Diseño racional, síntesis y caracterización de híbridos quiméricos de heterociclos nitrogenados y azufrados como potenciales agentes antifúngicos

dc.contributor.advisorOrozco López, Fabián
dc.contributor.authorPáez Ramos, German Ricardo
dc.contributor.researchgroupGrupo de Estudios en Síntesis y Aplicaciones de Compuestos Heterocíclicos (Gesach)spa
dc.date.accessioned2023-05-19T16:50:29Z
dc.date.available2023-05-19T16:50:29Z
dc.date.issued2023-04-27
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractLas altas tasas de morbilidad y mortalidad causadas por infecciones fúngicas están intrínsecamente relacionadas con el desarrollo limitado de antimicóticos y la alta toxicidad de estos compuestos. Las infecciones micóticas son un problema de salud pública en estos tiempos, en vista de que los fármacos utilizados actualmente no son completamente efectivos debido al desarrollo de resistencia, toxicidad y efectos secundarios indeseables. Adicional a esto, la búsqueda de nuevos blancos farmacológicos es un gran desafío, ya que existen muchas similitudes entre las células fúngicas y humanas. Todo lo anterior limita el uso de medicamentos antifúngicos en la medicina actual, por esto es crucial la investigación de nuevos agentes antifúngicos y de nuevas dianas farmacológicas. Para este estudio se implementaron estrategias de acoplamiento molecular, en donde se evaluó mediante programas como AutoDock v.4.2.6, AutoDock Vina v.1.1.2 y Dock v.6.7, el acoplamiento de núcleos heterocíclicos como potenciales inhibidores de la N-miristoil transferasa (NMT) de la C. albicans y la lanosterol 14-α-desmetilasa (CYP51) de la C. albicans como blancos moleculares. Al terminar el cribado virtual, las moléculas fueron ordenadas de acuerdo con su valor de energía de unión al receptor. Con los resultados obtenidos en los tres programas se realizó un consenso usando el método de promedio ponderado de autoescalado (PPAE) para obtener un nuevo valor de puntuación, el cual permitió seleccionar los prototipos más promisorios y llevarlos a la fase de síntesis. Las reacciones de obtención de las moléculas objetivo se plantearon desde los principios de la química verde, por consiguiente, se llevaron a cabo estrategias multicomponente, metodologías de calentamiento no convencional como calentamiento asistido por microondas y ultrasonido, además, se realizaron estudios de disolventes, catalizadores y temperaturas de reacción. (Texto tomado de la fuente)spa
dc.description.abstractHigh rates of morbidity and mortality caused by fungal infections are intrinsically related to the limited development of antifungal and their toxicity. Part of the reason is that current drugs are not completely effective due to the development of resistance, and undesirable side effects. In addition to this, searching of new pharmacological targets is a great challenge, considering the similarities between fungal and human cells. All these facts limit the use of antifungal drugs in current medicine; for this reason, investigations of new antifungal agents and pharmacological targets is crucial. In this study, molecular docking strategies were implemented, where the coupling of heterocyclic nuclei as potential inhibitors of N-myristoyl transferase (NMT) from C. albicans and lanosterol 14-α-demethylase (CYP51) from C. albicans as molecular targets. Upon completion of virtual screening, the molecules were ordered according to their receptor binding energy value. With the results obtained in the three programs, a consensus was made using the autoscaling weighted average method (PPAE) in order to obtain a new score value, which allowed selecting the most promising prototypes and taking them to the synthesis phase. The reactions to obtain the target molecules were proposed from the principles of green chemistry, therefore, multicomponent strategies were carried out, non-conventional heating methodologies such as microwave and ultrasound-assisted heating, in addition, studies of the effect of solvents, catalysts and reaction temperatures.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaQuímica de heterociclosspa
dc.format.extent134 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83834
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesD. Brown, D. Denning y S. Levitz, «Tackling Human Fungal Infections,» Science, vol. 336, nº 6082, p. 647, 2012.spa
dc.relation.referencesG. Brown, D. Denning, N. Gow y S. Levits, «Hidden Killers: Human Fungal Infections,» Science Translational Medicine, vol. 4, nº 165, 2012.spa
dc.relation.referencesC. Alvarez-Moreno, J. Cortes y A. Denning, «Burden of Fungal Infections in Colombia,» Journal of Fungi, vol. 4, nº 2, 2018.spa
dc.relation.referencesM. Ameen, C. Talhari y S. Talhari, «Advances in paracoccidioidomycosis,» Clinical and Experimental Dermatology, vol. 35, pp. 576-580, 2010.spa
dc.relation.referencesM. Nucci, F. Queiroz-Telles, T. Alvarado-Mature, I. Tiraboschi y J. Cortes, «Epidemiology of candidemia in Latin America: a laboratory-based survey,» PLoS One, vol. 8, nº 3, p. e59373, 2013.spa
dc.relation.referencesM. Nucci, F. Queiroz-Telles, A. Tobón, A. Restrepo y A. Colombo, «Epidemiology of opportunistic fungal infections in Latin America,» Clinical Infectious Diseases, vol. 51, nº 5, pp. 561-570, 2010.spa
dc.relation.referencesO. P. d. l. S. OPS, «Candida auris outbreaks in health care services in the context of the COVID-19 pandemic,» Washington, D.C., 2021.spa
dc.relation.referencesA. Casadevall y L. Pirofski, «The damage-response framework of microbial pathogenesis,» Nature Reviews Microbiology, vol. 1, pp. 17-24, 2003.spa
dc.relation.referencesL. Scorzoni, A. de Paula, C. Marcos, P. Assato, W. Melo, H. Oliveira y A. Fusco, «Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis,» Front Microbiology, vol. 8, nº 36, pp. 1-23, 2017.spa
dc.relation.referencesN. Wiederhold, «Antifungal resistance: current trends and future strategies to combat,» Infection and Drug Resistance, vol. 10, pp. 249-259, 2017.spa
dc.relation.referencesY. Dong, M. Liu, J. Wang, Z. Ding y B. Sun, «Construction of antifungal dual-target (SE, CYP51) pharmacophore models and the discovery of novel antifungal inhibitors,» RSC Advances, vol. 9, pp. 26302-26314, 2019.spa
dc.relation.referencesX. Makhova, J. Viegas, R. Mosa, F. Viegas y O. Pooe, «Potential Impact of the Multi-Target Drug Approach in the Treatment of Some Complex Diseases,» Drug Design, Development and Therapy, vol. 14, pp. 3235-3249, 2020.spa
dc.relation.referencesL. Bueno, Diseño racional y síntesis de compuestos tiazolidinónicos pirimidil sustituidos como potenciales agentes antifúngicos, Bogotá: Universidad Nacional de Colombia, 2017.spa
dc.relation.referencesL. Guerrero, Estudio de la reactividad de chalconas como precursores en la síntesis de nuevos compuestos pirazolínicos, betalactámicos y tiazolidínicos fusionados, Bogota: Universidad Nacional de Colombia, 2016.spa
dc.relation.referencesS. Campo y J. Adrio, «Antifungals,» Biochemical Pharmacology, vol. 133, pp. 86-96, 2017.spa
dc.relation.referencesD. Sanglard, «Emerging Threats in Antifungal-Resistant Fungal Pathogens,» Frontiers in Medicine, vol. 3, nº 11, 2016.spa
dc.relation.referencesW. Fang, D. Robinson, O. Raimi, D. Blair y D. Harrison, «N Myristoyltransferase Is a Cell Wall Target in Aspergillus fumigatus,» ACS Chemical Biology, vol. 10, nº 6, pp. 1425-1434, 2015.spa
dc.relation.referencesM. Keniya, M. Sabherwal, R. Wilson, M. Woods, A. Sagatova y J. Tyndall, «Crystal Structures of Full-Length Lanosterol 14 alpha-Demethylases of Prominent Fungal Pathogens Candida albicans and Candida glabrata Provide Tools for Antifungal Discovery.,» Antimicrobial Agents and Chemotherapy, vol. 62, nº 11, pp. e01134-18, 2018.spa
dc.relation.referencesM. Richardson y D. Warnock, «1. Introduction,» de Fungal Infection (4th ed.), John Wiley & Sons, 2012, pp. 1-7.spa
dc.relation.referencesM. Richardson y D. Warnock, Fungal Infection: Diagnosis and Management, Fourth Edition, Chichester, UK: Diagnosis and Management, 2012.spa
dc.relation.referencesS. Vallabhaneni, R. Mody, T. Walker y T. Chiller, «The Global Burden of Fungal Diseases,» Elsevier Infectious Disease Clinics of North America, vol. 30, nº 1, pp. 1-16, 2016.spa
dc.relation.referencesJohnstone y R, «25. Mycoses and Algal infections,» de Weedon's Skin Pathology Essentials E-Book (2nd ed.), Elsevier, 2017, pp. 438-465.spa
dc.relation.referencesH. Kutzner, W. Kempf, J. Feit y O. Sangueza, «2. Fungal infections,» de Atlas of Clinical Dermatopathology: Infectious and Parasitic Dermatoses, Hoboken: Wiley Blackwell, 2021, pp. 77-108.spa
dc.relation.referencesM. Richardson, «Changing patterns and trends in systemic fungal infections,» Journal of Antimicrobial Chemotherapy, vol. 56, pp. i5-i11, 2005.spa
dc.relation.referencesK. Pianalto y A. Alspaugh, «New Horizons in Antifungal Therapy,» Journal of Fungi, vol. 2, nº 26, pp. 1-24, 2016.spa
dc.relation.referencesG. Barlow, I. Irving y P. Moss, « 20. Infectious diseases,» de Kumar and Clark's Clinical Medicine (10th ed., Elsevier, 2020, pp. 559-563.spa
dc.relation.referencesC. f. D. C. a. P. (CDC), «Fungal Diseases,» 26 08 2021. [En línea]. Available: https://www.cdc.gov/fungal/infections/index.html. [Último acceso: 2022 07 03].spa
dc.relation.referencesO. Güzel-Akdemir, S. Carradori, R. Grande y k. Demir-Yazıcı, «Development of Thiazolidinones as Fungal Carbonic,» International Journal of Molecular Sciences, vol. 21, nº 8, pp. 1-17, 2020.spa
dc.relation.referencesF. Lamoth, S. Lockhart, E. Berkow y T. Calandra, «Changes in the epidemiological landscape of invasive candidiasis,» Journal of Antimicrobial Chemotherapy, vol. 73, nº 1, pp. i4-i13, 2018.spa
dc.relation.referencesA. Barac, M. Cevic, N. Colovic, D. Lekovic y G. Setefanovic, «Investigation of a healthcare-associated Candida tropicalis candidiasis cluster in a haematology unit and a systematic review of nosocomial outbreaks,» Mycoses, vol. 63, nº 4, pp. 326-333, 2020.spa
dc.relation.referencesM. Pfaller, D. Diekema, T. J, M. Castanheira y R. Jones, «Twenty Years of the SENTRY Antifungal Surveillance Program: Results for Candida Species From 1997–2016,» Open Forum Infectious Diseases, vol. 6, nº 1, pp. S79-S94, 2019.spa
dc.relation.referencesB. McManus y D. Coleman, «Molecular epidemiology, phylogeny and evolution of Candida albicans,» Infection, Genetics and Evolution, vol. 21, pp. 166-178, 2014.spa
dc.relation.referencesK. Kathiravan, A. Salake, A. Chothe, P. Dudhe, R. Watode, M. Mukta y S. Gadhwe, «The biology and chemistry of antifungal agents: a review,» Bioorganic & Medicinal Chemistry, vol. 20, nº 19, pp. 5678-5698, 2012.spa
dc.relation.referencesB. Monk, A. Sagatova, P. Hosseini, Y. Ruma, R. Wilson y M. Keniya, «Fungal Lanosterol 14α-demethylase: A target for next-generation antifungal design,» Biochimica et Biophysica Acta - Proteins and Proteomics, vol. 1868, nº 3, p. 140206, 2020.spa
dc.relation.referencesL. Hogan, B. Klein y S. Levitz, «Virulence factors of medically important fungi,» Clinical Microbiology Reviews, vol. 9, nº 4, pp. 469-488, 1988.spa
dc.relation.referencesS. Brunke, S. Mogavero, L. Kasper y B. Hube, «Virulence factors in fungal pathogens of man,» Current Opinion in Microbiology, vol. 32, pp. 89-95, 2016.spa
dc.relation.referencesJ. Houšť, J. Spížek y V. Havlíček, «Antifungal Drugs,» Metabolites, vol. 10, nº 3, p. 106, 2020.spa
dc.relation.referencesN. van der Weerden, M. Bleackley y M. Anderson, «Properties and mechanisms of action of naturally occurring antifungal peptides,» Cellular and Molecular Life Sciences, vol. 70, nº 19, pp. 3545-3570, 2013.spa
dc.relation.referencesS. Bowman y S. Free, «The structure and synthesis of the fungal cell wall,» BioEssays, vol. 28, nº 8, pp. 799-808, 2006.spa
dc.relation.referencesK. Gauwerky, C. Borelli y H. Korting, «Targeting virulence: a new paradigm for antifungals,» Drug Discovery Today, vol. 14, nº 3-4, pp. 214-222, 2009.spa
dc.relation.referencesM. Rodrigues, «The Multifunctional Fungal Ergosterol,» American Society for Microbiology, vol. 9, nº 5, pp. e01755-18, 2018.spa
dc.relation.referencesA. Carrillo, G. Giusiano, P. Ezkurra y G. Quindos, ««Antifungal agents: Mode of action in yeast cells,»a, vol. 19, nº 2, pp. 130-139, 2006.,» Revista Española de Quimioterapia, vol. 19, nº 2, pp. 130-139, 2006.spa
dc.relation.referencesY. Tatsumi, M. Nagashima, T. Shibanushi, A. Iwata y Y. Kangawa, «Mechanism of Action of Efinaconazole, a Novel Triazole Antifungal Agent,» Antimicrobial Agents and Chemotherapy, vol. 57, nº 5, pp. 2405-2409, 2013.spa
dc.relation.referencesM. Hernáez, J. Pla y C. Nombela, «Aspectos moleculares y genéticos de la resistencia a azoles en Candida albicans,» Revista Iberoamericana de Micología, vol. 14, pp. 150-154, 1997.spa
dc.relation.referencesM. Waterman y G. Lepesheva, «Sterol 14α-demethylase, an abundant and essential mixed-function oxidase,» Biochemical and Biophysical Research Communications, vol. 338, nº 1, pp. 418-422, 2005.spa
dc.relation.referencesC. McEwen y S. Gutteridge, «Analysis of the Inhibition of the Ergosterol Pathway in Fungi Using the Atmospheric Solids Analysis Probe (ASAP) Method,» Journal of the American Society for Mass Spectrometry, vol. 18, nº 7, pp. 1274-1278, 2007.spa
dc.relation.referencesK. Lopez-Ávila, K. Dzul, K. Lugo, J. Arias y J. Zavala, «Mecanismos de resistencia antifúngica de los azoles en Candida,» Revista Biomédica, vol. 27, nº 3, pp. 127-136, 2016.spa
dc.relation.referencesY. Wu, M. Wu, Y. Wang, Y. Chen, J. Gao y C. Ying, «ERG11 couples oxidative stress adaptation, hyphal elongation and virulence in Candida albicans,» FEMS Yeast Research, vol. 18, nº 7, 2018.spa
dc.relation.referencesT. Hargrove, L. Friggeri, Z. Wawrzak, A. Qi, W. Hoekstra, R. Schotzinger, D. York, F. Guengerich y G. Lepesheva, «tructural analyses of Candida albicans sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis,» Journal of Biological Chemistry, vol. 292, nº 16, pp. 6728-6743, 2017.spa
dc.relation.referencesW. Hoekstra, E. Garvey, W. Moore, S. Rafferty, C. Yates y R. Schotzinger, «Design and optimization of highly-selective fungal CYP51 inhibitors,» Bioorganic & Medicinal Chemistry Letters, vol. 24, nº 15, pp. 3455-3458, 2014.spa
dc.relation.referencesP. Selvakumar, S. Kumar, J. Dimmock y R. Sharma, «NMT1 (N-myristoyltransferase 1),» Atlas de Genética y Citogenética en Oncología y Hematología, vol. 15, nº 7, pp. 570-575, 2011.spa
dc.relation.referencesR. Duronio, D. Rudnick, R. Johnson, D. Johnson y G. J, «Myristic acid auxotrophy caused by mutation of S. cerevisiae myristoyl-CoA:protein N-myristoyltransferase,» Journal of Cell Biology, vol. 113, nº 6, pp. 1313-1330, 1991.spa
dc.relation.referencesS. Maurer-Stroh y F. Eisenhaber, «Myristoylation of viral and bacterial proteins,» Trends in Microbiology, vol. 12, nº 4, pp. 178-185, 2004.spa
dc.relation.referencesM. Wright, W. Heal, D. Mann y E. Tate, «Protein myristoylation in health and disease,» Chemistry & Biology, vol. 3, nº 1, pp. 19-35, 2010.spa
dc.relation.referencesS. Yang, A. Shrivastav, C. Kosinski, R. Sharma, M. Chen, L. Berthiaume, L. Peters, P. Chuang, S. Young y M. Bergo, «N-myristoyltransferase 1 is essential in early mouse development,» J Biol Chem., vol. 280, nº 19, pp. 18990-18995, 2005.spa
dc.relation.referencesC. Zhao y S. Ma, «Recent advances in the discovery of N-myristoyltransferase inhibitors,» ChemMedChem, vol. 9, nº 11, pp. 2425-2437, 2014.spa
dc.relation.referencesR. Weigand, C. Carr, J. Minnerly, A. Pauley, C. Carron y C. Lagner, «The Candida albicans myristoyl-CoA:protein N-myristoyltransferase gene. Isolation and expression in Saccharomyces cerevisiae and Escherichia coli,» Journal of Biological Chemistry, vol. 267, nº 12, pp. 8591-8598, 1992.spa
dc.relation.referencesW. Dismukes, «Cryptococcal Meningitis in Patients with AIDS Get access Arrow,» The Journal of Infections Diseases, vol. 157, nº 4, pp. 624-628, 1988.spa
dc.relation.referencesJ. Wheat, «Histoplasmosis,» Infectious Disease Clinics of North America, vol. 2, nº 4, pp. 841-859, 1988.spa
dc.relation.referencesJ. Lodge, R. Johnson, R. Weinberg y J. Gordon, «Comparison of myristoyl-CoA:protein N-myristoyltransferases from three pathogenic fungi: Cryptococcus neoformans, Histoplasma capsulatum, and Candida albicans.,» Journal of Biological Chemistry, vol. 269, nº 4, pp. 2996-3009, 1994.spa
dc.relation.referencesC. Wermuth, D. Aldous, P. Raboisson y D. Rognan, The Practice of Medicinal Chemistry, Fourth Edition, Washington: Elsevier, 2015.spa
dc.relation.referencesS. Mandal, M. Moudgil y S. Mandal, «Rational drug design,» European Journal of Pharmacology, vol. 625, nº 1-3, pp. 90-100, 2009.spa
dc.relation.referencesD. Wilshart, C. Knox, A. Guo, S. Shrivastava, M. Hassanali, P. Stothard y P. Woolsey, «DrugBank: a comprehensive resource for in silico drug discovery and exploration,» Nucleic Acids Research, vol. 34, pp. 668-672, 2006.spa
dc.relation.referencesL. Gavernet, Introducción a La Química Medicinal, Ciudad de la plata: Editorial de la Universidad Nacional de La Plata (EDULP):, 2021.spa
dc.relation.referencesD. Clarck, «What has virtual screening ever done for drug discovery?,» Expert Opinion on Drug Discovery, vol. 3, nº 8, pp. 841-851, 2008.spa
dc.relation.referencesG. Hartman, M. Egbertson, E. Halczenjo, W. Laswell, M. Duggan, R. Smith, A. Naylor, P. L. R. Manno, C. Chang y R. Gould, «Non-peptide fibrinogen receptor antagonists. 1. Discovery and design of exosite inhibitors,» Journal of Medicinal Chemistry, vol. 35, pp. 4640-4642, 1992.spa
dc.relation.referencesH. Chen, B. Dardik, L. Qiu, X. Ren, S. Caplan, B. Burkey, B. Boettcher y J. Gromada, «Article Navigation Cevoglitazar, a Novel Peroxisome Proliferator-Activated Receptor-α/γ Dual Agonist, Potently Reduces Food Intake and Body Weight in Obese Mice and Cynomolgus Monkeys,» The Journal of Clinical Endocrinology & Metabolism, vol. 95, nº 6, p. 3076, 2010.spa
dc.relation.referencesR. Rajamani y A. Good, «Ranking poses in structure-based lead discovery and optimization: current trends in scoring function development,» Current Opinion in Drug Discovery & Development, vol. 10, nº 3, pp. 308-315, 2007.spa
dc.relation.referencesL. Ferreira y A. Andricopulo, «ADMET modeling approaches in drug discovery,» Drug Discovery Today, vol. 24, nº 5, pp. 1157-1165, 2019.spa
dc.relation.referencesM. Gonzales, K. Naveja, C. Sanchez y J. Medina, «Open chemoinformatic resources to explore the structure, properties and chemical space of molecules,» RSC Advances, vol. 7, nº 85, pp. 54153-54163, 2017.spa
dc.relation.referencesM. Waring, J. Arrowsmith, A. Leach, P. Leeson, S. O. R. Mandrell y A. Weir, «An analysis of the attrition of drug candidates from four major pharmaceutical companies,» Nature Reviews Drug Discovery, vol. 14, nº 7, pp. 475-486, 2015.spa
dc.relation.referencesW. Zhang, J. Pei y L. Lai, «Computational Multitarget Drug Design,» Journal of Chemical Information and Modeling, vol. 57, nº 3, pp. 403-412, 2017.spa
dc.relation.referencesZ. Knight, H. Lin y K. Shokat, «Targeting the cancer kinome through polypharmacology,» Nature Reviews Cancer, vol. 10, nº 2, pp. 130-137, 2010.spa
dc.relation.referencesR. Ramsay, M. Popovic, K. Nikolic, E. Uliassi y M. Bolognesi, «A perspective on multi-target drug discovery and design for complex diseases,» Clinical and Translational Medicine, vol. 7, nº 3, pp. 1-14, 2019.spa
dc.relation.referencesY. An, Y. Dong, M. Liu, J. Han, L. Zhao y B. Sun, «Novel naphthylamide derivatives as dual-target antifungal inhibitors: Design, synthesis and biological evaluation,» European Journal of Medicinal Chemistry, vol. 210, nº 112991, 2021.spa
dc.relation.referencesB. Sun, Y. Dong, K. Lei, J. Wang, L. Zhao y Liu, «Design, synthesis and biological evaluation of amide-pyridine derivatives as novel dual-target (SE, CYP51) antifungal inhibitors,» Bioorganic & Medicinal Chemistry, vol. 27, nº 11, pp. 2427-2437, 2019.spa
dc.relation.referencesB. Sun, Y. Dong, Y. An, M. Liu, J. Han, L. Zhao y X. Liu, «Design, synthesis and bioactivity evaluation of novel arylalkene-amide derivatives as dual-target antifungal inhibitors,» European Journal of Medicinal Chemistry, vol. 205, nº 112645, 2020.spa
dc.relation.referencesY. Dong, X. Liu, Y. An, M. Liu, J. Han y B. Sun, «Potent arylamide derivatives as dual-target antifungal agents: Design, synthesis, biological evaluation, and molecular docking studies,» Bioorganic Chemistry, vol. 90, nº 103749, 2020.spa
dc.relation.referencesT. Zhu, X. Chen, C. Li, J. Tu y N. Liu, «Lanosterol 14α-demethylase (CYP51)/histone deacetylase (HDAC) dual inhibitors for treatment of Candida tropicalis and Cryptococcus neoformans infections,» European Journal of Medicinal Chemistry, vol. 221, nº 113524, 2021.spa
dc.relation.referencesC. Viegas-Junior, A. Danuello, V. da Silva, E. Barreiro y C. Manssour, «Molecular hybridization: a useful tool in the design of new drug prototypes,» Current Medicinal Chemistry, vol. 14, nº 17, pp. 1829-1852, 2007.spa
dc.relation.referencesJ. Jampilek, «Heterocycles in Medicinal Chemistry,» Molecules, vol. 24, nº 21, p. 3839, 2019.spa
dc.relation.referencesA. Gomtsyan, «Heterocycles in drugs and drug discovery,» Chemistry of Heterocyclic Compounds volume, vol. 48, pp. 7-10, 2012.spa
dc.relation.referencesT. Gilchrist, Heterocyclic chemistry, Harlow, Essex, England: Longman Scientific & TechnicaL, 1992.spa
dc.relation.referencesA. Tripathi, S. Gupta, G. Fatima, P. Sonar, A. Verma y S. Saraf, «European Journal of Medicinal Chemistry,» 52-77, vol. 72, nº 44, pp. 52-77, 2014.spa
dc.relation.referencesA. Ayati, S. Emami, S. Moghimi y A. Foroumadi, «Thiazole in the targeted anticancer drug discovery,» Future Medicinal Chemistry, vol. 11, nº 15, pp. 1929-1952, 2019.spa
dc.relation.referencesK. Szychowskia, M. Leja, D. Kaminskyy, A. Kryshchyshyn y U. Binduga, «Anticancer properties of 4-thiazolidinone derivatives depend on peroxisome proliferator-activated receptor gamma (PPARγ),» European Journal of Medicinal Chemistry, vol. 141, pp. 162-168, 2017.spa
dc.relation.referencesS. Bondock, T. Naser y Y. Ammar, «Synthesis of some new 2-(3-pyridyl)-4,5-disubstituted thiazoles as potent antimicrobial agents,» European Journal of Medicinal Chemistry, vol. 62, pp. 270-279, 2013.spa
dc.relation.referencesS. Angapelly, P. Ramya, R. SunithaRani, C. Kumar y A. Kamal, «Ultrasound assisted, VOSO4 catalyzed synthesis of 4-thiazolidinones: Antimicrobial evaluation of indazole-4-thiazolidinone derivatives,» Tetrahedron Letters, vol. 58, nº 49, pp. 4632-4637, 2017.spa
dc.relation.referencesC. Lino, I. Gonçalves, B. Martins, T. Silvéiro y I. Santos, «Synthesis, molecular modeling studies and evaluation of antifungal activity of a novel series of thiazole derivatives,» European Journal of Medicinal Chemistry, vol. 151, pp. 248-260, 2018.spa
dc.relation.referencesK. Omar, A. Geronikaki, P. Zoumpoulakis y C. Camoutsis, «Novel 4-thiazolidinone derivatives as potential antifungal and antibacterial drugs,» Bioorganic & Medicinal Chemistry, vol. 18, pp. 426-432, 2010.spa
dc.relation.referencesR. Sharma, F. Xavier, K. Vasu, S. Chaturvedi y S. Pancholi, «Synthesis of 4-benzyl-1,3-thiazole derivatives as potential anti-inflammatory agents: an analogue-based drug design approach,» Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 24, nº 3, pp. 890-897, 2009.spa
dc.relation.referencesM. Carretero, «Rosiglitazona,» Offarm: Farmacia y Sociedad,, vol. 21, nº 2, pp. 144-146, 2002.spa
dc.relation.referencesA. Perea y S. Diaz, «Perfil farmacológico del isavuconazol,» Revista Iberoamericana de Micología, vol. 35, nº 4, pp. 186-191, 2018.spa
dc.relation.referencesT. Eicher y S. Hauptmann, The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications (2nd ed.), John Wiley & Sons press, 2003.spa
dc.relation.referencesP. Echevarría y V. Soriano, «Estavudina en el tratamiento antirretroviral,» Dialnet, vol. 129, nº 10, pp. 375-376, 2007.spa
dc.relation.referencesA. Butts y D. Krysan, «Antifungal Drug Discovery: Something Old and Something New,» PLOS Pathogens, vol. 8, nº 9, p. e1002870, 2012.spa
dc.relation.referencesT. Roemer y D. Krysan, «Antifungal drug development: challenges, unmet clinical needs, and new approaches,» Cold Spring Harbor Perspectives in Medicine, vol. 4, nº 5, p. 019703, 2014.spa
dc.relation.referencesD. Kontoyiannis, R. Lewis, B. Alexander, O. Lortholary, F. Dromer, K. Gupta y G. John, «Calcineurin Inhibitor Agents Interact Synergistically with Antifungal Agents In Vitro against Cryptococcus neoformans Isolates: Correlation with Outcome in Solid Organ Transplant Recipients with Cryptococcosis,» Antimicrobial Agents and Chemotherapy, vol. 52, nº 2, pp. 735-738, 2008.spa
dc.relation.referencesL. Cowen, S. Singh, J. Köhler, C. Collins y A. Zaas, «Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease,» Proceedings of the National Academy of Sciences (Proceedings of the National Academy of Sciences of the United States of America), vol. 106, nº 8, pp. 2818-2823, 2009.spa
dc.relation.referencesC. Mallikarjunaswamya, L. Mallesha, D. Bhadregodwa y O. Pinto, «Studies on synthesis of pyrimidine derivatives and their antimicrobial activity,» Arabian Journal of Chemistry, vol. 10, pp. s484-s490, 2017.spa
dc.relation.referencesA. Bath, R. Dongre, G. Naikoo, I. Hassan y T. Ara, «Proficient synthesis of bioactive annulated pyrimidine derivatives: A review,» Journal of Taibah University for Science, vol. 11, nº 6, pp. 1047-1069, 2017.spa
dc.relation.referencesL. Taglieri, F. Saccoliti, A. Nicolai, G. Peruzzi y V. Madia, «Discovery of a pyrimidine compund endowed with antitumot activity,» Investigational New Drugs, vol. 38, nº 1, pp. 327-329, 2020.spa
dc.relation.referencesY. Gupta, V. Gupta y S. Singh, «Synthesis, characterization and antimicrobial activity of pyrimidine based derivatives,» Journal of Pharmacy Research, vol. 7, nº 6, pp. 491-495, 2013.spa
dc.relation.referencesS. Sondhi, N. Sigh, M. Johar y A. Kumar, «Synthesis, anti-inflammatory and analgesic activities evaluation of some mono, bi and tricyclic pyrimidine derivatives,» Bioorganic & Medicinal Chemistry, vol. 13, nº 22, pp. 6158-6166, 2005.spa
dc.relation.referencesA. Farghaly, O. AboulWafa, Y. Elshaier, W. Badawi, H. Haridy y H. Mubarak, «Design, synthesis, and antihypertensive activity of new pyrimidine derivatives endowing new pharmacophores,» Medicinal Chemistry Research, vol. 28, pp. 360-379, 2019.spa
dc.relation.referencesA. Nikaje, S. Tiwari, A. Sarkate y K. Karnik, «Imidazole-thiazole coupled derivatives as novel lanosterol 14-α demethylase inhibitors: ionic liquid mediated synthesis, biological evaluation and molecular docking study,» Medicinal Chemestry Research, vol. 27, nº 2, pp. 592-606, 2017.spa
dc.relation.referencesA. Stana, D. Vodnar, R. Tamaian, A. Pirnau, L. Vlase y I. Ionuj, «Design, Synthesis and Antifungal Activity Evaluation of New Thiazolin-4-ones as Potential Lanosterol 14α-Demethylase Inhibitors,» International Journal of Molecular Sciences, vol. 18, nº 1, p. 177, 2017.spa
dc.relation.referencesA. Pratima, S. Tiwari, A. Sarkate y K. Karnik, «Imidazole-thiazole coupled derivatives as novel lanosterol 14-α demethylase inhibitors: ionic liquid mediated synthesis, biological evaluation and molecular docking study,» Medicinal Chemistry Research volume, vol. 27, pp. 592-606, 2018.spa
dc.relation.referencesH. Chen, Z. Guo, Q. Yin, X. Duan, Y. Gu y X. Li, «Design, synthesis and HIV-RT inhibitory activity of novel thiazolidin-4-one derivatives,» Frontiers of Chemical Science and Engineering, vol. 5, pp. 231-237, 2011.spa
dc.relation.referencesA. Srinivas, A. Nagaraj y S. Sanjeeva, «Synthesis of some novel methylene-bis-pyrimidinyl-spiro-4-thiazolidinones as biologically potent agents,» Journal of Heterocyclic Chemistry, vol. 45, nº 4, pp. 1121-1125, 2009.spa
dc.relation.referencesP. Neuenfeldt, B. Drawanz, Q. Cunico, E. Tiekink, J. Wardell y S. Wardell, «4-(Pyrimidin-2-yl)-1-thia-4-aza¬spiro¬[4.5]decan-3-one,» Acta Crystallographica. Section E, Structure Reports Online, vol. 65, nº 12, 2009.spa
dc.relation.referencesA. Yadav, M. Kumar, T. Yadav y R. Jain, «An ionic liquid mediated one-pot synthesis of substituted thiazolidinones and benzimidazoles,» Tetrahedron Letters, vol. 50, nº 35, pp. 5031-5034, 2009.spa
dc.relation.referencesR. Barone, M. Chanon y R. Gallo, «Aminothiazoles and Their Derivatives, Part Two,» de Chemistry of Heterocyclic Compounds: Thiazole and its Derivatives, Part Two, Volume 34, John Wiley & Sons, Inc, 2008, pp. 9-368.spa
dc.relation.referencesD. Debasis, P. Sikdar y M. Bairagi, «Recent developments of 2-aminothiazoles in medicinal chemistry,» European Journal of Medicinal Chemistry, vol. 109, pp. 89-98, 2016.spa
dc.relation.referencesW. Klose, U. Niedballa, K. Schwarz y I. Böttcher, «[Nonsteroidal anti-inflammatory agents. 17. 4,5-Bis-(4-methoxyphenyl)-2-arylthioazoles with antiphlogistic activity],» Archiv der Pharmazie - Chemistry in Life Sciences, vol. 316, nº 11, pp. 941-951, 1983.spa
dc.relation.referencesM. Khalifa, «Recent Developments and Biological Activities of 2-Aminothiazole,» Acta Chimica Slovenica, vol. 65, nº 1, pp. 1-22, 2018.spa
dc.relation.referencesE. Kesicki, M. Bailey, Y. Ovechkina, J. Early, T. Alling, J. Bowman y E. Zuniga, «Synthesis and Evaluation of the 2-Aminothiazoles as Anti-Tubercular Agents,» PLoS One, vol. 11, nº 5, 2016.spa
dc.relation.referencesY. Zheng, C. Tice y S. Singh, «The use of spirocyclic scaffolds in drug discovery,» Bioorganic & Medicinal Chemistry Letters, vol. 25, nº 16, pp. 3673-3682, 2014.spa
dc.relation.referencesD. James, H. Kunze y D. Faulkner, «Two new brominated tyrosine derivatives from the sponge Druinella (= Psammaplysilla) purpurea,» Journal of Natural Products (Lloydia), vol. 54, nº 4, pp. 1137-1140, 1991.spa
dc.relation.referencesJ. Kovayashi, M. Tsuda, K. Agemi, H. Shigemori, M. Ishibashi, T. Sasaki y Y. Mikami, «Purealidins B and C, new bromotyrosine alkaloids from the okinawan marine sponge psammaplysilla purea,» Tetrahedron, vol. 47, nº 33, pp. 6617-6622, 1991.spa
dc.relation.referencesC. Marson, «New and unusual scaffolds in medicinal chemistry,» Chemical Society Reviews, vol. 40, nº 11, pp. 5514-5533, 2011.spa
dc.relation.referencesD. Havrylyuk, N. Kovach, B. Zimenkovsky, O. Vasylenko y R. Lesyk, «Synthesis and anticancer activity of isatin-based pyrazolines and thiazolidines conjugates,» Archiv der Pharmazie - Chemistry in Life Sciences, vol. 344, nº 8, pp. 514-522, 2011.spa
dc.relation.referencesA. Dandia, R. Singh, S. Khaturia, C. Mérienne, G. Morgant y A. Loupy, «Efficient microwave enhanced regioselective synthesis of a series of benzimidazolyl/triazolyl spiro [indole-thiazolidinones] as potent antifungal agents and crystal structure of spiro[3H-indole-3,2′-thiazolidine]-3′(1,2,4- triazol-3-yl)-2,4′(1H)-dione,» Bioorganic & Medicinal Chemistry, vol. 14, nº 7, pp. 2409-2417, 2006.spa
dc.relation.referencesD. Anekal y J. Biradar, «Synthesis and biological evaluation of novel Indolyl 4-thiazolidinones bearing thiadiazine nucleus,» Arabian Journal of Chemistry, vol. 10, nº 2, pp. s2098-s2105, 2017.spa
dc.relation.referencesN. Priyanka y A. Manishi, International Journal of Current Pharmaceutical Research,, vol. 11, nº 6, pp. 71-74, 2019.spa
dc.relation.referencesR. Sakhuja, S. Panda, L. Khanna, S. Khurana y S. Jain, «Design and synthesis of spiro[indole-thiazolidine]spiro[indole-pyrans] as antimicrobial agents,» Bioorganic & Medicinal Chemistry Letters, vol. 21, nº 18, pp. 5465-5469, 2011.spa
dc.relation.referencesR. de Paiba, J. da Silva, H. Moreira, O. Pinto, L. Camargo y P. Naves, «Synthesis, Antimicrobial Activity and Structure-Activity Relationship of Some 5-Arylidene-thiazolidine-2,4-dione Derivatives,» Journal of the Brazilian Chemical Society, vol. 30, nº 1, pp. 164-172, 2019.spa
dc.relation.referencesS. Jain, A. Kumar y D. Saini, «Novel arylidene derivatives of quinoline based thiazolidinones: Synthesis, in vitro, in vivo and in silico study as antimalarials,» Experimental Parasitology, vol. 185, pp. 107-114, 2018.spa
dc.relation.referencesR. Maccari, R. Vitale, R. Ottana, M. Rocchiccioli, A. Marrazzo, V. Cardile y A. Graziano, «Structure activity relationships and molecular modelling of new 5- arylidene-4-thiazolidinone derivatives as aldose reductase inhibitors and potential anti-inflammatory agents,» European Journal of Medicinal Chemistry, vol. 81, pp. 1-14, 2014.spa
dc.relation.referencesI. da Silva, J. da Silva, P. Gomez, M. Soarez, C. de Souza y F. Leite, «Synthesis and Antimicrobial Activities of 5-Arylidene-thiazolidine-2,4-dione Derivatives,» BioMed Research International, vol. 2014, pp. 1-8, 2014.spa
dc.relation.referencesM. Naim, M. Alam, S. Ahmad, F. Nawaz, N. Shrivastava, M. Sahi y O. Alam, «Therapeutic journey of 2,4-thiazolidinediones as a versatile scaffold: An insight into structure activity relationship,» European Journal of Medicinal Chemistry, vol. 129, pp. 218-250, 2017.spa
dc.relation.referencesS. Alegaon y K. Alawadi, «New thiazolidinedione-5-acetic acid amide derivatives: synthesis, characterization and investigation of antimicrobial and cytotoxic properties,» Medicinal Chemistry Research, vol. 21, nº 6, pp. 816-824, 2012.spa
dc.relation.referencesS. Shah y B. Singh, «Urea/thiourea catalyzed, solvent-free synthesis of 5-arylidenethiazolidine-2,4-diones and 5-arylidene-2-thioxothiazolidin-4-ones,» Bioorganic & Medicinal Chemistry Letters, vol. 22, nº 17, pp. 5388-5391, 2012.spa
dc.relation.referencesR. Ottana, R. Maccari, M. Giglio, A. Del Corso, A. Capiello y U. Mura, «Identification of 5-arylidene-4-thiazolidinone derivatives endowed with dual activity as aldose reductase inhibitors and antioxidant agents for the treatment of diabetic complications,» European Journal of Medicinal Chemistry, vol. 46, nº 7, pp. 2797-2806, 2011.spa
dc.relation.referencesRester y U, «From virtuality to reality - Virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective,» Current Opinion in Drug Discovery & Development, vol. 11, nº 4, pp. 559-568, 2008.spa
dc.relation.referencesJ. Rollinger, H. Stuppner y T. Langer, «Virtual screening for the discovery of bioactive natural products,» de Natural Compounds as Drugs, Volume I, vol. 65, Progress in Drug Research, 2008, p. 211–249.spa
dc.relation.referencesA. Daina, O. Michielin y V. Zoete, «SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules,» Scientific Reports, vol. 7, nº 42717, pp. 1-13, 2017.spa
dc.relation.referencesH. Yang, C. Lou, L. Sun, Y. Cai, Z. Wang, W. Li, G. Liu y Y. Tang, «admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties,» Bioinformatics, vol. 35, nº 6, pp. 1067-1069, 2019.spa
dc.relation.referencesS. Lee, G. Chang, I. Lee, J. Chung, K. Sung y No, «The preadmeT: PC-based program for barch batch prediction of ADME properties,» de EuroQSAR, Istanbul, Turkey, 2004.spa
dc.relation.referencesG. Morris, H. Ruth, W. Lindstrom, M. Sanner, R. Belew, D. Goodsell y A. Olson, «AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility,» Journal of Computational Chemistry, vol. 30, nº 16, pp. 2785-2791, 2009.spa
dc.relation.referencesW. Allen, T. Balius, S. Mukherjee, S. Brozell, D. Moustakas, P. Lang, D. Case, I. Kuntz y R. Rizzo, «DOCK 6: Impact of new features and current docking performance,» Journal of Computational Chemistry, vol. 36, nº 15, pp. 1132-1156, 2015.spa
dc.relation.referencesE. Pettersen, T. Goddard, C. Huang, G. Couch, D. Greenblatt, E. Meng y T. Ferrin, «UCSF Chimera--a visualization system for exploratory research and analysis,» Journal of Computational Chemistry, vol. 25, nº 13, pp. 1605-1612, 2004.spa
dc.relation.referencesSpinsolve, «The aldol condensation,» 2020. [En línea]. Available: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiYzJ7Vt8P6AhWEsjEKHRY3AsIQFnoECAsQAQ&url=https%3A%2F%2Fmagritek.com%2Fwp-content%2Fuploads%2F2020%2F03%2FLab-Manual-Aldol-Condensation-web.pdf&usg=AOvVaw3e6zYOTtTqysa. [Último acceso: 10 Marzo 2021].spa
dc.relation.referencesS. Dixon, «Identifying druggable disease-modifying gene products,» Current Opinion in Chemical Biology, vol. 13, nº 5-6, pp. 549-555, 2009.spa
dc.relation.referencesY. Yuan, J. Pei y L. Lai, «Binding Site Detection and Druggability Prediction of Protein Targets for Structure- Based Drug Design,» Current Pharmaceutical Design, vol. 19, nº 12, pp. 2326-2333, 2013.spa
dc.relation.referencesF. Heynick, «The original ‘magic bullet’ is 100 years old – extra,» The British Journal of Psychiatry, vol. 5, p. 456, 2009.spa
dc.relation.referencesM. Bolognesi y A. Cavalli, «Multitarget Drug Discovery and Polypharmacology,» ChemMedChem, vol. 11, nº 12, pp. 1190-1192, 2016.spa
dc.relation.referencesS. Sogabe, M. Masubuchi, K. Sakata, T. Fukami, K. Morikami, Y. Shiratori, H. Ebiike, K. Kawasaki, Y. Aoki, N. Shimma, A. D'Arcy, F. Winkler, D. Banner y T. Ohtsuka, «Crystal structures of Candida albicans N-myristoyltransferase with two distinct inhibitors,» Chemistry & Biology, vol. 9, nº 10, pp. 1119-1128, 2002.spa
dc.relation.referencesS. Cosconati, S. Forli, A. Perryman, R. Harris, D. Goodsell y A. Olson, «Virtual screening with AutoDock: theory and practice,» Expert Opinion on Drug Discovery, vol. 5, nº 6, pp. 597-607, 2010.spa
dc.relation.referencesO. Trott y A. Olson, «AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading,» Journal of Computational Chemistry, vol. 31, nº 2, pp. 455-461, 2009.spa
dc.relation.referencesO. Gómez, D. Andrade, E. Campos, R. Ballinas, A. Méndez, L. Villa y C. Álvarez, «Synthesis, Molecular Docking, and Antimycotic Evaluation of Some 3-Acyl Imidazo[1,2-a]pyrimidines,» Molecules, vol. 23, nº 3, p. 599, 2018.spa
dc.relation.referencesY. Mabkhot, F. Aldawsari, S. Al-Showiman, A. Barakat, T. Hadda, M. Mubarak, S. Naz, Z. Ul-Haq y A. Rauf, «Synthesis, Bioactivity, Molecular Docking and POM Analyses of Novel Substituted Thieno[2,3-b]thiophenes and Related Congeners,» Molecules, vol. 20, nº 2, pp. 1827-1841, 2015.spa
dc.relation.referencesC. Borsari, D. Trader, A. Tait y M. Costi, «Designing Chimeric Molecules for Drug Discovery by Leveraging Chemical Biology,» Journal of Medicinal Chemistry, vol. 63, nº 5, pp. 1908-1928, 2020.spa
dc.relation.referencesM. Szumilak, A. Wiktorowska y A. Stanczak, «Hybrid Drugs-A Strategy for Overcoming Anticancer Drug Resistance?,» Molecules, vol. 26, nº 9, pp. 1-31, 2021.spa
dc.relation.referencesK. Łączkowski, N. Konklewska y A. Biernasiuk, «Thiazoles with cyclopropyl fragment as antifungal, anticonvulsant, and anti-Toxoplasma gondii agents: synthesis, toxicity evaluation, and molecular docking study,» Medicinal Chemistry Research, vol. 27, pp. 2125-2140, 2018.spa
dc.relation.referencesC. Tratrat, A. Petrou, A. Geronikaki, M. Ivanov, M. Kostić, M. Soković, I. Vizirianakis, N. Theodoroula y M. Haroun, «Thiazolidin-4-Ones as Potential Antimicrobial Agents: Experimental and In Silico Evaluation,» Molecules, vol. 27, nº 6, p. 1930, 2022.spa
dc.relation.referencesA. Bell, Z. Yu, J. Hutton, M. Wright, J. Brannigan, D. Paape, S. Roberts y C. Sutherell, «Novel Thienopyrimidine Inhibitors of Leishmania N-Myristoyltransferase with On-Target Activity in Intracellular Amastigotes,» Journal of Medicinal Chemistry, vol. 3., nº 01, pp. 7740-7765, 2020.spa
dc.relation.referencesJ. Choi, L. Podust y R. W, «Drug Strategies Targeting CYP51 in Neglected Tropical Diseases,» Chemical Reviews, vol. 114, nº 22, pp. 11242-11271, 2014.spa
dc.relation.referencesY. Zheng, C. Tice y S. Singh, «The use of spirocyclic scaffolds in drug discovery,» Bioorganic & Medicinal Chemistry Letters, vol. 24, nº 16, pp. 3673-3782, 2014.spa
dc.relation.referencesT. Kennedy, «Managing the drug discovery/development interface,» Drug Discovery Today, vol. 2, nº 10, pp. 436-444, 1997.spa
dc.relation.referencesC. D. D. T. T. Lipinski, «Lead- and drug-like compounds: The rule-of-five revolution,» Drug Discovery Today: Technologies, vol. 1, nº 4, p. 337–341, 2004.spa
dc.relation.referencesJ. Sangshetti, F. Kalam Khan, R. Chouthe, M. Damale y D. Shinde, «Synthesis, docking and ADMET prediction of novel 5-((5-substituted-1-H-1,2,4-triazol-3-yl) methyl)- 4,5,6,7-tetrahydrothieno[3,2-c]pyridine as antifungal agents,» Chinese Chemical Letters, vol. 25, nº 7, pp. 1033-1038, 2014.spa
dc.relation.referencesD. Veber, S. Johnson, H. Cheng, B. Smith, K. Wards y W. Kopple, «Molecular Properties That Influence the Oral Bioavailability of Drug Candidates,» Journal of Medicinal Chemistry, vol. 45, nº 12, pp. 2615-2623, 2002.spa
dc.relation.referencesR. Brüggemann, I. Alffenaar, N. Blijlevens, E. Billaud y G. Kosterink, «Clinical Relevance of the Pharmacokinetic Interactions of Azole Antifungal Drugs with Other Coadministered Agents,» Clinical Infectious Diseases, vol. 48, nº 10, pp. 1441-1458, 2009.spa
dc.relation.referencesM. Ghannoum y M. Perfect, Antifungal Therapy, New York: Taylor & Francis Group, LLC, 2019, pp. 196-200.spa
dc.relation.referencesG. Peralta, M. Sanchez, S. Echevarria, E. Valdizan y A. Armijo, «Glucoproteína P e infección por el virus de la inmunodeficiencia humana,» Enfermedades Infecciosas y Microbiología Clínica, vol. 26, nº 3, pp. 150-159, 2008.spa
dc.relation.referencesJ. Van der Laan, W. Buitenhuis, L. Wagenaar y A. V. S. E. Soffers, «Prediction of the Carcinogenic Potential of Human Pharmaceuticals Using Repeated Dose Toxicity Data and Their Pharmacological Properties,» Frontiers in Medicine, vol. 3, nº 45, pp. 1-24, 2016.spa
dc.relation.referencesK. Rim, «In silico prediction of toxicity and its applications for chemicals at work,» Toxicology and Environmental Health Sciences, vol. 12, nº 3, pp. 191-202, 2020.spa
dc.relation.referencesK. Hentz, «Safety Assessment of Pharmaceuticals: Examples of Inadequate Assessments and a Mechanistic Approach to Assuring Adequate Assessment,» Comprehensive Toxicology, pp. 17-28, 2010.spa
dc.relation.referencesJ. McCann, E. Choi, E. Yamasaki y B. Ames, «Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals,» Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 72, nº 12, p. 2960, 2000.spa
dc.relation.referencesB. Priest, I. Bell y M. Garcia, «Role of hERG potassium channel assays in drug development,» Channels, vol. 2, nº 2, pp. 87-93, 2008.spa
dc.relation.referencesA. Oda, K. Tsuchida, T. Takakura y N. H. S. Yamaotsu, «Comparison of consensus scoring strategies for evaluating computational models of protein-ligand complexes,» Journal of Chemical Information and Modeling, vol. 46, nº 1, pp. 380-391, 2006.spa
dc.relation.referencesD. Houston y M. Walkinshaw, «Consensus docking: Improving the reliability of docking in a virtual screening context,» Journal of Chemical Information and Modeling, vol. 53, nº 2, pp. 384-390, 2013.spa
dc.relation.referencesD. Plewczynski, M. Łaźniewski, M. von Grotthuss, L. Rychlewski y K. Ginalski, «VoteDock: consensus docking method for prediction of protein-ligand interactions,» Journal of Computational Chemistry, vol. 32, nº 4, pp. 568-581, 2011.spa
dc.relation.referencesP. Charifson, J. Corkery, M. Murcko y P. Walters, «Consensus Scoring:  A Method for Obtaining Improved Hit Rates from Docking Databases of Three-Dimensional Structures into Proteins,» Journal of Medicinal Chemistry, vol. 42, pp. 5100-5109, 1999.spa
dc.relation.referencesJ. Morschhäuser, «The genetic basis of fluconazole resistance development in Candida albicans,» Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1587, nº 2-3, pp. 240-248, 2002.spa
dc.relation.referencesA. Volkamer, D. Kuhn, F. Rippmann y M. Rarey, «DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment,» Bioinformatics, vol. 28, nº 15, pp. 2074-2075, 2012.spa
dc.relation.referencesA. Sagatova, M. Kenia, R. Wilson, B. Monk y J. Tyndall, «Structural Insights into Binding of the Antifungal Drug Fluconazole to Saccharomyces cerevisiae Lanosterol 14α-Demethylase,» Antimicrobial Agents and Chemotherapy, vol. 59, nº 8, pp. 4982-4989, 2015.spa
dc.relation.referencesF. Orozco, L. Guerrero y P. Cuervo, «Computer-aided design, synthesis, and characterization of molecular hybrids of dihydropyrazoles, aminopyrimidines, and thiazolidin-4-ones as potential inhibitors of the penicillin-binding protein 3 (PBP-3) of Escherichia coli,» Universitas Scientiarum, vol. 26, nº 1, pp. 17-35, 2021.spa
dc.relation.referencesM. Ahmad, S. Hassan y R. Nisa, «Synthesis, in vitro potential and computational studies on 2-amino-1, 4-dihydropyrimidines as multitarget antibacterial ligands,» Medicinal Chemistry Research, vol. 25, p. 1877–1894, 2016.spa
dc.relation.referencesG. Felluga, F. Benedetti, F. Berti, S. Drioli y G. Regini, «Efficient Biginelli Synthesis of 2-Aminodihydropyrimidines under Microwave Irradiation,» Synlett, vol. 29, nº 8, pp. 1047-1054, 2018.spa
dc.relation.referencesE. Scherbinina, D. Dar’in y P. Lobanov, «Investigation on possibility of rearrangement of pyrimidine-5-carboxylic acids esters,» Chemistry of Heterocyclic Compounds, vol. 46, pp. 1109-1115, 2010.spa
dc.relation.referencesH. Drust y G. Gokel, Química orgánica experimental, Barcelona: Reverté, 1985, p. 599.spa
dc.relation.referencesI. El-Deeb, T. Funakoshi, Y. Shimomoto, R. Masubara y M. Hayashi, «Dehydrogenative Formation of Resorcinol Derivatives Using Pd/C–Ethylene Catalytic System,» Journal of Organic Chemestry, pp. 2630-2640, 2017.spa
dc.relation.referencesP. Kuo, A. Damu, C. Cherng, J. Jeng, C. Teng, E. Lee y T. Wu, «Isolation of a natural antioxidant, dehydrozingerone from Zingiber officinale and synthesis of its analogues for recognition of effective antioxidant and antityrosinase agents,» Archives of Pharmacal Research, vol. 28, nº 5, pp. 512-528, 2005.spa
dc.relation.referencesB. Furnis, A. Hannaford, P. Smith y A. Tatchell, VOGEL´s Textbook of practical Organic Chemestry, New York: Longman Scientific & Technical., 1989.spa
dc.relation.referencesA. Leśniare, A. Chojnacka y W. Gładkowski, «Application of Lecitase® Ultra-Catalyzed Hydrolysis to the Kinetic Resolution of (E)-4-phenylbut-3-en-2-yl Esters,» Catalysts, vol. 8, nº 10, p. 423, 2018.spa
dc.relation.referencesV. Mamaev y A. Vails, «Pyrimidines. XLVII. New method for the synthesis of 2-aminopyrimidines,» Chemistry of Heterocyclic Compounds, vol. 11, pp. 1322-1326, 1975.spa
dc.relation.referencesM. El Sayed, M. Massoud, A. Tantawy y M. Nasr, «Synthesis and biological evaluation of new unsaturated derivatives of cyclic compounds as potent antioxidant agent,» Der Pharma Chemica, vol. 4, nº 5, pp. 1785-1797, 2012.spa
dc.rightsDerechos reservados al autor, 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decsAntifúngicosspa
dc.subject.decsAntifungal Agentseng
dc.subject.decsInfecciones Fúngicas Invasorasspa
dc.subject.decsInvasive Fungal Infectionseng
dc.subject.proposalAntifúngicospa
dc.subject.proposalAcoplamiento molecularspa
dc.subject.proposalPirimidinasspa
dc.subject.proposalTiazolidonasspa
dc.subject.proposalSíntesis de heterociclosspa
dc.subject.proposalAntifungaleng
dc.subject.proposalMolecular dockingeng
dc.subject.proposalPyrimidineseng
dc.subject.proposalThiazolidoneseng
dc.titleDiseño racional, síntesis y caracterización de híbridos quiméricos de heterociclos nitrogenados y azufrados como potenciales agentes antifúngicosspa
dc.title.translatedRational design, synthesis and characterization of chimeric hybrids of nitrogenous and sulfur heterocycles as potential antifungal agentseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053345401.2023.pdf
Tamaño:
6.44 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: