Modelado computacional de una turbina hidrocinética de eje vertical a bajos números de Reynolds utilizando malla sobrepuesta y el método de volumen de fluido
dc.contributor.advisor | Benavides Morán, Aldo Germán | |
dc.contributor.advisor | López Mejía , Omar Darío | |
dc.contributor.author | Morales Ramírez , Carlos Mario | |
dc.contributor.orcid | Morales Ramirez, Carlos Mario [0009000960197718] | |
dc.contributor.researchgroup | Gnum Grupo de Modelado y Métodos Numericos en Ingeniería | |
dc.date.accessioned | 2025-09-08T16:00:47Z | |
dc.date.available | 2025-09-08T16:00:47Z | |
dc.date.issued | 2025-09-04 | |
dc.description | ilustraciones a color, diagramas | |
dc.description.abstract | La instalación de turbinas hidrocinéticas de eje vertical (en inglés, Vertical Axis Hydrokinetic Turbines (VAHTs)) en entornos fluviales de baja profundidad plantea desafíos importantes debido a la interacción con la superficie libre, la cual influye en el desempeño de la turbina y en la recuperación de la estela. Este estudio presenta una metodología computacional que combina el uso de mallas sobrepuestas (en inglés, Overset Mesh (OM)) y el método de volumen de fluido (en inglés, Volume of Fluid (VOF)), implementada en OpenFOAM, con el objetivo de analizar el desempeño de turbinas bajo distintas profundidades de inmersión. Se realizaron simulaciones bidimensionales y tridimensionales, resolviendo las ecuaciones promediadas de Navier-Stokes para flujos transitorios (en inglés, Unsteady Reynolds-Averaged Navier-Stokes Equations (URANS)) con el modelo de turbulencia k-ω SST. Los resultados muestran que el modelo implementado reproduce adecuadamente el desempeño de la turbina, con un error relativo de 17.1% en el coeficiente de potencia promedio para el caso bidimensional. Por su parte, las simulaciones tridimensionales presentaron una mejor concordancia con los datos experimentales, alcanzando un error cuadrático medio (en inglés, Root Mean Square Error (RMSE)) de 0.1607 en la predicción del déficit de velocidad en la estela. Se observó que la proximidad a la superficie libre retrasa significativamente la recuperación del flujo, incluso en casos con deformación mínima de la interfaz. Sin embargo, se estableció que la representación explícita de la superficie libre no es necesaria cuando la inmersión supera el 50% de la altura del rotor, lo que permite reducir la complejidad computacional sin comprometer la precisión del modelo. La metodología implementada busca fortalecer la capacidad predictiva de modelos de dinámica de fluidos computacional (en inglés, Computational Fluid Dynamics (CFD)) aplicados al diseño de soluciones energéticas sostenibles, facilitando una mayor adopción de VAHTs en regiones remotas y no interconectadas de países en desarrollo. (Texto tomado de la fuente). | spa |
dc.description.abstract | The deployment of vertical-axis hydrokinetic turbines (VAHTs) in shallow riverine environments presents significant challenges due to the interaction with the free surface, which affects the turbine’s performance and the recovery of the wake. This study presents a computational methodology that combines the use of overset meshes (OM) and the volume of fluid method (VOF), implemented in OpenFOAM, with the aim of analyzing the performance of turbines under different immersion depths. Two-dimensional and three-dimensional simulations were carried out by solving the unsteady Reynolds-averaged Navier–Stokes equations (URANS) with the k-ω SST turbulence model. The results show that the implemented model adequately reproduces the performance of the turbine, with a relative error of 17.1% in the mean power coefficient for the two-dimensional case. In turn, the three-dimensional simulations showed better agreement with the experimental data, achieving a root-mean-square error (RMSE) of 0.1607 in the prediction of the velocity deficit in the wake. It was observed that proximity to the free surface significantly delays flow recovery, even in cases with minimal interface deformation. However, it was established that explicit representation of the free surface is not necessary when the immersion exceeds 50% of the rotor height, which allows reducing computational complexity without compromising model accuracy. The implemented methodology aims to strengthen the predictive capabilities of computational fluid dynamics models (CFD) applied to the design of sustainable energy solutions, facilitating greater adoption of VAHTs in remote and off-grid regions of developing countries. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Mecánica | |
dc.description.researcharea | Ingeniería Térmica y Fluidos | |
dc.format.extent | xviii, 62 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88638 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ingeniería | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica | |
dc.relation.references | World Bank. Tracking SDG7: The energy progress report 2024. Technical report, 2024. | |
dc.relation.references | IRENA. Renewable energy for remote communities: A guidebook for off-grid projects. Technical report, 2023. | |
dc.relation.references | Superservicios. INFORME SECTORIAL DE LA PRESTACIÓN DEL SERVICIO DE ENERGÍA ELÉCTRICA. Technical report, 2021. | |
dc.relation.references | United Nations. THEME REPORT ON ENERGY ACCESS: TOWARDS THE ACHIEVEMENT OF SDG 7 AND NET-ZERO EMISSIONS. Technical report, 2021. | |
dc.relation.references | Emília Inês Come Zebra, Henny J. van der Windt, Geraldo Nhumaio, and André P.C. Faaij. A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries. Renewable and Sustainable Energy Reviews, 144, 2021. | |
dc.relation.references | W. I. Ibrahim, M. R. Mohamed, R. M.T.R. Ismail, P. K. Leung, W. W. Xing, and A. A. Shah. Hydrokinetic energy harnessing technologies: A review. Energy Reports, 7:2021–2042, 2021. | |
dc.relation.references | Pankaj Kumar Yadav, Ankit Kumar, and Satyanand Jaiswal. A critical review of technologies for harnessing the power from flowing water using a hydrokinetic turbine to fulfill the energy need. Energy Reports, 9:2102–2117, 2023. | |
dc.relation.references | M. J. Khan, G. Bhuyan, M. T. Iqbal, and J. E. Quaicoe. Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Applied Energy, 86(10):1823–1835, 2009. | |
dc.relation.references | S. Laín, L. T. Contreras, and O. López. A review on computational fluid dynamics modeling and simulation of horizontal axis hydrokinetic turbines. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(9), 2019. | |
dc.relation.references | Joshua Bowman, Shanti Bhushan, David Thompson, Daphne O’doherty, Tim O’doherty, and Allen Mason-Jones. A physics-based actuator disk model for hydrokinetic turbines. In 2018 Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics Inc, AIAA, 2018. | |
dc.relation.references | M. Ishak Yuce and Abdullah Muratoglu. Hydrokinetic energy conversion systems: A technology status review. Renewable and Sustainable Energy Reviews, 43, 2015. | |
dc.relation.references | Ju Hyun Lee, Sunho Park, Dong Hwan Kim, Shin Hyung Rhee, and Moon Chan Kim. Computational methods for performance analysis of horizontal axis tidal stream turbines. Applied Energy, 98:512–523, 2012. | |
dc.relation.references | Jens Nørkær Sørensen and Wen Zhong Shen. Numerical modeling of wind turbine wakes. Journal of Fluids Engineering, Transactions of the ASME, 124(2):393–399, 2002. | |
dc.relation.references | Ruiwen Zhao, Alistair G.L. Borthwick, Vengatesan Venugopal, Angus C.W. Creech, and Takafumi Nishino. Numerical model of a vertical-axis cross-flow tidal turbine. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, volume 9. American Society of Mechanical Engineers (ASME), 2020. | |
dc.relation.references | Omar D. Lopez Mejia, Oscar E. Mejia, Karol M. Escorcia, Fabian Suarez, and Santiago Laín. Comparison of sliding and overset mesh techniques in the simulation of a vertical axis turbine for hydrokinetic applications. Processes, 9(11), 2021. | |
dc.relation.references | Ilan Robin, Dominique Mouazé, Anne Claire Bennis, and Guillaume Carpentier. Evaluation of the overset method applied to an active lift turbine. Ocean Engineering, 289, 2023. | |
dc.relation.references | Olivier Gauvin-Tremblay and Guy Dumas. Two-way interaction between river and deployed cross-flow hydrokinetic turbines. Journal of Renewable and Sustainable Energy, 12(3), 2020. | |
dc.relation.references | A. S. Bahaj, A. F. Molland, J. R. Chaplin, and W. M.J. Batten. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renewable Energy, 32(3):407–426, 2007. | |
dc.relation.references | Ahmed Gharib Yosry, Eduardo Álvarez Álvarez, Rodolfo Espina Valdés, Adrián Pandal, and Eduardo Blanco Marigorta. Experimental and multiphase modeling of small vertical-axis hydrokinetic turbine with free-surface variations. Renewable Energy, 203:788–801, 2023. | |
dc.relation.references | Pablo Ouro, Stefan Runge, Qianyu Luo, and Thorsten Stoesser. Three-dimensionality of the wake recovery behind a vertical axis turbine. Renewable Energy, 133:1066–1077, 2019. | |
dc.relation.references | G. Brochier, P. Fraunie, C. Beguier, and I. Paraschivoiu. Water channel experiments of dynamic stall on Darrieus wind turbine blades. Journal of Propulsion and Power, 2(5):445–449, 1986. | |
dc.relation.references | Aitor Fernández-Jiménez, Eduardo Álvarez-Álvarez, Mario López, Mateo Fouz, Iván López, Ahmed Gharib-Yosry, Rubén Claus, and Rodrigo Carballo. Power performance assessment of vertical-axis tidal turbines using an experimental test rig. Energies, 14(20), 2021. | |
dc.relation.references | Stephanie Müller, Valentine Muhawenimana, Catherine A.M.E. Wilson, and Pablo Ouro. Experimental investigation of the wake characteristics behind twin vertical axis turbines. Energy Conversion and Management, 247, 2021. | |
dc.relation.references | Minh N Doan, Ivan H Alayeto, Kana Kumazawa, and Shinnosuke Obi. Computational fluid dynamic analysis of a marine hydrokinetic crossflow turbine in low Reynolds number flow. In ASME - JSME - KSME Joint Fluids Engineering Conference. ASME, 2019. | |
dc.relation.references | Peter Bachant, Anders Goude, and Martin Wosnik. Actuator line modeling of vertical-axis turbines. 2018. | |
dc.relation.references | Pablo Ouro and Thorsten Stoesser. An immersed boundary-based large-eddy simulation approach to predict the performance of vertical axis tidal turbines. Computers and Fluids, 152:74–87, 2017. | |
dc.relation.references | Omar D. Lopez Mejia, Jhon J. Quiñones, and Santiago Laín. RANS and hybrid RANS-LES simulations of an H-type Darrieus vertical axis water turbine. Energies, 11(9), 2018. | |
dc.relation.references | Thomas Kinsey and Guy Dumas. Impact of channel blockage on the performance of axial and cross-flow hydrokinetic turbines. Renewable Energy, 103:239–254, 2017. | |
dc.relation.references | Emerson Escobar Nunez, Diego García González, Omar Darío López, Juan Pablo Casas Rodríguez, and Santiago Laín. Fluid–Structure Interaction of a Darrieus-Type Hydrokinetic Turbine Modified with Winglets. Journal of Marine Science and Engineering, 13(3), 2025. | |
dc.relation.references | Aldo Benavides-Morán, Luis Rodríguez-Jaime, and Santiago Laín. Numerical Investigation of the Performance, Hydrodynamics, and Free-Surface Effects in Unsteady Flow of a Horizontal Axis Hydrokinetic Turbine. Processes, 10(1), 2022. | |
dc.relation.references | O. El Fajri, S. Bhushan, D. Thompson, and T. O’Doherty. Numerical investigation of shallow-water effects on hydrokinetic turbine wake recovery. International Marine Energy Journal, 3(1):25–35, 2020. | |
dc.relation.references | Carlos M. Morales-Ramirez, Aldo Benavides-Morán, and Omar D. López-Mejía. Integrated overset mesh and volume of fluid method for modeling free-surface dynamics in vertical axis hydrokinetic turbines at low Reynolds numbers. Physics of Fluids, 37(3), 2025. | |
dc.relation.references | F. R. Menter, M. Kuntz, and R. Langtry. Ten Years of Industrial Experience with the SST Turbulence Model. Turbulence, Heat and Mass Transfer, 4:625–632, 2003. | |
dc.relation.references | H. G. Weller, G. Tabor, H. Jasak, and C. Fureby. A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6):620–631, 1998. | |
dc.relation.references | Stephen B. Pope. Turbulent Flows. Cambridge University Press, first edition, 2000. | |
dc.relation.references | S. Mirjalili, S. S. Jain A. N., and D. M. S. Dodd. Interface-capturing methods for two-phase flows: An overview and recent developments. Technical report, Center for Turbulence Research, 2017. | |
dc.relation.references | Vinay R. Gopala and Berend G. M. van Wachem. Volume of fluid methods for immiscible-fluid and free-surface flows. Chemical Engineering Journal, 141(1-3):204–221, 2008. | |
dc.relation.references | Salih Ozen and G. Tryggvason. A Front-Tracking Method for Viscous, Incompressible, Multi-fluid Flows. Technical report, 1992. | |
dc.relation.references | James A. Sethian and Stanley Osher. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Technical report, Institute for Computer Applications in Science and Engineering, 1987. | |
dc.relation.references | Aristos Christou, Zhihua Xie, Thorsten Stoesser, and Pablo Ouro. Propagation of a solitary wave over a finite submerged thin plate. Applied Ocean Research, 106, 1 2021. | |
dc.relation.references | J. U. Brackbill, D. B. Kothe, and C. Zemach. A Continuum Method for Modeling Surface Tension. Technical report, 1992. | |
dc.relation.references | H. K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics. Pearson, 2007. | |
dc.relation.references | F. R. Menter. Improved Two-Equation k-Turbulence Models for Aerodynamic Flows. Technical report, NASA, 1992. | |
dc.relation.references | Hrvoje Jasak, H. Jasak, and H. G. Weller. Interface Tracking Capabilities of the Inter-Gamma Differencing Scheme. Technical report, 1995. | |
dc.relation.references | Edin Berberović, Nils P. Van Hinsberg, Suad Jakirlić, Ilia V. Roisman, and Cameron Tropea. Drop impact onto a liquid layer of finite thickness: Dynamics of the cavity evolution. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 79(3), 2009. | |
dc.relation.references | Chris Garrett and Patrick Cummins. The efficiency of a turbine in a tidal channel. Journal of Fluid Mechanics, 588:243–251, 2007. | |
dc.relation.references | Georgi Kalitzin, Gorazd Medic, Gianluca Iaccarino, and Paul Durbin. Near-wall behavior of RANS turbulence models and implications for wall functions. Journal of Computational Physics, 204(1):265–291, 2005. | |
dc.relation.references | Fangqing Liu. A Thorough Description Of How Wall Functions Are Implemented In OpenFOAM. Technical report, Chalmers University of Technology, 2017. | |
dc.relation.references | F. R. Menter, Jorge Carregal Ferreira, Thomas Esch, and Brad Konno. The SST Turbulence Model with Improved Wall Treatment for Heat Transfer Predictions in Gas Turbines. In International Gas Turbine Congress, 2003. | |
dc.relation.references | Hermann Schlichting and Klaus Gersten. Boundary-Layer Theory. Springer Berlin Heidelberg, 2016. | |
dc.relation.references | Lars Davidson. An Introduction to Turbulence Models. Chalmers University of Technology, 2022. | |
dc.relation.references | F. R. Menter. Zonal Two Equation k-w Turbulence Models for Aerodynamic Flows. Technical report, AIAA Paper No. 93-2906, 1993. | |
dc.relation.references | Christopher Greenshields. OpenFOAM v12 User Guide. The OpenFOAM Foundation, London, UK, 2024. | |
dc.relation.references | Ismail B. Celik, Urmila Ghia, Patrick J. Roache, Christopher J. Freitas, Hugh Coleman, and Peter E. Raad. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering, Transactions of the ASME, 130(7):0780011–0780014, 2008. | |
dc.relation.references | Frank M. White. Fluid Mechanics. McGraw-Hill New York, eighth edition, 2017. | |
dc.relation.references | John Steinbrenner, Nick Wyman, and John Chawner. Development and implementation of Gridgen’s hyperbolic PDE and extrusion methods. In 38th Aerospace Sciences Meeting and Exhibit, 2000. | |
dc.relation.references | Andrés Meana-Fernández, Jesús Manuel Fernández Oro, Katia María Argüelles Díaz, Mónica Galdo-Vega, and Sandra Velarde-Suárez. Application of Richardson extrapolation method to the CFD simulation of vertical-axis wind turbines and analysis of the flow field. Engineering Applications of Computational Fluid Mechanics, 13(1):359–376, 2019. | |
dc.relation.references | Joel H. Ferziger, Milovan Perić, and Robert L. Street. Computational Methods for Fluid Dynamics. Springer, 2019. | |
dc.relation.references | Francesco Balduzzi, Alessandro Bianchini, Riccardo Maleci, Giovanni Ferrara, and Lorenzo Ferrari. Critical issues in the CFD simulation of Darrieus wind turbines. Renewable Energy, 85, 2016. | |
dc.relation.references | F. Moukalled, L. Mangani, and M. Darwish. The Finite Volume Method in Computational Fluid Dynamics. Springer Cham, first edition, 2016. | |
dc.relation.references | H. A. van der Vorst. BI-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 13(2):631–644, 1992. | |
dc.relation.references | G. Houzeaux, B. Eguzkitza, R. Aubry, H. Owen, and M. Vázquez. A Chimera Method for the Incompressible Navier-Stokes Equations. International Journal for Numerical Methods in Fluids, 00:1–45, 2013. | |
dc.relation.references | Tisovska Petra and Constantin Sula Muye Ge. Description of the overset mesh approach in ESI version of OpenFOAM, 2019. | |
dc.relation.references | Johan Roenby, Bjarke Eltard Larsen, Henrik Bredmose, and Hrvoje Jasak. A New Volume-of-Fluid Method in OpenFOAM. In VII International Conference on Computational Methods in Marine Engineering, 2017. | |
dc.relation.references | John D. Anderson Jr and Christopher P. Cadou. Fundamentals of Aerodynamics. McGraw Hill, seventh edition, 2023. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.bne | Dinámica de fluidos -- Simulación por ordenador | spa |
dc.subject.bne | Fluid dynamics -- Computer simulation | eng |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | |
dc.subject.ddc | 530 - Física::532 - Mecánica de fluidos | |
dc.subject.lemb | Turbinas hidráulicas -- Métodos de simulación | spa |
dc.subject.lemb | Hydraulic turbines -- Simulation methods | eng |
dc.subject.other | Máquinas hidrocinéticas -- Modelos matemáticos | spa |
dc.subject.other | Hydrokinetic machines -- Mathematical models | eng |
dc.subject.other | Recursos naturales renovables -- Innovaciones tecnológicas | spa |
dc.subject.other | Renewable natural resources -- Technological Innovations | eng |
dc.subject.proposal | Turbina hidrocinética | spa |
dc.subject.proposal | Malla sobrepuesta | spa |
dc.subject.proposal | Volumen de fluido | spa |
dc.subject.proposal | Superficie libre | spa |
dc.subject.proposal | CFD | eng |
dc.subject.proposal | URANS | eng |
dc.subject.proposal | OpenFOAM | eng |
dc.subject.proposal | Hydrokinetic turbine | eng |
dc.subject.proposal | Overset mesh | eng |
dc.subject.proposal | Volume of fluid | eng |
dc.subject.proposal | Free surface | eng |
dc.subject.unam | Surface energy -- Computer simulation | eng |
dc.subject.unam | Energía de superficie -- Simulación por computadora | spa |
dc.title | Modelado computacional de una turbina hidrocinética de eje vertical a bajos números de Reynolds utilizando malla sobrepuesta y el método de volumen de fluido | spa |
dc.title.translated | Computational modeling of a vertical axis hydrokinetic turbine at low Reynolds numbers using overset mesh and the volume of fluid method | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis_MSc_UNAL_Published.pdf
- Tamaño:
- 7.01 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Mecánica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: