Identificación de genes asociados a cambios neurocomportamentales por la infección con virus Zika en ratones BALB/c

dc.contributor.advisorÁlvarez Diaz, Diego Alejandrospa
dc.contributor.advisorLozano Moreno, José Manuelspa
dc.contributor.authorChivatá Avila, Jaime Alexanderspa
dc.contributor.cvlacChivatá Avila, Jaime Alexander [0001692043]spa
dc.contributor.researchgroupGenómica de Microorganismos Emergentesspa
dc.date.accessioned2024-07-16T21:18:41Z
dc.date.available2024-07-16T21:18:41Z
dc.date.issued2024-01
dc.descriptionilustraciones (algunas a color), diagramasspa
dc.description.abstractEl virus Zika (ZIKV) es un arbovirus causante del “Síndrome de zika congénito”, asociado con diversos desórdenes del neurodesarrollo (NDDs) donde la microcefalia es una de las manifestaciones más severas. Existen NDDs más leves que pueden pasar desapercibidos en neonatos, como trastornos del espectro autista, retrasos en el desarrollo neuropsicomotor y del lenguaje que resultan en dificultades sociales y académicas. Los modelos murinos de infección por ZIKV reproducen defectos motores y cognitivos reportados en humanos los cuales pueden evaluarse mediante dispositivos comportamentales para su posterior contraste con perfiles de expresión genética, útiles en la caracterización de NDDs por ZIKV. Este estudio se enfocó en identificar genes asociados a cambios comportamentales por la infección con virus Zika en ratones BALB/c juveniles. Se inocularon por vía subcutánea con ZIKV (MH544701.2) ratones con dosis de 6.8x103 PFU al 1 día post-natal (DPN). La presencia del virus en cerebelo y corteza se verificó y cuantificó a los 10 y 30 días post-nfección (DPI) mediante RT-qPCR, los potenciales déficits neuroconductuales se evaluaron a los 30 DPI mediante las pruebas de laberinto en T, rotarod y campo abierto para posteriormente secuenciar y obtener listas genes diferencialmente expresados (DEG) así como categorías funcionales mediante análisis de enriquecimiento de conjunto de genes (GSEA). Se obtuvo un modelo de infección por ZIKV con capacidad de infectar para infectar cerebro, permitir la sobrevida más allá del 30 DPI y causar alteraciones comportamentales leves relacionadas con la actividad cognitiva, pero no con la motora o motivacional, asociada a una fuerte subregulación de genes relacionados con la sinapsis y con funciones estructurales en axones, dendritas y recubrimiento de mielina. En conjunto, estos datos proporcionan nueva información sobre los genes y las posibles vías moleculares que se ven alteradas en un proceso de infección leve y sugiere genes candidatos para futuras investigaciones. (Texto tomado de la fuente)spa
dc.description.abstractThe Zika virus (ZIKV) is an arbovirus responsible for the "Congenital Zika Syndrome," associated with various neurodevelopmental disorders (NDDs), where microcephaly is one of the most severe manifestations. Milder NDDs, including autism spectrum disorders and delays in neuropsychomotor and language development, may go unnoticed in neonates, resulting in social and academic challenges. Murine models of ZIKV infection replicate motor and cognitive defects reported in humans, assessable through behavioural devices for subsequent comparison with gene expression profiles, valuable in characterizing ZIKV-induced NDDs. This study aimed to identify genes associated with behavioral changes in Zika virus infection in juvenile BALB/c mice. Mice were subcutaneously inoculated with ZIKV (MH544701.2) at 1 day postnatal (DPN) with a dose of 6.8x103 PFU. Virus presence in cerebellum and cortex was verified and quantified at 10 and 30 days post-infection (DPI) using RT-qPCR. Potential neurobehavioral deficits were evaluated at 30 DPI through T-maze, rotarod, and open-field tests, followed by sequencing to obtain lists of differentially expressed genes (DEGs) and functional categories through gene set enrichment analysis (GSEA). A ZIKV infection model was established with the ability to infect the brain, allow survival beyond 30 DPI, and induce mild behavioral alterations related to cognitive activity but not motor or motivational aspects. This was associated with a strong downregulation of genes related to synapses and structural functions in axons, dendrites, and myelin sheaths. Overall, these data provide new insights into genes and potential molecular pathways altered in a mild infection process, suggesting candidate genes for future investigations. (Texto tomado de la fuente)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Bioquímicaspa
dc.description.researchareaBiología celular y patogénesis de los agentes emergentes y reemergentes causantes de enfermedades transmisibles.spa
dc.format.extent89 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86491
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesE. B. Hayes, “Zika virus outside Africa,” Emerging Infectious Diseases, vol. 15, no. 9. Centers for Disease Control and Prevention, pp. 1347–1350, Sep. 2009, doi: 10.3201/eid1509.090442.spa
dc.relation.referencesM. Hennessey, M. Fischer, and J. E. Staples, “Zika Virus Spreads to New Areas — Region of the Americas, May 2015–January 2016,” MMWR. Morb. Mortal. Wkly. Rep., vol. 65, no. 3, pp. 1–4, Jan. 2019, doi: 10.15585/MMWR.MM6503E1ER.spa
dc.relation.referencesP. Pielnaa et al., “Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development,” Virology, vol. 543, pp. 34–42, Apr. 2020, doi: 10.1016/J.VIROL.2020.01.015.spa
dc.relation.referencesPAHO/WHO, “PLISA Plataforma de Información en Salud para las Américas. Zika - Reporte de Casos Acumulados,” 2023. https://www3.paho.org/data/index.php/es/temas/zika-weekly-es/ (accessed Dec. 14, 2023).spa
dc.relation.referencesS. Gasco and M. Á. Muñoz-Fernández, “A review on the current knowledge on zikv infection and the interest of organoids and nanotechnology on development of effective therapies against zika infection,” International Journal of Molecular Sciences, vol. 22, no. 1. MDPI AG, pp. 1–13, Jan. 01, 2020, doi: 10.3390/ijms22010035spa
dc.relation.referencesG. W. . Dick, “Zika virus (II). Pathogenicity and physical properties,” Trans. R. Soc. Trop. Med. Hyg., vol. 46, no. 5, pp. 521–534, Sep. 1952, doi: 10.1016/0035-9203(52)90043-6.spa
dc.relation.referencesF. Noorbakhsh et al., “Zika Virus Infection, Basic and Clinical Aspects: A Review Article,” Iran. J. Public Health, vol. 48, no. 1, pp. 20–31, May 2019, doi: 10.18502/ijph.v48i1.779.spa
dc.relation.referencesM. E. Rice et al., “ Vital Signs: Zika-Associated Birth Defects and Neurodevelopmental Abnormalities Possibly Associated with Congenital Zika Virus Infection — U.S. Territories and Freely Associated States, 2018 ,” MMWR. Morb. Mortal. Wkly. Rep., vol. 67, no. 31, p. 858, Aug. 2018, doi: 10.15585/mmwr.mm6731e1spa
dc.relation.referencesS. Cauchemez et al., “Association between Zika virus and microcephaly in French Polynesia, 2013-15: A retrospective study,” Lancet, vol. 387, no. 10033, pp. 2125–2132, May 2016, doi: 10.1016/S0140-6736(16)00651-6/ATTACHMENT/068A34FA-E44F-414A-9486-1BD82EC6E75A/MMC1.PDF.spa
dc.relation.referencesK. Nielsen-Saines et al., “Delayed childhood neurodevelopment and neurosensory alterations in the second year of life in a prospective cohort of ZIKV-exposed children.,” Nat. Med., vol. 25, no. 8, p. 1213, Aug. 2019, doi: 10.1038/S41591-019-0496-1.spa
dc.relation.referencesV. van der Linden et al., “Description of 13 Infants Born During October 2015–January 2016 With Congenital Zika Virus Infection Without Microcephaly at Birth — Brazil,” MMWR. Morb. Mortal. Wkly. Rep., vol. 65, no. 47, pp. 1343–1348, Dec. 2019, doi: 10.15585/MMWR.MM6547E2.spa
dc.relation.referencesS. B. Mulkey et al., “Neurodevelopmental Abnormalities in Children with in Utero Zika Virus Exposure Without Congenital Zika Syndrome,” JAMA Pediatr., vol. 174, no. 3, pp. 269–276, Mar. 2020, doi: 10.1001/JAMAPEDIATRICS.2019.5204.spa
dc.relation.referencesA. Grant et al., “Zika Virus Targets Human STAT2 to Inhibit Type I Interferon Signaling,” Cell Host Microbe, vol. 19, no. 6, pp. 882–890, Jun. 2016, doi: 10.1016/J.CHOM.2016.05.009.spa
dc.relation.referencesJ. J. Miner et al., “Zika virus infection in mice causes pan-uveitis with shedding of virus in tears,” Cell Rep., vol. 16, no. 12, p. 3208, Sep. 2016, doi: 10.1016/J.CELREP.2016.08.079.spa
dc.relation.referencesL. J. Yockey et al., “Vaginal Exposure to Zika Virus during Pregnancy Leads to Fetal Brain Infection,” Cell, vol. 166, no. 5, p. 1247, Aug. 2016, doi: 10.1016/J.CELL.2016.08.004.spa
dc.relation.referencesH. Li et al., “Zika Virus Infects Neural Progenitors in the Adult Mouse Brain and Alters Proliferation,” Cell Stem Cell, vol. 19, no. 5, p. 593, Nov. 2016, doi: 10.1016/J.STEM.2016.08.005.spa
dc.relation.referencesH. M. Lazear et al., “A Mouse Model of Zika Virus Pathogenesis,” Cell Host Microbe, vol. 19, no. 5, pp. 720–730, May 2016, doi: 10.1016/J.CHOM.2016.03.010.spa
dc.relation.referencesK. Laiton-Donato et al., “Complete Genome Sequence of a Colombian Zika Virus Strain Obtained from BALB/c Mouse Brain after Intraperitoneal Inoculation,” Microbiol. Resour. Announc., vol. 8, no. 46, pp. 2–4, 2019, doi: 10.1128/mra.01719-18.spa
dc.relation.referencesA. C. Rengifo et al., “Morphological and Molecular Changes in the Cortex and Cerebellum of Immunocompetent Mice Infected with Zika Virus,” Viruses, vol. 15, no. 8, p. 1632, Aug. 2023, doi: 10.3390/V15081632/S1.spa
dc.relation.referencesC. P. Figueiredo et al., “Zika virus replicates in adult human brain tissue and impairs synapses and memory in mice,” Nat. Commun. 2019 101, vol. 10, no. 1, pp. 1–16, Sep. 2019, doi: 10.1038/s41467-019-11866-7.spa
dc.relation.referencesA. M. Paul et al., “Congenital Zika Virus Infection in Immunocompetent Mice Causes Postnatal Growth Impediment and Neurobehavioral Deficits,” Front. Microbiol., vol. 9, no. AUG, p. 2028, Aug. 2018, doi: 10.3389/fmicb.2018.02028.spa
dc.relation.referencesM. Marín-Padilla, “Development of the human cerebral cortex. A cytoarchitectonic theory,” Rev. Neurol., vol. 29, no. 3, pp. 208–216, Aug. 1999, doi: 10.33588/rn.2903.99148.spa
dc.relation.referencesJ. Silbereis et al., “Astroglial cells in the external granular layer are precursors of cerebellar granule neurons in neonates,” Mol. Cell. Neurosci., vol. 44, no. 4, pp. 362–373, Aug. 2010, doi: 10.1016/J.MCN.2010.05.001.spa
dc.relation.referencesB. Martynoga, D. Drechsel, and F. Guillemot, “Molecular Control of Neurogenesis: A View from the Mammalian Cerebral Cortex,” Cold Spring Harb. Perspect. Biol., vol. 4, no. 10, Oct. 2012, doi: 10.1101/CSHPERSPECT.A008359.spa
dc.relation.referencesB. D. Semple, K. Blomgren, K. Gimlin, D. M. Ferriero, and L. J. Noble-Haeusslein, “Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species,” Prog. Neurobiol., vol. 0, p. 1, Jul. 2013, doi: 10.1016/J.PNEUROBIO.2013.04.001.spa
dc.relation.referencesJ. M. Delgado-García, “Modelos experimentales en ratones silvestres y transgénicos para el estudio de funciones motoras y cognitivas,” Rev. Neurol., vol. 41, no. S01, p. S163, 2005, doi: 10.33588/rn.41s01.2005374.spa
dc.relation.referencesM. R. Duffy et al., “Zika Virus Outbreak on Yap Island, Federated States of Micronesia,” https://doi.org/10.1056/NEJMoa0805715, vol. 360, no. 24, pp. 2536–2543, Jun. 2009, doi: 10.1056/NEJMOA0805715.spa
dc.relation.referencesC. Y. P. Lee and L. F. P. Ng, “Zika virus: from an obscurity to a priority,” Microbes Infect., vol. 20, no. 11–12, pp. 635–645, Dec. 2018, doi: 10.1016/J.MICINF.2018.02.009.spa
dc.relation.referencesJ. Mlakar et al., “Zika Virus Associated with Microcephaly,” N. Engl. J. Med., vol. 374, no. 10, pp. 951–958, Mar. 2016, doi: 10.1056/nejmoa1600651.spa
dc.relation.referencesPAHO/WHO, “Zika cases and congenital syndrome associated with Zika virus reported by countries and territories in the Americas, 2015 - 2018 Cumulative cases,” Washington, D.C, Jan. 2018. Accessed: Jun. 05, 2022. [Online]. Available: https://www3.paho.org/hq/index.php?option=com_docman&view=download&category_slug=cumulative-cases-pdf-8865&alias=43296-zika-cumulative-cases-4-january-2018-296&Itemid=270&lang=en.spa
dc.relation.referencesINS-SIVIGILA, “Vigilancia integrada de arbovirus, Colombia 2021- 2022,” Bogotá, 2022. doi: 10.33610/23576189.2022.12.spa
dc.relation.referencesINS-SIVIGILA, “Boletín epidemiologico semanal. Semana epidemiologica 48 26 de nov. al 2 de dic de 2023,” Inf. epidemiológico Nac., pp. 1–36, 2023, doi: 10.33610/01229907.v22n7.spa
dc.relation.referencesD. A. Freitas et al., “Congenital Zika syndrome: A systematic review,” PLoS One, vol. 15, no. 12, Dec. 2020, doi: 10.1371/JOURNAL.PONE.0242367.spa
dc.relation.referencesA. Q. C. Araujo, M. T. T. Silva, and A. P. Q. C. Araujo, “Zika virus-associated neurological disorders: a review,” Brain, vol. 139, no. 8, pp. 2122–2130, Aug. 2016, doi: 10.1093/BRAIN/AWW158.spa
dc.relation.referencesM. L. Ospina et al., “Zika Virus Disease and Pregnancy Outcomes in Colombia,” N. Engl. J. Med., vol. 383, no. 6, pp. 537–545, Aug. 2020, doi: 10.1056/nejmoa1911023.spa
dc.relation.referencesM. A. Johansson, L. Mier-y-Teran-Romero, J. Reefhuis, S. M. Gilboa, and S. L. Hills, “Zika and the Risk of Microcephaly,” N. Engl. J. Med., vol. 375, no. 1, pp. 1–4, Jul. 2016, doi: 10.1056/NEJMP1605367/SUPPL_FILE/NEJMP1605367_DISCLOSURES.PDF.spa
dc.relation.referencesM. R. Reynolds et al., “Vital Signs: Update on Zika Virus–Associated Birth Defects and Evaluation of All U.S. Infants with Congenital Zika Virus Exposure — U.S. Zika Pregnancy Registry, 2016,” Morb. Mortal. Wkly. Rep., vol. 66, no. 13, p. 366, Apr. 2017, doi: 10.15585/MMWR.MM6613E1.spa
dc.relation.referencesS. Reid, H. Thompson, and K. T. Thakur, “Nervous System Infections and the Global Traveler,” Semin. Neurol., vol. 38, no. 02, pp. 247–262, May 2018, doi: 10.1055/S-0038-1649335.spa
dc.relation.referencesM. E. L. Moreira et al., “Neurodevelopment in Infants Exposed to Zika Virus In Utero,” N. Engl. J. Med., vol. 379, no. 24, p. 2377, Dec. 2018, doi: 10.1056/NEJMC1800098.spa
dc.relation.referencesP. M. Peçanha et al., “Neurodevelopment of children exposed intra-uterus by Zika virus: A case series,” PLoS One, vol. 15, no. 2, p. e0229434, 2020, doi: 10.1371/JOURNAL.PONE.0229434.spa
dc.relation.referencesF. Azouz, K. Arora, K. Krause, V. R. Nerurkar, and M. Kumar, “Integrated MicroRNA and mRNA profiling in zika virus-infected neurons,” Viruses, vol. 11, no. 2, Feb. 2019, doi: 10.3390/v11020162.spa
dc.relation.referencesPAHO/WHO, “Boletin Anual Arbovirosis 2022,” 2023. https://www3.paho.org/data/index.php/es/temas/indicadores-dengue/boletin-anual-arbovirosis-2022.html (accessed Dec. 13, 2023).spa
dc.relation.referencesJ. Dang et al., “Zika Virus Depletes Neural Progenitors in Human Cerebral Organoids through Activation of the Innate Immune Receptor TLR3,” Cell Stem Cell, vol. 19, no. 2, pp. 258–265, Aug. 2016, doi: 10.1016/J.STEM.2016.04.014/ATTACHMENT/A03E1AAA-801A-486C-82C2-329BBC28B849/MMC3.XLSX.spa
dc.relation.referencesP. P. Garcez et al., “Zika virus: Zika virus impairs growth in human neurospheres and brain organoids,” Science (80-. )., vol. 352, no. 6287, pp. 816–818, May 2016, doi: 10.1126/SCIENCE.AAF6116/SUPPL_FILE/PAPV2.PDF.spa
dc.relation.referencesH. Tang et al., “Zika virus infects human cortical neural progenitors and attenuates their growth,” Cell Stem Cell, vol. 18, no. 5, pp. 587–590, May 2016, doi: 10.1016/J.STEM.2016.02.016/ATTACHMENT/BFC7BD43-6F4D-42A6-B218-D53B655255B0/MMC2.XLSX.spa
dc.relation.referencesQ. Shao et al., “Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage,” Development, vol. 143, no. 22, pp. 4127–4136, Nov. 2016, doi: 10.1242/DEV.143768.spa
dc.relation.referencesK.-Y. Wu et al., “Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice,” Cell Res. 2016 266, vol. 26, no. 6, pp. 645–654, May 2016, doi: 10.1038/cr.2016.58.spa
dc.relation.referencesR. M. J. Deacon, “Measuring Motor Coordination in Mice,” J. Vis. Exp., no. 75, p. 2609, 2013, doi: 10.3791/2609.spa
dc.relation.referencesR. M. J. Deacon and J. N. P. Rawlins, “T-maze alternation in the rodent,” Nat. Protoc., vol. 1, no. 1, pp. 7–12, 2006, doi: 10.1038/nprot.2006.2.spa
dc.relation.referencesK. J. L. Osmon, M. Vyas, E. Woodley, P. Thompson, and J. S. Walia, “Battery of Behavioral Tests Assessing General Locomotion, Muscular Strength, and Coordination in Mice,” J. Vis. Exp., vol. 2018, no. 131, p. 55491, Jan. 2018, doi: 10.3791/55491spa
dc.relation.referencesJ. Rivera et al., “Inmunorreacción de la infección por el virus de Zika en retina de ratones,” Biomédica, 2019. https://revistabiomedica.org/index.php/biomedica/article/view/4402/4241 (accessed May 02, 2022).spa
dc.relation.referencesJ. Barbeito-Andrés et al., “Congenital Zika syndrome is associated with maternal protein malnutrition,” Sci. Adv., vol. 6, no. 2, Jan. 2020, doi: 10.1126/SCIADV.AAW6284.spa
dc.relation.referencesP. P. Garcez et al., “Zika virus disrupts molecular fingerprinting of human neurospheres,” Sci. Rep., vol. 7, Jan. 2017, doi: 10.1038/SREP40780.spa
dc.relation.referencesN. Liscovitch and G. Chechik, “Specialization of Gene Expression during Mouse Brain Development,” PLOS Comput. Biol., vol. 9, no. 9, p. e1003185, Sep. 2013, doi: 10.1371/JOURNAL.PCBI.1003185.spa
dc.relation.referencesS. Dutta and P. Sengupta, “Men and mice: Relating their ages,” Life Sci., vol. 152, pp. 244–248, May 2016, doi: 10.1016/J.LFS.2015.10.025.spa
dc.relation.referencesH. J. Kang et al., “Spatiotemporal transcriptome of the human brain,” Nature, vol. 478, no. 7370, p. 483, Oct. 2011, doi: 10.1038/NATURE10523.spa
dc.relation.referencesD. Paul and R. Bartenschlager, “Flaviviridae Replication Organelles: Oh, What a Tangled Web We Weave,” Annu. Rev. Virol., vol. 2, pp. 289–310, Nov. 2015, doi: 10.1146/annurev-virology-100114-055007.spa
dc.relation.referencesR. Hamel et al., “Biology of Zika Virus Infection in Human Skin Cells,” J. Virol., vol. 89, no. 17, pp. 8880–8896, Sep. 2015, doi: 10.1128/jvi.00354-15.spa
dc.relation.referencesB. H. Song, S. I. Yun, M. Woolley, and Y. M. Lee, “Zika virus: History, epidemiology, transmission, and clinical presentation,” J. Neuroimmunol., vol. 308, pp. 50–64, 2017, doi: 10.1016/j.jneuroim.2017.03.001.spa
dc.relation.referencesR. Basu and E. Tumban, “Zika Virus on a Spreading Spree: what we now know that was unknown in the 1950’s,” Virol. J., vol. 13, no. 1, pp. 1–9, Oct. 2016, doi: 10.1186/S12985-016-0623-2/FIGURES/5.spa
dc.relation.referencesA. D. Haddow et al., “Genetic Characterization of Zika Virus Strains: Geographic Expansion of the Asian Lineage,” PLoS Negl. Trop. Dis., vol. 6, no. 2, p. e1477, Feb. 2012, doi: 10.1371/JOURNAL.PNTD.0001477.spa
dc.relation.referencesA. R. Salehuddin et al., “Zika virus infection and its emerging trends in Southeast Asia,” Asian Pac. J. Trop. Med., vol. 10, no. 3, pp. 211–219, Mar. 2017, doi: 10.1016/J.APJTM.2017.03.002.spa
dc.relation.referencesG. Carteaux et al., “Zika Virus Associated with Meningoencephalitis,” https://doi.org/10.1056/NEJMc1602964, vol. 374, no. 16, pp. 1595–1596, Apr. 2016, doi: 10.1056/NEJMC1602964.spa
dc.relation.referencesP. Brasil et al., “Zika Virus Infection in Pregnant Women in Rio de Janeiro,” N. Engl. J. Med., vol. 375, no. 24, pp. 2321–2334, Dec. 2016, doi: 10.1056/NEJMOA1602412/SUPPL_FILE/NEJMOA1602412_DISCLOSURES.PDF.spa
dc.relation.referencesL. S. Muñoz, M. A. Garcia, E. Gordon-Lipkin, B. Parra, and C. A. Pardo, “Emerging Viral Infections and Their Impact on the Global Burden of Neurological Disease,” Semin Neurol, vol. 38, pp. 163–175, 2018, doi: 10.1055/s-0038-1647247.spa
dc.relation.referencesM. Martínez-Sellés, “Editorial commentary: Cardiovascular events after Zika virus infection,” Trends Cardiovasc. Med., vol. 32, no. 1, pp. 59–60, Jan. 2022, doi: 10.1016/J.TCM.2020.11.008.spa
dc.relation.referencesG. W. A. Dick, S. F. Kitchen, and A. J. Haddow, “Zika Virus (I). Isolations and serological specificity,” Trans. R. Soc. Trop. Med. Hyg., vol. 46, no. 5, pp. 509–520, Sep. 1952, doi: 10.1016/0035-9203(52)90042-4.spa
dc.relation.referencesF. N. MacNamara, “Zika virus : A report on three cases of human infection during an epidemic of jaundice in Nigeria,” Trans. R. Soc. Trop. Med. Hyg., vol. 48, no. 2, pp. 139–145, Mar. 1954, doi: 10.1016/0035-9203(54)90006-1.spa
dc.relation.referencesG. Morris, T. Barichello, B. Stubbs, C. A. Köhler, A. F. Carvalho, and M. Maes, “Zika Virus as an Emerging Neuropathogen: Mechanisms of Neurovirulence and Neuro-Immune Interactions,” Mol. Neurobiol. 2017 555, vol. 55, no. 5, pp. 4160–4184, Jun. 2017, doi: 10.1007/S12035-017-0635-Y.spa
dc.relation.referencesV. M. Cao-Lormeau et al., “Zika Virus, French Polynesia, South Pacific, 2013,” Emerg. Infect. Dis., vol. 20, no. 6, p. 1085, 2014, doi: 10.3201/EID2006.140138.spa
dc.relation.referencesL. Watrin, F. Ghawché, P. Larre, J. P. Neau, S. Mathis, and E. Fournier, “Guillain-Barré Syndrome (42 Cases) Occurring during a Zika Virus Outbreak in French Polynesia,” Med. (United States), vol. 95, no. 14, Apr. 2016, doi: 10.1097/MD.0000000000003257.spa
dc.relation.referencesT. V. B. de Araújo et al., “Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: preliminary report of a case-control study,” Lancet Infect. Dis., vol. 16, no. 12, pp. 1356–1363, Dec. 2016, doi: 10.1016/S1473-3099(16)30318-8/ATTACHMENT/8D50372D-779F-483B-8F44-F24C67C1E0C9/MMC1.PDF.spa
dc.relation.referencesW. K. de Oliveira, G. V. A. de França, E. H. Carmo, B. B. Duncan, R. de Souza Kuchenbecker, and M. I. Schmidt, “Infection-related microcephaly after the 2015 and 2016 Zika virus outbreaks in Brazil: a surveillance-based analysis,” Lancet, vol. 390, no. 10097, pp. 861–870, Aug. 2017, doi: 10.1016/S0140-6736(17)31368-5/ATTACHMENT/B71BC16F-F814-4987-B44B-F8C6D3988903/MMC1.PDF.spa
dc.relation.referencesW. Kleber de Oliveira et al., “Increase in Reported Prevalence of Microcephaly in Infants Born to Women Living in Areas with Confirmed Zika Virus Transmission During the First Trimester of Pregnancy - Brazil, 2015,” MMWR. Morb. Mortal. Wkly. Rep., vol. 65, no. 9, pp. 242–247, Mar. 2016, doi: 10.15585/MMWR.MM6509E2.spa
dc.relation.referencesF. Marinho et al., “Microcefalia en Brasil: prevalencia y caracterización de casos a partir del Sistema de Informaciones sobre Nacidos Vivos (Sinasc), 2000-2015,” Epidemiol. e Serviços Saúde, vol. 25, no. 4, pp. 701–712, Sep. 2016, doi: 10.5123/S1679-49742016000400004.spa
dc.relation.referencesA. S. Oliveira Melo, G. Malinger, R. Ximenes, P. O. Szejnfeld, S. Alves Sampaio, and A. M. Bispo De Filippis, “Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: tip of the iceberg?,” Ultrasound Obstet. Gynecol., vol. 47, no. 1, pp. 6–7, Jan. 2016, doi: 10.1002/UOG.15831.spa
dc.relation.referencesM. Yeasmin, M. M. A. Molla, H. M. A. Al Masud, and K. M. Saif-Ur-Rahman, “Safety and immunogenicity of Zika virus vaccine: A systematic review of clinical trials,” Rev. Med. Virol., vol. 33, no. 1, p. 33, Jan. 2023, doi: 10.1002/RMV.2385.spa
dc.relation.referencesP. M. S. Castanha and E. T. A. Marques, “Vaccine development during global epidemics: the Zika experience,” Lancet Infect. Dis., vol. 20, no. 9, pp. 998–999, Sep. 2020, doi: 10.1016/S1473-3099(20)30360-1.spa
dc.relation.referencesE. Marbán-Castro, A. Goncé, V. Fumadó, L. Romero-Acevedo, and A. Bardají, “Zika virus infection in pregnant women and their children: A review,” Eur. J. Obstet. Gynecol. Reprod. Biol., vol. 265, pp. 162–168, Oct. 2021, doi: 10.1016/J.EJOGRB.2021.07.012.spa
dc.relation.referencesA. Higuera and J. D. Ramírez, “Molecular epidemiology of dengue, yellow fever, Zika and Chikungunya arboviruses: An update,” Acta Trop., vol. 190, pp. 99–111, 2019, doi: 10.1016/j.actatropica.2018.11.010spa
dc.relation.referencesC. V. Portilla Cabrera and J. J. Selvaraj, “Geographic shifts in the bioclimatic suitability for Aedes aegypti under climate change scenarios in Colombia,” Heliyon, vol. 6, no. 1, Jan. 2020, doi: 10.1016/j.heliyon.2019.e03101.spa
dc.relation.referencesF. C. Coelho et al., “Higher incidence of Zika in adult women than adult men in Rio de Janeiro suggests a significant contribution of sexual transmission from men to women,” Int. J. Infect. Dis., vol. 51, pp. 128–132, Oct. 2016, doi: 10.1016/J.IJID.2016.08.023/ATTACHMENT/9A00DB06-6A12-458F-89A7-C4655720F143/MMC1.DOCX.spa
dc.relation.referencesO. Pacheco et al., “Zika Virus Disease in Colombia — Preliminary Report,” N. Engl. J. Med., vol. 383, no. 6, p. e44, Aug. 2020, doi: 10.1056/NEJMOA1604037/SUPPL_FILE/NEJMOA1604037_DISCLOSURES.PDF.spa
dc.relation.referencesS. Masmejan et al., “Zika Virus,” Pathog. 2020, Vol. 9, Page 898, vol. 9, no. 11, p. 898, Oct. 2020, doi: 10.3390/PATHOGENS9110898.spa
dc.relation.referencesL. Pomar, D. Musso, G. Malinger, M. Vouga, A. Panchaud, and D. Baud, “Zika virus during pregnancy: From maternal exposure to congenital Zika virus syndrome,” Prenat. Diagn., vol. 39, no. 6, pp. 420–430, May 2019, doi: 10.1002/PD.5446.spa
dc.relation.referencesS. A. Rasmussen and D. J. Jamieson, “Teratogen update: Zika virus and pregnancy,” Birth Defects Res., vol. 112, no. 15, pp. 1139–1149, Sep. 2020, doi: 10.1002/BDR2.1781.spa
dc.relation.referencesA. Benavides-Lara et al., “Zika Virus–Associated Birth Defects, Costa Rica, 2016–2018,” Emerg. Infect. Dis., vol. 27, no. 2, p. 360, Feb. 2021, doi: 10.3201/EID2702.202047.spa
dc.relation.referencesB. Hoen et al., “Pregnancy Outcomes after ZIKV Infection in French Territories in the Americas,” N. Engl. J. Med., vol. 378, no. 11, pp. 985–994, Mar. 2018, doi: 10.1056/NEJMOA1709481/SUPPL_FILE/NEJMOA1709481_DISCLOSURES.PDF.spa
dc.relation.referencesS. H. Leisher et al., “Systematic review: fetal death reporting and risk in Zika-affected pregnancies,” Trop. Med. Int. Heal., vol. 26, no. 2, pp. 133–145, Feb. 2021, doi: 10.1111/TMI.13522.spa
dc.relation.referencesD. Musso, A. I. Ko, and D. Baud, “Zika Virus Infection — After the Pandemic,” N. Engl. J. Med., vol. 381, no. 15, pp. 1444–1457, Oct. 2019, doi: 10.1056/NEJMRA1808246/SUPPL_FILE/NEJMRA1808246_DISCLOSURES.PDF.spa
dc.relation.referencesD. Tappe et al., “Cytokine kinetics of Zika virus-infected patients from acute to reconvalescent phase,” Med. Microbiol. Immunol., vol. 205, no. 3, p. 269, Jun. 2016, doi: 10.1007/S00430-015-0445-7.spa
dc.relation.referencesC. B. Coyne and H. M. Lazear, “Zika virus — reigniting the TORCH,” Nat. Rev. Microbiol. 2016 1411, vol. 14, no. 11, pp. 707–715, Aug. 2016, doi: 10.1038/nrmicro.2016.125.spa
dc.relation.referencesE. M. Venceslau, J. P. Guida, E. Amaral, J. L. P. Modena, and M. L. Costa, “Characterization of Placental Infection by Zika Virus in Humans: A Review of the Literature,” Rev. Bras. Ginecol. e Obs., vol. 42, no. 9, pp. 577–585, Oct. 2020, doi: 10.1055/S-0040-1712126.spa
dc.relation.referencesI. Filges et al., “Strømme Syndrome Is a Ciliary Disorder Caused by Mutations in CENPF,” Hum. Mutat., vol. 37, no. 4, pp. 359–363, Apr. 2016, doi: 10.1002/HUMU.22960.spa
dc.relation.referencesA. M. Waters et al., “The kinetochore protein, CENPF, is mutated in human ciliopathy and microcephaly phenotypes,” J. Med. Genet., vol. 52, no. 3, pp. 147–156, Mar. 2015, doi: 10.1136/JMEDGENET-2014-102691/-/DC1.spa
dc.relation.referencesM. Venere, Y. G. Han, R. Bell, J. S. Song, A. Alvarez-Buylla, and R. Blelloch, “Sox1 marks an activated neural stem/progenitor cell in the hippocampus,” Development,vol. 139, no. 21, pp. 3938–3949, Nov. 2012, doi: 10.1242/DEV.081133.spa
dc.relation.referencesS. J. Arnold et al., “The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone,” Genes Dev., vol. 22, no. 18, pp. 2479–2484, Sep. 2008, doi: 10.1101/GAD.475408.spa
dc.relation.referencesL. Baala et al., “Homozygous silencing of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis,” Nat. Genet. 2007 394, vol. 39, no. 4, pp. 454–456, Mar. 2007, doi: 10.1038/ng1993.spa
dc.relation.referencesM. Van der Meer, A. Rolls, V. Baumans, B. Olivier, and L. F. M. Van Zutphen, “Use of score sheets for welfare assessment of transgenic mice,” http://dx.doi.org/10.1258/0023677011911859, vol. 35, no. 4, pp. 379–389, Oct. 2001, doi: 10.1258/0023677011911859.spa
dc.relation.referencesD. F. Kohn et al., “Guidelines for the Assessment and Management of Pain in Rodents and Rabbits.”spa
dc.relation.referencesE. A. Cepeda Prado, “Diferencias en la expresión de marcadores neuronales y no neuronales en cerebros de dos cepas de ratón adulto,” Pontificia Universidad Javeriana, Bogotá, 2003.spa
dc.relation.referencesK. A. Hamel and M. Cvetanovic, “Cerebellar Regional Dissection for Molecular Analysis,” J. Vis. Exp., vol. 2020, no. 166, pp. 1–13, Dec. 2020, doi: 10.3791/61922.spa
dc.relation.referencesG. M. J. Beaudoin et al., “Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex,” Nat. Protoc. 2012 79, vol. 7, no. 9, pp. 1741–1754, Aug. 2012, doi: 10.1038/nprot.2012.099.spa
dc.relation.referencesD. A. Álvarez-Díaz et al., “An updated RT-qPCR assay for the simultaneous detection and quantification of chikungunya, dengue and zika viruses,” Infect. Genet. Evol., vol. 93, p. 104967, Sep. 2021, doi: 10.1016/J.MEEGID.2021.104967.spa
dc.relation.referencesF. Hoffmann and La Roche, “Creating Standard Curves with Genomic DNA or Plasmid DNA Templates for Use in Quantitative PCR,” 2003. [Online]. Available: https://assets.thermofisher.com/TFS-Assets/LSG/Application-Notes/cms_042486.pdf.spa
dc.relation.referencesK. C. Montgomery, “Exploratory behavior and its relation to spontaneous alternation in a series of maze exposures,” J. Comp. Physiol. Psychol., vol. 45, no. 1, pp. 50–57, Feb. 1952, doi: 10.1037/H0053570.spa
dc.relation.referencesR. d’Isa, G. Comi, and L. Leocani, “Apparatus design and behavioural testing protocol for the evaluation of spatial working memory in mice through the spontaneous alternation T-maze,” Sci. Reports 2021 111, vol. 11, no. 1, pp. 1–13, Oct. 2021, doi: 10.1038/s41598-021-00402-7.spa
dc.relation.referencesR. Lalonde, “The neurobiological basis of spontaneous alternation,” Neurosci. Biobehav. Rev., vol. 26, no. 1, pp. 91–104, Jan. 2002, doi: 10.1016/S0149-7634(01)00041-0.spa
dc.relation.referencesJ. Jurado-Arjona, A. Rodríguez-Matellán, J. Ávila, and F. Hernández, “GSK3β overexpression driven by GFAP promoter improves rotarod performance,” Brain Res., vol. 1712, pp. 47–54, Jun. 2019, doi: 10.1016/J.BRAINRES.2019.01.040.spa
dc.relation.referencesE. D’Angelo, “Physiology of the cerebellum,” Handb. Clin. Neurol., vol. 154, pp. 85–108, Jan. 2018, doi: 10.1016/B978-0-444-63956-1.00006-0.spa
dc.relation.referencesInternational Mouse Phenotyping Consorcium, “Rotarod Protocol,” Rotarod HMGU_ROT_001. https://www.mousephenotype.org/impress/ProcedureInfo?action=list&procID=168 (accessed Jan. 12, 2024).spa
dc.relation.referencesM. L. Seibenhener and M. C. Wooten, “Use of the Open Field Maze to Measure Locomotor and Anxiety-like Behavior in Mice,” J. Vis. Exp., no. 96, p. 52434, Feb. 2015, doi: 10.3791/52434.spa
dc.relation.referencesL. R. Watson J, BakerT, Bell S, Gann A, Levine, Biologia Molecular del gen, 5 edición. Editorial Médica Panamericana, 2008.spa
dc.relation.referencesV. Schultz et al., “Zika Virus Infection Leads to Demyelination and Axonal Injury in Mature CNS Cultures,” Viruses, vol. 13, no. 1, Jan. 2021, doi: 10.3390/V13010091.spa
dc.relation.referencesS. L. Cumberworth et al., “Zika virus tropism and interactions in myelinating neural cell cultures: CNS cells and myelin are preferentially affected,” Acta Neuropathol. Commun., vol. 5, no. 1, p. 50, Jun. 2017, doi: 10.1186/S40478-017-0450-8/FIGURES/2.spa
dc.relation.referencesJ. L. Salzer and B. Zalc, “Myelination,” Curr. Biol., vol. 26, no. 20, pp. R971–R975, Oct. 2016, doi: 10.1016/j.cub.2016.07.074.spa
dc.relation.referencesM. García-Montes and I. Crespo, “La mielinización como un factor modulador de los circuitos de memoria,” Rev. Neurol., vol. 76, no. 3, p. 101, 2023, doi: 10.33588/RN.7603.2022325.spa
dc.relation.referencesM. C. Ford et al., “Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing,” Nat. Commun., vol. 6, Aug. 2015, doi: 10.1038/NCOMMS9073.spa
dc.relation.referencesS. Moore et al., “A role of oligodendrocytes in information processing,” Nat. Commun., vol. 11, no. 1, Dec. 2020, doi: 10.1038/S41467-020-19152-7.spa
dc.relation.referencesM. Mercado et al., “Discordant Clinical Outcomes in a Monozygotic Dichorionic-Diamniotic Twin Pregnancy with Probable Zika Virus Exposure. Case Report,” Trop. Med. Infect. Dis. 2020, Vol. 5, Page 188, vol. 5, no. 4, p. 188, Dec. 2020, doi: 10.3390/TROPICALMED5040188.spa
dc.relation.referencesN. Arora, Y. Sadovsky, T. S. Dermody, and C. B. Coyne, “Microbial Vertical Transmission during Human Pregnancy,” Cell Host Microbe, vol. 21, no. 5, pp. 561–567, 2017, doi: 10.1016/j.chom.2017.04.007.spa
dc.relation.referencesI. K. Sariyer et al., “Suppression of Zika Virus Infection in the Brain by the Antiretroviral Drug Rilpivirine,” Mol. Ther., vol. 27, no. 12, p. 2067, Dec. 2019, doi: 10.1016/J.YMTHE.2019.10.006.spa
dc.relation.referencesG. Hageman and J. Nihom, “Fetuses and infants with Amyoplasia congenita in congenital Zika syndrome: The evidence of a viral cause. A narrative review of 144 cases,” Eur. J. Paediatr. Neurol., vol. 42, pp. 1–14, Jan. 2023, doi: 10.1016/J.EJPN.2022.11.002.spa
dc.relation.referencesD. Degrandi et al., “Extensive Characterization of IFN-Induced GTPases mGBP1 to mGBP10 Involved in Host Defense,” J. Immunol., vol. 179, no. 11, pp. 7729–7740, Dec. 2007, doi: 10.4049/JIMMUNOL.179.11.7729.spa
dc.relation.referencesM. Miyashita, H. Oshiumi, M. Matsumoto, and T. Seya, “DDX60, a DEXD/H Box Helicase, Is a Novel Antiviral Factor Promoting RIG-I-Like Receptor-Mediated Signaling,” Mol. Cell. Biol., vol. 31, no. 18, p. 3802, Sep. 2011, doi: 10.1128/MCB.01368-10.spa
dc.relation.referencesD. Szappanos et al., “The RNA helicase DDX3X is an essential mediator of innate antimicrobial immunity,” PLoS Pathog., vol. 14, no. 11, Nov. 2018, doi: 10.1371/JOURNAL.PPAT.1007397.spa
dc.relation.referencesS. Kakuta, S. Shibata, and Y. Iwakura, “Genomic Structure of the Mouse 2’,5’-Oligoadenylate Synthetase Gene Family,” https://home.liebertpub.com/jir, vol. 22, no. 9, pp. 981–993, Jul. 2004, doi: 10.1089/10799900260286696.spa
dc.relation.referencesO. Haller and G. Kochs, “Interferon-Induced Mx Proteins: Dynamin-Like GTPases with Antiviral Activity,” Traffic, vol. 3, no. 10, pp. 710–717, Oct. 2002, doi: 10.1034/J.1600-0854.2002.31003.X.spa
dc.relation.referencesG. A. Taylor, “IRG proteins: key mediators of interferon-regulated host resistance to intracellular pathogens,” Cell. Microbiol., vol. 9, no. 5, pp. 1099–1107, May 2007, doi: 10.1111/J.1462-5822.2007.00916.X.spa
dc.relation.referencesA. S. da Costa, T. V. A. Fernandes, M. L. Bello, and T. L. F. de Souza, “Evaluation of potential MHC-I allele-specific epitopes in Zika virus proteins and the effects of mutations on peptide-MHC-I interaction studied using in silico approaches,” Comput. Biol. Chem., vol. 92, p. 107459, Jun. 2021, doi: 10.1016/J.COMPBIOLCHEM.2021.107459.spa
dc.relation.referencesL. J. Hernández-Sarmiento, J. F. Valdés-López, and S. Urcuqui-Inchima, “American-Asian- and African lineages of Zika virus induce differential pro-inflammatory and Interleukin 27-dependent antiviral responses in human monocytes,” Virus Res., vol. 325, p. 199040, Feb. 2023, doi: 10.1016/J.VIRUSRES.2023.199040.spa
dc.relation.referencesV. V. Costa et al., “N-Methyl-d-Aspartate (NMDA) Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection,” MBio, vol. 8, no. 2, Mar. 2017, doi: 10.1128/MBIO.00350-17.spa
dc.relation.referencesP. Simon, R. Dupuis, and J. Costentin, “Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions,” Behav. Brain Res., vol. 61, no. 1, pp. 59–64, Mar. 1994, doi: 10.1016/0166-4328(94)90008-6.spa
dc.relation.referencesN. S. Canteras, L. B. Resstel, L. J. Bertoglio, A. de Pádua Carobrez, and F. S. Guimarães, “Neuroanatomy of anxiety,” Curr. Top. Behav. Neurosci., vol. 2, pp. 77–96, 2010, doi: 10.1007/7854_2009_7/COVER.spa
dc.relation.referencesH. Kasai, H. Ucar, Y. Morimoto, F. Eto, and H. Okazaki, “Mechanical transmission at spine synapses: Short-term potentiation and working memory,” Curr. Opin. Neurobiol., vol. 80, p. 102706, Jun. 2023, doi: 10.1016/J.CONB.2023.102706.spa
dc.relation.referencesR. D. Terry et al., “Physical basis of cognitive alterations in alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment,” Ann. Neurol., vol. 30, no. 4, pp. 572–580, Oct. 1991, doi: 10.1002/ANA.410300410.spa
dc.relation.referencesJ. Kim and D. A. Hoffman, “Potassium Channels: Newly Found Players in Synaptic Plasticity,” Neuroscientist, vol. 14, no. 3, p. 276, Jun. 2008, doi: 10.1177/1073858408315041.spa
dc.relation.referencesH. Ucar et al., “Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis,” Nat. 2021 6007890, vol. 600, no. 7890, pp. 686–689, Nov. 2021, doi: 10.1038/s41586-021-04125-7.spa
dc.relation.referencesS. B. Chidambaram et al., “Dendritic spines: Revisiting the physiological role,” Prog. Neuro-Psychopharmacology Biol. Psychiatry, vol. 92, pp. 161–193, Jun. 2019, doi: 10.1016/J.PNPBP.2019.01.005.spa
dc.relation.referencesR. Roesler, M. B. Parent, R. T. LaLumiere, and C. K. McIntyre, “Amygdala-hippocampal interactions in synaptic plasticity and memory formation,” Neurobiol. Learn. Mem., vol. 184, Oct. 2021, doi: 10.1016/J.NLM.2021.107490.spa
dc.relation.referencesW. Xin and J. R. Chan, “Myelin plasticity: sculpting circuits in learning and memory,” Nat. Rev. Neurosci., vol. 21, no. 12, pp. 682–694, Dec. 2020, doi: 10.1038/S41583-020-00379-8.spa
dc.relation.referencesJ. C. Magee and C. Grienberger, “Synaptic Plasticity Forms and Functions,” https://doi.org/10.1146/annurev-neuro-090919-022842, vol. 43, pp. 95–117, Jul. 2020, doi: 10.1146/ANNUREV-NEURO-090919-022842.spa
dc.relation.referencesL. Rossi et al., “Intellectual Disability and Brain Creatine Deficit: Phenotyping of the Genetic Mouse Model for GAMT Deficiency,” Genes (Basel)., vol. 12, no. 8, Aug. 2021, doi: 10.3390/GENES12081201.spa
dc.relation.referencesA. Vezyroglou et al., “The Phenotypic Continuum of ATP1A3-Related Disorders,” Neurology, vol. 99, no. 14, p. e1511, Oct. 2022, doi: 10.1212/WNL.0000000000200927.spa
dc.relation.referencesA. Brashear, K. J. Sweadner, J. F. Cook, K. J. Swoboda, and L. Ozelius, “ATP1A3-Related Neurologic Disorders,” GeneReviews®, Feb. 2018, Accessed: Jan. 17, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK1115/.spa
dc.relation.referencesP. J. Menon et al., “Scoping Review on ADCY5‐Related Movement Disorders,” Mov. Disord. Clin. Pract., vol. 10, no. 7, p. 1048, Jul. 2023, doi: 10.1002/MDC3.13796.spa
dc.relation.referencesF. M. Hisama, J. Friedman, W. H. Raskind, and T. D. Bird, “ADCY5 Dyskinesia,” GeneReviews®, Jul. 2020, Accessed: Jan. 17, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK263441/.spa
dc.relation.referencesA. Ferrini, D. Steel, K. Barwick, and M. A. Kurian, “An Update on the Phenotype, Genotype and Neurobiology of ADCY5-Related Disease,” Mov. Disord., vol. 36, no. 5, pp. 1104–1114, May 2021, doi: 10.1002/MDS.28495.spa
dc.relation.referencesS. Lee et al., “Activation of HIPK2 Promotes ER Stress-Mediated Neurodegeneration in Amyotrophic Lateral Sclerosis,” Neuron, vol. 91, no. 1, p. 41, Jul. 2016, doi: 10.1016/J.NEURON.2016.05.021.spa
dc.relation.referencesJ. Zhang, Y. Shang, S. Kamiya, S. J. Kotowski, K. Nakamura, and E. J. Huang, “Loss of HIPK2 Protects Neurons from Mitochondrial Toxins by Regulating Parkin Protein Turnover,” J. Neurosci., vol. 40, no. 3, p. 557, Jan. 2020, doi: 10.1523/JNEUROSCI.2017-19.2019.spa
dc.relation.referencesM. Garza and A. L. Piquet, “Update in Autoimmune Movement Disorders: Newly Described Antigen Targets in Autoimmune and Paraneoplastic Cerebellar Ataxia,” Front. Neurol., vol. 12, p. 683048, Aug. 2021, doi: 10.3389/FNEUR.2021.683048.spa
dc.relation.referencesS. Mohammadi, M. Dolatshahi, and F. Rahmani, “Shedding light on thyroid hormone disorders and Parkinson disease pathology: mechanisms and risk factors,” J. Endocrinol. Invest., vol. 44, no. 1, pp. 1–13, Jan. 2021, doi: 10.1007/S40618-020-01314-5/METRICS.spa
dc.relation.referencesX. Qin, J. Chen, and T. Zhou, “22q11.2 deletion syndrome and schizophrenia,” Acta Biochim. Biophys. Sin. (Shanghai)., vol. 52, no. 11, pp. 1181–1190, Nov. 2020, doi: 10.1093/ABBS/GMAA113.spa
dc.relation.referencesA. Nishi and T. Shuto, “Potential for targeting dopamine/DARPP-32 signaling in neuropsychiatric and neurodegenerative disorders,” Expert Opin. Ther. Targets, vol. 21, no. 3, pp. 259–272, Mar. 2017, doi: 10.1080/14728222.2017.1279149.spa
dc.relation.referencesJ. A. Girault and A. C. Nairn, “DARPP-32 40 years later,” Adv. Pharmacol., vol. 90, pp. 67–87, Jan. 2021, doi: 10.1016/BS.APHA.2020.09.004.spa
dc.relation.referencesZ. Zhang et al., “Expression and structural analysis of human neuroligin 2 and neuroligin 3 implicated in autism spectrum disorders,” Front. Endocrinol. (Lausanne)., vol. 13, p. 1067529, Nov. 2022, doi: 10.3389/FENDO.2022.1067529/FULL.spa
dc.relation.referencesJ. C. Lui and J. Baron, “CNP-related Short and Tall Stature: A Close-knit Family of Growth Disorders,” J. Endocr. Soc., vol. 6, no. 6, pp. 1–2, Jun. 2022, doi: 10.1210/JENDSO/BVAC064.spa
dc.relation.referencesZ. Mi and S. H. Graham, “Role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury,” Ageing Res. Rev., vol. 86, p. 101856, Apr. 2023, doi: 10.1016/J.ARR.2023.101856.spa
dc.relation.referencesM. H. Kim, J. M. Gunnersen, and S. S. Tan, “Localized expression of the seizure-related gene SEZ-6 in developing and adult forebrains,” Mech. Dev., vol. 118, no. 1–2, pp. 171–174, Oct. 2002, doi: 10.1016/S0925-4773(02)00238-1.spa
dc.relation.referencesZ. L. Yu et al., “Febrile seizures are associated with mutation of seizure-related (SEZ) 6, a brain-specific gene,” J. Neurosci. Res., vol. 85, no. 1, pp. 166–172, Jan. 2007, doi: 10.1002/JNR.21103.spa
dc.relation.referencesK. M. Munro, A. Nash, M. Pigoni, S. F. Lichtenthaler, and J. M. Gunnersen, “Functions of the Alzheimer’s Disease Protease BACE1 at the Synapse in the Central Nervous System,” J. Mol. Neurosci., vol. 60, no. 3, p. 305, Nov. 2016, doi: 10.1007/S12031-016-0800-1.spa
dc.relation.referencesG. Benítez-King, L. Ortiz-López, S. Morales-Mulia, G. Jiménez-Rubio, G. Ramírez-Rodríguez, and I. Meza, “Phosphorylation-Dephosphorylation Imbalance of Cytoskeletal Associated Proteins in Neurodegenerative Diseases,” Recent Pat. CNS Drug Discov., vol. 1, no. 2, pp. 219–230, 2006, doi: 10.2174/157488906777452776.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.decsTrastornos del neurodesarrollospa
dc.subject.decsNeurodevelopmental disorderseng
dc.subject.decsNeurociencia cognitivaspa
dc.subject.decsCognitive neuroscienceeng
dc.subject.decsInfección por el virus Zikaspa
dc.subject.decsZika virus infectioneng
dc.subject.lembVirus del tumor murinospa
dc.subject.lembMouse mammary tumor viruseng
dc.subject.proposalModelo de infecciónspa
dc.subject.proposaldesordenes del neurodesarrollo (NDDs)spa
dc.subject.proposalExpresión diferencialspa
dc.subject.proposalEnriquecimiento funcionalspa
dc.subject.proposalTranscriptómicaspa
dc.subject.proposalInfection modeleng
dc.subject.proposalNeurodevelopmental disorders (NDDs)eng
dc.subject.proposalDifferential expressioneng
dc.subject.proposalFunctional enrichmenteng
dc.subject.proposalTranscriptomicseng
dc.subject.wikidataTranscriptómicaspa
dc.subject.wikidataTranscriptomeeng
dc.titleIdentificación de genes asociados a cambios neurocomportamentales por la infección con virus Zika en ratones BALB/cspa
dc.title.translatedIdentification of genes associated with neurobehavioral changes due to zika virus infection in BALB/c miceeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameInstituto Nacional de Saludspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014260488.2024.pdf
Tamaño:
2.39 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: