Modelos lineales con cambio estructural: una perspectiva Bayesiana

dc.contributor.advisorCepeda Cuervo, Edilbertospa
dc.contributor.authorCastaño Tafur, Yeferson Andrésspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Bogotáspa
dc.date.accessioned2020-08-14T03:49:10Zspa
dc.date.available2020-08-14T03:49:10Zspa
dc.date.issued2020-05-28spa
dc.description.abstractIn this thesis, a Bayesian proposal for the estimation of normal linear regression models and longitudinal models both with structural change is presented. First, the proposal for estimating linear regression models with a change-point is introduced. Afterwards, this concept is gradually extended to regression models with heterocystic variance and structural change. Subsequently, the proposal for longitudinal models with a change-point and parametric covariance structures SC, AR(1) and ARMA(1,1) is being presented. The Bayesian methodology is implemented through the use of MCMC stochastic simulations across the Metropolis-Hastings within Gibbs algorithm. Additionally, the estimation of the change-point is made by a search on all possible values, this is optimized by the Transition Kernel proposed. Then, the performance of the algorithms is analyzed through simulation studies which allows concluding that the change-point is detected with great precision. Finally, the proposed models are applied on real data suggested in the literature and those are compared with models without structural change; it is found that the proposed models fit the data better. Thus, it is necessary to use the AIC and BIC goodness of fit statistics and the residual analysis.spa
dc.description.abstractEn esta tesis, se presenta una propuesta Bayesiana para la estimación de modelos de regresión lineal normal y modelos longitudinales con cambio estructural. Primero, se introduce la propuesta de estimación de modelos de regresión lineal con un punto de cambio. Luego, se amplía gradualmente este concepto a modelos de regresión con varianza heterocedástica y cambio estructural. Posteriormente, se presenta la propuesta para modelos longitudinales con un punto de cambio y estructuras paramétricas de covarianza SC, AR(1) y ARMA(1,1). La metodología Bayesiana se implementa mediante el uso de simulaciones estocásticas MCMC a través del algoritmo Metropolis-Hastings within Gibbs. Por otro lado, la estimación del punto de cambio se realiza con una búsqueda sobre todos los posibles valores, esta es optimizada por los núcleos de transición propuestos. Después, el rendimiento de los algoritmos es investigado mediante estudios de simulación y se concluye que se detecta el punto de cambio con una gran precisión. Finalmente, los modelos propuestos se aplican sobre datos reales sugeridos en la literatura y se comparan con modelos sin cambio estructural; se encuentra que los modelos propuestos ajustan mejor los datos, para esto se utilizan los estadísticos de bondad de ajuste AIC y BIC, y el análisis de residuales.spa
dc.description.degreelevelMaestríaspa
dc.format.extent89spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationCastaño Tafur, Y. (2020). Modelos lineales con cambio estructural: una perspectiva Bayesiana. Tesis de Maestría Universidad Nacional de Colombia.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78035
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Estadísticaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesAcosta, L. C. (2010). Ajuste de Polinomios Fraccionarios a Curvas de Crecimiento, Msc thesis Universidad Nacional de Colombia.spa
dc.relation.referencesAitkin, M. (1987). Modelling variance heterogeneity in normal regression using glim, Journal of the Royal Statistical Society: Series C (Applied Statistics) 36.spa
dc.relation.referencesAuger, I. E. & Lawrence, C. E. (1989). Algorithms for the optimal identification of segment neighborhoods, Bulletin of Mathematical Biology 51.spa
dc.relation.referencesBai, J. (1997). Estimation of a change point in multiple regression models, The Review of Economics and Statistics 4(79).spa
dc.relation.referencesBai, J. & Perron, P. (1998). Estimating and testing linear models with multiple structural changes, Econometrica 1(66).spa
dc.relation.referencesBai, J. & Perron, P. (2003). Computation and analysis of multiple structural change models, Journal of Applied Econometrics (18).spa
dc.relation.referencesBox, G. E. P. & Cox, D. R. (1964). An analysis of transformation (with discussion), Journal of the Royal Statistical Society B 26.spa
dc.relation.referencesBrown, R. L., Durbin, J. & Evans, J. M. (1975). Techniques for testing the constancy of regression relationships over time, Journal of the Royal Statistical Society Series B (Methodological) 37.spa
dc.relation.referencesCasella, G. & Berger, R. L. (2001). Statistical Inference, 2nd edn, Duxbury Press.spa
dc.relation.referencesCepeda, E. (2001). Modelagem da Variabilidade em Modelos Lineares Generalizados, PhD thesis Universidade Federal do Rio de Janeiro.spa
dc.relation.referencesCepeda, E. (2011). Generalized spatio-temporal models, SORT 35.spa
dc.relation.referencesCepeda, E. & A., A. J. (2009). Regression models with heteroscedasticity using bayesian approach, Revista Colombiana de Estad´ıstica 32.spa
dc.relation.referencesCepeda, E. & Gamerman, D. (2001). Bayesian modeling of variance heterogeneity in normal regression models, Brazilian Journal of Probability and Statistics 11.spa
dc.relation.referencesCepeda, E. & Gamerman, D. (2004). Bayesian modeling of joint regressions for the mean and covariance matrix, Biometrical Journal 46.spa
dc.relation.referencesCepeda, E. & Gamerman, D. (2005). Bayesian methodology for modeling parameters in the two parameter exponential family, Estad˜Astica 57(168 y 169).spa
dc.relation.referencesChaturvedi, A. & Shrivastava, A. (2016). Bayesian analysis of a linear model involving structural changes in either regression parameters or disturbances precision, Communications in Statistics-Theory and Methods 2(45).spa
dc.relation.referencesChen, J. & Gupta, A. K. (2012). Parametric Statistical Change Point Analysis With Applications to Genetics, Medicine, and Finance, 2nd edn, Birkhauser.spa
dc.relation.referencesChi, E. M. & Reinsel, G. C. (1989). Models for longitudinal data with random effects and ar(1) errors, Journal of the American Statistical Association 84(406).spa
dc.relation.referencesCooper, R. F. & B., Y. (1970). Low temperature inteferometric measurements of the thermal expansion of copper and nitralloy, Cryogenics 10.spa
dc.relation.referencesDaniels, M. J. & Pourahmadi, M. (2002). Bayesian analysis of covariance matrices and dynamic models for longitudinal data, Biometrika 89.spa
dc.relation.referencesDavis, C. (2002). Statistical Methods for the Analysis of Repeated Measurements, Springer.spa
dc.relation.referencesDempster, A. P., Laird, N. M. & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em-alogrithm, Journal of the Royal Statistical Society 39.spa
dc.relation.referencesDiggle, P., Heagerty, P., Liang, K.-Y. & Zeger, S. (2002). Statistical Methods for the Analysis of Repeated Measurements, 2nd edn, Oxford University Press.spa
dc.relation.referencesDraper, N. R. & Smith, H. (1998). Applied Regression Analysis, 3rd edn, John Wiley & Sons.spa
dc.relation.referencesEdwards, A. W. F. & Cavalli-Sforza, L. L. (1965). A method for cluster analysis, Biometrics 21.spa
dc.relation.referencesFerreira, P. E. (1975). A bayesian analysis of a switching regression model: Known number of regimes, Journal of the American Statistical Association 70(350).spa
dc.relation.referencesGamerman, D. (1997). Sampling from the posterior distribution in generalized linear mixed models, Statistics and Computing 7.spa
dc.relation.referencesGamerman, D. & Lopes, H. F. (2006). Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, 2nd edn, Chapman & Hall/CRC. Text in Statistical Science Series.spa
dc.relation.referencesGelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A. & Rubin, D. B. (2014). Bayesian Data Analysis, 3rd edn, Chapman & Hall/CRC.spa
dc.relation.referencesHarvey, A. C. (1976). Estimating regression models with multiplicative heteroscedasticity, Econometrica 44.spa
dc.relation.referencesHarville, D. A. (1977). Maximum likelihood approaches to variance component estimation and to related problems, Journal of the American Statistical Association 72.spa
dc.relation.referencesHastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications, Biometrika 57.spa
dc.relation.referencesHinkley, D. V. (1970). Inference about the change-point in a sequence of random variables, Biometrika 57(1): 1–17.spa
dc.relation.referencesHoff, P. D. (2009). A First Course in Bayesian Statistical Methods, Springer Texts in Statistics.spa
dc.relation.referencesHofrichter, J. (2007). Change Point Detection in Generalized Linear Models, PhD thesis TU Graz.spa
dc.relation.referencesHolbert, D. (1982). A bayesian analysis of a switching linear model, Journal of Econometrics 19.spa
dc.relation.referencesKillick, R. & Eckley, I. A. (2014). changepoint: An R package for changepoint analysis, Journal of Statistical Software 58(3): 1–19.spa
dc.relation.referencesKillick, R., Fearnhead, P. & Eckley, I. A. (2012). Optimal detection of changepoints with a linear computational cost, Journal of the American Statistical Association 107.spa
dc.relation.referencesKim, H.-J. (1993). Two-phase regression with nonhomogeneous errors, Communication in Statistics- Theory and Methods 22.spa
dc.relation.referencesKim, H.-J. (1994a). Change-point problems. tests for a change-point in linear regression, IMS Lecture Notes–Monograph Series 23.spa
dc.relation.referencesKim, H.-J. (1994b). Likelihood ratio and cumulative sum tests for a change-point in linear regression, Journal of Multivariate Analysis 51.spa
dc.relation.referencesKrämer, W., Ploberger, W. & Alt, R. (1988). Testing for structural change in dynamic models, Econometrica 56spa
dc.relation.referencesLeisch, F. (2004). Flexmix: A general framework for finite mixture models and latent class regression in r, Journal of Statistical Software 11.spa
dc.relation.referencesMcCullagh, P. & Nelder, J. A. (1989). Generalized Linear Models, 2nd edn, SpringerScience+Business Media, B.V.spa
dc.relation.referencesMetropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. (1953). Equation of state calculations by fast computing machines, The Journal of Chemical Physics 21.spa
dc.relation.referencesMigon, H. S. & Gamerman, D. (1999). Statistical Inference: an Integrated Approach, Arnold, a member of the Hodder Headline Group.spa
dc.relation.referencesMontgomery, D. C., Peck, E. A. & Vining, G. G. (2001). Introduction to linear Regression Analysis , John Wiley & Sons.spa
dc.relation.referencesNúñez Antón, V. A. & Zimmerman, D. L. (2001). Modelización de datos longitudinales con estructuras de covarianza no estacionarias: Modelos de coeficiente aleatorios frente a modelos alternativos, Questiió 25.spa
dc.relation.referencesNúñez Antón, V. & Woodworth, G. G. (1994). Analysis of longitudinal data with unequally spaced observations and time-dependent correlated errors, Biometrics 50.spa
dc.relation.referencesPatterson, H. D. & Thompson, R. (1971). Recovery of interblock information when block sizes are unequa, Biometrika 58.spa
dc.relation.referencesPourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation, Biometrika 86.spa
dc.relation.referencesQuandt, R. E. (1958). The Estimation of the Parameters of a Linear Regression System Obeying Two Separate Regimes, American Statistical Association 53(284): 873–880.spa
dc.relation.referencesQuandt, R. E. (1960). Tests of the Hypothesis That a Linear Regression System Obeys Two Separate Regimes, Journal of the American Statistical Association 55(290): 324– 330.spa
dc.relation.referencesRavishanker, N. & Dey, D. K. (2001). A First Course in Linear Model Theory, 1st edn, Chapman & Hall/CRC Texts in Statistical Science.spa
dc.relation.referencesRiazoshams, H., Midi, H. & Ghilagaber, G. (2018). Robust Nonlinear Regression with Applications Using R, Wiley.spa
dc.relation.referencesRiazoshams, H. & Miri, H. (2005). Investigating growth models using nonlinear regression models, Technical report, Islamic Azad University, Abade branch, Fars province, Iran.spa
dc.relation.referencesSinger, J. D. & Willett, J. B. (2003). Applied Longitudinal Data Analysis - Modeling Change and Event Occurrence, Oxford University Press.spa
dc.relation.referencesSmith, H. & Dubey, S. (1964). Some reliability problems in the chemical industry, Industrial Quality Control 21.spa
dc.relation.referencesVerbeke, G. & Molenberghs, G. (2009). Linear Mixed Models for Longitudinal Data, 2nd edn, Springer Series in Statistics.spa
dc.relation.referencesWeiss, R. E. (2005). Modeling Longitudinal Data, Springer Science & Business Media.spa
dc.relation.referencesWorsley, K. J. (1982). An improved bonferroni inequality and applications, Biometrika 69.spa
dc.relation.referencesWorsley, K. J. (1983). Testing for a two-phase multiple regression, Technometrics 25.spa
dc.relation.referencesZeileis, A., Leisch, F., Hornik, K. & Kleiber, C. (2002). strucchange: An r package for testing for structural change in linear regression models, Journal of Statistical Software 7(2): 1–38.spa
dc.relation.referencesZimmerman, D. L. & Núñez Antón, V. A. (2009). Antedependence Models for Longitudinal Data, CRC Press - Taylor& Francis Group.spa
dc.relation.referencesCastillo, E., Cepeda, E. & Núñez Antón, V. (2019). Bayesian Structured Antedependence Model Proposals for Longitudinal Data, unpublish paper.spa
dc.relation.referencesCepeda, E. & Núñez Antón, V. (2007). Bayesian joint modelling of the mean and covariance structures for normal longitudinal data, SORT 31.spa
dc.relation.referencesCepeda, E. & Núñez Antón, V. (2009). Bayesian modelling of the mean and covariance matrix in normal nonlinear models, Journal of Statistical Computation and Simulation 79.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc310 - Colecciones de estadística generalspa
dc.subject.ddc519 - Probabilidades y matemáticas aplicadasspa
dc.subject.ddc658 - Gerencia generalspa
dc.subject.ddc510 - Matemáticasspa
dc.subject.proposalBayesianaspa
dc.subject.proposalBayesianeng
dc.subject.proposalstructural changeeng
dc.subject.proposalcambio estructuralspa
dc.subject.proposalchange-pointeng
dc.subject.proposalpunto de cambiospa
dc.subject.proposalheterocedásticidadspa
dc.subject.proposalheterocedasticityeng
dc.subject.proposaldatos longitudinalesspa
dc.subject.proposallongitudinal dataeng
dc.subject.proposalcovariance structureeng
dc.subject.proposalestructura de covarianzaspa
dc.subject.proposalmetropolis-Hastingsspa
dc.subject.proposalmetropolis-Hastingseng
dc.titleModelos lineales con cambio estructural: una perspectiva Bayesianaspa
dc.title.alternativeLinear models with structural change: a Bayesian perspectivespa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1121906649.2020.pdf
Tamaño:
974.86 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: