Construcción hamiltoniana de sistemas tipo Vlásov-Maxwell por reducción simpléctica
dc.contributor.advisor | Martínez Alba, Nicolas | spa |
dc.contributor.author | Rodríguez Torres, Diego Alejandro | spa |
dc.date.accessioned | 2025-10-08T22:52:24Z | |
dc.date.available | 2025-10-08T22:52:24Z | |
dc.date.issued | 2025-04 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | En este proyecto estudiamos la metodología para convertir las conocidas ecuaciones de Vlásov-Maxwell en un sistema Hamiltoniano relativo a un corchete de Poisson. Primero, introducimos las ecuaciones de Vlasov-Maxwell como un modelo para describir las interacciones físicas en un plasma. Luego, revisaremos el formalismo matemático de la mecánica clásica, específicamente el de los sistemas hamiltonianos. Comenzaremos con una motivación sobre la importancia de los sistemas hamiltonianos tanto en física como en matemáticas, y a continuación usaremos algunos resultados básicos de la geometría simpléctica para describir sistemas hamiltonianos, allí el concepto de corchete de Poisson aparecerá de manera natural. Posteriormente, abordaremos el problema de construir nuevas estructuras simplécticas a partir de una variedad simpléctica, lo cual no siempre es posible en general; el teorema de reducción de Marsden-Weinstein nos indicará bajo qué circunstancias es factible. Una vez que sea discutido el teorema de reducción simpléctica, exploraremos cómo este resultado puede ayudar a reducir sistemas mecánicos con simetría. En el siguiente paso, toda la maquinaria de la geometría simpléctica y la reducción se aplicará para construir un corchete de Poisson, físicamente adecuado, para las ecuaciones de Vlásov-Maxwell. Finalmente, haremos los ajustes necesarios para extender estos resultados al álgebra de Lie sl(2), obteniendo un nuevo conjunto de ecuaciones que tiene una estructura similar a las ecuaciones de Vlásov-Maxwell. Despues de ello trataremos de generalizar el resultado para cualquier álgebra de Lie de dimensión 3. (Texto tomado de la fuente). | spa |
dc.description.abstract | In this project, we study the methodology to transform the well-known VlásovMaxwell equations into a Hamiltonian system relative to a Poisson bracket. First, we introduce the Vlasov-Maxwell equations as a model to describe physical interactions in a plasma. After that, we will review the mathematical formalism of classical mechanics, specifically Hamiltonian systems, we will start with a motivation of the importance of Hamiltonian systems in physics and mathematics, and following that we will present some basic results of symplectic geometry used to describe Hamiltonian systems, the concept of Poisson bracket will naturally appear in this description. Subsequently, we will deal with the problem of constructing new symplectic structures from a symplectic manifold, which is not always possible in general, the Marsden-Weinstein reduction theorem will tell us under which circumstances it is possible. Once symplectic reduction is addressed, we will see how this theorem can help to reduce mechanical systems with symmetry. In the next step, all the symplectic geometry and reduction machinery will be applied to construct a physically adequate Poisson bracket for Vlásov-Maxwell equations. Finally, we will make the necessary adjustments to extend these results for the sl(2,R) Lie algebra, we will get a new set of equations that have a similar structure to the Vlásov Maxwell equations. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Matemáticas | spa |
dc.description.notes | Texto en inglés | spa |
dc.format.extent | iii, 53 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89022 | |
dc.language.iso | eng | |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Matemáticas | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Matemáticas | spa |
dc.relation.references | Morrison, P. J. (1980). The Maxwell-Vlasov equations as a continuous Hamiltonian system. Physics Letters A, 80(5-6), 383-386. . Princeton University. Plasma Physics Laboratory, 1980 | |
dc.relation.references | Marsden, J. E., & Weinstein, A. (1982). The Hamiltonian structure of the Maxwell-Vlasov equations. Physica D: nonlinear phenomena, 4(3), 394-406. | |
dc.relation.references | Marsden, J. E., Raţiu, T., & Weinstein, A. (1984). Semidirect products and reduction in mechanics. Transactions of the american mathematical society, 281(1), 147-177. | |
dc.relation.references | Marsden, J. E., Weinstein, A., Ratiu, T. S., Schmid, R., & Spencer, R. G. (1983). Hamiltonian systems with symmetry, coadjoint orbits and plasma physics. Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur, 117(1), 289-340. | |
dc.relation.references | Marsden, J., & Weinstein, A. (1974). Reduction of symplectic manifolds with symmetry. Reports on mathematical physics, 5(1), 121-130. | |
dc.relation.references | Sternberg, S. (1980). Ralph abraham and jerrold e. marsden, foundations of mechanics. | |
dc.relation.references | Crouseilles, N., Einkemmer, L., & Faou, E. (2015). Hamiltonian splitting for the Vlasov–Maxwell equations. Journal of Computational Physics, 283, 224-240. | |
dc.relation.references | Nesterenko, M., & Popovych, R. (2006). Contractions of low-dimensional Lie algebras. Journal of mathematical physics, 47(12). | |
dc.relation.references | Sneddon, I. N. (1980). VI Arnold, Mathematical methods of classical mechanics, and Walter Thirring, A course in mathematical physics, vol. 1: Classical dynamical systems. | |
dc.relation.references | Berezin, F. A. (1967). Some remarks about the associated envelope of a Lie algebra. Functional Analysis and its Applications, 1(2), 91-102. | |
dc.relation.references | LUIGI, BIANCHI. Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti. Memorie della Societa Italiana delle Scienze. detta dei XL.(3), 1897, vol. 11, p. 267-352. | |
dc.relation.references | Bowers, A. (2005). Classification of three-dimensional real Lie algebras. Personal https://cutt. ly/Ad6zozn. | |
dc.relation.references | Boyd, T. J. M., & Sanderson, J. J. (2003). The physics of plasmas. Cambridge university press. | |
dc.relation.references | Bursztyn, H. (2025). A Brief Introduction to Poisson Geometry. In Advances in Poisson Geometry (pp. 3-81). Cham: Springer Nature Switzerland. | |
dc.relation.references | Silva, A. C. (2001). Lectures on symplectic geometry. Lecture Notes in Mathematics, 1764. | |
dc.relation.references | Crainic, M., Fernandes, R. L., & Mărcuţ, I. (2021). Lectures on Poisson geometry (Vol. 217). American Mathematical Soc.. | |
dc.relation.references | Chen, F. F. (1984). Introduction to plasma physics and controlled fusion (Vol. 1, pp. 19-51). New York: Plenum press. | |
dc.relation.references | Cendra, H., Holm, D. D., Hoyle, M. J., & Marsden, J. E. (1998). The maxwell–vlasov equations in euler–poincaré form. Journal of Mathematical Physics, 39(6), 3138-3157. | |
dc.relation.references | Contreras, I., Martinez, D., Martinez, N., & Rodriguez, D. (2024). Symplectic Geometry, Poisson Geometry, and Beyond. arXiv preprint arXiv:2411.12551. | |
dc.relation.references | Dufour, J. P., & Zung, N. T. (2005). Poisson structures and their normal forms. Basel: Birkhäuser Basel. | |
dc.relation.references | Ebin, D. G., & Marsden, J. (1970). Groups of diffeomorphisms and the motion of an incompressible fluid. Annals of Mathematics, 92(1), 102-163. | |
dc.relation.references | Erdmann, K., & Wildon, M. J. (2006). Introduction to Lie algebras (Vol. 122). London: Springer. | |
dc.relation.references | Gu, A., He, Y., & Sun, Y. (2022). Hamiltonian particle-in-cell methods for Vlasov–Poisson equations. Journal of Computational Physics, 467, 111472. | |
dc.relation.references | Gotay, M. J. (1991). A multisymplectic framework for classical field theory and the calculus of variations II: Space+ time decomposition. Differential Geometry and its Applications, 1(4), 375-390. | |
dc.relation.references | Guillemin, V., & Sternberg, S. (1980). The moment map and collective motion. Annals of Physics, 127(1), 220-253. | |
dc.relation.references | Günther, C. (1987). The polysymplectic Hamiltonian formalism in field theory and calculus of variations. I. The local case. Journal of differential geometry, 25(1), 23-53. | |
dc.relation.references | Holm, D. D. (2011). Geometric mechanics-Part I: Dynamics and symmetry. World Scientific Publishing Company. | |
dc.relation.references | He, Y., Qin, H., Sun, Y., Xiao, J., Zhang, R., & Liu, J. (2015). Hamiltonian time integrators for Vlasov-Maxwell equations. Physics of Plasmas, 22(12). | |
dc.relation.references | Khesin, B., & Wendt, R. (2009). The geometry of infinite-dimensional groups. Berlin, Heidelberg: Springer Berlin Heidelberg. | |
dc.relation.references | Lee, J. M. (2003). Smooth manifolds. In Introduction to smooth manifolds (pp. 1-29). New York, NY: Springer New York. | |
dc.relation.references | Lie, S. (1888). Theorie der transformationsgruppen...: abschnitt. Allgemeine eigenschaften der endlichen continuirlichen transformationsgruppen. 1888 (Vol. 1). BG Teubner. | |
dc.relation.references | Meyer, K. R. (1973). Symmetries and integrals in mechanics. In Dynamical systems (pp. 259-272). Academic Press. | |
dc.relation.references | McGreivy, N. (2017). GENERAL PLASMA PHYSICS LECTURE NOTES ( https://nickmcgreivy.scholar.princeton.edu/sites/g/files/toruqf5041/files/documents/general-plasma-physics-notes-McGreivy_0.pdf). | |
dc.relation.references | Ratiu, T. S., & Schmid, R. (1981). The differentiable structure of three remarkable diffeomorphism groups. | |
dc.relation.references | Marsden, J. E., & Tromba, A. (2003). Vector calculus. Macmillan. | |
dc.relation.references | Marsden, J. E., & Ratiu, T. S. (2013). Introduction to mechanics and symmetry: a basic exposition of classical mechanical systems (Vol. 17). Springer Science & Business Media. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject.ddc | 510 - Matemáticas::516 - Geometría | spa |
dc.subject.proposal | Ecuaciones de Vlásov-Maxwell | spa |
dc.subject.proposal | Sistema Hamiltoniano | spa |
dc.subject.proposal | Corchete de Poisson | spa |
dc.subject.proposal | Geometría simpléctica | spa |
dc.subject.proposal | Reducción Marsden-Weinstein | spa |
dc.subject.proposal | Vlásov-Maxwell equations | eng |
dc.subject.proposal | Hamiltonian system | eng |
dc.subject.proposal | Poisson bracket | eng |
dc.subject.proposal | Symplectic geometry | eng |
dc.subject.proposal | Marsden-Weinstein reduction | eng |
dc.subject.wikidata | topología diferencial | spa |
dc.subject.wikidata | differential topology | eng |
dc.subject.wikidata | geometría diferencial | spa |
dc.subject.wikidata | differential geometry | eng |
dc.subject.wikidata | mecánica clásica | spa |
dc.subject.wikidata | classical mechanics | eng |
dc.title | Construcción hamiltoniana de sistemas tipo Vlásov-Maxwell por reducción simpléctica | spa |
dc.title.translated | Hamiltonian construction of Vlásov-Maxwell systems by symplectic reduction | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Hamiltonian_construction_of_Vla_sov_Maxwell_systems_by_symplectic_reduction.pdf
- Tamaño:
- 900.55 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Matemáticas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: