el cuidado dental, presentando efectos positivos en la salud. Para avanzar en estos estudios se establece la cooperación entre la Universidad Nacional de Quilmes (UNQui) y Universidad Nacional de Colombia (UNAL), que tiene como propósito la producción de isómeros de sacarosa por vía biotecnológica, usando el clon de Burkholderia ubonensis que codifica para la expresión de enzimas sacarosa isomerasa (SIasa), en un microorganismo plataforma como Pichia pastoris, evaluando diferentes condiciones de operación para la producción de SIasa a escala matraz y biorreactor de tanque agitado de 3 L y luego mediante procesos de isomerización obtener los isómeros de sacarosa. Los resultados destacan la influencia significativa de los factores como el inductor metanol al 1 %v/v, con adición de 3 pulsos de este, velocidad de 600 rpm en biorreactor para la expresión de la SIasa con actividades de 95.0 U/mL, los extractos purificados lograron un máximo de 659.0 U/mL, además, de un rendimiento de 43.0 % para la isomaltulosa y de 14.5 % para la trehalulosa en reacciones de isomerización. (Tomado de la fuente) | spa |
dc.description.abstract | Research in the field of health has shown that sucrose present in food generates various pathologies such as: obesity, diabetes, cardiovascular diseases, among others, which promotes the realization of studies that mitigate these pathologies and obtain new alternatives to sucrose. In response to this, a wide range of sweeteners, both artificial and natural, have been found to provide varied flavor profiles and nutritional properties, as is the case of sucrose isomers such as isomaltulose and trehalulose, which with a molecular structure similar to sucrose, have a sweetening power of 50.0% and 60.0% respectively with respect to sucrose. They are slowly absorbed into the body and are non-carcinogenic and allow dental care, presenting positive effects on health. To advance in these studies, cooperation is established between the National University of Quilmes (UNQui) and the National University of Colombia (UNAL), which has the purpose of producing sucrose isomers by biotechnological means, using the Burkholderia ubonensis clone that codes for the expression of sucrose isomerase (SIase) enzymes, in a platform microorganism such as Pichia pastoris. evaluating different operating conditions for the production of SIase at flask scale and 3 L stirred tank bioreactor and then through isomerization processes obtain the sucrose isomers. The results highlight the significant influence of factors such as the 1 %v/v methanol inducer, with the addition of 3 pulses of this, 600 rpm speed in bioreactor for the expression of SIase with activities of 95.0 U/mL, purified extracts achieved a maximum of 659.0 U/mL, in addition, a yield of 43.0 % for isomaltulose and 14.5 % for trehalulose in isomerization reactions. | eng |
dc.description.curriculararea | Biotecnología.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Biotecnología | spa |
dc.description.researcharea | Procesos fermentativos y enzimáticos | spa |
dc.format.extent | 110 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87844 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Ciencias - Maestría en Ciencias - Biotecnología | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Ahmad, M., Hirz, M., Pichler, H., & Schwab, H. (2014). Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Applied Microbiology and Biotechnology, 98(12), 5301. https://doi.org/10.1007/S00253-014-5732-5 | spa |
dc.relation.references | Aizemberg, R., Terrazas, W. D. M., Ferreira-Dias, S., Valentini, S., & Gattás, E. A. L. (2011). Optimal Conditions for Biomass and Recombinant Glycerol Kinase Production Using the Yeast Pichia pastoris. Food Technology and Biotechnology | spa |
dc.relation.references | Aroonnual, A., Nihira, T., Seki, T., & Panbangred, W. (2007). Role of several key residues in the catalytic activity of sucrose isomerase from Klebsiella pneumoniae NK33-98-8. 40, 1221–1227 | spa |
dc.relation.references | Arraño, N. (2015). Desarrollo de una Estrategia de Operación en Cultivo por Lote Alimentado de Pichia pastoris para la Producción de Lipasa Recombinante. Pontificia Universidad Católica De Valparaíso | spa |
dc.relation.references | Asocaña. (2023). Endulzando el futuro de Colombia. Informe Anual 2022-2023 | spa |
dc.relation.references | Bach, C. X., Thi Kim Anh, D., Thanh Thuy, N., Tu Anh, T., Thi Dieu Linh, N., & Nguyen Thanh, V. (2020). Cloning of sucrose isomerase encoding gene from Klebsiella singaporensis ISB-36 and its expression in Pichia pastoris. Vietnam Journal of Biotechnology, 17(4), 749–756. https://doi.org/10.15625/1811-4989/17/4/14722 | spa |
dc.relation.references | Behera, P., & Balaji, S. (2021). The forgotten sugar: A review on multifarious applications of melezitose. Carbohydrate Research, 500, 108248. https://doi.org/10.1016/J.CARRES.2021.108248 | spa |
dc.relation.references | Berdichevsky, M., d’Anjou, M., Mallem, M. R., Shaikh, S. S., & Potgieter, T. I. (2011). Improved production of monoclonal antibodies through oxygen-limited cultivation of glycoengineered yeast. Journal of Biotechnology, 155(2), 217–224. https://doi.org/10.1016/J.JBIOTEC.2011.06.021 | spa |
dc.relation.references | Bio-Rad. (2012). Aminex HPLC Columns ®. Bulletin 6333 Rev A US/EG, 7–10 | spa |
dc.relation.references | Boojari, M. A., Rajabi Ghaledari, F., Motamedian, E., Soleimani, M., & Shojaosadati, S. A. (2023). Developing a metabolic model-based fed-batch feeding strategy for Pichia pastoris fermentation through fine-tuning of the methanol utilization pathway. Microbial Biotechnology, 16(6), 1344–1359. https://doi.org/10.1111/1751-7915.14264 | spa |
dc.relation.references | Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1006/abio.1976.9999 | spa |
dc.relation.references | Brenda. (2023). BRENDA. https://www.brenda-enzymes.org/enzyme.php?ecno=5.4.99.11#ORGANISM | spa |
dc.relation.references | Burgos Montañez, L. J. (2020). Cuantificación de azúcares reductores del sustrato en residuos de piña con el método del ácido 3,5-dinitrosalicílico. Questionar: Investigación Específica, 7(1), 57–66. https://doi.org/10.29097/23461098.308 | spa |
dc.relation.references | Cabezas, C., Hernández, B., & Vargas, M. (2016). Sugars added in food: Health effects and global regulation. Revista Facultad de Medicina, 64(2), 319–329. https://doi.org/10.15446/revfacmed.v64n2.52143 | spa |
dc.relation.references | Çalık, P., Ata, Ö., Güneş, H., Massahi, A., Boy, E., Keskin, A., Öztürk, S., Zerze, G. H., & Özdamar, T. H. (2015). Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: From carbon source metabolism to bioreactor operation parameters. Biochemical Engineering Journal, 95, 20–36. https://doi.org/https://doi.org/10.1016/j.bej.2014.12.003 | spa |
dc.relation.references | Camila, M., & Villanueva, D. (2022). Evaluación de la enzima Iduronato 2-sulfato sulfatasa humana recombinante producida en Komagataella phaffii GS115 en un modelo in vitro de fibroblastos de pacientes con Mucopolisacaridosis tipo II (Síndrome de Hunter) | spa |
dc.relation.references | Cao, M. E. Á., Becerra Fernández Y María, M., & Siso, I. G. (2017). Optimización de la producción heteróloga de la enzima α-galactosidasa de “Saccharomyces cerevisiae” a partir de residuos agroindustriales | spa |
dc.relation.references | Castro-Muñoz, R., Correa-Delgado, M., Córdova-Almeida, R., Lara-Nava, D., Chávez-Muñoz, M., Velásquez-Chávez, V. F., Hernández-Torres, C. E., Gontarek-Castro, E., & Ahmad, M. Z. (2022). Natural sweeteners: Sources, extraction and current uses in foods and food industries. Food Chemistry, 370, 130991. https://doi.org/10.1016/J.FOODCHEM.2021.130991 | spa |
dc.relation.references | Çelik, E., Çalik, P., & Oliver, S. G. (2009). A structured kinetic model for recombinant protein production by Mut+ strain of Pichia pastoris. Chemical Engineering Science, 64(23), 5028–5035. https://doi.org/10.1016/J.CES.2009.08.009 | spa |
dc.relation.references | Cha, J., Jung, J. H., Park, S. E., Cho, M. H., Seo, D. H., Ha, S. J., Yoon, J. W., Lee, O. H., Kim, Y. C., & Park, C. S. (2009). Molecular cloning and functional characterization of a sucrose isomerase (isomaltulose synthase) gene from Enterobacter sp. FMB‐1. Journal of Applied Microbiology, 107(4), 1119–1130. https://doi.org/10.1111/J.1365-2672.2009.04295.X | spa |
dc.relation.references | Chamorro, N. L., Valero Barranco, F., Montesinos Seguí, J. L., & Universitat Autònoma de Barcelona. Departament d’Enginyeria Química. (2015). Utilización de glicerol proveniente de la industria de biodiesel como fuente de carbono para la producción de lipasas recombinantes en Pichia pastoris. TDX (Tesis Doctorals En Xarxa). https://www.tdx.cat/handle/10803/313455 | spa |
dc.relation.references | Coetzee, G. (2019). Optimization of Aspergillus fijiensis β-fructofuranosidase expression and production using Pichia pastoris, for the production of fructooligosaccharides from sucrose. April, 170 | spa |
dc.relation.references | Combes, D., & Monsan, P. (1983). Sucrose hydrolysis by invertase. Characterization of products and substrate inhibition. Carbohydrate Research, 117(C), 215–228. https://doi.org/10.1016/0008-6215(83)88088-4 | spa |
dc.relation.references | Contesini, F. J., Carvalho, P. de O., Grosso, C. R. F., & Sato, H. H. (2013). Single-step purification, characterization and immobilization of a sucrose isomerase from Erwinia sp. Biocatalysis and Agricultural Biotechnology, 2(4), 322–327. https://doi.org/10.1016/J.BCAB.2013.05.006 | spa |
dc.relation.references | Corzo, N., Alonso, J. ., Azpiroz, F., M. A., C., M., C., R., L., F., L., I., M.-A., F. J., P., & P., R.-M. (2015). Prebióticos; concepto, propiedades y efectos beneficiosos. Nutrición Hospitalaria, 31, 99–118. https://www.redalyc.org/pdf/3092/309238517015.pdf | spa |
dc.relation.references | Daly, R., & Hearn, M. T. W. (2005). Expression of heterologous proteins in Pichia pastoris: A useful experimental tool in protein engineenring and production. Journal of Molecular Recognition, 18(2), 119–138. https://doi.org/10.1002/JMR.687 | spa |
dc.relation.references | Duan, X., Cheng, S., Ai, Y., & Wu, J. (2016). Enhancing the Thermostability of Serratia plymuthica Sucrose Isomerase Using B-Factor-Directed Mutagenesis. PloS One, 11(2). https://doi.org/10.1371/JOURNAL.PONE.0149208 | spa |
dc.relation.references | EMBL-EBI. (2024). M-CSA Mechanism and Catalytic Site Atlas. https://www.ebi.ac.uk/thornton-srv/m-csa/entry/582/ | spa |
dc.relation.references | Esperanza, E., & Castillo, F. (2007). Evaluación de melaza de caña como sustrato para la producción de Saccharomyces cerevisiae | spa |
dc.relation.references | Fakultät, N. (2013). Physiological response of Pichia pastoris to recombinant protein production under methanol induction. Von der Naturwissenschaftlichen Fakultät der Gottfried Wilhelm Leibniz Universität Hannover | spa |
dc.relation.references | FEDNA. (2018). Melaza de Caña. In Fedna. http://www.fundacionfedna.org/ingredientes_para_piensos/melazas-de-caña | spa |
dc.relation.references | Felipe Hernández-Pérez, A., Jofre, F. M., De Souza Queiroz, S., Vaz De Arruda, P., Chandel, A. K., & Felipe, M. D. G. D. A. (2020). Biotechnological production of sweeteners. Biotechnological Production of Bioactive Compounds, 261–292. https://doi.org/10.1016/B978-0-444-64323-0.00009-6 | spa |
dc.relation.references | Fletcher, M. T., Hungerford, N. L., Webber, D., Carpinelli de Jesus, M., Zhang, J., Stone, I. S. J., Blanchfield, J. T., & Zawawi, N. (2020). Stingless bee honey, a novel source of trehalulose: a biologically active disaccharide with health benefits. 10(1). https://doi.org/10.1038/s41598-020-68940-0 | spa |
dc.relation.references | Gao, M., & Shi, Z. (2013). Process control and optimization for heterologous protein production by methylotrophic pichia pastoris. Chinese Journal of Chemical Engineering, 21(2), 216–226. https://doi.org/10.1016/S1004-9541(13)60461-9 | spa |
dc.relation.references | Gao, M., Yang, G., Li, F., Wang, Z., Hu, X., Jiang, Y., Yan, J., Li, Z., & Zhan, X. (2021). Efficient endo-β-1,3-glucanase expression in Pichia pastoris for co-culture with Agrobacterium sp. for direct curdlan oligosaccharide production. International Journal of Biological Macromolecules, 182, 1611–1617. https://doi.org/10.1016/J.IJBIOMAC.2021.05.142 | spa |
dc.relation.references | García-Almeida, J. M., Gracia, M. ., Casado, F., & García Alemán. J. (2013). Una visión global y actual de los edulcorantes: aspectos de regulación. http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=s0212-16112013001000003 | spa |
dc.relation.references | Garcia-Ortega, X., Valero, F., & Montesinos-Seguí, J. L. (2017). Physiological state as transferable operating criterion to improve recombinant protein production in Pichia pastoris through oxygen limitation. Journal of Chemical Technology & Biotechnology, 92(10), 2573–2582. https://doi.org/10.1002/JCTB.5272 | spa |
dc.relation.references | García, J. ;, Santana, Z., Zumalacárregui, L., Quintana, M., González, D. ;, Furrazola, G., & Cruz, O. (2013). Estrategias de obtención de proteínas recombinantes en Escherichia coli. FINLAY Ediciones, 30–39. http://scielo.sld.cu/pdf/vac/v22n2/vac06213.pdf | spa |
dc.relation.references | Ghosalkar, A., Sahai, V., & Srivastava, A. (2008). Optimization of chemically defined medium for recombinant Pichia pastoris for biomass production. Bioresource Technology, 99(16), 7906–7910. https://doi.org/10.1016/J.BIORTECH.2008.01.059 | spa |
dc.relation.references | Goulter, K. C., Hashimi, S. M., & Birch, R. G. (2012). Microbial sucrose isomerases: Producing organisms, genes and enzymes. Enzyme and Microbial Technology, 50(1), 57–64. https://doi.org/10.1016/j.enzmictec.2011.09.011 | spa |
dc.relation.references | Grellet, C., Alejandra, M., Luis Aráoz Martínez, J., Gusils, C., & Zossi, S. (2015). Validación de metodología para determinación de azúcares reductores totales en vinos fermentados. Revista Industrial y Agrícola de Tucumán, 92(2), 33–38. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1851-30182015000200005&lng=es&nrm=iso&tlng=es | spa |
dc.relation.references | Hamerli, D., & Birch, R. G. (2011). Transgenic expression of trehalulose synthase results in high concentrations of the sucrose isomer trehalulose in mature stems of field-grown sugarcane. Plant Biotechnology Journal, 9(1), 32–37. https://doi.org/10.1111/j.1467-7652.2010.00528.x | spa |
dc.relation.references | Hernández, F. (2014). Influencia de la biomasa y la concetración de metanol en la producción de la enzima recombinante hexosaminidasa en Pichia pastoris. Pontificia Universidad Javeriana, 91(5), 1689–1699 | spa |
dc.relation.references | Hou, F. ; ;, Wu, X. ;, Zheng, M. ;, Zheng, Y. ;, Lu, F. ;, Liu, F. A., Jing, W., Hou, F., Wu, X., Zheng, M., Zheng, Y., Lu, F., & Liu, F. (2024). A Critical Review on Immobilized Sucrose Isomerase and Cells for Producing Isomaltulose. Foods 2024, Vol. 13, Page 1228, 13(8), 1228. https://doi.org/10.3390/FOODS13081228 | spa |
dc.relation.references | Invitrogen. (2002). Pichia Fermentation Process Guidelines Overview Overview , continued. Progress in Botany, 67, 1–11 | spa |
dc.relation.references | Jahic, M., Rotticci-Mulder, J., Martinelle, M., Hult, K., & Enfors, S. O. (2002). Modeling of growth and energy metabolism of Pichia pastoris producing a fusion protein. Bioprocess and Biosystems Engineering, 24(6), 385–393. https://link.springer.com/article/10.1007/s00449-001-0274-5 | spa |
dc.relation.references | Jares, F., Oliveira, P. De, Raimundo, C., Grosso, F., & Harumi, H. (2013). Biocatalysis and Agricultural Biotechnology Single-step puri fi cation , characterization and immobilization of a sucrose isomerase from Erwinia sp . Biocatalysis and Agricultural Biotechnology, 2(4), 322–327. https://doi.org/10.1016/j.bcab.2013.05.006 | spa |
dc.relation.references | Jia, L., Tu, T., Huai, Q., Sun, J., Chen, S., Li, X., Shi, Z., & Ding, J. (2017). Enhancing monellin production by Pichia pastoris at low cell induction concentration via effectively regulating methanol metabolism patterns and energy utilization efficiency. PLOS ONE, 12(10), e0184602. https://doi.org/10.1371/JOURNAL.PONE.0184602 | spa |
dc.relation.references | Jung, J. H., Kim, M. J., Jeong, W. S., Seo, D. H., Ha, S. J., Kim, Y. W., & Park, C. S. (2017). Characterization of divergent pseudo-sucrose isomerase from Azotobacter vinelandii: Deciphering the absence of sucrose isomerase activity. Biochemical and Biophysical Research Communications, 483(1), 115–121. https://doi.org/10.1016/J.BBRC.2016.12.184 | spa |
dc.relation.references | Jungo, C., Marison, I., & von Stockar, U. (2007). Regulation of alcohol oxidase of a recombinant Pichia pastoris Mut+ strain in transient continuous cultures. Journal of Biotechnology, 130(3), 236–246. https://doi.org/10.1016/J.JBIOTEC.2007.04.004 | spa |
dc.relation.references | Katakura, Y., Zhang, W., Zhuang, G., Omasa, T., Kishimoto, M., Goto, Y., & Suga, K. I. (1998). Effect of methanol concentration on the production of human β2-glycoprotein I domain V by a recombinant Pichia pastoris: A simple system for the control of methanol concentration using a semiconductor gas sensor. Journal of Fermentation and Bioengineering, 86(5), 482–487. https://doi.org/10.1016/S0922-338X(98)80156-6 | spa |
dc.relation.references | Khatri, N. K., & Hoffmann, F. (2006). Impact of methanol concentration on secreted protein production in oxygen‐limited cultures of recombinant Pichia pastoris. Biotechnology and Bioengineering, 93(5), 871–879. https://doi.org/10.1002/BIT.20773 | spa |
dc.relation.references | Krainer, F. W., Dietzsch, C., Hajek, T., Herwig, C., Spadiut, O., & Glieder, A. (2012). Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway. Microbial Cell Factories, 11(1), 1–14. https://doi.org/10.1186/1475-2859-11-22/TABLES/2 | spa |
dc.relation.references | Kupcsulik, B., & Sevella, B. (2005). Effect of methanol concetntration on the recombinant Pichia pastoris mut s fermentatotion. Periodica Polytechnica Chemical Engineering | spa |
dc.relation.references | Lagos, E., & Castro, E. (2019). Sugar cane and by-products of the sugar agro-industry in ruminant feeding: A review. Agronomy Mesoamerican, 30(3), 917–934. https://doi.org/10.15517/am.v30i3.34668 | spa |
dc.relation.references | Lee, H. C., Kim, J. H., Kim, S. Y., & Lee, J. K. (2008). Isomaltose production by modification of the fructose-binding site on the basis of the predicted structure of sucrose isomerase from “Protaminobacter rubrum”. Applied and Environmental Microbiology, 74(16), 5183–5194. https://doi.org/10.1128/AEM.00181-08 | spa |
dc.relation.references | Li, L., Wang, H., Cheng, H., & Deng, Z. (2017). Isomaltulose production by yeast surface display of sucrose isomerase from Pantoea dispersa on Yarrowia lipolytica. Journal of Functional Foods, 32, 208–217. https://doi.org/10.1016/J.JFF.2017.02.036 | spa |
dc.relation.references | Liu, L., Yu, S., & Zhao, W. (2021). A novel sucrose isomerase producing isomaltulose from raoultella terrigena. Applied Sciences (Switzerland), 11(12). https://doi.org/10.3390/app11125521 | spa |
dc.relation.references | Liu, W. C., Gong, T., Wang, Q. H., Liang, X., Chen, J. J., & Zhu, P. (2016). Scaling-up Fermentation of Pichia pastoris to demonstration-scale using new methanol-feeding strategy and increased air pressure instead of pure oxygen supplement. Scientific Reports, 6. https://doi.org/10.1038/SREP18439 | spa |
dc.relation.references | Liu, W. cang, Zhou, F., Xia, D., & Shiloach, J. (2019). Expression of multidrug transporter P‐glycoprotein in Pichia pastoris affects the host’s methanol metabolism. Microbial Biotechnology, 12(6), 1226–1236. https://doi.org/10.1111/1751-7915.13420 | spa |
dc.relation.references | Lobelo, Y., & Alvarado, M. (2015). Análisis de competitividad y de mercado en la sustitución parcial o total de azúcar por otros edulcorantes en las empresas del sector de bebidas no alcohólicas en Colombia de 2009 a 2014. https://ciencia.lasalle.edu.co/ | spa |
dc.relation.references | Loveridge, E. J., Jones, C., Bull, M. J., Moody, S. C., Kahl, M. W., Khan, Z., Neilson, L., Tomeva, M., Adams, S. E., Wood, A. C., Rodriguez-Martin, D., Pinel, I., Parkhill, J., Mahenthiralingam, E., & Crosby, J. (2017). Reclassification of the Specialized Metabolite Producer Pseudomonas mesoacidophila ATCC 31433 as a Member of the Burkholderia cepacia Complex. Journal of Bacteriology, 199(13). https://doi.org/10.1128/JB.00125-17 | spa |
dc.relation.references | Lozano, J. E. (2003). SEPARATION AND CLARIFICATION. Encyclopedia of Food Sciences and Nutrition, 5187–5196. https://doi.org/10.1016/B0-12-227055-X/01070-1 | spa |
dc.relation.references | Lucía, M., Micán, M., Andrés, J., Ladino, R., Fernanda, L., Prieto, R., & Coinvestigador, E. (2017). Enzymes: some applications of these “micro-machines” like impellers of green technology. América Semilleros Formación Investigativa, 3(1), 85–90 | spa |
dc.relation.references | Marín Muñoz, M. A. (2019). Coeficiente volumétrico de transferencia de masa (kla) y potencia gaseada volumétrica (pg/v) como criterios de escalamiento del bioproceso para la producción de dextranasa recombinante en Pichia pastoris [Universidad Autónoma de Aguascalientes]. http://bdigital.dgse.uaa.mx:8080/xmlui/bitstream/handle/11317/1728/437033.pdf?isAllowed=y&sequence=1 | spa |
dc.relation.references | Mercado, sergi monforte. (2019). Systems metabolic engineering for recombinant protein production in Pichia pastoris | spa |
dc.relation.references | Miao, M., Jiang, B., Jin, Z., & BeMiller, J. N. (2018). Microbial Starch-Converting Enzymes: Recent Insights and Perspectives. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1238–1260. https://doi.org/10.1111/1541-4337.12381 | spa |
dc.relation.references | Moraes, A. L. L., Steckelberg, C., Sato, H. H., & Pinheiro, A. (2005). Produção de isomaltulose a partir da transformação enzimática da sacarose, utilizando-se Erwinia sp D12 imobilizada com alginato de cálcio. Food Science and Technology, 25(1), 95–102. https://doi.org/10.1590/S0101-20612005000100016 | spa |
dc.relation.references | Morales, L. G., Beltran Romero, L., & Garcia Puig, J. (2013). Azúcar y enfermedades cardiovasculares. 28, 88–94. http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-16112013001000011 | spa |
dc.relation.references | Mu, W., Li, W., Wang, X., Zhang, T., & Jiang, B. (2014). Current studies on sucrose isomerase and biological isomaltulose production using sucrose isomerase. Applied Microbiology and Biotechnology, 98(15), 6569–6582. https://doi.org/10.1007/S00253-014-5816-2/METRICS | spa |
dc.relation.references | Nam, C. H., Seo, D. H., Jung, J. H., Koh, Y. J., Jung, J. S., Heu, S., Oh, C. S., & Park, C. S. (2014). Functional characterization of the sucrose isomerase responsible for trehalulose production in plant-associated Pectobacterium species. Enzyme and Microbial Technology, 55, 100–106. https://doi.org/10.1016/j.enzmictec.2013.10.005 | spa |
dc.relation.references | OCDE-FAO. (2017). Perspectivas Agrícolas. https://doi.org/10.1787/agr-data-en | spa |
dc.relation.references | OCDE‑FAO. (2020). OCDE‑FAO Perspectivas Agrícolas 2020‑2029 (OCDE-FAO Perspectivas Agrícolas). OECD. https://doi.org/10.1787/A0848AC0-ES | spa |
dc.relation.references | OCDE‑FAO. (2021). Azúcar | OCDE-FAO Perspectivas Agrícolas 2022-2031 | OECD iLibrary. https://www.oecd-ilibrary.org/sites/99f4c779-es/index.html?itemId=/content/component/99f4c779-es#section-d1e38353 | spa |
dc.relation.references | OMS. (2015). OMS | Ingesta de azúcares para adultos y niños. WHO, 1–8 | spa |
dc.relation.references | OMS. (2016). La OMS recomienda aplicar medidas en todo el mundo para reducir el consumo de bebidas azucaradas y sus consecuencias para la salud. https://www.who.int/es/news/item/11-10-2016-who-urges-global-action-to-curtail-consumption-and-health-impacts-of-sugary-drinks | spa |
dc.relation.references | Potvin, G., Ahmad, A., & Zhang, Z. (2012). Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: A review. Biochemical Engineering Journal, 64, 91–105. https://doi.org/10.1016/J.BEJ.2010.07.017 | spa |
dc.relation.references | Proteopedia. (2020). Trehalulose synthase. https://proteopedia.org/wiki/index.php/Trehalulose_synthase | spa |
dc.relation.references | Queneau, Y., Jarosz, S., Lewandowski, B., & Fitremann, J. (2007). Sucrose Chemistry and Applications of Sucrochemicals. In Advances in Carbohydrate Chemistry and Biochemistry (Vol. 61, pp. 217–292). Adv Carbohydr Chem Biochem. https://doi.org/10.1016/S0065-2318(07)61005-1 | spa |
dc.relation.references | Quirk, A. V., & Woodrow, J. R. (1983). Tangential flow filtration - A new method for the separation of bacterial enzymes from cell debris. Biotechnology Letters, 5(4), 277–282. https://doi.org/10.1007/BF00161129/METRICS | spa |
dc.relation.references | Ravaud, S., Robert, X., Watzlawick, H., Haser, R., Mattes, R., & Aghajari, N. (2007). Trehalulose synthase native and carbohydrate complexed structures provide insights into sucrose isomerization. Journal of Biological Chemistry, 282(38), 28126–28136. https://doi.org/10.1074/jbc.M704515200 | spa |
dc.relation.references | Ren, B., Li, S., Xu, H., Feng, X. H., Cai, H., & Ye, Q. (2011). Purification and characterization of a highly selective sucrose isomerase from Erwinia rhapontici NX-5. Bioprocess and Biosystems Engineering, 34(5), 629–637. https://doi.org/10.1007/S00449-010-0512-9 | spa |
dc.relation.references | René Rojas Muñoz, V., Giraldo Estrada, C., & Andrea Ramírez Tapias, Y. (2009). Evaluación de métodos de extracción y purificación de enzimas pectinolíticas obtenidas por fermentación en estado semisólido del Aspergillus niger | spa |
dc.relation.references | Rhimi, M., Haser, R., & Aghajari, N. (2008). Bacterial sucrose isomerases: properties and structural studies. Section Cellular and Molecular Biology, 63, 1020–1027. https://doi.org/10.2478/s11756-008-0166-0 | spa |
dc.relation.references | Rojas, N. L., Ortiz, G. E., Baruque, D. J., Cavalitto, S. F., & Ghiringhelli, P. D. (2011). Production of heterologous polygalacturonase I from Aspergillus kawachii in Saccharomyces cerevisiae in batch and fed-batch cultures. Journal of Industrial Microbiology & Biotechnology, 38(9), 1437–1447. https://doi.org/10.1007/s10295-010-0929-9 | spa |
dc.relation.references | Ruiz, H., Algecira, N., Poutou-Piñales, R., & Barrera, L. (2003). Revisión de tema: Pichia pastoris, una alternativa para la producción de glicoproteínas humanas de uso terapéutico. Estrategias de fermentación. Revista Colombiana de Biotecnología, ISSN 1909-8758, Vol. 5, No. 2, 2003, Pags. 73-84, 5 | spa |
dc.relation.references | Sarabia, C. M. A., & Mata, I. (2020). Biotecnología enzimática y biotransformaciones de interés industrial | Oficina de Transferencia de Resultados de Investigación. https://www.ucm.es/otri/complutransfer-biotecnologia-enzimatica-y-biotransformaciones-de-interes-industrial | spa |
dc.relation.references | Sardiña-Peña, A. J., Ballinas-Casarrubias, L., Siqueiros-Cendón, T. S., Espinoza-Sánchez, E. A., Flores-Holguín, N. R., Iglesias-Figueroa, B. F., & Rascón-Cruz, Q. (2023). Thermostability improvement of sucrose isomerase PalI NX-5: a comprehensive strategy. Biotechnology Letters, 45(7), 885–904. https://doi.org/10.1007/S10529-023-03388-6 | spa |
dc.relation.references | Sartorius. (2016). Directions for Use Vivaflow 50|50R|200 (Vol. 06) | spa |
dc.relation.references | Su, H. H., Xu, R. Y., Yang, Z. D., Guo, Y. S., Gao, J. Y., Mo, L. Z., Gao, Y. F., Cheng, H., Zhang, P. J., & Huang, J. S. (2021). Green synthesis of isomaltulose from cane molasses by an immobilized recombinant Escherichia coli strain and its prebiotic activity. LWT, 143, 111054. https://doi.org/10.1016/J.LWT.2021.111054 | spa |
dc.relation.references | Tatiana, J., & García, G. (2022). Enseñanza y aprendizaje de conceptos asociados a la cinética enzimática en el contexto de la bioquímica de alimentos | spa |
dc.relation.references | Tian, Y., Deng, Y., Zhang, W., & Mu, W. (2019). Sucrose isomers as alternative sweeteners: properties, production, and applications. Applied Microbiology and Biotechnology, 103(21–22), 8677–8687. https://doi.org/10.1007/s00253-019-10132-6 | spa |
dc.relation.references | Toshiaki, S., Kenichiro, T., Yukie, M., Tadashi, E., Hideaki, O., Yoshikazu, N., & Kenzo, S. (1991). Process for preparing trehalulose and isomaltulose | spa |
dc.relation.references | Validogen. (2022). Pichia pastoris features & facts - VALIDOGEN. https://www.validogen.com/pichia-pastoris/advantages | spa |
dc.relation.references | Vanz, A. L., Lünsdorf, H., Adnan, A., Nimtz, M., Gurramkonda, C., Khanna, N., & Rinas, U. (2012). Physiological response of Pichia pastoris GS115 to methanol-induced high level production of the Hepatitis B surface antigen: Catabolic adaptation, stress responses, and autophagic processes. Microbial Cell Factories, 11, 1–11. https://doi.org/10.1186/1475-2859-11-103 | spa |
dc.relation.references | Venables, M. C., Brouns, F., & Jeukendrup, A. E. (2008). Oxidation of maltose and trehalose during prolonged moderate-intensity exercise. Medicine and Science in Sports and Exercise, 40(9), 1653–1659. https://doi.org/10.1249/MSS.0b013e318175716c | spa |
dc.relation.references | Vera, P., & Natalia, L. (2013). Evaluación de los niveles de producción de Iduronato 2-Sulfato sulfatasa (IDS) en dos cepas de Pichia pastoris bajo condiciones limitadas de oxígeno y sustrato [Pontificia Universidad Javeriana]. https://repository.javeriana.edu.co/handle/10554/11831 | spa |
dc.relation.references | Véronèse, T., Bouchu, A., & Perlot, P. (1999). Rapid method for trehalulose production and its purification by preparative high-performance liquid chromatography. Biotechnology Techniques, 13(1), 43–48. https://doi.org/10.1023/A:1008857613103 | spa |
dc.relation.references | Veronese, T., & Perlot, P. (1998). Proposition for the biochemical mechanism occurring in the sucrose isomerase active site. FEBS Letters, 441(3), 348–352. https://doi.org/10.1016/S0014-5793(98)01582-8 | spa |
dc.relation.references | Véronèse, T., & Perlot, P. (1999). Mechanism of sucrose conversion by the sucrose isomerase of Serratia plymuthica ATCC 15928. Enzyme and Microbial Technology, 24(5–6), 263–269. https://doi.org/10.1016/S0141-0229(98)00115-X | spa |
dc.relation.references | Villagran, A. J., Huayamave Bravo, C., Lara García, J., Maluk Salem, O., Galindo Velasco Km, G., & Perimetral, V. (2009). Stevia:Produccion y procesamiento de un edulzante alternativo (Issue 1) | spa |
dc.relation.references | Wang, Q. Q., Yang, M., Hao, J. H., & Ma, Z. C. (2021). Direct Isomaltulose Synthesis From Beet Molasses by Immobilized Sucrose Isomerase. Frontiers in Bioengineering and Biotechnology, 9, 691547. https://doi.org/10.3389/FBIOE.2021.691547/BIBTEX | spa |
dc.relation.references | Wei, Y., Liang, J., Huang, Y., Lei, P., Du, L., & Huang, R. (2013). Simple, fast, and efficient process for producing and purifying trehalulose. Food Chemistry, 138(2–3), 1183–1188. https://doi.org/10.1016/j.foodchem.2012.11.115 | spa |
dc.relation.references | Woo, J. H., Liu, Y. Y., & Neville, D. M. (2006). Minimization of aggregation of secreted bivalent anti-human T cell immunotoxin in Pichia pastoris bioreactor culture by optimizing culture conditions for protein secretion. Journal of Biotechnology, 121(1), 75–85. https://doi.org/10.1016/J.JBIOTEC.2005.07.004 | spa |
dc.relation.references | Wu, L., & Birch, R. G. (2005). Characterization of the Highly Efficient Sucrose Isomerase from Pantoea dispersa UQ68J and Cloning of the Sucrose Isomerase Gene. Applied and Environmental Microbiology, 71(3), 1581. https://doi.org/10.1128/AEM.71.3.1581-1590.2005 | spa |
dc.relation.references | Zavec, D., Gasser, B., & Mattanovich, D. (2020). Characterization of methanol utilization negative Pichia pastoris for secreted protein production: New cultivation strategies for current and future applications. Biotechnology and Bioengineering, 117(5), 1394. https://doi.org/10.1002/BIT.27303 | spa |
dc.relation.references | Zepeda, A. B., Figueroa, C. A., Abdalla, D. S. P., Maranhão, A. Q., Ulloa, P. H., Pessoa, A., & Farías, J. G. (2014). Biomarkers to evaluate the effects of temperature and methanol on recombinant Pichia pastoris. Brazilian Journal of Microbiology, 45(2), 475–483. https://doi.org/10.1590/S1517-83822014000200014 | spa |
dc.relation.references | Zhang, D., Li, N., Lok, S. M., Zhang, L. H., & Swaminathan, K. (2003). Isomaltulose synthase (PalI) of Klebsiella sp. LX3: Crystal structure and implication of mechanism. Journal of Biological Chemistry, 278(37), 35428–35434. https://doi.org/10.1074/jbc.M302616200 | spa |
dc.relation.references | Zhang, F., Cheng, F., Jia, D. X., Gu, Y. H., Liu, Z. Q., & Zheng, Y. G. (2021). Characterization of a recombinant sucrose isomerase and its application to enzymatic production of isomaltulose. Biotechnology Letters, 43(1), 261–269. https://doi.org/10.1007/S10529-020-02999-7/FIGURES/5 | spa |
dc.relation.references | Zhang, J. H., Wu, D., Chen, J., & Wu, J. (2011). Enhancing functional expression of β-glucosidase in Pichia pastoris by co-expressing protein disulfide isomerase. Biotechnology and Bioprocess Engineering 2011 16:6, 16(6), 1196–1200. https://doi.org/10.1007/S12257-011-0136-1 | spa |
dc.relation.references | Zhang, P., Wang, Z. P., Liu, S., Wang, Y. L., Zhang, Z. F., Liu, X. M., Du, Y. M., & Yuan, X. L. (2019). Overexpression of secreted sucrose isomerase in Yarrowia lipolytica and its application in isomaltulose production after immobilization. International Journal of Biological Macromolecules, 121, 97–103. https://doi.org/10.1016/J.IJBIOMAC.2018.10.010 | spa |
dc.relation.references | Zheng, Y., Wang, Z., Ji, X., & Sheng, J. (2019). Display of a sucrose isomerase on the cell surface of Yarrowia lipolytica for synthesis of isomaltulose from sugar cane by-products. 3 Biotech, 9(5), 179. https://doi.org/10.1007/S13205-019-1713-9 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.agrovoc | Isoglucosa | |
dc.subject.agrovoc | Edulcorantes | |
dc.subject.agrovoc | Pichia pastoris | |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
dc.subject.ddc | 540 - Química y ciencias afines | spa |
dc.subject.ddc | 660 - Ingeniería química | spa |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | spa |
dc.subject.lemb | isómeros | |
dc.subject.lemb | Biotecnología | |
dc.subject.proposal | Enzima recombinante | spa |
dc.subject.proposal | sacarosa isomerasa | spa |
dc.subject.proposal | edulcorante | spa |
dc.subject.proposal | trehalulosa | spa |
dc.subject.proposal | isomaltulosa | spa |
dc.subject.proposal | biorreactor de tanque agitado | spa |
dc.subject.proposal | Recombinant enzyme | eng |
dc.subject.proposal | Sucrose isomerase | eng |
dc.subject.proposal | Sweetener | eng |
dc.subject.proposal | Trehalulose | eng |
dc.subject.proposal | Isomaltulose | eng |
dc.subject.proposal | Stirred tank bioreactor | eng |
dc.title | Producción de isómeros de sacarosa a partir de la enzima sacarosa isomerasa recombinante de Burkholderia ubonensis en Pichia pastoris | |
dc.title.translated | Production of sucrose isomers from the recombinant sucrose isomerase enzyme of Burkholderia ubonensis in Pichia pastoris | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1061796314.2025.pdf
- Tamaño:
- 1.7 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Biotecnología
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: