Construcción hamiltoniana de sistemas tipo Vlásov-Maxwell por reducción simpléctica

dc.contributor.advisorMartínez Alba, Nicolasspa
dc.contributor.authorRodríguez Torres, Diego Alejandrospa
dc.date.accessioned2025-10-08T22:52:24Z
dc.date.available2025-10-08T22:52:24Z
dc.date.issued2025-04
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn este proyecto estudiamos la metodología para convertir las conocidas ecuaciones de Vlásov-Maxwell en un sistema Hamiltoniano relativo a un corchete de Poisson. Primero, introducimos las ecuaciones de Vlasov-Maxwell como un modelo para describir las interacciones físicas en un plasma. Luego, revisaremos el formalismo matemático de la mecánica clásica, específicamente el de los sistemas hamiltonianos. Comenzaremos con una motivación sobre la importancia de los sistemas hamiltonianos tanto en física como en matemáticas, y a continuación usaremos algunos resultados básicos de la geometría simpléctica para describir sistemas hamiltonianos, allí el concepto de corchete de Poisson aparecerá de manera natural. Posteriormente, abordaremos el problema de construir nuevas estructuras simplécticas a partir de una variedad simpléctica, lo cual no siempre es posible en general; el teorema de reducción de Marsden-Weinstein nos indicará bajo qué circunstancias es factible. Una vez que sea discutido el teorema de reducción simpléctica, exploraremos cómo este resultado puede ayudar a reducir sistemas mecánicos con simetría. En el siguiente paso, toda la maquinaria de la geometría simpléctica y la reducción se aplicará para construir un corchete de Poisson, físicamente adecuado, para las ecuaciones de Vlásov-Maxwell. Finalmente, haremos los ajustes necesarios para extender estos resultados al álgebra de Lie sl(2), obteniendo un nuevo conjunto de ecuaciones que tiene una estructura similar a las ecuaciones de Vlásov-Maxwell. Despues de ello trataremos de generalizar el resultado para cualquier álgebra de Lie de dimensión 3. (Texto tomado de la fuente).spa
dc.description.abstractIn this project, we study the methodology to transform the well-known VlásovMaxwell equations into a Hamiltonian system relative to a Poisson bracket. First, we introduce the Vlasov-Maxwell equations as a model to describe physical interactions in a plasma. After that, we will review the mathematical formalism of classical mechanics, specifically Hamiltonian systems, we will start with a motivation of the importance of Hamiltonian systems in physics and mathematics, and following that we will present some basic results of symplectic geometry used to describe Hamiltonian systems, the concept of Poisson bracket will naturally appear in this description. Subsequently, we will deal with the problem of constructing new symplectic structures from a symplectic manifold, which is not always possible in general, the Marsden-Weinstein reduction theorem will tell us under which circumstances it is possible. Once symplectic reduction is addressed, we will see how this theorem can help to reduce mechanical systems with symmetry. In the next step, all the symplectic geometry and reduction machinery will be applied to construct a physically adequate Poisson bracket for Vlásov-Maxwell equations. Finally, we will make the necessary adjustments to extend these results for the sl(2,R) Lie algebra, we will get a new set of equations that have a similar structure to the Vlásov Maxwell equations.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemáticasspa
dc.description.notesTexto en inglésspa
dc.format.extentiii, 53 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89022
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesMorrison, P. J. (1980). The Maxwell-Vlasov equations as a continuous Hamiltonian system. Physics Letters A, 80(5-6), 383-386. . Princeton University. Plasma Physics Laboratory, 1980
dc.relation.referencesMarsden, J. E., & Weinstein, A. (1982). The Hamiltonian structure of the Maxwell-Vlasov equations. Physica D: nonlinear phenomena, 4(3), 394-406.
dc.relation.referencesMarsden, J. E., Raţiu, T., & Weinstein, A. (1984). Semidirect products and reduction in mechanics. Transactions of the american mathematical society, 281(1), 147-177.
dc.relation.referencesMarsden, J. E., Weinstein, A., Ratiu, T. S., Schmid, R., & Spencer, R. G. (1983). Hamiltonian systems with symmetry, coadjoint orbits and plasma physics. Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur, 117(1), 289-340.
dc.relation.referencesMarsden, J., & Weinstein, A. (1974). Reduction of symplectic manifolds with symmetry. Reports on mathematical physics, 5(1), 121-130.
dc.relation.referencesSternberg, S. (1980). Ralph abraham and jerrold e. marsden, foundations of mechanics.
dc.relation.referencesCrouseilles, N., Einkemmer, L., & Faou, E. (2015). Hamiltonian splitting for the Vlasov–Maxwell equations. Journal of Computational Physics, 283, 224-240.
dc.relation.referencesNesterenko, M., & Popovych, R. (2006). Contractions of low-dimensional Lie algebras. Journal of mathematical physics, 47(12).
dc.relation.referencesSneddon, I. N. (1980). VI Arnold, Mathematical methods of classical mechanics, and Walter Thirring, A course in mathematical physics, vol. 1: Classical dynamical systems.
dc.relation.referencesBerezin, F. A. (1967). Some remarks about the associated envelope of a Lie algebra. Functional Analysis and its Applications, 1(2), 91-102.
dc.relation.referencesLUIGI, BIANCHI. Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti. Memorie della Societa Italiana delle Scienze. detta dei XL.(3), 1897, vol. 11, p. 267-352.
dc.relation.referencesBowers, A. (2005). Classification of three-dimensional real Lie algebras. Personal https://cutt. ly/Ad6zozn.
dc.relation.referencesBoyd, T. J. M., & Sanderson, J. J. (2003). The physics of plasmas. Cambridge university press.
dc.relation.referencesBursztyn, H. (2025). A Brief Introduction to Poisson Geometry. In Advances in Poisson Geometry (pp. 3-81). Cham: Springer Nature Switzerland.
dc.relation.referencesSilva, A. C. (2001). Lectures on symplectic geometry. Lecture Notes in Mathematics, 1764.
dc.relation.referencesCrainic, M., Fernandes, R. L., & Mărcuţ, I. (2021). Lectures on Poisson geometry (Vol. 217). American Mathematical Soc..
dc.relation.referencesChen, F. F. (1984). Introduction to plasma physics and controlled fusion (Vol. 1, pp. 19-51). New York: Plenum press.
dc.relation.referencesCendra, H., Holm, D. D., Hoyle, M. J., & Marsden, J. E. (1998). The maxwell–vlasov equations in euler–poincaré form. Journal of Mathematical Physics, 39(6), 3138-3157.
dc.relation.referencesContreras, I., Martinez, D., Martinez, N., & Rodriguez, D. (2024). Symplectic Geometry, Poisson Geometry, and Beyond. arXiv preprint arXiv:2411.12551.
dc.relation.referencesDufour, J. P., & Zung, N. T. (2005). Poisson structures and their normal forms. Basel: Birkhäuser Basel.
dc.relation.referencesEbin, D. G., & Marsden, J. (1970). Groups of diffeomorphisms and the motion of an incompressible fluid. Annals of Mathematics, 92(1), 102-163.
dc.relation.referencesErdmann, K., & Wildon, M. J. (2006). Introduction to Lie algebras (Vol. 122). London: Springer.
dc.relation.referencesGu, A., He, Y., & Sun, Y. (2022). Hamiltonian particle-in-cell methods for Vlasov–Poisson equations. Journal of Computational Physics, 467, 111472.
dc.relation.referencesGotay, M. J. (1991). A multisymplectic framework for classical field theory and the calculus of variations II: Space+ time decomposition. Differential Geometry and its Applications, 1(4), 375-390.
dc.relation.referencesGuillemin, V., & Sternberg, S. (1980). The moment map and collective motion. Annals of Physics, 127(1), 220-253.
dc.relation.referencesGünther, C. (1987). The polysymplectic Hamiltonian formalism in field theory and calculus of variations. I. The local case. Journal of differential geometry, 25(1), 23-53.
dc.relation.referencesHolm, D. D. (2011). Geometric mechanics-Part I: Dynamics and symmetry. World Scientific Publishing Company.
dc.relation.referencesHe, Y., Qin, H., Sun, Y., Xiao, J., Zhang, R., & Liu, J. (2015). Hamiltonian time integrators for Vlasov-Maxwell equations. Physics of Plasmas, 22(12).
dc.relation.referencesKhesin, B., & Wendt, R. (2009). The geometry of infinite-dimensional groups. Berlin, Heidelberg: Springer Berlin Heidelberg.
dc.relation.referencesLee, J. M. (2003). Smooth manifolds. In Introduction to smooth manifolds (pp. 1-29). New York, NY: Springer New York.
dc.relation.referencesLie, S. (1888). Theorie der transformationsgruppen...: abschnitt. Allgemeine eigenschaften der endlichen continuirlichen transformationsgruppen. 1888 (Vol. 1). BG Teubner.
dc.relation.referencesMeyer, K. R. (1973). Symmetries and integrals in mechanics. In Dynamical systems (pp. 259-272). Academic Press.
dc.relation.referencesMcGreivy, N. (2017). GENERAL PLASMA PHYSICS LECTURE NOTES ( https://nickmcgreivy.scholar.princeton.edu/sites/g/files/toruqf5041/files/documents/general-plasma-physics-notes-McGreivy_0.pdf).
dc.relation.referencesRatiu, T. S., & Schmid, R. (1981). The differentiable structure of three remarkable diffeomorphism groups.
dc.relation.referencesMarsden, J. E., & Tromba, A. (2003). Vector calculus. Macmillan.
dc.relation.referencesMarsden, J. E., & Ratiu, T. S. (2013). Introduction to mechanics and symmetry: a basic exposition of classical mechanical systems (Vol. 17). Springer Science & Business Media.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc510 - Matemáticas::516 - Geometríaspa
dc.subject.proposalEcuaciones de Vlásov-Maxwellspa
dc.subject.proposalSistema Hamiltonianospa
dc.subject.proposalCorchete de Poissonspa
dc.subject.proposalGeometría simplécticaspa
dc.subject.proposalReducción Marsden-Weinsteinspa
dc.subject.proposalVlásov-Maxwell equationseng
dc.subject.proposalHamiltonian systemeng
dc.subject.proposalPoisson bracketeng
dc.subject.proposalSymplectic geometryeng
dc.subject.proposalMarsden-Weinstein reductioneng
dc.subject.wikidatatopología diferencialspa
dc.subject.wikidatadifferential topologyeng
dc.subject.wikidatageometría diferencialspa
dc.subject.wikidatadifferential geometryeng
dc.subject.wikidatamecánica clásicaspa
dc.subject.wikidataclassical mechanicseng
dc.titleConstrucción hamiltoniana de sistemas tipo Vlásov-Maxwell por reducción simplécticaspa
dc.title.translatedHamiltonian construction of Vlásov-Maxwell systems by symplectic reductioneng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Hamiltonian_construction_of_Vla_sov_Maxwell_systems_by_symplectic_reduction.pdf
Tamaño:
900.55 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: