Aprovechamiento de dos subproductos agroindustriales en el desarrollo de un snack rico en fibra dietaria

dc.contributor.advisorSánchez Camargo, Andrea del Pilar
dc.contributor.advisorParada-Alfonso, Fabián
dc.contributor.authorMartínez Rodríguez, Mabel
dc.contributor.researchgroupGrupo de Investigación en Química de alimentos - GiQAspa
dc.date.accessioned2022-08-02T12:39:28Z
dc.date.available2022-08-02T12:39:28Z
dc.date.issued2021
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractEl uso de tecnologías de extracción sub- y supercríticas como estrategia de valorización de residuos agroindustriales, logra la obtención de extractos bioactivos y macronutrientes de interés para la industria alimentaria y/o farmacéutica. Sin embargo, las biomasas agotadas de estos procesos aún contienen un valor nutricional importante, lo que hace que sean potencialmente usadas como ingredientes alimentarios. El objetivo de esta investigación fue el desarrollo de un snack tipo galleta rico en fibra dietaria, usando como ingredientes principales subproductos del procesamiento del café (C. arábiga) y del mango (M. indica) var. Azúcar. Inicialmente, se caracterizaron muestras de cascarilla de café – CC, película plateada de café – PP y epicarpio de mango – EM, provenientes de industrias de procesamiento a nivel local. Los resultados mostraron un perfil nutricional superior en la PP respecto a CC con un aporte de cenizas (5,2 %), grasa (5,4 %), proteína bruta (13,8 %) y fibra dietaria soluble (11,6 %). A su vez, el EM presentó un aporte importante de cenizas (4,2 %), proteína bruta (6,3 %) y fibra dietaria total (35,6 %). Posteriormente, se sometió a la PP a una extracción con etanol presurizado (10,0 MPa) y el EM a extracción con CO2 supercrítico (25,9 MPa, 60°C), obteniendo fibras residuales de PP (MP1) y de EM (MP2). Se elaboraron formulaciones de galleta con dos niveles de sustitución de harina de trigo de (15 y 30 %) por cada ingrediente aportante de fibra dietaria (PP, EM, MP1, MP2 y sus posibles mezclas 0, 25, 50, 75, 100 %). Finalmente, la inclusión de PP, EM, MP1, MP2 presentó diferencias significativas (p<0,000) en la textura (dureza y fracturabilidad) y el color instrumental (CIELab) frente al control. La formulación con 30 % de incorporación de MP2, obtuvo una aceptación del 84 % de los consumidores. Además, aporta 4,2 g de fibra dietaria, lo que representa el 15 % de cubrimiento del valor de referencia, considerándose como un “alimento buena fuente de fibra”. Los resultados obtenidos permiten proponer el uso del epicarpio de mango var. Azúcar y la película plateada de café, importantes subproductos agroindustriales, como ingredientes en el desarrollo de un snack tipo galleta rico en fibra dietaria, como una forma factible de valorizar estos residuos agroindustriales. (Texto tomado de la fuente)spa
dc.description.abstractThe use of sub- and supercritical technologies as a revalorization strategy of agro-industrial waste, obtains bioactive extracts and macronutrients of importance for the food and pharmaceutical industry. However, the biomass depleted from those processes, still contain an important nutritional value, which makes them potentially used as food ingredients. This research work aimed to develop a cookie-type snack rich in dietary fiber, using as ingredients by-products of coffee (C. arabiga) and mango processing (M. indica) Sugar var. First, samples of coffee husk (CC), coffee silverskin (PP) and -mango epicarp (EM) provided by local processing industries were characterized. Results showed that PP had a more relevant nutritional profile than CC with a contribution of ash (5.2 %), fat (5.4 %), crude protein (13.8 %) and soluble dietary fiber (11.6 %). Furthermore, the EM presented a significant contribution of ash (4.2 %), crude protein (6.3 %) and total dietary fiber (35.6 %). Next, PP was subjected to pressurized liquids extraction using ethanol, while EM to extraction with supercritical carbon dioxide, obtaining residual biomasses from PP (MP1) and EM (MP2). cookies formulations were carried out with different levels of wheat flour substitution (15 and 30 %) for the contributing ingredient of dietary fiber (PP, EM, MP1, MP2 and their different proportions 0, 25, 50, 75, 100 %). Finally, the inclusion of PP, EM, MP1, MP2 showed significant differences (p <0.000) on texture and instrumental color, when compared to the control. The assay with inclusion of 30 % of PM2, obtained an 84 % of consumers acceptance. It also provides 4.2 g of dietary fiber, which represents 15 % coverage of the reference value, considering “good fiber source”. The set of results obtained allows us to propose the use of the mango epicarp Sugar var. and the silverskin of coffee -important agro-industrial by-products- as ingredient in the developing a cookie-type snack rich in dietary fiber, as a feasible way to valorize these agro-industrial waste.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencia y Tecnología de Alimentosspa
dc.description.methodsLa metodología de la presente investigación se dividió en tres fases: • La primera de ellas consistió en la caracterización fisicoquímica en términos de análisis proximal de las biomasas en estudio (cascarilla de café – CC, película plateada de Café – PP y epicarpio del mango var. azúcar – (EM). Con lo anterior se seleccionó el mejor subproducto del café a partir del cual se obtendrá la materia prima 1 – MP1, y el EM con el cual se obtendrá la materia prima 2 – MP2. • Teniendo las biomasas PP y EM, la segunda fase consistió en someterlas por separado, a técnicas de extracción verdes (extracción con líquidos presurizados y con fluidos supercríticos), con el fin obtener extractos que fueron evaluados en proyectos de investigación paralelos. Las fibras residuales o tortas de extracción de estos procesos de extracción se consideraron como las materias primas (MP1 a partir de PP de café y MP2 a partir de EM) para la subsecuente formulación del snack, en un enfoque de biorrefinería. En cada materia prima se determinó sus propiedades tecnológicas. • En la última fase se prepararon varias formulaciones de snack tipo galleta, con sustitución de harina de trigo por i) las biomasas sin pre-tratamiento supercrítico/ presurizados (PP y EM), ii) las fibras residuales de las biomasas de café (MP1) y de mango (MP2) pre-tratadas con fluidos supercrítico/presurizados, y iii) sus mezclas variando la proporción MP1:MP2. Dichos snacks se caracterizaron nutricional, instrumental y sensorialmente. A continuación, se detallan los materiales y métodos empleados.spa
dc.description.researchareaDiseño y desarrollo de alimentosspa
dc.format.extentxiv, 85 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81765
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentInstituto de Ciencia y Tecnología de Alimentos (ICTA)spa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentosspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesFarinazzi-Machado FMV, Barbalho SM, Oshiiwa M, Goulart R, Pessan Junior O. Use of cereal bars with quinoa (Chenopodium quinoa W.) to reduce risk factors related to cardiovascular diseases. Food Sci Technol [Internet]. 2012;32(2):239–44. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612012000200005&lng=en&nrm=iso&tlng=enspa
dc.relation.referencesFAO. The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction. d. FAO. Rome; 2019. 1–439 p.spa
dc.relation.referencesVelasco RJ, Villada HS. Aplicaciones de los Fluidos Supercríticos en la Agroindustria. Inf Tecnol. 2011;18(1):53–65.spa
dc.relation.referencesCastro-Vargas HI, Baumann W, Parada-Alfonso F. Valorization of agroindustrial wastes: Identification by LC-MS and NMR of benzylglucosinolate from papaya (carica papaya L.) seeds, a protective agent against lipid oxidation in edible oils. Electrophoresis. 2016;37(13):1930–7.spa
dc.relation.referencesICBF, MSPS, INS, DPS. Encuesta Nacional de la Situación Nutricional - ENSIN 2015. 2015.spa
dc.relation.referencesDuta DE, Culetu A. Evaluation of rheological , physicochemical , thermal , mechanical and sensory properties of oat-based gluten free cookies. J Food Eng [Internet]. 2015;162:1–8. Available from: http://dx.doi.org/10.1016/j.jfoodeng.2015.04.002spa
dc.relation.referencesJan KN, Panesar PS, Singh S. Optimization of antioxidant activity , textural and sensory characteristics of gluten-free cookies made from whole indian quinoa fl our. LWT - Food Sci Technol [Internet]. 2018;93(December 2017):573–82. Available from: https://doi.org/10.1016/j.lwt.2018.04.013spa
dc.relation.referencesGiuberti G, Rocchetti G, Sigolo S, Fortunati P, Lucini L, Gallo A. Exploitation of alfalfa seed ( Medicago sativa L .) flour into gluten-free rice cookies : Nutritional , antioxidant and quality characteristics. Food Chem [Internet]. 2018;239:679–87. Available from: http://dx.doi.org/10.1016/j.foodchem.2017.07.004spa
dc.relation.referencesKaur M, Singh V, Kaur R. Effect of partial replacement of wheat fl our with varying levels of fl axseed fl our on physicochemical , antioxidant and sensory characteristics of cookies. Bioact Carbohydrates Diet Fibre. 2017;9(November 2016):14–20.spa
dc.relation.referencesMudgil D, Barak S, Khatkar BS. Cookie texture , spread ratio and sensory acceptability of cookies as a function of soluble dietary fi ber , baking time and different water levels. LWT - Food Sci Technol [Internet]. 2017;80:537–42. Available from: http://dx.doi.org/10.1016/j.lwt.2017.03.009spa
dc.relation.referencesSerna EG, Saez NM, Mesias M, Morales FJ, Castillo MD. Use of Coffee Silverskin and Stevia to Improve the Formulation of Biscuits. Polish Acad Sci. 2014;64(4):243–51.spa
dc.relation.referencesS.Gaviria, L.Mejia, M.Castro, E.Gómez FC. Pérdida y Desperdicio de alimentos en Colombia. Dep Nac Planeación. 2016;39:116.spa
dc.relation.referencesValencia NR. Manejo de residuos en la agroindustria cafetera. Cenicafé. 2014;spa
dc.relation.referencesMouho DG, Oliveira AP, Kodjo CG, Valentão P. Valorisation of Mangifera indica crop biomass residues. Ind Crop Prod [Internet]. 2018;124(June):284–93. Available from: https://doi.org/10.1016/j.indcrop.2018.07.028spa
dc.relation.referencesMagoni C, Bruni I, Guzzetti L, Dell M, Sangiovanni E, Piazza S, et al. Valorizing coffee pulp by-products as anti-in fl ammatory ingredient of food supplements acting on IL-8 release. Food Res Int [Internet]. 2018;112(March):129–35. Available from: https://doi.org/10.1016/j.foodres.2018.06.026spa
dc.relation.referencesCury K, Aguas Y, Martinez A, Olivero R;, Chams L. Residuos agroindustriales su impacto , manejo y aprovechamiento. Rev Colomb Cienc Anim. 2017;9:122–32.spa
dc.relation.referencesNarita Y, Inouye K. Review on utilization and composition of coffee silverskin. FRIN [Internet]. 2014;61:16–22. Available from: http://dx.doi.org/10.1016/j.foodres.2014.01.023spa
dc.relation.referencesCantergiani E, Andlauer W, Heeger A, Kosin A. Bioactives of coffee cherry pulp and its utilisation for production of Cascara beverage. Food Chem. 2017;221:969–75.spa
dc.relation.referencesMarulanda VA, Chacón-Perez Y, Alzate CAC. The biorefinery concept for the industrial valorization of coffee processing by-products. Handbook of Coffee Processing By-Products: Sustainable Applications. 2017. 63–89 p.spa
dc.relation.referencesEsquivel P, Jiménez VM. Functional properties of coffee and coffee by products. Food Res Int J [Internet]. 2012;46(2):488–95. Available from: http://dx.doi.org/10.1016/j.foodres.2011.05.028spa
dc.relation.referencesSánchez A. D, Anzola V. C. Caracterización química de la película plateada del Café (Coffea arábica) en variedades Colombia y Caturra. Rev Colomb Química. 2013;41(2):211–25.spa
dc.relation.referencesCenicafé. Cultivemos café- Beneficio [Internet]. www. cenicafé.org. 2016. Available from: https://www.cenicafe.org/es/index.php/cultivemos_cafe/beneficiospa
dc.relation.referencesNarita Y, Inouye K. High antioxidant activity of coffee silverskin extracts obtained by the treatment of coffee silverskin with subcritical water. Food Chem [Internet]. 2012;135(3):943–9. Available from: http://dx.doi.org/10.1016/j.foodchem.2012.05.078spa
dc.relation.referencesIriondo-dehond A, Aparicio N, Fernandez-gomez B, Guisantes-batan E, Velázquez F, Patricia G, et al. Validation of coffee by-products as novel food ingredients. Innov Food Sci Emerg Technol [Internet]. 2018;(June):0–1. Available from: https://doi.org/10.1016/j.ifset.2018.06.010spa
dc.relation.referencesPastoriza S, Ru A, Jim A. Revalorization of coffee by-products . Prebiotic , antimicrobial and antioxidant properties. Food Sci Technol. 2015;61:12–8.spa
dc.relation.referencesIriondo-dehond A, Iriondo-dehond M. biomolecules Applications of Compounds from Coffee Processing By-Products. 2020.spa
dc.relation.referencesBehrouzian F, Amini AM, Alghooneh A, Mohammad S, Razavi A. Characterization of dietary fiber from coffee silverskin: An optimization study using response surface methodology. Bioact Carbohydrates Diet Fibre. 2016;8(November):58–64.spa
dc.relation.referencesBorrelli Cinzia R, Esposito F, Napolitano A, Ritieni A, Vincenzo F. Characterization of a New Potential Functional Ingredient : Agric Food Chem. 2004;52:1338–43.spa
dc.relation.referencesFernandez-gomez B, Ramos S, Goya L, Dolores M, Dolores M, Ángeles M. Coffee silverskin extract improves glucose-stimulated insulin secretion and protects against streptozotocin-induced damage in pancreatic INS-1E beta cells. Food Res Int [Internet]. 2016;89:1015–22. Available from: http://dx.doi.org/10.1016/j.foodres.2016.03.006spa
dc.relation.referencesCNUCED NATIONS UNIES. MANGO. In: Conferencia de las Naciones Unidas sobre Comercio y Desarrollo. 2010.spa
dc.relation.referencesLawson T, Lycett GW, Ali A, Foan C. Characterization of Southeast Asia mangoes ( Mangifera indica L ) according to their physicochemical attributes. Sci Hortic (Amsterdam) [Internet]. 2019;243(August 2018):189–96. Available from: https://doi.org/10.1016/j.scienta.2018.08.014spa
dc.relation.referencesNavarro FH, Morales MSE, Gaytán Martínez M. Elaboración y evaluación de un dulce enriquecido con fibra dietética presente en el bagazo de mango (Mangífera indica L.). Vol. 3. Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada; 2015.spa
dc.relation.referencesDe la Rosa L, Álvarez-parrilla JALE. El mango : aspectos agroindustriales , valor nutricional / funcional y efectos en la salud. Nutr Hosp. 2015;31(1):67–75.spa
dc.relation.referencesVimalraj S, Ashokkumar T, Saravanan S. Biogenic gold nanoparticles synthesis mediated by Mangifera indica seed aqueous extracts exhibits antibacterial , anticancer and anti-angiogenic properties. Biomed Pharmacother [Internet]. 2018;105(February):440–8. Available from: https://doi.org/10.1016/j.biopha.2018.05.151spa
dc.relation.referencesAgronet. Estadisticas agricolas, área y producción de mango en Colombia [Internet]. Ministerio de Cultura y Desarrollo Rural. 2020 [cited 2020 May 1]. Available from: www.agronet.govspa
dc.relation.referencesPérez G. W, Noreña T. ME. Cadena del mango indicadores e instrumentos [Internet]. Ministerio de agricultura (Colombia). 2019. Available from: https://sioc.minagricultura.gov.co/Mango/Documentos/2019-06-30 Cifras Sectoriales.pdfspa
dc.relation.referencesQuinterio V, Giraldo G, Lucas J, Vasco J. Caracterización fisicoquímica del mango común ( Mangifera indica L . ) durante su proceso de maduración. Biotecnol en el Sect Agropecu y Agroindustrial. 2013;11(1):10–8.spa
dc.relation.referencesSánchez Camargo A del P, Gutiérrez LF, Vargas SM, Martinez Correa HA, Parada Alfonso F, Narváez Cuenca CE. Valorisation of mango peel: Proximate composition, supercritical fluid extraction of carotenoids, and application as an antioxidant additive for an edible oil. J Supercrit Fluids [Internet]. 2019;152:104574. Available from: https://doi.org/10.1016/j.supflu.2019.104574spa
dc.relation.referencesCorrales-Bernal A, Maldonado Camila ME, Urango LA, Franco MEC, Rojano BA. Sugar mango (Mangifera indica), variety from Colombia: Antioxidant, nutritional and sensorial characteristics. Rev Chil Nutr. 2014;41(3):312–8.spa
dc.relation.referencesAsyifah MR, Lu K, Ting HL, Zhang D. Hidden Potential of Tropical Fruit Waste Components as a Useful Source of Remedy for Obesity. Agric Food Chem. 2014;spa
dc.relation.referencesSánchez-Camargo A del P, Ballesteros-Vivas D, Buelvas-Puello LM, Martinez-Correa HA, Parada-Alfonso F, Cifuentes A, et al. Microwave-assisted extraction of phenolic compounds with antioxidant and anti-proliferative activities from supercritical CO2 pre-extracted mango peel as valorization strategy. Lwt. 2021;137(June 2020).spa
dc.relation.referencesArreto JACB, Revisan MATST, Ull WIEH, Piegelhalder BES, Wen ROWO. Characterization and Quantitation of Polyphenolic Compounds in Bark, Kernel, Leaves, and Peel of Mango (Mangifera indica L_) - Journal of Agricultural and Food Chemistry (ACS Publications). Agric Food Chem. 2008;5599–610.spa
dc.relation.referencesAjila CM, Leelavathi K, Prasada Rao UJS. Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. J Cereal Sci. 2008;48(2):319–26.spa
dc.relation.referencesCastillo H. G. Extracción con Fluidos Supercríticos. Los Compuestos Bioactivos y Tecnol Extracción. 2016;108–18.spa
dc.relation.referencesLópez G. L, De la Vega M. R, Sanchéz B. A. Extracción con fluidos supercríticos. Reduca. 2012;4(10):5003.spa
dc.relation.referencesPagano I, Sánchez-Camargo A del P, Mendiola JA, Campone L, Cifuentes A, Rastrelli L, et al. Selective extraction of high-value phenolic compounds from distillation wastewater of basil (Ocimum basilicum L.) by pressurized liquid extraction. Electrophoresis. 2018;39(15):1884–91.spa
dc.relation.referencesSánchez-Camargo A del P, Pleite N, Herrero M, Cifuentes A, Ibáñez E, Gilbert-López B. New approaches for the selective extraction of bioactive compounds employing bio-based solvents and pressurized green processes. J Supercrit Fluids [Internet]. 2017;128(February):112–20. Available from: http://dx.doi.org/10.1016/j.supflu.2017.05.016spa
dc.relation.referencesAntonio J, León M. Extracción de compuestos bioactivos de microalgas mediante fluidos supercríticos. 2008;spa
dc.relation.referencesOspina M, Castro-Vargas HI, Parada-Alfonso F. Antioxidant capacity of Colombian seaweeds: 1. Extracts obtained from Gracilaria mammillaris by means of supercritical fluid extraction. J Supercrit Fluids [Internet]. 2017;128:314–22. Available from: http://dx.doi.org/10.1016/j.supflu.2017.02.023spa
dc.relation.referencesCastro-Vargas HI, Parada AF. Evaluación del efecto protector contra la oxidación lipídica de fracciones obtenidas a partir del epicarpio de tomate de árbol (Solanum betaceum Sendtn). Rev Colomb Química. 2017;46(2)(81):17–23.spa
dc.relation.referencesBarriga Sánchez M, Churata Huanca A, Tinoco Gómez Ó. Optimización del rendimiento de la extracción de aceite de semillas de vitis vinifera con CO2 supercrítico. Rev la Soc Química del Perú. 2018;84(2):217–27.spa
dc.relation.referencesFood and Nutrition Board. Dietary Reference Intakes Proposed Definition of Dietary. NATIONAL ACADEMY PRESS. 2001.spa
dc.relation.referencesMudgil D, Sheweta B. Composition , Properties and Health Benefits of Indigestible Carbohydrate Polymers as Dietary: A review. Biol Macromol. 2013;61(January 2015):1–6.spa
dc.relation.referencesMartinez-saez N, Ullate M, Martin-cabrejas MA, Martorell P, Genovés S, Ramon D, et al. A novel antioxidant beverage for body weight control based on coffee silverskin. FOOD Chem [Internet]. 2014;150:227–34. Available from: http://dx.doi.org/10.1016/j.foodchem.2013.10.100spa
dc.relation.referencesMinisterio de Salud y Protección Social. Resolución 003803 de 2016. 2016 p. 26.spa
dc.relation.referencesMinisterio de Salud y Protección Social - MSPS. Resolución No. 810 de 2021. 2021. p. 50.spa
dc.relation.referencesSilva De Paula N, Gomes Natal DI, Aparecida Ferreira H, de Souza Dantas MI, Rocha Ribeiro SM, Duarte Martino HS. Characterization of cereal bars enriched with dietary fiber and omega 3 Caracterizacao de barras de cereal enriquecidas com fibra dietética e omega 3. Rev Chil Nutr. 2013;40:269–73.spa
dc.relation.referencesGizem A, Elmacı Y. Coffee silverskin as fat replacer in cake formulations and its e ff ect on physical , chemical and sensory attributes of cakes. Food Sci Technol. 2018;90(December 2017):519–25.spa
dc.relation.referencesChen Y, Zhao L, He T, Ou Z, Hu Z, Wang K. Effects of mango peel powder on starch digestion and quality characteristics of bread. Int J Biol Macromol [Internet]. 2019;140:647–52. Available from: https://doi.org/10.1016/j.ijbiomac.2019.08.188spa
dc.relation.referencesDas PC, Khan MJ, Rahman MS, Majumder S, Islam MN. Comparison of the physico-chemical and functional properties of mango kernel flour with wheat flour and development of mango kernel flour based composite cakes. NFS J [Internet]. 2019;17(October):1–7. Available from: https://doi.org/10.1016/j.nfs.2019.10.001spa
dc.relation.referencesSulieman AA, Zhu K, Peng W, Hassan HA, Mahdi AA, Zhou H. Influence of fermented and unfermented Agaricus bisporus polysaccharide flours on the antioxidant and structural properties of composite gluten-free cookies. LWT - Food Sci Technol [Internet]. 2018; Available from: https://doi.org/10.1016/j.lwt.2018.11.007spa
dc.relation.referencesEscamilla M. Obtención de extractos bioactivos a partir de un subproducto del café, empleando técnicas de extracción verdes. 2020.spa
dc.relation.referencesMeneses SMO, Molina DAR, Vargas JHL. Caracterización fisicoquímica y funcionalidad tecnológica de la fibra de banano íntegro verde (Cavendish valery) (Musa AAA cv. Musaceae). Rev Lasallista Investig. 2016;13(1):23–30.spa
dc.relation.referencesMathias-Rettig K., Ah-Hen K. El color en los alimentos un criterio de calidad medible. AgroSur Univ Austral Chile. 2014;42(2):39–48.spa
dc.relation.referencesReyna M, Domínguez L, Pachón H. Guía para la Evaluación Sensorial de Alimentos “ Guía para la Evaluación Sensorial de Alimentos .” 2007;spa
dc.relation.referencesHernandez E. Evaluacion Sensorial. 2005;spa
dc.relation.referencesFonseca F, Mesa JM, Rocha JD, Filippetto D, Luengo CA, Pippo WA. Biomass briquetting and its perspectives in Brazil. Biomass and Bioenergy. 2011;5:1–7.spa
dc.relation.referencesJanissen B, Huynh T. Chemical composition and value-adding applications of coffee industry by- products : A review. Resour , Conserv Recycl. 2018;128(October 2017):110–7.spa
dc.relation.referencesGómez A, Rincón SL, Wiest W. Transformación termoquímica de la biomasa residual del proceso de extracción del aceite de palma : tecnologías y perspectivas Thermochemical Transformation of the Residual Biomass from the Palm Oil Extraction Process : Technologies and Prospects. PALMAS. 2004;25:388–97.spa
dc.relation.referencesMassaya J, Prates Pereira A, Mills-Lamptey B, Benjamin J, Chuck CJ. Conceptualization of a spent coffee grounds biorefinery: A review of existing valorisation approaches. Food Bioprod Process [Internet]. 2019;118:149–66. Available from: https://doi.org/10.1016/j.fbp.2019.08.010spa
dc.relation.referencesCosta ASG, Alves RC, Vinha AF, Costa E, Costa CSG, Nunes MA, et al. Nutritional , chemical and antioxidant / pro-oxidant profiles of silverskin , a coffee roasting by-product. Food Chem [Internet]. 2018;267:28–35. Available from: https://doi.org/10.1016/j.foodchem.2017.03.106spa
dc.relation.referencesToschi TG, Cardenia V, Bonaga G, Mandrioli M, Rodriguez-estrada MT. Coffee Silverskin : Characterization , Possible Uses , and Safety Aspects. Agric Food Chem [Internet]. 2014;62:10836–44. Available from: https://pubs-acs-org.ezproxy.unal.edu.co/doi/10.1021/jf503200zspa
dc.relation.referencesJiménez Zamora A, Pastoriza S, José RH. Revalorization of coffee by-products . Prebiotic , antimicrobial and antioxidant properties. 2015;61:12–8.spa
dc.relation.referencesMartorell R, López de Romaña D. Components of Successful Staple Food Fortification Programs: Lessons From Latin America. Food Nutr Bull [Internet]. 2017 Jan 1;379572117707890–379572117707890. Available from: http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=28490239&lang=es&site=eds-livespa
dc.relation.referencesVergara-Valencia N, Granados-Pérez E, Agama-Acevedo E, Tovar J, Ruales J, Bello-Pérez LA. Fibre concentrate from mango fruit: Characterization, associated antioxidant capacity and application as a bakery product ingredient. LWT - Food Sci Technol. 2007;40(4):722–9.spa
dc.relation.referencesSerna Cock L, Torres León C. Potencial agroindustrial de cáscaras de mango ( Mangifera indica ) variedades Keitt y Tommy Atkins. Acta Agronómica. 2015;64:110–5.spa
dc.relation.referencesVargas y Vargas M de L, Figueroa Brito H, Tamayo Cortez JA, Toledo López VM, Moo Huchin VM. Aprovechamiento de cáscaras de frutas: análisis nutricional y compuestos bioactivos. Cienc ergo sum. 2019;26(2):1–11.spa
dc.relation.referencesCandela DE. Evaluación de los cambios estructurales de galletas elaboradas con sustitutos de grasa. Universidad Politecnica de Valencia. 2015.spa
dc.relation.referencesVillemejane C, Roussel P, Berland S, Aymard P, Michon C. Technological and sensory tools to characterize the consistency and performance of fibre-enriched biscuit doughs. J Cereal Sci [Internet]. 2013;57(3):551–9. Available from: http://dx.doi.org/10.1016/j.jcs.2013.03.005spa
dc.relation.referencesMendoza ZM dos SH de, Borges PH de M. Análisis colorimétrico del extracto acuoso de hojas de teca. Rev Arvore. 2015;39(5):953–61.spa
dc.relation.referencesInstituto Colombiano de Bienestar Familiar. Tabla De Composición De Alimentos Colombianos [Internet]. Icbf. 2018. p. 1–147. Available from: https://www.icbf.gov.co/sites/default/files/tcac_web.pdfspa
dc.relation.referencesAnderson JW, Baird P, Jr RHD, Ferreri S, Knudtson M, Koraym A, et al. Health benefits of dietary fiber. Nutr Rev. 2009;67(4):188–205.spa
dc.relation.referencesMiki T, Masafumi EM, Kurotani K, Takeshi KM, Kuwahara K, Rie IR, et al. Dietary fi ber intake and depressive symptoms in Japanese employees : The Furukawa Nutrition and Health Study. Nutrition [Internet]. 2016;32(5):584–9. Available from: http://dx.doi.org/10.1016/j.nut.2015.11.014spa
dc.relation.referencesVázquez-Sánchez K, Martinez-Saez N, Rebollo-Hernanz M, del Castillo MD, Gaytán-Martínez M, Campos-Vega R. In vitro health promoting properties of antioxidant dietary fiber extracted from spent coffee (Coffee arabica L.) grounds. Food Chem [Internet]. 2018;261(March):253–9. Available from: https://doi.org/10.1016/j.foodchem.2018.04.064spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocuriAperitivosspa
dc.subject.agrovocurisnack foodseng
dc.subject.agrovocuriCafé arábicaspa
dc.subject.agrovocuriarabica coffeeeng
dc.subject.agrovocuriMangífera índicaspa
dc.subject.agrovocuriMangifera indicaeng
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.proposalFibra dietariaspa
dc.subject.proposalSubproductos de mangospa
dc.subject.proposalFluidos supercríticosspa
dc.subject.proposalLíquidos presurizadosspa
dc.subject.proposalSnack tipo galletaspa
dc.subject.proposalSubproductos de caféspa
dc.subject.proposalEpicarpio de mangospa
dc.subject.proposalPelícula plateada de caféspa
dc.subject.proposalDietary fibereng
dc.subject.proposalCoffee by-productseng
dc.subject.proposalCoffee silverskineng
dc.subject.proposalMango epicarpeng
dc.subject.proposalMango by-productseng
dc.subject.proposalSupercritical fluidseng
dc.subject.proposalPressurized liquidseng
dc.subject.proposalCookie-type snackeng
dc.titleAprovechamiento de dos subproductos agroindustriales en el desarrollo de un snack rico en fibra dietariaspa
dc.title.translatedUse of two agroindustrial products in the elaboration of a snack rich in dietary fibereng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014243919.2021.pdf
Tamaño:
1.61 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencia y Tecnología de Alimentos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: