Modelado del VIH/SIDA : estrategias de control para la enfermedad

dc.contributor.advisorRuiz Vera, Jorge Mauricio
dc.contributor.authorJiménez Rubio, Harold Andrés
dc.date.accessioned2025-09-10T15:09:20Z
dc.date.available2025-09-10T15:09:20Z
dc.date.issued2025
dc.descriptionilustraciones (principalmente a colo), diagramas, gráficosspa
dc.description.abstractEn la presente tesis se describen, se estudian y analizan dos modelos matemáticos para estudiar la dinámica de la propagación del Virus de la Inmunodeficiencia Humana (VIH) en el organismo humano. El primer modelo estudia la dinámica de la propagación del virus sin el efecto de fármacos antirretrovirales, en base a lo anterior, se propone y se describe el segundo modelo que incluye el efecto de la combinación de dos terapias antirretrovirales en la dinámica del virus. En cuanto a los dos modelos, se lleva a cabo un análisis exhaustivo del comportamiento cualitativo de estos. Se prueba el buen planteamiento de los dos modelos, esto en el sentido de la positividad, existencia y unicidad de las soluciones, por medio de conjuntos invariantes. Además se derivan los dos estados de equilibrio para ambos modelos, el estado de equilibrio libre de enfermedad y del enfermo crónico; las condiciones de estabilidad local y global de los estados de equilibrio se determinan utilizando el número reproductivo básico, obtenido por el método de la matriz de próxima generación. También, se emplean simulaciones numéricas para evaluar y comparar el impacto que tiene el efecto de los tratamientos antirretrovirales respecto al no tratamiento tanto en la carga viral como en la recuperación de las células del sistema inmunológico. Los resultados muestran que un aumento en la eficacia de los inhibidores reduce significativamente el tiempo necesario para alcanzar el estado libre de enfermedad, destacando la importancia de combinar terapias para lograr mejores resultados clínicos. Finalmente se modifica el modelo con las dos terapias combinadas agregando un problema de control óptimo, con la novedad de que las eficacias de los fármacos antirretrovirales no son constantes si no que ahora son variables en el tiempo. Se concluye que la terapia con el control óptimo reduce la carga viral y aumenta el conteo de las células inmunitarias de la mejor forma posible, reduciendo al máximo el costo que incluye el tratamiento (Texto tomado de la fuente).spa
dc.description.abstractThis thesis describes, studies, and analyzes two mathematical models for examining the dynamics of Human Immunodeficiency Virus (HIV) propagation within the human body. The first model studies the dynamics of viral spread without the effect of antiretroviral drugs. Based on this, the second model is proposed and described, incorporating the effect of a combination of two antiretroviral therapies on viral dynamics. For both models, a thorough qualitative analysis of their behavior is conducted. The well-posedness of the two models is demonstrated in terms of positivity, existence, and uniqueness of solutions, using invariant sets. Additionally, two equilibrium states are derived for each model: the disease-free equilibrium and the chronic infection equilibrium. The local and global stability conditions of these equilibrium states are determined using the basic reproduction number, obtained through the next-generation matrix method. Numerical simulations are also employed to assess and compare the impact of antiretroviral treatments versus no treatment on both viral load and immune system cell recovery. The results show that an increase in inhibitor efficacy significantly reduces the time required to reach the disease-free state, highlighting the importance of combining therapies to achieve better clinical outcomes. Finally, the model with the two combined therapies is modified by introducing an optimal control problem, with the novelty that the efficacy of antiretroviral drugs is no longer constant but varies over time. It is concluded that therapy with optimal control reduces viral load and increases immune cell count in the best possible way, minimizing treatment costs to the greatest extent.eng
dc.description.curricularareaMatemáticas.Sede Bogotáspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Matemáticasspa
dc.description.researchareaMatemática Aplicada (Biología Matemática)spa
dc.format.extentvi, 130 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88690
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesB. Aguirre Hernández, C. Loredo Villalobos, E. González, and E. Campos-Cantón. Estabilidad de sistemas por medio de polinomios hurwitz. Revista de Matemática: Teoría y Aplicaciones, 24:61--77, 01 2017. doi: 10.15517/rmta.v24i1.27751.
dc.relation.referencesS. Ahmed, S. Rahman, and M. Kamrujjaman. Optimal treatment strategies to control acute hiv infection. Infectious Disease Modelling, 6:1202--1219, 2021. ISSN 2468-0427. doi: https://doi.org/10.1016/j.idm.2021.09.004. URL https://www.sciencedirect. com/science/article/pii/S2468042721000658.
dc.relation.referencesR. S. Ahmed Shohel, Kamrujjaman Md. Dynamics of a viral infectiology under treatment. Journal of Applied Analysis and Computation, 10:1800--1822, 10 2020. doi: 10.11948/ 20190209.
dc.relation.referencesJ. Alavez. Estimación de parámetros en ecuaciones diferenciales ordinarias: identificabilidad y aplicaciones a medicina. Foro-Red-Mat: Revista electrónica de contenido matemático, ISSN 1405-1745, Vol. 21, Nº. 1, 2007, 01 2007.
dc.relation.referencesJ. Alavez, J. López-Estrada, C. Vargas-De-León, and M. Cano. Un modelo matemático para el vih/sida. Journal of Basic Sciences, 1 Núm. 3 (2015), 01 2015.
dc.relation.referencesA. Alla Hamou, E. H. Azroul, S. Bouda, and M. Guedda. Mathematical modeling of hiv transmission in a heterosexual population: incorporating memory conservation. Modeling Earth Systems and Environment, 10, 06 2023. doi: 10.1007/s40808-023-01791-6.
dc.relation.referencesT. Apostol. Mathematical Analysis. Addison-Wesley series in mathematics. AddisonWesley, 1974. ISBN 9780201002881. URL https://books.google.com.co/books?id= Le5QAAAAMAAJ.
dc.relation.referencesH. K. S. Bhagya Jyoti Nath, Kaushik Dehingia. Analysis of the dynamics of a mathematical model for hiv infection. ., 23(3):181--195, 2021. ISSN ISSN 2008-949X. doi: 10.22436/jmcs.023.03.02. URL http://dx.doi.org/10.22436/jmcs.023.03.02.
dc.relation.referencesM. Braun. Differential Equations and Their Applications: An Introduction to Applied Mathematics. Texts in Applied Mathematics. Springer New York, 1992. ISBN 9780387978949. URL https://books.google.com.co/books?id=USWV3PP3b08C.
dc.relation.referencesR. Burden, J. Faires, and A. Burden. Numerical Analysis. Cengage Learning, 2015. ISBN 9781305465350. URL https://books.google.com.co/books?id=9DV-BAAAQBAJ.
dc.relation.referencesH. Clinical Info. GLOSARIO DE Términos relacionados con el VIH/SIDA. National Institutes of Health. Office of AIDS Research. Clinicalinfo.nih.gov/Es, 2021. URL https://clinicalinfo.hiv.gov/sites/default/files/glossary/GlossarySpanish-HIVinfo.pdf.
dc.relation.referencesR. Díaz González. Modelos de ecuaciones diferenciales para la iinfección por vih y su tratamiento. Master’s thesis, Universidad de Cantabria, Facultad de Ciencias, 2020.
dc.relation.referencesO. Diekmann, J. Heesterbeek, and J. Metz. On the definition and the computation of the basic reproduction ratio r0 in models for infectious-diseases in heterogeneous populations. Journal of mathematical biology, 28:365--82, 02 1990. doi: 10.1007/BF00178324.
dc.relation.referencesP. Driessche. Reproduction numbers of infectious disease models. Infectious Disease Modelling, 2, 06 2017. doi: 10.1016/j.idm.2017.06.002.
dc.relation.referencesL. Edelstein-Keshet. Mathematical Models in Biology. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, 2005. ISBN 9780898715545. URL https://books.google.com.do/books?id=NV9jC8x9HA0C.
dc.relation.referencesQ. Fernando Bernal. FarmacologÍa de los antirretrovirales. Revista Médica Clínica Las Condes, 27(5):682--697, 2016. ISSN 0716-8640. doi: https://doi.org/10.1016/j. rmclc.2016.09.013. URL https://www.sciencedirect.com/science/article/pii/ S0716864016300943. Tema central: Farmacología clínica.
dc.relation.referencesW. Fleming and R. Rishel. Deterministic and Stochastic Optimal Control. Stochastic Modelling and Applied Probability. Springer New York, 2012. ISBN 9781461263807. URL https://books.google.com.co/books?id=qJDbBwAAQBAJ.
dc.relation.referencesO. G. Franco. Ecuaciones diferenciales i: Linealización de los puntos de equilibrio de sistemas no lineales, Jun 2023. URL https://blog.nekomath.com/ecuacionesdiferenciales-i-linealizacion-de-los-puntos-de-equilibrio-de-sistemasno-lineales/#mjx-eqn%3A9.
dc.relation.referencesF. Gantmakher. The Theory of Matrices. Number v. 1 in AMS Chelsea Publishing Series. Chelsea Publishing Company, 1959. ISBN 9780821813935. URL https://books. google.com.co/books?id=ePFtMw9v92sC.
dc.relation.referencesGronwall. An introduction to evolution pdes, September 2019. URL https://www. ceremade.dauphine.fr/~mischler/Enseignements/M2evol2018/chap0.pdf.
dc.relation.referencesP. Hartman. Ordinary Differential Equations: Second Edition. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), 1982. ISBN 9780898719222. URL https: //books.google.com.co/books?id=NEkkJ93O9okC.
dc.relation.referencesJ.L.Blanco, M.Tuset, J.M.Miró, M.Martínez-Sogues, E. Cacho, and C.Codina. Características de los fármacos antirretrovirales e interacciones farmacocinéticas de relevancia clínica. Medicina Integral, 37(10):443--456, 2001. URL https://www.elsevier.es/es-revista-medicina-integral-63-articulocaracteristicas-los-farmacos-antirretrovirales-e-13013910.
dc.relation.referencesH. Joshi. Optimal control of an hiv immunology model. Optimal Control Applications and Methods, 23:199 -- 213, 07 2002. doi: 10.1002/oca.710.
dc.relation.referencesS. Kesavan. Functional Analysis. Texts and Readings in Mathematics Series. Hindustan Book Agency, 2014. ISBN 9789380250625. URL https://books.google.com.co/ books?id=Xi7TsgEACAAJ.
dc.relation.referencesD. Kincaid and E. Cheney. Numerical Analysis: Mathematics of Scientific Computing. Pure and applied undergraduate texts. American Mathematical Society, 2009. ISBN 9780821847886. URL https://books.google.com.co/books?id=x69Q226WR8kC.
dc.relation.referencesD. Kirschner, S. Lenhart, and S. Serbin. Optimal control of the chemotherapy of hiv. Journal of Mathematical Biology, 35(7):775–792, Aug 1997. doi: 10.1007/s002850050076.
dc.relation.referencesS. Lenhart and J. Workman. Optimal Control Applied to Biological Models. Chapman & Hall/CRC Mathematical and Computational Biology. Taylor & Francis, 2007. ISBN 9781584886402. URL https://books.google.com.co/books?id=2IMoAAAAYAAJ.
dc.relation.referencesM. Li. An Introduction to Mathematical Modeling of Infectious Diseases. Mathematics of Planet Earth. Springer International Publishing, 2018. ISBN 9783319721224. URL https://books.google.com.co/books?id=7PJJDwAAQBAJ.
dc.relation.referencesE. Lima. Curso de análise. Number v. 1 in Curso de análise. Instituto de Matemática Pura e Aplicada, CNPq, 1982. URL https://books.google.com.co/books?id= 7OJUAAAAYAAJ.
dc.relation.referencesE. Lima. Espaços métricos. Projeto Euclides. Instituto de Matemática Pura e Aplicada, CNPq, 1983. URL https://books.google.com.co/books?id=c_dUAAAAYAAJ.
dc.relation.referencesJ. Marsden, A. Tromba, and P. Muñiz. Cálculo vectorial. Fuera de colección Out of series. Pearson Addison-Wesley, 2004. ISBN 9788478290697. URL https://books. google.com.co/books?id=o9c-AQAACAAJ.
dc.relation.referencesM. Martcheva. An Introduction to Mathematical Epidemiology. Texts in applied mathematics. Springer US, 2015. ISBN 9781489976130. URL https://books.google. com.co/books?id=gBnmzQEACAAJ.
dc.relation.referencesB. J. Nath, K. Dehingia, K. Sadri, H. K. Sarmah, K. Hosseini, and C. Park. Optimal control of combined antiretroviral therapies in an hiv infection model with cure rate and fusion effect. International Journal of Biomathematics, 16(01):2250062, 2023. doi: 10.1142/S1793524522500620. URL https://doi.org/10.1142/S1793524522500620.
dc.relation.referencesH. NGO, H. DANG NGUYEN, and M. DİK. Stability analysis of a novel ode model for hiv infection. Maltepe Journal of Mathematics, 3(1):30–51, 2021. doi: 10.47087/mjm. 911431.
dc.relation.referencesONUSIDA. Estadísticas mundiales sobre el vih, hoja informativa, 2023. URL https:// www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_es.pdf.
dc.relation.referencesONUSIDA. Monitoreo global del sida 2024, 2024. URL https://www.unaids.org/ sites/default/files/media_asset/global-aids-monitoring_es.pdf.
dc.relation.referencesA. Perelson. Modelling viral and immune system dynamics. Nature reviews. Immunology, 2:28--36, 02 2002. doi: 10.1038/nri700.
dc.relation.referencesA. Perelson and P. Nelson. Mathematical analysis of hiv-1 dynamics in vivo. SIAM Review, 41, 06 1999. doi: 10.1137/S0036144598335107.
dc.relation.referencesA. Perelson, A. Neumann, M. Markowitz, J. Leonard, and D. Ho. Hiv-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science (New York, N.Y.), 271(5255):1582—1586, March 1996. ISSN 0036-8075. doi: 10.1126/ science.271.5255.1582. URL https://doi.org/10.1126/science.271.5255.1582.
dc.relation.referencesA. S. Perelson, D. E. Kirschner, and R. De Boer. Dynamics of hiv infection of cd4+ t cells. Mathematical Biosciences, 114(1):81--125, 1993. ISSN 0025-5564. doi: https: //doi.org/10.1016/0025-5564(93)90043-A. URL https://www.sciencedirect.com/ science/article/pii/002555649390043A.
dc.relation.referencesL. Perko. Differential Equations and Dynamical Systems. Texts in Applied Mathematics. Springer New York, 2013. ISBN 9781461300038. URL https://books.google.com. co/books?id=VFnSBwAAQBAJ.
dc.relation.referencesL. Pontryagin. Mathematical Theory of Optimal Processes. Classics of Soviet Mathematics. Taylor & Francis, 1987. ISBN 9782881240775. URL https://books.google. com.co/books?id=kwzq0F4cBVAC.
dc.relation.referencesP. R. Viral load. https://www.aidsmap.com/about-hiv/viral-load, May 2017.
dc.relation.referencesP. R. CD4 cell counts. https://www.aidsmap.com/about-hiv/cd4-cell-counts, May 2021.
dc.relation.referencesB. Ridenhour, J. Kowalik, and D. Shay. Unraveling r-0: Considerations for public health applications. American journal of public health, 104, 12 2013. doi: 10.2105/AJPH.2013. 301704.
dc.relation.referencesM. M. Seron. Sistemas No Lineales. Laboratorio de Sistemas Dinámicos y Procesamiento de Señales (LSD). Universidad Nacional de Rosario, 2000. URL https://www.fceia. unr.edu.ar/control/snl/Apunte.pdf.
dc.relation.referencesS. Smith. Modelling Disease Ecology with Mathematics. AIMS series on differential equations & dynamical systems, Volume 5. American Institute of Mathematical Sciences, Second Edition, 2023. ISBN 9781601330048. URL https://books.google.com.co/ books?id=0yOWPgAACAAJ.
dc.relation.referencesJ. Sotomayor. Licoes de equacoes diferenciais ordinarias. Projeto Euclides. Instituto de Matematica Pura e Aplicada, 1979. URL https://books.google.com.co/books?id=Yr8GgAACAAJ.
dc.relation.referencesP. van den Driessche and J. Watmough. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180(1):29--48, 2002. ISSN 0025-5564. doi: https://doi.org/10.1016/S0025- 5564(02)00108-6. URL https://www.sciencedirect.com/science/article/pii/ S0025556402001086.
dc.relation.referencesL. Wang and M. Y. Li. Mathematical analysis of the global dynamics of a model for hiv infection of cd4+ t cells. Mathematical Biosciences, 200(1):44--57, 2006. ISSN 0025-5564. doi: https://doi.org/10.1016/j.mbs.2005.12.026. URL https://www.sciencedirect. com/science/article/pii/S0025556405002439.
dc.relation.referencesW. H. O. WHO and W. H. Organization. Vih y sida, July 13 2023. URL https: //www.who.int/es/news-room/fact-sheets/detail/hiv-aids.
dc.relation.referencesE. Yaylali and Z. Erdogan. Mathematical Models of HIV: Methodologies and Applications, pages 345--359. 03 2020. ISBN 978-3-030-42415-2. doi: 10.1007/978-3-030-42416-9_31.
dc.relation.referencesX. Zhou, X. Song, and X. Shi. A differential equation model of hiv infection of cd4+ t-cells with cure rate. Journal of Mathematical Analysis and Applications, 342(2):1342-- 1355, 2008. ISSN 0022-247X. doi: https://doi.org/10.1016/j.jmaa.2008.01.008. URL https://www.sciencedirect.com/science/article/pii/S0022247X08000255.
dc.relation.referencesD. Zill. Ecuaciones Diferenciales Con Aplicaciones de Modelado. CENGAGE Learning, 2009. ISBN 9789708300551. URL https://books.google.com.co/books?id= MipvfE1JLT8C.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsTransmisión de Enfermedad Infecciosaspa
dc.subject.decsDisease Transmission, Infectiouseng
dc.subject.decsAntirretroviralesspa
dc.subject.decsAnti-Retroviral Agentseng
dc.subject.lembEstadística matemáticaspa
dc.subject.lembMathematical statisticseng
dc.subject.proposalVIH, HIV
dc.subject.proposalSIDA, AIDS
dc.subject.proposalDinámica viralspa
dc.subject.proposalEcuaciones diferencialesspa
dc.subject.proposalTerapias antirretroviralesspa
dc.subject.proposalNúmero reproductivo básicospa
dc.subject.proposalEstabilidad localspa
dc.subject.proposalEstabilidad globalspa
dc.subject.proposalControl óptimospa
dc.subject.proposalViral dynamicseng
dc.subject.proposalDifferential equationseng
dc.subject.proposalAntiretroviral therapieseng
dc.subject.proposalBasic reproduction numbereng
dc.subject.proposalLocal stabilityeng
dc.subject.proposalGlobal stabilityeng
dc.subject.proposalOptimal controleng
dc.titleModelado del VIH/SIDA : estrategias de control para la enfermedadspa
dc.title.translatedModeling of HIV/AIDS : control strategies for the diseaseeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Modelado del VIH SIDA, Estrategias de Control Para la Enfermedad.pdf
Tamaño:
3 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: