En 6 día(s), 3 hora(s) y 11 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Búsqueda de virus zoonóticos en roedores y murciélagos de algunas zonas del Caribe colombiano

dc.contributor.advisorMattar Velilla, Salim del Cristospa
dc.contributor.advisorVargas Córdoba, Manuelspa
dc.contributor.authorGaleano Anaya, Ketty Estherspa
dc.contributor.researchgroupInstituto de Investigaciones Biológicas del Trópicospa
dc.date.accessioned2021-01-19T23:03:57Zspa
dc.date.available2021-01-19T23:03:57Zspa
dc.date.issued2020-08-19spa
dc.description.abstractLas zoonosis son enfermedades infecciosas transmisibles desde animales vertebrados al ser humano bajo condiciones naturales y representan un problema de salud pública. La etiología de las zoonosis incluye bacterias, virus, hongos, parásitos y priones. Dentro de las zoonosis virales se encuentran alrededor de 23 familias de virus RNA de cadena sencilla que, algunas de ellas causan las fiebres hemorrágicas. Estas zoonosis suelen ser mortales y han sido motivo de estudios eco-epidemiológicos en busca de animales reservorios y el nicho ecológico de estas entidades. El objetivo de este estudio fue el de buscar Orthohantavirus, Mammarenavirus, Phlebovirus y Orthobunyavirus en tejidos de roedores y murciélagos procedentes de algunas áreas del Caribe colombiano. A través de PCR convencionales se llevó a cabo un análisis para detectar esos virus en tejidos de 283 murciélagos y 120 roedores capturados de algunas áreas del Caribe colombiano. A partir, de murciélagos no se logró detectar genoma viral, sin embargo, en tejidos de roedores, uno de pulmón y otro de riñón capturados en Urumita y Villanueva (Guajira) respectivamente, se detectó un amplicón de 264 pb que correspondió al gen S de Orthohantavirus. Las dos muestras fueron secuenciadas por secuenciación de nueva generación (NGS), con el fin de identificar a que secuencias del género Orthohantavirus estaban relacionadas. No obstante, las secuencias no correspondieron a Orthohantavirus. La vigilancia epidemiológica de virus zoonóticos en murciélagos y roedores es importante por su posible capacidad de cruzar a otras especies de animales silvestres y de ahí a los humanos.spa
dc.description.abstractZoonoses are infectious diseases that can be transmitted from vertebrate animals to humans under natural conditions and represent a public health problem. The etiology of zoonoses includes bacteria, viruses, fungi, parasites, and prions. Within the viral zoonoses there are about 23 families of single-stranded RNA viruses, some of which cause hemorrhagic fevers. These zoonoses are usually fatal and have been the subject of eco-epidemiological studies in search of reservoir animals and the ecological niche of these entities. The objective of this study was to search for Orthohantavirus, Mammarenavirus, Phlebovirus and Orthobunyavirus in tissues of rodents and bats from some areas of the Colombian Caribbean. Through conventional PCR, an analysis was carried out to detect these viruses in tissues of 283 bats and 120 rodents captured from some areas of the Colombian Caribbean. From bats, it was not possible to detect the viral genome, however, in rodent tissues, one from the lung and the other from the kidney captured in Urumita and Villanueva (Guajira) respectively, a 264 bp amplicon was detected that corresponded to the S gene of Orthohantavirus. The two samples were sequenced by next generation sequencing (NGS), in order to identify which sequences of the genus Orthohantavirus were related. However, the sequences did not correspond to Orthohantavirus. Epidemiological surveillance of zoonotic viruses in bats and rodents is important because of their potential ability to cross over to other species of wild animals and from there to humans.spa
dc.description.additionalLínea de Investigación: Enfermedades emergentes y reemergentesspa
dc.description.degreelevelMaestríaspa
dc.format.extent133spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationGaleano, K. (2020). Búsqueda de virus zoonóticos en roedores y murciélagos de algunas zonas del Caribe colombiano [Tesis de Maestría en Ciencias - Microbiología, Universidad Nacional de Colombia] Repositorio Institucionalspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78834
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesAbudurexiti, A., Adkins, S., Alioto, D., Alkhovsky, S. V., Avšič-Županc, T., Ballinger, M. J., … Kuhn, J. H. (2019a). Taxonomy of the order Bunyavirales: update 2019. Archives of Virology, 164(7), 1949–1965. https://doi.org/10.1007/s00705-019-04253-6spa
dc.relation.referencesAbudurexiti, A., Adkins, S., Alioto, D., Alkhovsky, S. V., Avšič-Županc, T., Ballinger, M. J., … Kuhn, J. H. (2019b). Taxonomy of the order Bunyavirales: update 2019. Archives of Virology, 164(7), 1949–1965. https://doi.org/10.1007/s00705-019-04253-6spa
dc.relation.referencesAcero-Aguilar, M. (2016). Zoonosis y otros problemas de salud pública relacionados con los animales: Reflexiones a propósito de sus aproximaciones teóricas y metodológicas. Revista Gerencia y Politicas de Salud, 15(31), 232–245. https://doi.org/10.11144/Javeriana.rgyps15-31.zpspspa
dc.relation.referencesAcevedo, M. de los Á., & Arrivillaga, J. (2008). Eco-epidemiología de flebovirus (Bunyaviridae, Phlebovirus) transmitidos por flebótomos (Psychodidae, Phlebotominae). Boletín de Malariología y Salud Ambiental, 48(1), 3–16.spa
dc.relation.referencesAlbornoz, A., Hoffmann, A. B., Lozach, P. Y., & Tischler, N. D. (2016). Early bunyavirus-host cell interactions. Viruses, 8(5). https://doi.org/10.3390/v8050143spa
dc.relation.referencesAlemán, A., Iguarán, H., Puerta, H., Cantillo, C., Mills, J., Ariz, W., & Mattar, S. (2006). [First serological evidence of Hantavirus infection in rodents in Colombia]. Revista de Salud Publica (Bogota, Colombia), 8 Suppl 1(1), 1–12. https://doi.org/10.1590/S0124-00642006000400001spa
dc.relation.referencesAlkan, C., Bichaud, L., De Lamballerie, X., Alten, B., Gould, E. A., & Charrel, R. N. (2013). Sandfly-borne phleboviruses of Eurasia and Africa: Epidemiology, genetic diversity, geographic range, control measures. Antiviral Research, 100(1), 54–74. https://doi.org/10.1016/j.antiviral.2013.07.005spa
dc.relation.referencesAlmendra, A. L., González-Cózatl, F. X., Engstrom, M. D., & Rogers, D. S. (2018). Evolutionary relationships and climatic niche evolution in the genus Handleyomys (Sigmodontinae: Oryzomyini). Molecular Phylogenetics and Evolution, 128(June 2017), 12–25. https://doi.org/10.1016/j.ympev.2018.06.018spa
dc.relation.referencesAmaral, C. D., Costa, G. B., de Souza, W. M., Alves, P. A., Borges, I. A., Tolardo, A. L., … de Souza Trindade, G. (2018a). Silent Orthohantavirus Circulation Among Humans and Small Mammals from Central Minas Gerais, Brazil. EcoHealth, 15(3), 577–589. https://doi.org/10.1007/s10393-018-1353-2spa
dc.relation.referencesAmaral, C. D., Costa, G. B., de Souza, W. M., Alves, P. A., Borges, I. A., Tolardo, A. L., … de Souza Trindade, G. (2018b). Silent Orthohantavirus Circulation Among Humans and Small Mammals from Central Minas Gerais, Brazil. EcoHealth, 15(3), 577–589. https://doi.org/10.1007/s10393-018-1353-2spa
dc.relation.referencesArai, S., & Yanagihara, R. (2020). Genetic diversity and geographic distribution of bat-borne hantaviruses. Current Issues in Molecular Biology, 39(February), 1–28. https://doi.org/10.21775/cimb.039.001spa
dc.relation.referencesBallinger, M. J., Bruenn, J. A., Hay, J., Czechowski, D., & Taylor, D. J. (2014). Discovery and Evolution of Bunyavirids in Arctic Phantom Midges and Ancient Bunyavirid-Like Sequences in Insect Genomes. Journal of Virology, 88(16), 8783–8794. https://doi.org/10.1128/jvi.00531-14spa
dc.relation.referencesBandouchova, H., Bartonička, T., Berkova, H., Brichta, J., Kokurewicz, T., Kovacova, V., … Zukal, J. (2018). Alterations in the health of hibernating bats under pathogen pressure. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-24461-5spa
dc.relation.referencesBarrios, J. M., Rego-García, I., Muñoz Martínez, C., Romero-Fábrega, J. C., Rivero Rodríguez, M., Ruiz Giménez, J. A., … Fernández Pérez, M. D. (2020). Ischaemic stroke and SARS-CoV-2 infection: A causal or incidental association? Neurologia, 35(5), 295–302. https://doi.org/10.1016/j.nrl.2020.05.002spa
dc.relation.referencesBattisti, A. J., Chu, Y.-K., Chipman, P. R., Kaufmann, B., Jonsson, C. B., & Rossmann, M. G. (2011). Structural Studies of Hantaan Virus. Journal of Virology, 85(2), 835–841. https://doi.org/10.1128/jvi.01847-10spa
dc.relation.referencesBennett, R. S., Ton, D. R., Hanson, C. T., Murphy, B. R., & Whitehead, S. S. (2007). Genome sequence analysis of La Crosse virus and in vitro and in vivo phenotypes. Virology Journal, 4, 1–10. https://doi.org/10.1186/1743-422X-4-41spa
dc.relation.referencesBlanco, P., Arroyo, S., & Corrales, H. (2012). Evidencia serológica de infección por hantavirus in rodents from the Sucre Deparment in Colombia. 14(5), 755–764.spa
dc.relation.referencesBlanco, P., Corrales, A., & Castellar, A. (2013). Hantavirus (Bunyaviridae: Hantavirus) en roedores murinos de Sincelejo, departamento de Sucre. Revista Colombiana de Ciencia Animal - RECIA, 5(2), 408. https://doi.org/10.24188/recia.v5.n2.2013.452spa
dc.relation.referencesBodewes, R., Kik, M. J. L., Stalin Raj, V., Schapendonk, C. M. E., Haagmans, B. L., Smits, S. L., & Osterhaus, A. D. M. E. (2013). Detection of novel divergent arenaviruses in boid snakes with inclusion body disease in The Netherlands. Journal of General Virology, 94(PART 6), 1206–1210. https://doi.org/10.1099/vir.0.051995-0spa
dc.relation.referencesBonvicino, C., Oliveira, J., & D’Andrea, O. (2008). Guia dos Roedores do Brasil. Rio de Janeiro: Or, 120. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Guia+dos+roedores+do+Brasil#1spa
dc.relation.referencesBriese, T., Calisher, C. H., & Higgs, S. (2013). Viruses of the family Bunyaviridae: Are all available isolates reassortants? Virology, 446(1–2), 207–216. https://doi.org/10.1016/j.virol.2013.07.030spa
dc.relation.referencesBrook, C. E., & Dobson, A. P. (2015). Bats as “special” reservoirs for emerging zoonotic pathogens. Trends in Microbiology, 23(3), 172–180. https://doi.org/10.1016/j.tim.2014.12.004spa
dc.relation.referencesCabello C, C., & Cabello C, F. (2008). Zoonosis con reservorios silvestres: Amenazas a la salud pública y a la economía. Revista Medica de Chile, 136(3), 385–393. https://doi.org/10.4067/s0034-98872008000300016spa
dc.relation.referencesCalderon, A., Guzman, C., Salazar, J., Figueiredo, L. T., & Mattar, S. (2016). Viral Zoonoses That Fly with Bats: A Review. MANTER: Journal of Parasite Biodiversity. https://doi.org/10.13014/k2bg2kwfspa
dc.relation.referencesCalisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V., & Schountz, T. (2006). Bats: Important reservoir hosts of emerging viruses. Clinical Microbiology Reviews, 19(3), 531–545. https://doi.org/10.1128/CMR.00017-06spa
dc.relation.referencesCastellar, A., Guevara, M., Rodas, J. D., Londoño, A. F., Arroyave, E., Díaz, F. J., … Blanco, P. J. (2017). Primera evidencia de infección por el virus de la coriomeningitis linfocítica (arenavirus) en roedores Mus musculus capturados en la zona urbana del municipio de Sincelejo, Sucre, Colombia. Biomedica, 37, 75–85. https://doi.org/10.7705/biomedica.v37i2.3226spa
dc.relation.referencesCharrel, R. N., Gallian, P., Navarro-Marí, J. M., Nicoletti, L., Papa, A., Sánchez-Seco, M. P., … De Lamballerie, X. (2005). Emergence of Toscana virus in Europe. Emerging Infectious Diseases, 11(11), 1657–1663. https://doi.org/10.3201/eid1111.050869spa
dc.relation.referencesCharrel, R. N., Lemasson, J. J., Garbutt, M., Khelifa, R., De Micco, P., Feldmann, H., & De Lamballerie, X. (2003). New insights into the evolutionary relationships between arenaviruses provided by comparative analysis of small and large segment sequences. Virology, 317(2), 191–196. https://doi.org/10.1016/j.virol.2003.08.016spa
dc.relation.referencesCiota, A. T. (2019). The role of co-infection and swarm dynamics in arbovirus transmission. Virus Research, 265(March), 88–93. https://doi.org/10.1016/j.virusres.2019.03.010spa
dc.relation.referencesColombo, V. C., Brignone, J., Sen, C., Previtali, M. A., Martin, M. L., Levis, S., … Beldomenico, P. M. (2019). Orthohantavirus genotype Lechiguanas in Oligoryzomys nigripes (Rodentia: Cricetidae): New evidence of host-switching. Acta Tropica, 191(December 2018), 133–138. https://doi.org/10.1016/j.actatropica.2018.12.040spa
dc.relation.referencesCrispin, M., Zeltina, A., Zitzmann, N., & Bowden, T. A. (2016). Native functionality and therapeutic targeting of arenaviral glycoproteins. Current Opinion in Virology, 18(Figure 2), 70–75. https://doi.org/10.1016/j.coviro.2016.04.001spa
dc.relation.referencesCunningham, A. A., Daszak, P., & Wood, J. L. N. (2017). One health, emerging infectious diseases and wildlife: Two decades of progress? Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1725).spa
dc.relation.referencesD’Elía, G., Pardiñas, U. F. J., Jayat, J. P., & Salazar-Bravo, J. (2008). Systematics of Necromys (Rodentia, Cricetidae, Sigmodontinae): species limits and groups, with comments on historical biogeography. Journal of Mammalogy, 89(3), 778–790. https://doi.org/10.1644/07-mamm-a-246r1.1spa
dc.relation.referencesDabanch, J. (2013). Zoonosis. Rev Chil Infect, 20(Supl 1), 5. Retrieved from https://scielo.conicyt.cl/pdf/rci/v20s1/art08.pdfspa
dc.relation.referencesDe Araujo, J., Thomazelli, L. M., Henriques, D. A., Lautenschalager, D., Ometto, T., Dutra, L. M., … Durigon, E. L. (2012). Detection of hantavirus in bats from remaining rain forest in São Paulo, Brazil. BMC Research Notes, 5. https://doi.org/10.1186/1756-0500-5-690spa
dc.relation.referencesDe Carvalho, M. S., De Lara Pinto, A. Z., Pinheiro, A., Rodrigues, J. S. V., Melo, F. L., Da Silva, L. A., … Dezengrini-Slhessarenko, R. (2018). Viola phlebovirus is a novel Phlebotomus fever serogroup member identified in Lutzomyia (Lutzomyia) longipalpis from Brazilian Pantanal. Parasites and Vectors, 11(1), 1–10. https://doi.org/10.1186/s13071-018-2985-3spa
dc.relation.referencesDelgado, S., Erickson, B. R., Agudo, R., Blair, P. J., Vallejo, E., Albariño, C. G., … Nichol, S. T. (2008). Chapare virus, a newly discovered arenavirus isolated from a fatal hemorrhagic fever case in Bolivia. PLoS Pathogens, 4(4), 1–6. https://doi.org/10.1371/journal.ppat.1000047spa
dc.relation.referencesDemchyshyna, I. V., Glass, G. E., Hluzd, O. A., Kutseva, V. V., Taylor, M. K., Williams, E. P., … Jonsson, C. B. (2020). Cocirculation of two orthohantavirus species in small mammals of the Northwestern Ukraine. Journal of Wildlife Diseases, 56(3), 640–645. https://doi.org/10.7589/2019-09-238spa
dc.relation.referencesEitan, O., Kosa, G., & Yovel, Y. (2019). Sensory gaze stabilization in echolocating bats. Proceedings of the Royal Society B: Biological Sciences, 286(1913). https://doi.org/10.1098/rspb.2019.1496spa
dc.relation.referencesEjiri, H., Lim, C. K., Isawa, H., Yamaguchi, Y., Fujita, R., Takayama-Ito, M., … Sawabe, K. (2018). Isolation and characterization of Kabuto Mountain virus, a new tick-borne phlebovirus from Haemaphysalis flava ticks in Japan. Virus Research, 244(November 2017), 252–261. https://doi.org/10.1016/j.virusres.2017.11.030spa
dc.relation.referencesElelu, N., Aiyedun, J. O., Mohammed, I. G., Oludairo, O. O., Odetokun, I. A., Mohammed, K. M., … Nuru, S. (2019). Neglected zoonotic diseases in nigeria: Role of the public health veterinarian. Pan African Medical Journal, 32, 1–12. https://doi.org/10.11604/pamj.2019.32.36.15659spa
dc.relation.referencesElliott, R. M. (2014). Orthobunyaviruses: recent genetic and structural insights. Nature Reviews. Microbiology, 12(10), 673–685. https://doi.org/10.1038/nrmicro3332spa
dc.relation.referencesFagre, A. C., & Kading, R. C. (2019). Can bats serve as reservoirs for Arboviruses? Viruses, 11(3). https://doi.org/10.3390/v11030215spa
dc.relation.referencesFernandes, J., de Oliveira, R. C., Guterres, A., Barreto-Vieira, D. F., Terças, A. C. P., Teixeira, B. R., … de Lemos, E. R. S. (2018). Detection of Latino virus (Arenaviridae: Mammarenavirus) naturally infecting Calomys callidus. Acta Tropica, 179(October 2017), 17–24. https://doi.org/10.1016/j.actatropica.2017.12.003spa
dc.relation.referencesFigueiredo, G. G., Borges, A. A., Campos, G. M., Machado, A. M., Saggioro, F. P., Sabino, S., … Figueiredo, L. T. M. (2010). Diagnosis of hantavirus infection in humans and rodents in Ribeirão. Revista Da Sociedade Brasileira de Medicina Tropical, 43(4), 348–354.spa
dc.relation.referencesFlores, Carter, G. G., Halczok, T. K., Kerth, G., & Page, R. A. (2020). Social structure and relatedness in the fringe-lipped bat (Trachops cirrhosus). Royal Society Open Science, 7(4). https://doi.org/10.1098/rsos.192256spa
dc.relation.referencesFlores, J. W., & Chumacero, L. M. (2010). Perspectivas sobre el origen y la filogenia de los murciélagos. ContactoS, 77, 5–9.spa
dc.relation.referencesFukushi, S., Tani, H., Yoshikawa, T., Saijo, M., & Morikawa, S. (2012). Serological assays based on recombinant viral proteins for the diagnosis of arenavirus hemorrhagic fevers. Viruses, 4(10), 2097–2114. https://doi.org/10.3390/v4102097spa
dc.relation.referencesFulhorst, C. F., Cajimat, M. N. B., Utrera, A., Milazzo, M. L., & Duno, G. M. (2004). Maporal virus, a hantavirus associated with the fulvous pygmy rice rat (Oligoryzomys fulvescens) in western Venezuela. Virusspa
dc.relation.referencesGarcin, D., Rochat, S., & Kolakofsky, D. (1993). The Tacaribe arenavirus small zinc finger protein is required for both mRNA synthesis and genome replication. Journal of Virology, 67(2), 807–812.spa
dc.relation.referencesGolender, N., Bumbarov, V. Y., Erster, O., Beer, M., Khinich, Y., & Wernike, K. (2018). Development and validation of a universal S-segment-based real-time RT-PCR assay for the detection of Simbu serogroup viruses. Journal of Virological Methods, 261(May), 80–85. https://doi.org/10.1016/j.jviromet.2018.08.008spa
dc.relation.referencesGorbunova, V., Seluanov, A., & Kennedy, B. K. (2020). The World Goes Bats: Living Longer and Tolerating Viruses. Cell Metabolism, 32(1), 31–43. https://doi.org/10.1016/j.cmet.2020.06.013spa
dc.relation.referencesGroot, H. (2017). Estudios sobre virus transmitidos por artrópodos en Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 41(Suplemento), 12. https://doi.org/10.18257/raccefyn.565spa
dc.relation.referencesGryseels, S., Baird, S. J. E., Borremans, B., Makundi, R., Leirs, H., & Goüy de Bellocq, J. (2017). When Viruses Don’t Go Viral: The Importance of Host Phylogeographic Structure in the Spatial Spread of Arenaviruses. PLoS Pathogens, 13(1), 1–22. https://doi.org/10.1371/journal.ppat.1006073spa
dc.relation.referencesGuzmán, C., Calderón, A., González, M., & Mattar, S. (2017). Infecciones por hantavirus. Revista MVZ Córdoba, 22, 6101–6117. https://doi.org/10.21897/rmvz.1079spa
dc.relation.referencesGuzmán, C., Mattar, S., Levis, S., Pini, N., Figueiredo, T., Mills, J., & Salazar-Bravo, J. (2013). Prevalence of antibody to hantaviruses in humans and rodents in the Caribbean region of Colombia determined using Araraquara and Maciel virus antigens. Memorias Do Instituto Oswaldo Cruz, 108(2), 167–171. https://doi.org/10.1590/0074-0276108022013007spa
dc.relation.referencesHanadhita, D., Rahma, A., Prawira, A. Y., Mayasari, N. L. P. I., Satyaningtijas, A. S., Hondo, E., & Agungpriyono, S. (2019). The spleen morphophysiology of fruit bats. Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia, 48(4), 315–324. https://doi.org/10.1111/ahe.12442spa
dc.relation.referencesHancke, D., & Suárez, O. V. (2018). Structure of parasite communities in urban environments: The case of helminths in synanthropic rodents. Folia Parasitologica, 65. https://doi.org/10.14411/fp.2018.009spa
dc.relation.referencesHepojoki, J., Salmenperä, P., Sironen, T., Hetzel, U., Korzyukov, Y., Kipar, A., & Vapalahti, O. (2015). Arenavirus Coinfections Are Common in Snakes with Boid Inclusion Body Disease. Journal of Virology, 89(16), 8657–8660. https://doi.org/10.1128/jvi.01112-15spa
dc.relation.referencesHetzel, U., Sironen, T., Laurinmaki, P., Liljeroos, L., Patjas, A., Henttonen, H., … Hepojoki, J. (2013). Isolation, Identification, and Characterization of Novel Arenaviruses, the Etiological Agents of Boid Inclusion Body Disease. Journal of Virology, 87(20), 10918–10935. https://doi.org/10.1128/jvi.01123-13spa
dc.relation.referencesHiggins, R. (2004). Emerging or re-emerging bacterial zoonotic diseases: bartonellosis, leptospirosis, Lyme borreliosis, plague. In Rev. sci. tech. Off. int. Epiz (Vol. 23).spa
dc.relation.referencesHinson, E. R., Shone, S. M., Zink, M. C., Glass, G. E., & Klien, S. L. (2004). Wounding: The primary mode of Seoul virus transmission among male Norway rats. American Journal of Tropical Medicine and Hygiene, 70(3), 310–317. https://doi.org/10.4269/ajtmh.2004.70.310spa
dc.relation.referencesHolmes, E. C. (2007). Viral evolution in the genomic age. PLoS Biology, 5(10), 2104–2105. https://doi.org/10.1371/journal.pbio.0050278spa
dc.relation.referencesHughes, H. R., Adkins, S., Alkhovskiy, S., Beer, M., Blair, C., Calisher, C. H., … Ictv Report Consortium. (2020). ICTV Virus Taxonomy Profile: Peribunyaviridae. The Journal of General Virology, 101(1), 1–2. https://doi.org/10.1099/jgv.0.001365spa
dc.relation.referencesHughes, H. R., Lanciotti, R. S., Blair, C. D., & Lambert, A. J. (2017). Full genomic characterization of California serogroup viruses, genus Orthobunyavirus, family Peribunyaviridae including phylogenetic relationships. Virology, 512(October), 201–210. https://doi.org/10.1016/j.virol.2017.09.022spa
dc.relation.referencesHuiskonen, J. T., Hepojoki, J., Laurinmaki, P., Vaheri, A., Lankinen, H., Butcher, S. J., & Grunewald, K. (2010). Electron Cryotomography of Tula Hantavirus Suggests a Unique Assembly Paradigm for Enveloped Viruses. Journal of Virology, 84(10), 4889–4897. https://doi.org/10.1128/jvi.00057-10spa
dc.relation.referencesIllumina. (2011). Sequencing Library qPCR Quantification Guide. Illumina Technical Manuals, (February), 1–27.spa
dc.relation.referencesIllumina. (2015). TruSeq RNA Sample Preparation v2 Guide. Illumina, 3(2), 141–148. https://doi.org/10.1016/j.canlet.2015.06.003spa
dc.relation.referencesİnci, A., Doğanay, M., Özdarendeli, A., Düzlü, Ö., & Yıldırım, A. (2018). Overview of Zoonotic Diseases in Turkey: The One Health Concept and Future Threats. Turkiye Parazitolojii Dergisi, 42(1), 39–80. https://doi.org/10.5152/tpd.2018.5701spa
dc.relation.referencesIppolito, G., Feldmann, H., Lanini, S., Vairo, F., Di Caro, A., Capobianchi, M. R., & Nicastri, E. (2012). Viral hemorrhagic fevers: Advancing the level of treatment. BMC Medicine, 10. https://doi.org/10.1186/1741-7015-10-31spa
dc.relation.referencesJesús Ballesteros, C., & Racero-Casarrubia, J. (2012). Murciélagos del área urbana en la ciudad de Montería, Córdoba - Colombia. Revista MVZ Cordoba, 17(3), 3193–3199.spa
dc.relation.referencesJohnston, S. C., Zhang, H., Messina, L. M., Lawton, M. T., & Dean, D. (2005). Chlamydia pneumoniae burden in carotid arteries is associated with upregulation of plaque interleukin-6 and elevated C-reactive protein in serum. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(12), 2648–2653. https://doi.org/10.1161/01.ATV.0000189157.88630.d1spa
dc.relation.referencesJones, G., Jacobs, D. S., Kunz, T. H., Wilig, M. R., & Racey, P. A. (2009). Carpe noctem: The importance of bats as bioindicators. Endangered Species Research, 8(1–2), 93–115. https://doi.org/10.3354/esr00182spa
dc.relation.referencesJonsson, C. B., Figueiredo, L. T. M., & Vapalahti, O. (2010). A global perspective on hantavirus ecology, epidemiology, and disease. Clinical Microbiology Reviews, 23(2), 412–441. https://doi.org/10.1128/CMR.00062-09spa
dc.relation.referencesKaresh, W. B., Dobson, A., Lloyd-Smith, J. O., Lubroth, J., Dixon, M. A., Bennett, M., … Heymann, D. L. (2012). Ecology of zoonoses: Natural and unnatural histories. The Lancet, 380(9857), 1936–1945. https://doi.org/10.1016/S0140-6736(12)61678-Xspa
dc.relation.referencesKim, D., Langmead, B., & Salzberg1, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements Daehwan HHS Public Access. Nature Methods, 12(4), 357–360. https://doi.org/110.1016/j.bbi.2017.04.008spa
dc.relation.referencesKosoy, M., Khlyap, L., Cosson, J. F., & Morand, S. (2015). Aboriginal and invasive rats of genus rattus as hosts of infectious agents. Vector-Borne and Zoonotic Diseases, 15(1), 3–12. https://doi.org/10.1089/vbz.2014.1629spa
dc.relation.referencesKruger, D. H., Figueiredo, L. T. M., Song, J. W., & Klempa, B. (2015). Hantaviruses-Globally emerging pathogens. Journal of Clinical Virology, 64, 128–136. https://doi.org/10.1016/j.jcv.2014.08.033spa
dc.relation.referencesKukkonen, S. K. J., Vaheri, A., & Plyusnin, A. (2005). L protein, the RNA-dependent RNA polymerase of hantaviruses. Archives of Virology, 150(3), 533–556. https://doi.org/10.1007/s00705-004-0414-8spa
dc.relation.referencesKuno, G., Mitchell, C. J., Chang, G. J., & Smith, G. C. (1996). Detecting bunyaviruses of the Bunyamwera and California serogroups by a PCR technique . Updated information and services can be found at : These include : Detecting Bunyaviruses of the Bunyamwera and California Serogroups by a PCR Technique. Journal of Clinical Microbiology, 34(5), 1184–1188. https://doi.org/10.1145/800027.808431spa
dc.relation.referencesLaenen, L., Vergote, V., Calisher, C. H., Klempa, B., Klingström, J., Kuhn, J. H., & Maes, P. (n.d.). Hantaviridae : Current Classification and Future Perspectives. 1–17.spa
dc.relation.referencesLambert, A. J., & Lanciotti, R. S. (2009). Consensus amplification and novel multiplex sequencing method for S segment species identification of 47 viruses of the Orthobunyavirus, Phlebovirus, and Nairovirus genera of the family Bunyaviridae. Journal of Clinical Microbiology, 47(8), 2398–2404. https://doi.org/10.1128/JCM.00182-09spa
dc.relation.referencesLanciotti, R. S., Kosoy, O. I., Bosco-Lauth, A. M., Pohl, J., Stuchlik, O., Reed, M., & Lambert, A. J. (2013). Isolation of a novel orthobunyavirus (Brazoran virus) with a 1.7kb S segment that encodes a unique nucleocapsid protein possessing two putative functional domains. Virology, 444(1–2), 55–63. https://doi.org/10.1016/j.virol.2013.05.031spa
dc.relation.referencesLee, Baek, L. J., & Johnson, K. M. (1982). Isolation of Hantaan Virus, the Etiologic Agent of Korean Hemorrhagic Fever, from Wild Urban Rats. Journal of Infectious Diseases, 146(5), 638–644. https://doi.org/10.1093/infdis/146.5.638spa
dc.relation.referencesLee, Lee, P. W., & Johnson, K. M. (2004). Isolation of the etiologic agent of Korean hemorrhagic fever. 1978. The Journal of Infectious Diseases, 190(9), 1711–1721. https://doi.org/10.1093/infdis/190.9.1711spa
dc.relation.referencesLee, S. H., Kim, W. K., Park, K., No, J. S., Lee, G. Y., Kim, H. C., … Song, J. W. (2020). Genetic diversity and phylogeography of Jeju Orthohantavirus (Hantaviridae) in the Republic of Korea. Virology, 543(September 2019), 13–19. https://doi.org/10.1016/j.virol.2020.01.012spa
dc.relation.referencesLinares, J. 1998. Roedores, Sociedad Conservacionista Audubon de Venezuela. Mamiferos de Venuezula, Caracas, 205-348.spa
dc.relation.referencesLi, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., … Feng, Z. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. New England Journal of Medicine, 382(13), 1199–1207. https://doi.org/10.1056/NEJMoa2001316spa
dc.relation.referencesLiphardt, S. W., Kang, H. J., Dizney, L. J., Ruedas, L. A., Cook, J. A., & Yanagihara, R. (2019). Complex history of codiversification and host switching of a newfound soricid-borne orthohantavirus in north america. Viruses, 11(7). https://doi.org/10.3390/v11070637spa
dc.relation.referencesLiu, M. M., Li, L. L., Wang, X. F., & Duan, Z. J. (2017). Complete genome sequence of a novel variant of Wenzhou mammarenavirus. Genome Announcements, 5(47), 5–6. https://doi.org/10.1128/genomeA.01303-17spa
dc.relation.referencesLondoño, A. F., Levis, S., & Rodas, J. D. (2011). Hantavirus como agentes emergentes de importancia en Suramérica. Biomedica, 31(3), 451–464. https://doi.org/10.7705/biomedica.v31i3.370spa
dc.relation.referencesLópez, N., Jácamo, R., & Franze, M. T. (2001). Transcription and RNA Replication of Tacaribe Virus Genome and Antigenome Analogs Require N and L Proteins: Z Protein Is an Inhibitor of These Processes. Journal of Virology, 75(24), 12241–12251. https://doi.org/10.1128/jvi.75.24.12241-12251.2001spa
dc.relation.referencesLozach, P. Y., Kühbacher, A., Meier, R., Mancini, R., Bitto, D., Bouloy, M., & Helenius, A. (2011). DC-SIGN as a receptor for phleboviruses. Cell Host and Microbe, 10(1), 75–88. https://doi.org/10.1016/j.chom.2011.06.007spa
dc.relation.referencesLozano, J. C., Mattar, S., Guzmán, C., & Calderón, A. (2017). Infecciones por arenavirus. Revista MVZ Córdoba, 22(supl), 6089. https://doi.org/10.21897/rmvz.1078spa
dc.relation.referencesLuis, A. D., Hayman, D. T. S., O’Shea, T. J., Cryan, P. M., Gilbert, A. T., Pulliam, J. R. C., … Webb, C. T. (2013). A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special? Proceedings of the Royal Society B: Biological Sciences, 280(1756). https://doi.org/10.1098/rspb.2012.2753spa
dc.relation.referencesMaes, P., Alkhovsky, S. V., Bào, Y., Beer, M., Birkhead, M., Briese, T., … Kuhn, J. H. (2018). Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018. Archives of Virology, 163(8), 2295–2310. https://doi.org/10.1007/s00705-018-3843-5spa
dc.relation.referencesMahmutovic, S., Clark, L., Levis, S. C., Briggiler, A. M., Enria, D. A., Harrison, S. C., & Abraham, J. (2015). Molecular Basis for Antibody-Mediated Neutralization of New World Hemorrhagic Fever Mammarenaviruses. Cell Host and Microbe, 18(6), 705–713. https://doi.org/10.1016/j.chom.2015.11.005spa
dc.relation.referencesMarklewitz, M., Dutari, L. C., Paraskevopoulou, S., Page, R. A., Loaiza, J. R., & Junglen, S. (2019a). Diverse novel phleboviruses in sandflies from the Panama Canal area, Central Panama. Journal of General Virology, 100(6), 938–949. https://doi.org/10.1099/jgv.0.001260spa
dc.relation.referencesMarklewitz, M., Dutari, L. C., Paraskevopoulou, S., Page, R. A., Loaiza, J. R., & Junglen, S. (2019b). Diverse novel phleboviruses in sandflies from the Panama Canal area, Central Panama. Journal of General Virology, 100(6), 938–949. https://doi.org/10.1099/jgv.0.001260spa
dc.relation.referencesMarklewitz, M., Zirkel, F., Rwego, I. B., Heidemann, H., Trippner, P., Kurth, A., … Junglen, S. (2013). Discovery of a Unique Novel Clade of Mosquito-Associated Bunyaviruses. Journal of Virology, 87(23), 12850–12865. https://doi.org/10.1128/jvi.01862-13spa
dc.relation.referencesMartinez-Sobrido, L., Emonet, S., Giannakas, P., Cubitt, B., Garcia-Sastre, A., & de la Torre, J. C. (2009). Identification of Amino Acid Residues Critical for the Anti-Interferon Activity of the Nucleoprotein of the Prototypic Arenavirus Lymphocytic Choriomeningitis Virus. Journal of Virology, 83(21), 11330–11340. https://doi.org/10.1128/jvi.00763-09spa
dc.relation.referencesMatsuno, K., Kajihara, M., Nakao, R., Nao, N., Mori-Kajihara, A., Muramatsu, M., … Ebihara, H. (2018). The Unique Phylogenetic Position of a Novel Tick-Borne Phlebovirus Ensures an Ixodid Origin of the Genus Phlebovirus . MSphere, 3(3). https://doi.org/10.1128/msphere.00239-18spa
dc.relation.referencesMattar, S., Garzon, D., Tadeu, L., Faccini-Martínez, A. A., & Mills, J. N. (2014). Serological diagnosis of hantavirus pulmonary syndrome in a febrile patient in Colombia. International Journal of Infectious Diseases, 25, 201–203. https://doi.org/10.1016/j.ijid.2014.03.1396spa
dc.relation.referencesMattar, S., & González, M. (2017). Los sorprendentes murciélagos: ¿Amigos, enemigos o aliados? Revista MVZ Córdoba, 22(3), 6177. https://doi.org/10.21897/rmvz.1125spa
dc.relation.referencesMattar, S., Guzmán, C., Arrazola, J., Soto, E., Barrios, J., Pini, N., … Mills, J. N. (2011, July). Antibody to arenaviruses in rodents, Caribbean Colombia. Emerging Infectious Diseases, Vol. 17, pp. 1315–1317. https://doi.org/10.3201/eid1707.101961spa
dc.relation.referencesMattar, S., Guzmán, C., Calderón, A., & González, M. (2017). Infecciones por arenavirus. Revista MVZ Córdoba, 22, 6089–6100. https://doi.org/10.21897/rmvz.1078spa
dc.relation.referencesMattar, S., Tique, V., Miranda, J., Montes, E., & Garzon, D. (2017). Undifferentiated tropical febrile illness in Cordoba, Colombia: Not everything is dengue. Journal of Infection and Public Health, 10(5), 507–512. https://doi.org/10.1016/j.jiph.2016.09.014spa
dc.relation.referencesMatthys, V. S., Gorbunova, E. E., Gavrilovskaya, I. N., & Mackow, E. R. (2010). Andes Virus Recognition of Human and Syrian Hamster 3 Integrins Is Determined by an L33P Substitution in the PSI Domain. Journal of Virology, 84(1), 352–360. https://doi.org/10.1128/jvi.01013-09spa
dc.relation.referencesMcArthur, D. B. (2019). Emerging Infectious Diseases. Nursing Clinics of North America, 54(2), 297–311. https://doi.org/10.1016/j.cnur.2019.02.006spa
dc.relation.referencesMcLay, L., Liang, Y., & Ly, H. (2014). Comparative analysis of disease pathogenesis and molecular mechanisms of New World and Old World arenavirus infections. Journal of General Virology, 95(PART 1), 1–15. https://doi.org/10.1099/vir.0.057000-0spa
dc.relation.referencesMills, J., Childs, J., Ksiazek, T., & Peters, C. J. (1998). Métodos para trampeo y muestreo de pequeños mamíferos para estudios virológicos. Centros Para El Control y Prevención de Enfermedades de Los EStados Unidos de América, 64.spa
dc.relation.referencesMonroy, M. C., De La Ossa, A., & De La Ossa, J. (2015). Tasa De Atropellamiento De Fauna Silvestre En La Vía San Onofre – María La Baja , Caribe Colombiano Runover Rate. Asociación Colombiana de Ciencias Biológicas, 1(27), 88–95. Retrieved from http://www.ojs.asociacioncolombianadecienciasbiologicas.org/index.php/accb/article/view/106spa
dc.relation.referencesMonsalve, Mattar, & González. (2009). Zoonosis transmitidas por animales silvestres y su impacto en las enfermedades emergentes y reemergentes. Revista MVZ Cordoba, 14(2), 1762–1773.spa
dc.relation.referencesMoreli, M. L., Moro De Sousa, R. L., & Figueiredo, L. T. M. (2004). Detection of Brazilian hantavirus by reverse transcription polymerase chain reaction amplification of N gene in patients with hantavirus cardiopulmonary syndrome. Memorias Do Instituto Oswaldo Cruz, 99(6), 633–638. https://doi.org/10.1590/S0074-02762004000600018spa
dc.relation.referencesMoriconi, M., Rugna, G., Calzolari, M., Bellini, R., Albieri, A., Angelini, P., … Varani, S. (2017). Phlebotomine sand fly–borne pathogens in the Mediterranean Basin: Human leishmaniasis and phlebovirus infections. PLoS Neglected Tropical Diseases, 11(8), 1–19. https://doi.org/10.1371/journal.pntd.0005660spa
dc.relation.referencesMourya, D. T., Yadav, P. D., Basu, A., Shete, A., Patil, D. Y., Zawar, D., … Jadhav, S. M. (2014). Malsoor Virus, a Novel Bat Phlebovirus, Is Closely Related to Severe Fever with Thrombocytopenia Syndrome Virus and Heartland Virus. Journal of Virology, 88(6), 3605–3609. https://doi.org/10.1128/jvi.02617-13spa
dc.relation.referencesNaveca, F. G., do Nascimento, V. A., de Souza, V. C., Nunes, B. T. D., Rodrigues, D. S. G., & da Costa Vasconcelos, P. F. (2017). Multiplexed reverse transcription real-time polymerase chain reaction for simultaneous detection of Mayaro, Oropouche, and oropouche-like viruses. Memorias Do Instituto Oswaldo Cruz, 112(7), 510–513. https://doi.org/10.1590/0074-02760160062spa
dc.relation.referencesNo, J. S., Kim, W. K., Cho, S., Lee, S. H., Kim, J. A., Lee, D., … Song, J. W. (2019). Comparison of targeted next-generation sequencing for whole-genome sequencing of Hantaan orthohantavirus in Apodemus agrarius lung tissues. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-53043-2spa
dc.relation.referencesNunes-Neto, J. P., De Souza, W. M., Acrani, G. O., Romeiro, M. F., Fumagalli, M., Vieira, L. C., … Da Costa Vasconcelos, P. F. (2017). Characterization of the bujaru, frijoles and tapara antigenic complexes into the sandfly fever group and two unclassified phleboviruses from Brazil. Journal of General Virology, 98(4), 585–594. https://doi.org/10.1099/jgv.0.000724spa
dc.relation.referencesNunes, M. R. T., Weaver, S. C., Tesh, R. B., & Vasconcelos, P. F. C. (2005). Molecular Epidemiology of Group C Viruses (Bunyaviridae,. Society, 79(16), 10561–10570. https://doi.org/10.1128/JVI.79.16.10561spa
dc.relation.referencesOverbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T., … Stevens, R. (2014). The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research, 42(D1), 206–214. https://doi.org/10.1093/nar/gkt1226spa
dc.relation.referencesPaessler, S., & Walker, D. H. (2013). Pathogenesis of the Viral Hemorrhagic Fevers. Annual Review of Pathology: Mechanisms of Disease, 8(1), 411–440. https://doi.org/10.1146/annurev-pathol-020712-164041spa
dc.relation.referencesParvate, A., Williams, E. P., Taylor, M. K., Chu, Y. K., Lanman, J., Saphire, E. O., & Jonsson, C. B. (2019). Diverse morphology and structural features of old and New World hantaviruses. Viruses, 11(9). https://doi.org/10.3390/v11090862spa
dc.relation.referencesPiacenza, M. F., Calderón, G. E., Enría, D., Provensal, M. C., & Polop, J. J. (2018). Diferencia espacial de la incidencia de fiebre hemorrágica argentina y la composición y abundancia de roedores en el ensamble. Revista Chilena de Infectología, 35(4), 386–394. https://doi.org/10.4067/s0716-10182018000400386spa
dc.relation.referencesRadford, A. D., Chapman, D., Dixon, L., Chantrey, J., Darby, A. C., & Hall, N. (2012). Application of next-generation sequencing technologies in virology. Journal of General Virology, 93(PART 9), 1853–1868. https://doi.org/10.1099/vir.0.043182-0spa
dc.relation.referencesReguera, J., Gerlach, P., Rosenthal, M., Gaudon, S., Coscia, F., Günther, S., & Cusack, S. (2016). Comparative Structural and Functional Analysis of Bunyavirus and Arenavirus Cap-Snatching Endonucleases. PLoS Pathogens, 12(6), 1–24. https://doi.org/10.1371/journal.ppat.1005636spa
dc.relation.referencesRengifo, E. M., Calderón, W., & Aquino, R. (2013). Características de refugios de algunas especies de murciélagos en la cuenca alta del río Itaya, Loreto, Perú. UNED Research Journal, 5(1), 143–150. https://doi.org/10.22458/urj.v5i1.20spa
dc.relation.referencesRestrepo, B., Rodas, J. D., Montoya-Ruiz, C., Zuluaga, A. M., Parra-Henao, G., & Agudelo-Flórez, P. (2016). Evidencia serológica retrospectiva de infecciones por Leptospira spp., dengue, hantavirus y arenavirus en indígenas Emberá-Katío, Colombia. Revista Chilena de Infectologia, 33(4), 472–473. https://doi.org/10.4067/S0716-10182016000400015spa
dc.relation.referencesRojek, J. M., & Kunz, S. (2008). Cell entry by human pathogenic arenaviruses. Cellular Microbiology, 10(4), 828–835. https://doi.org/10.1111/j.1462-5822.2007.01113.xspa
dc.relation.referencesRomero-Alvarez, D., & Escobar, L. E. (2018). Oropouche fever, an emergent disease from the Americas. Microbes and Infection, 20(3), 135–146. https://doi.org/10.1016/j.micinf.2017.11.013spa
dc.relation.referencesSabino-Santos, G., Maia, F. G. M., Martins, R. B., Gagliardi, T. B., De Souza, W. M., Muylaert, R. L., … Figueiredo, L. T. M. (2018). Natural infection of Neotropical bats with hantavirus in Brazil. Scientific Reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-27442-wspa
dc.relation.referencesSahley, C. T., Cervantes, K., Pacheco, V., Salas, E., Paredes, D., & Alonso, A. (2015). Diet of a Sigmodontine Rodent Assemblage in a Peruvian Montane Forest. Journal of Mammalogy, 96(5), 1071–1080. https://doi.org/10.1093/jmammal/gyv112spa
dc.relation.referencesSakkas, H., Bozidis, P., Franks, A., & Papadopoulou, C. (2018). Oropouche fever: A review. Viruses, 10(4), 1–16. https://doi.org/10.3390/v10040175spa
dc.relation.referencesSalim Mattar, V., & Marco González, T. (2015). Oropuche virus: A virus present but ignored. Revista MVZ Cordoba, 20(3), 4675–4676. https://doi.org/10.4269/ajtmh.14-0702.2.spa
dc.relation.referencesSánchez-Seco, M. P., Echevarría, J. M., Hernández, L., Estévez, D., Navarro-Marí, J. M., & Tenorio, A. (2003). Detection and identification of Toscana and other phleboviruses by RT-nested-PCR assays with degenerated primers. Journal of Medical Virology, 71(1), 140–149. https://doi.org/10.1002/jmv.10465spa
dc.relation.referencesSantos, R. I. M., Rodrigues, A. H., Silva, M. L., Mortara, R. A., Rossi, M. A., Jamur, M. C., … Arruda, E. (2008). Oropouche virus entry into HeLa cells involves clathrin and requires endosomal acidification. Virus Research, 138(1–2), 139–143. https://doi.org/10.1016/j.virusres.2008.08.016spa
dc.relation.referencesSchlie, K., Strecker, T., & Garten, W. (2010). Maturation cleavage within the ectodomain of Lassa virus glycoprotein relies on stabilization by the cytoplasmic tail. FEBS Letters, 584(21), 4379–4382. https://doi.org/10.1016/j.febslet.2010.09.032spa
dc.relation.referencesShi, J., Hu, Z., Deng, F., & Shen, S. (2018). Tick-Borne Viruses. Virologica Sinica, 33(1), 21–43. https://doi.org/10.1007/s12250-018-0019-0spa
dc.relation.referencesSoto, E., & Mattar, S. (2010). Fiebres hemorrágicas por Arenavirus en Latinoamérica. Salud Uninorte, 26(2), 298–310.spa
dc.relation.referencesSpiegel, M., Plegge, T., & Pöhlmann, S. (2016). The role of phlebovirus glycoproteins in viral entry, assembly and release. Viruses, 8(7). https://doi.org/10.3390/v8070202spa
dc.relation.referencesStefan, C. P., Chase, K., Coyne, S., Kulesh, D. A., Minogue, T. D., & Koehler, J. W. (2016). Development of real-time reverse transcriptase qPCR assays for the detection of Punta Toro virus and Pichinde virus. Virology Journal, 13(1), 1–6. https://doi.org/10.1186/s12985-016-0509-3spa
dc.relation.referencesStrandin, T., Smura, T., Ahola, P., Aaltonen, K., Sironen, T., Hepojoki, J., … Forbes, K. M. (2020). Orthohantavirus isolated in reservoir host cells displays minimal genetic changes and retains wild-type infection properties. Viruses, 12(4), 1–14. https://doi.org/10.3390/v12040457spa
dc.relation.referencesSuárez Larreinaga, C. L., & Berdasquera Corcho, D. (2000). Enfermedades emergentes y reemergentes: Factores causales y vigilancia. Revista Cubana de Medicina General Integral, 16(6), 593–597.spa
dc.relation.referencesSubudhi, S., Rapin, N., & Misra, V. (2019). Immune system modulation and viral persistence in bats: Understanding viral spillover. Viruses, 11(2). https://doi.org/10.3390/v11020192spa
dc.relation.referencesTauro, L. B., de Souza, W. M., Rivarola, M. E., de Oliveira, R., Konigheim, B., Silva, S. P., … Contigiani, M. S. (2019). Genomic characterization of orthobunyavirus of veterinary importance in America. Infection, Genetics and Evolution, 73(February), 205–209. https://doi.org/10.1016/j.meegid.2019.04.030spa
dc.relation.referencesTorii, S., Matsuno, K., Qiu, Y., Mori-Kajihara, A., Kajihara, M., Nakao, R., … Sawa, H. (2019). Infection of newly identified phleboviruses in ticks and wild animals in Hokkaido, Japan indicating tick-borne life cycles. Ticks and Tick-Borne Diseases, 10(2), 328–335. https://doi.org/10.1016/j.ttbdis.2018.11.012spa
dc.relation.referencesWeaver, S. C., Salas, R. A., De Manzione, N., Fulhorst, C. F., Duno, G., Utrera, A., … Tesh, R. B. (2000). Guanarito virus (Arenaviridae) isolates from endemic and outlying localities in Venezuela: Sequence comparisons among and within strains isolated from Venezuelan hemorrhagic fever patients and rodents. Virology, 266(1), 189–195. https://doi.org/10.1006/viro.1999.0067spa
dc.relation.referencesYadav, P. D., Nyayanit, D. A., Shete, A. M., Jain, S., Majumdar, T. P., Chaubal, G. Y., … Mourya, D. T. (2019). Complete genome sequencing of Kaisodi virus isolated from ticks in India belonging to Phlebovirus genus, family Phenuiviridae. Ticks and Tick-Borne Diseases, 10(1), 23–33. https://doi.org/10.1016/j.ttbdis.2018.08.012spa
dc.relation.referencesZhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., … Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc590 - Animalesspa
dc.subject.ddc616 - Enfermedadesspa
dc.subject.proposalVigilancia epidemiológicaspa
dc.subject.proposalZoonoseseng
dc.subject.proposalReservoirseng
dc.subject.proposalAgentes infecciososspa
dc.subject.proposalReservoriosspa
dc.subject.proposalInfectious agentseng
dc.subject.proposalEpidemiological surveillanceeng
dc.subject.proposalZoonosisspa
dc.titleBúsqueda de virus zoonóticos en roedores y murciélagos de algunas zonas del Caribe colombianospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis final.pdf
Tamaño:
2.08 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: