En 5 día(s), 16 hora(s) y 6 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Una adaptación del procedimiento bootstrap en la estimación del error cuadrático medio en área pequeñas con aplicación a datos colombianos.

dc.contributor.advisorPolo, Mayo Luzspa
dc.contributor.authorVélez Montoya, Danielaspa
dc.date.accessioned2020-03-06T15:52:15Zspa
dc.date.available2020-03-06T15:52:15Zspa
dc.date.issued2019-03-20spa
dc.description.abstractThe thesis presented here focus on the estimation in small areas. The purpose is to implement a modi ed Bootstrap procedure, which allows obtaining an estimate of the mean squared error. In this study a Mixed General Linear model is considered, particular, a two-level model. The main contribution of this thesis consists on considering, in the Bootstrap procedure adaptation, the conditioned Pearson residuals associated to the error of the model (residuals of the units of level 1) and the EBLUP Pearson residuals corresponding to the prediction of the random e ect of the model (residuals of the units of level 2), which has not been considered in the literature related to the Bootstrap procedures applied to linear mixed hierarchical models.spa
dc.description.abstractLa tesis que se presenta a continuación tiene como tema principal la estimación en áreas pequeñas. El objetivo es implementar una modi ficación del procedimiento Bootstrap sugerido en la literatura, el cual permite obtener un estimador del error cuadrático medio del estimador del promedio para cada área pequeña. En este estudio se trabajará un Modelo Lineal General Mixto, en particular un modelo de dos niveles. El aporte de este trabajo consiste en considerar en la adaptación del procedimiento Bootstrap, los residuales condicionales de Pearson asociados al error del modelo (residuales de las unidades de nivel 1) y residuales MPLIE de Pearson correspondiente a la predicción del efecto aleatorio del modelo (residuales de las unidades de nivel 2), los cuales no son considerados en la literatura relacionada con los procedimientos Bootstrap aplicados a modelos lineales jerárquicos mixtos.spa
dc.description.additionalMagíster en Estadística.spa
dc.description.degreelevelMaestríaspa
dc.format.extent109spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75926
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Estadísticaspa
dc.relation.referencesMapas bogot a, http://mapas.bogota.gov.co/#, Accessed: 2018-11-30.spa
dc.relation.referencesReml variance-component estimation, http://nitro.biosci.arizona.edu/ courses/EEB596-1999/handouts/REML.pdf, Accessed: 2019-03-02.spa
dc.relation.referencesAgustin Siti Aminah, Gandhi Pawitan, and Bertho Tantular, Empirical best linear unbiased prediction method for small areas with restricted maximum likelihood and bootstrap procedure to estimate the average of household expenditure per capita in banjar regency, AIP Conference Proceedings, vol. 1827, AIP Publishing, 2017.spa
dc.relation.referencesGeorge E Battese, Rachel M Harter, and Wayne A Fuller, An error-components model for prediction of county crop areas using survey and satellite data, Journal of the American Statistical Association 83 (1988), no. 401, 28{36.spa
dc.relation.referencesShijie Chen and P Lahiri, On the estimation of mean squared prediction error in small area estimation, Calcutta Statistical Association Bulletin 63 (2011), no. 1-4, 109{140.spa
dc.relation.referencesDANE, Encuesta multiprop osito (em), 2017.spa
dc.relation.referencesGauri S Datta and Partha Lahiri, A uni ed measure of uncertainty of estimated best linear unbiased predictors in small area estimation problems, Statistica Sinica (2000), 613{627.spa
dc.relation.referencesArthur P Dempster, Donald B Rubin, and Robert K Tsutakawa, Estimation in covariance components models, Journal of the American Statistical Association 76 (1981), no. 374, 341{353.spa
dc.relation.referencesBradley Efron, Bootstrap methods: another look at the jackknife, Breakthroughs in statistics, Springer, 1992, pp. 569{593.spa
dc.relation.referencesBradley Efron and Robert Tibshirani, Bootstrap methods for standard errors, con - dence intervals, and other measures of statistical accuracy, Statistical science (1986), 54{75.spa
dc.relation.referencesRobert E Fay III and Roger A Herriot, Estimates of income for small places: an application of james-stein procedures to census data, Journal of the American Statistical Association 74 (1979), no. 366a, 269{277.spa
dc.relation.referencesHarvey Goldstein, Multilevel statistical models, vol. 922, John Wiley & Sons, 2011.spa
dc.relation.referencesJorge Iv an Gonz alez, C esar Castro, Pedro Nel P aez, Arcenio Pecha, Luis Angel Rodr guez, Jorge S aenz, and Germ an S anchez, La demanda de loteria y juegos de azar: su realidad y sus potencialidades, Innovar 1 (2000), no. 16, 27{48.spa
dc.relation.referencesWenceslao Gonz alez-Manteiga, Maria J Lombardia, Isabel Molina, Domingo Morales, and Laureano Santamar a, Bootstrap mean squared error of a small-area eblup, Journal of Statistical Computation and Simulation 78 (2008), no. 5, 443{462.spa
dc.relation.referencesPeter Hall and Tapabrata Maiti, On parametric bootstrap methods for small area prediction, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68 (2006), no. 2, 221{238.spa
dc.relation.referencesPeter Hall, Tapabrata Maiti, et al., Nonparametric estimation of mean-squared prediction error in nested-error regression models, The Annals of Statistics 34 (2006), no. 4, 1733{1750.spa
dc.relation.referencesHerman O Hartley and Jon NK Rao, Maximum-likelihood estimation for the mixed analysis of variance model, Biometrika 54 (1967), no. 1-2, 93{108.spa
dc.relation.referencesCharles R Henderson, Estimation of genetic parameters, Biometrics, vol. 6, 1950, pp. 186{187.spa
dc.relation.referencesBest linear unbiased estimation and prediction under a selection model, Biometrics (1975), 423{447.spa
dc.relation.referencesJames Andrew Hilden-Minton, Multilevel diagnostics for mixed and hierarchical linear models, Ph.D. thesis, University of California, 1995.spa
dc.relation.referencesTom a s Hobza and Domingo Morales, Small area estimation under random regression coe cient models, Journal of Statistical Computation and Simulation 83 (2013), no. 11, 2160{2177.spa
dc.relation.referencesJiming Jiang and Partha Lahiri, Mixed model prediction and small area estimation, Test 15 (2006), no. 1, 1.spa
dc.relation.referencesJiming Jiang, Partha Lahiri, Shu-Mei Wan, et al., A uni ed jackknife theory for empirical best prediction with m-estimation, The Annals of Statistics 30 (2002), no. 6, 1782{1810.spa
dc.relation.referencesJiming Jiang, Thuan Nguyen, and J Sunil Rao, Best predictive small area estimation, Journal of the American Statistical Association 106 (2011), no. 494, 732{745.spa
dc.relation.referencesRaghu N Kackar and David A Harville, Unbiasedness of two-stage estimation and prediction procedures for mixed linear models, Communications in statistics-theory and methods 10 (1981), no. 13, 1249{1261.spa
dc.relation.referencesApproximations for standard errors of estimators of xed and random e ects in mixed linear models, Journal of the American Statistical Association 79 (1984), no. 388, 853{862.spa
dc.relation.referencesTatsuya Kubokawa, A review of linear mixed models and small area estimation, CIRJE, University of Tokyo (2009).spa
dc.relation.referencesP Lahiri and JNK Rao, Robust estimation of mean squared error of small area estimators, Journal of the American Statistical Association 90 (1995), no. 430, 758{766.spa
dc.relation.referencesNan M Laird and Thomas A Louis, Empirical bayes con dence intervals based on bootstrap samples, Journal of the American Statistical Association 82 (1987), no. 399, 739{750.spa
dc.relation.referencesAdam Madison Montgomery Loy, Diagnostics for mixed/hierarchical linear models, (2013).spa
dc.relation.referencesCharles E McCulloch and John M Neuhaus, Generalized linear mixed models, Wiley Online Library, 2001.spa
dc.relation.referencesCharles E McCulloch and Shayle R Searle, Generalized, linear, and mixed models, John Wiley & Sons, 2004.spa
dc.relation.referencesOphelia M Mendoza, Taylor series variance estimation for selected indirect demographic estimators, Ph.D. thesis, University of North Carolina at Chapel Hill, 1982.spa
dc.relation.referencesIsabel Molina, Nicola Salvati, and Monica Pratesi, Bootstrap for estimating the mean squared error of the spatial eblup, (2007).spa
dc.relation.referencesCarl N Morris, Parametric empirical bayes inference: theory and applications, Journal of the American Statistical Association 78 (1983), no. 381, 47{55.spa
dc.relation.referencesKari Nissinen, Small area estimation with linear mixed models from unit-level panel and rotating panel data, no. 117, University of Jyv askyl a, 2009.spa
dc.relation.referencesFernando Ramos Palencia, Azar y fortuna en espa~na: la loter a nacional, 1850{2000, Investigaciones de Historia Econ omica 6 (2010), no. 17, 149{185.spa
dc.relation.referencesDanny Pfe ermann and Hagit Glickman, Mean square error approximation in small area estimation by use of parametric and nonparametric bootstrap, ASA Section on Survey Research Methods (2004), 4167{4178.spa
dc.relation.referencesJos e C Pinheiro and Douglas M Bates, Linear mixed-e ects models: basic concepts and examples, Mixed-e ects models in S and S-Plus (2000), 3{56.spa
dc.relation.referencesM. Polo, Value addes in hierarchical linear mixed model with error in variables (Sin publicar), Ph.D. thesis, Ponti cia Universidad Cat olica de Chile, November 2017.spa
dc.relation.referencesN. G. N Prasad and J. N. K Rao, On estimation of the mean squared error in small area estimation, Journal of the American Statistical Association 85 (1990), no. 409, 163{171.spa
dc.relation.referencesJNK Rao, Jackknife and bootstrap methods for small area estimation, Proceedings of the survey research methods section, American Statistical Association, 2007, pp. 2925{2929.spa
dc.relation.referencesJohn N K Rao, Small-area estimation, Wiley Online Library, 2015.spa
dc.relation.referencesStephenWRaudenbush and Anthony S Bryk, Hierarchical linear models: Applications and data analysis methods, vol. 1, Sage, 2002.spa
dc.relation.referencesAlvin C Rencher and G Bruce Schaalje, Linear models in statistics, John Wiley & Sons, 2008spa
dc.relation.referencesJose Luis Rodriguez, Linealizaci on de modelos.spa
dc.relation.referencesJuv^encio Santos Nobre and Julio da Motta Singer, Residual analysis for linear mixed models, Biometrical Journal: Journal of Mathematical Methods in Biosciences 49 (2007), no. 6, 863{875.spa
dc.relation.referencesCarl-Erik S arndal, Methods for estimating the precision of survey estimates when imputation has been used, Survey methodology 18 (1992), no. 2, 241{252.spa
dc.relation.referencesCarl-Erik S arndal, Bengt Swensson, and Jan Wretman, Model assisted survey sampling, Springer Science & Business Media, 2003.spa
dc.relation.referencesOliver Schabenberger, Mixed model in uence diagnostics, SUGI, vol. 29, Citeseer, 2005, pp. 189{29.spa
dc.relation.referencesWesley L Schaible, Dwight B Brock, and George A Schnack, An empirical comparison of the simple in ation, synthetic and composite estimators for small area statistics, Proceedings of the American Statistical Association, Social Statistics Section, vol. 1017, 1977.spa
dc.relation.referencesS Searle, G Casella, and C McCulloch, Variance components, ser, 2006.spa
dc.relation.referencesShayle R Searle and Andre I Khuri, Matrix algebra useful for statistics, John Wiley & Sons, 2017.spa
dc.relation.referencesMaria Dolores Ugarte, T Goicoa, Ana F Militino, and M Sagaseta-L opez, Estimating unemployment in very small areas, SORT-Statistics and Operations Research Transactions 33 (2009), no. 1, 49{70.spa
dc.relation.referencesRien Van der Leeden, FMTA Busing, and Erik Meijer, Bootstrap methods for two-level models, Multilevel Conference, Amsterdam, 1997.spa
dc.relation.referencesGeert Verbeke and Emmanuel Lesa re, The e ect of misspecifying the random-e ects distribution in linear mixed models for longitudinal data, Computational Statistics & Data Analysis 23 (1997), no. 4, 541{556.spa
dc.relation.referencesBrady T West, Kathleen B Welch, and Andrzej T Galecki, Linear mixed models: a practical guide using statistical software, Chapman and Hall/CRC, 2014.spa
dc.relation.referencesChien-Fu Je Wu, Jackknife, bootstrap and other resampling methods in regression analysis, the Annals of Statistics (1986), 1261{1295.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc310 - Colecciones de estadística generalspa
dc.subject.proposalÁreas pequeñasspa
dc.subject.proposalSmall areaseng
dc.subject.proposalEstimatoreng
dc.subject.proposalEstimadorspa
dc.subject.proposalMean squared erroreng
dc.subject.proposalError Cuadrático Mediospa
dc.subject.proposalBootstrapspa
dc.subject.proposalBootstrap.eng
dc.titleUna adaptación del procedimiento bootstrap en la estimación del error cuadrático medio en área pequeñas con aplicación a datos colombianos.spa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1039453675.2019.pdf
Tamaño:
1.77 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: