Biobased plasticizer from agroindustrial residual streams

dc.contributor.advisorOrjuela Londoño, Alvaro
dc.contributor.advisorNarvaez Rincon, Paulo Cesar
dc.contributor.authorNájera Losada, Laura Nathalia
dc.contributor.researchgroupGrupo de investigación en procesos químicos y bioquímicosspa
dc.date.accessioned2023-05-17T20:30:32Z
dc.date.available2023-05-17T20:30:32Z
dc.date.issued2023-05-17
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractBiobased plasticizer from agro-industrial residual streams Soybean Oil Deodorizer Distillate (SODD) is a valuable agro-industrial waste stream that can be used as feedstock for a wide range of oleochemicals. In this regard, this work evaluates the production of biobased green plasticizers from SODD. A potential oleochemical plasticizer was selected through a computer-aided product design method that performed a screening of potential candidate molecules by assessing different criteria associated to their plasticizing performance. The selected criteria were compatibility, efficiency, permanence, toxicity, and cost, which were predicted for the potential molecule candidates using group contribution methods and empirical correlations. As a result of the screening method, epoxidized isobutyl esters were found to be the most promising plasticizers for polymers such as PVC. Subsequently, isobutyl fatty ester epoxides were produced experimentally using a two-step reaction process: esterification and epoxidation. Additionally, a kinetic model of the epoxidation of isobutyl esters was obtained and the influence of reaction conditions on selectivity, efficiency, and yield was studied. As a result, the best operating conditions for the synthesis of epoxidized isobutyl fatty esters were determined. Finally, the performance of the assessed epoxides as plasticizers for PVC was evaluated in terms of mechanical, optical, rheological, and barrier properties. These epoxides exhibited exceptional mechanical performance and thermal stability compared to traditional petrochemical plasticizers (i.e. phthalates). However, in terms of overall performance, they cannot be considered as general-purpose plasticizers and are expected to be used in specific applications.eng
dc.description.abstractEl destilado del desodorizado de aceite de soya (SODD) es un residuo agroindustrial que se puede utilizar como materia prima para obtener un amplio espectro de productos oleoquímicos. En esta dirección, se realizó inicialmente la selección de un derivado oleoquímico con potencial plastificante mediante un método de diseño de producto asistido por computador. Este método permitió realizar una selección entre moléculas potencialmente útiles mediante la evaluación de diferentes criterios asociados con su desempeño como plastificante. Los criterios seleccionados fueron compatibilidad, eficiencia, permanencia, toxicidad y costo. Estos criterios se predijeron para las moléculas candidatas utilizando métodos de contribución de grupo y correlaciones empíricas. Como resultado del método de selección, se encontró que los ésteres de isobutilo epoxidados pueden ser plastificantes promisorios para polímeros como el PVC. Posteriormente, los epóxidos de ésteres grasos de isobutilo se produjeron experimentalmente utilizando un proceso de reacción de dos pasos: esterificación y epoxidación. Además, se obtuvo un modelo cinético de epoxidación de ésteres de isobutilo y se estudió la influencia de las condiciones de reacción sobre la selectividad, la eficiencia y el rendimiento. Como resultado, se obtuvieron las mejores condiciones de operación para la síntesis de ésteres grasos de isobutilo epoxidados. Finalmente, se evaluó el desempeño de los epóxidos isobutílicos como plastificantes para PVC en términos de propiedades mecánicas, ópticas, reológicas y de barrera. Estos epóxidos mostraron un rendimiento mecánico y una estabilidad térmica excepcional en comparación con los plastificantes petroquímicos tradicionales (es decir, los ftalatos). No obstante, en cuanto a su desempeño general, no pueden ser considerados como plastificantes de uso general y se espera que puedan ser utilizados en aplicaciones específicas. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaOleochemical processesspa
dc.format.extentxvii, 143 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83816
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesA. D. Godwin, “PLASTICIZERS,” in Applied Polymer Science: 21st Century, C. D. Craver and C. E. B. T.-A. P. S. 21st C. Carraher, Eds. Oxford: Pergamon, 2000, pp. 157–175.spa
dc.relation.referencesE. Langer, K. Bortel, S. Waskiewicz, and M. Lenartowicz-Klik, “Research Trends in Plasticizer Production,” Plast. Deriv. from Post-Consumer PET, pp. 101–126, 2020, doi: 10.1016/b978-0-323-46200-6.00004-0.spa
dc.relation.referencesS. G. Patrick, Practical Guide to Polyvinyl Chloride. United Kingdom: Rapra Technology Limited, 2005.spa
dc.relation.referencesT. Zheng et al., “Structural modification of waste cooking oil methyl esters as cleaner plasticizer to substitute toxic dioctyl phthalate,” J. Clean. Prod., vol. 186, pp. 1021–1030, 2018, doi: https://doi.org/10.1016/j.jclepro.2018.03.175.spa
dc.relation.referencesFedepalma, “Anuario Estadístico 2019 - Principales cifras de la agroindustria de la palma de aceite en Colombia,” 2019.spa
dc.relation.referencesS. Madbouly, C. Zhang, and M. Kessler, Bio-Based Plant oil polymers and composites. Miami USA: Matthew Deans, 2016.spa
dc.relation.referencesC. Echim, R. Verhé, W. Greyt, and C. Stevens, “Production of biodiesel from side-stream refining products,” Energy Environ. Sci. - ENERGY Env. SCI, vol. 2, Nov. 2009, doi: 10.1039/b905925c.spa
dc.relation.referencesL. A. Rincón, J. G. Cadavid, and A. Orjuela, “Used cooking oils as potential oleochemical feedstock for urban biorefineries – Study case in Bogota, Colombia,” Waste Manag., vol. 88, pp. 200–210, 2019, doi: https://doi.org/10.1016/j.wasman.2019.03.042.spa
dc.relation.referencesJ. Van Gerpen, “Biodiesel processing and production,” Fuel Process. Technol., vol. 86, no. 10, pp. 1097–1107, 2005, doi: https://doi.org/10.1016/j.fuproc.2004.11.005.spa
dc.relation.referencesI. M. Atadashi, M. K. Aroua, A. R. Abdul Aziz, and N. M. N. Sulaiman, “The effects of catalysts in biodiesel production: A review,” J. Ind. Eng. Chem., vol. 19, no. 1, pp. 14–26, 2013, doi: https://doi.org/10.1016/j.jiec.2012.07.009.spa
dc.relation.referencesJ. M. Marchetti and A. F. Errazu, “Esterification of free fatty acids using sulfuric acid as catalyst in the presence of triglycerides,” Biomass and Bioenergy, vol. 32, no. 9, pp. 892–895, 2008, doi: https://doi.org/10.1016/j.biombioe.2008.01.001.spa
dc.relation.referencesY. Watanabe et al., “Conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel by immobilized Candida antarctica lipase,” J. Mol. Catal. B Enzym., vol. 44, no. 3, pp. 99–105, 2007, doi: https://doi.org/10.1016/j.molcatb.2006.09.007spa
dc.relation.referencesS. Gunawan and Y. Ju, “Vegetable Oil Deodorizer Distillate: Characterization, Utilization and Analysis,” Sep. Purif. Rev., vol. 38, no. 3, pp. 207–241, Jul. 2009, doi: 10.1080/15422110903095151.spa
dc.relation.referencesH. K. Woodfield and J. L. Harwood, “Oilseed Crops: Linseed, Rapeseed, Soybean, and Sunflower,” B. Thomas, B. G. Murray, and D. J. B. T.-E. of A. P. S. (Second E. Murphy, Eds. Oxford: Academic Press, 2017, pp. 34–38.spa
dc.relation.referencesE. Alencar, L. Faroni, L. Peternelli, M. Silva, and A. Costa, “Influence of soybean storage conditions on crude oil quality,” Rev. Bras. Eng. Agrícola e Ambient., vol. 14, pp. 303–308, Mar. 2010, doi: 10.1590/S1415-43662010000300010.spa
dc.relation.referencesS. Khatoon, R. G. Raja Rajan, and A. G. Gopala Krishna, “Physicochemical Characteristics and Composition of Indian Soybean Oil Deodorizer Distillate and the Recovery of Phytosterols,” J. Am. Oil Chem. Soc., vol. 87, no. 3, pp. 321–326, 2010, doi: 10.1007/s11746-009-1499-8.spa
dc.relation.referencesC. Benites, V. O. Concha, S. Reis, and A. Oliveira, Physiochemical Characterization of Soybean Oil Deodorizer Distillate, vol. 17. 2009.spa
dc.relation.referencesJ. Summers and C. Daniels, “Plasticizers,” in PVC HandBook, Hanser, 2005, pp. 173–193.spa
dc.relation.referencesR. Wilcox, “Outlook 17: US plasticizers face shortages, new capacity,” 2016. [Online]. Available: https://www.icis.com/explore/resources/news/2016/12/28/10064206/outlook-17-us-plasticizers-face-shortages-new-capacity/.spa
dc.relation.referencesM. G. A. Vieira, M. A. da Silva, L. O. dos Santos, and M. M. Beppu, “Natural-based plasticizers and biopolymer films: A review,” Eur. Polym. J., vol. 47, no. 3, pp. 254–263, 2011, doi: https://doi.org/10.1016/j.eurpolymj.2010.12.011.spa
dc.relation.referencesCefic group, “European Plasticisers,” Bruselas, Bélgica, 2017.spa
dc.relation.referencesThe European Chemical Industry Council, “Plasticisers - Information Center.” https://www.plasticisers.org/plasticisers/ (accessed Aug. 30, 2020).spa
dc.relation.referencesJ. Murphy, Additives for Plastics Handbook, Second edi. New York: Elsevier, 2003spa
dc.relation.referencesH. Benecke, B. Vijaydendran, and J. Elhard, “US 2002/0013396 A1,” 2002.spa
dc.relation.referencesR. Lundsgaard, “Migration of plasticisers from PVC and other polymers,” 2010.spa
dc.relation.referencesL. Bernard, R. Cueff, C. Breysse, B. Décaudin, and V. Sautou, “Migrability of PVC plasticizers from medical devices into a simulant of infused solutions,” Int. J. Pharm., vol. 485, no. 1, pp. 341–347, 2015, doi: https://doi.org/10.1016/j.ijpharm.2015.03.030spa
dc.relation.referencesM. Rahman and C. S. Brazel, “The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges,” Prog. Polym. Sci., vol. 29, no. 12, pp. 1223–1248, 2004, doi: https://doi.org/10.1016/j.progpolymsci.2004.10.001.spa
dc.relation.referencesA. H. Suzuki, B. G. Botelho, L. S. Oliveira, and A. S. Franca, “Sustainable synthesis of epoxidized waste cooking oil and its application as a plasticizer for polyvinyl chloride films,” Eur. Polym. J., vol. 99, pp. 142–149, 2018, doi: https://doi.org/10.1016/j.eurpolymj.2017.12.014.spa
dc.relation.referencesLII (Legal Information Institute), “16 CFR § 1307.3 - Prohibition of children’s toys and child care articles containing specified phthalates.,” 2018. https://www.law.cornell.edu/cfr/text/16/1307.3.spa
dc.relation.referencesSGS, “Accessing the Market: European Union Phthalate Regulations | SGS,” Apr. 09, 2019. https://www.sgs.com/en/news/2019/04/accessing-the-market-european-union-phthalate-regulations (accessed Jun. 16, 2020).spa
dc.relation.referencesIHS Markit Customer Care, Chemical Economics Handbook. 2018.spa
dc.relation.referencesS&P Global, “Plasticizers - Chemical Economics Handbook,” Commodity Insights, 2020. https://www.spglobal.com/commodityinsights/en/ci/products/plasticizers-chemical-economics-handbook.html.spa
dc.relation.referencesP. Jia, H. Xia, K. Tang, and Y. Zhou, “Plasticizers derived from biomass resources: A short review,” Polymers (Basel)., vol. 10, no. 12, 2018, doi: 10.3390/polym10121303.spa
dc.relation.referencesThe Business ResearchCompany, “Plasticizers Market 2022 - By Product Type (Phthalates Plasticizers, Non-Phthalates Plasticizers),” 2020. https://www.thebusinessresearchcompany.com/report/plasticizers-market-global-market.spa
dc.relation.referencesResearchAndMarkets, “Global Bio Plasticizers Market Opportunity Report 2020-2030 Featuring DuPont, DOW Chemical, PolyOne, Evonik Among Others,” 2020. https://www.globenewswire.com/news-release/2020/12/03/2139125/0/en/Global-Bio-Plasticizers-Market-Opportunity-Report-2020-2030-Featuring-DuPont-DOW-Chemical-PolyOne-Evonik-Among-Others.html.spa
dc.relation.referencesV. Thakur, M. Thakur, and M. Kessler, Handbook of Composites from Renewable Materials. Miami USA, 2017.spa
dc.relation.referencesK. Dutta, S. Das, and P. P. Kundu, “Epoxidized Esters of Palm Kernel Oil as an Effective Plasticizer for PVC: A Study of Mechanical Properties and Effect of Processing Conditions,” Int. Polym. Process., vol. 29, no. 4, pp. 495–506, Aug. 2014, doi: 10.3139/217.2922.spa
dc.relation.referencesGrand View Research, “Bio Plasticizers Market Analysis By Product Type (Citrates, Castor Oil, ESBO, Succinic Acid), By Application (Packaging, Consumer Goods, Automotive, Construction, Textiles), And Segment Forecasts, 2020 - 2025,” 2020. [Online]. Available: https://www.grandviewresearch.com/industry-analysis/bio-plasticizers-market.spa
dc.relation.referencesB. I. Chaudhary, C. L. Liotta, J. M. Cogen, and M. B. T.-R. M. in M. S. and M. E. Gilbert, “Plasticized PVC,” Elsevier, 2016.spa
dc.relation.referencesM. Bocqué, C. Voirin, V. Lapinte, S. Caillol, and J.-J. Robin, “Petro-based and bio-based plasticizers: Chemical structures to plasticizing properties,” J. Polym. Sci. Part A Polym. Chem., vol. 54, no. 1, pp. 11–33, Jan. 2016, doi: 10.1002/pola.27917.spa
dc.relation.referencesO. Suárez, “Producción y Modelamiento de Gliceril ésteres como plastificantes para el PVC,” Universidad Nacional de Colombia, 2011.spa
dc.relation.referencesP. Jia, M. Zhang, L. Hu, and Y. Zhou, “Green plasticizers derived from soybean oil for poly(vinyl chloride) as a renewable resource material,” Korean J. Chem. Eng., vol. 33, no. 3, pp. 1080–1087, 2016, doi: 10.1007/s11814-015-0213-9.spa
dc.relation.referencesY. Yang, Z. Xiong, L. Zhang, Z. Tang, R. Zhang, and J. Zhu, “Isosorbide dioctoate as a ‘green’ plasticizer for poly(lactic acid),” Mater. Des., vol. 91, pp. 262–268, 2016, doi: https://doi.org/10.1016/j.matdes.2015.11.065.spa
dc.relation.referencesB. Yin and M. Hakkarainen, “Oligomeric isosorbide esters as alternative renewable resource plasticizers for PVC,” J. Appl. Polym. Sci., vol. 119, no. 4, pp. 2400–2407, Feb. 2011, doi: 10.1002/app.32913spa
dc.relation.referencesD.-L. Cai, X. Yue, B. Hao, and P.-C. Ma, “A sustainable poly(vinyl chloride) plasticizer derivated from waste cooking oil,” J. Clean. Prod., vol. 274, p. 122781, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.122781.spa
dc.relation.referencesS. Kandula, L. Stolp, M. Grass, B. Woldt, and D. Kodali, “Functionalization of Soy Fatty Acid Alkyl Esters as Bioplasticizers,” Saint Paul, Minnesota, 2004.spa
dc.relation.referencesP. Frenkel and S. Mckeown, “US9321901B2,” 2016.spa
dc.relation.referencesG. Feng, Y. Ma, M. Zhang, P. Jia, C. Liu, and Y. Zhou, “Synthesis of Bio-base Plasticizer Using Waste Cooking Oil and Its Performance Testing in Soft Poly(vinyl chloride) Films,” J. Bioresour. Bioprod., vol. 4, no. 2, pp. 99–110, 2019, doi: https://doi.org/10.21967/jbb.v4i2.214.spa
dc.relation.referencesP. Jia, M. Zhang, L. Hu, F. Song, G. Feng, and Y. Zhou, “A Strategy for Nonmigrating Plasticized PVC Modified with Mannich base of Waste Cooking Oil Methyl Ester,” Sci. Rep., vol. 8, no. 1, p. 1589, 2018, doi: 10.1038/s41598-018-19958-y.spa
dc.relation.referencesJ. Spekreijse, T. Lammens, C. Parisi, T. Ronzon, and M. Vis, Insights into the European market for bio-based chemicals, vol. 19, no. October. 2019.spa
dc.relation.referencesIndex Mundi, “Soybean Oil Futures End of Day Settlement Price,” 2020. https://www.indexmundi.com/commodities/?commodity=soybean-oil&months=12 (accessed Mar. 03, 2020).spa
dc.relation.referencesEchemi, “Epoxidized Soybean Oil Price Analysis.” .spa
dc.relation.referencesGreenea, “Greenea Market Analysis,” 2020. https://www.greenea.com/en/market-analysis/.spa
dc.relation.referencesUSDA, “Oilseeds: World Markets and Trade,” EEUU, 2020.spa
dc.relation.referencesICIS, “Plasticizers prices, markets & analysis,” 2019. https://www.icis.com/explore/commodities/chemicals/plasticizers/ (accessed Jan. 20, 2021).spa
dc.relation.referencesAlibaba, “Soybean deodorizer distillate oil FOB Reference Price.” https://www.alibaba.com/product-detail/Soybean-deodorizer-distillate-oil_1600078593352.html?spm=a2700.7724857.normal_offer.d_image.79965073IJgoEB (accessed Jun. 07, 2021).spa
dc.relation.referencesL. A. Rincón, “Reutilzación de aceites de cocina usados en la producción de aceites epoxidados,” Universidad Nacional de Colombia, 2018.spa
dc.relation.referencesMichel Biron, Industrial Applications of Renewable Plastics. .spa
dc.relation.referencesY. Wei, G. Li, Q. Lv, C. Cheng, and H. Guo, “Epoxidation of Methyl Oleate and Unsaturated Fatty Acid Methyl Esters Obtained from Vegetable Source over Ti-Containing Silica Catalysts,” Ind. Eng. Chem. Res., vol. 57, no. 48, pp. 16284–16294, Dec. 2018, doi: 10.1021/acs.iecr.8b04155.spa
dc.relation.referencesL. Ramírez, “Modelo Cinético para la reacción de epoxidación aceite vegetal usado,” Universidad Nacional de colombia, 2020.spa
dc.relation.referencesDANE - Departamento Administrativo Nacional de Estadística, “Encuesta Anual Manufacturera (EAM).”spa
dc.relation.referencesD. Alperstein, D. Knani, A. Goichman, and M. Narkis, “Determination of plasticizers efficiency for nylon by molecular modeling,” Polym. Bull., vol. 68, no. 7, pp. 1977–1988, 2012, doi: 10.1007/s00289-012-0705-2.spa
dc.relation.referencesSpecialchem, “Adhesives Ingredients,” Selecting Plasticizers for Adhesives and Sealants. https://adhesives.specialchem.com/selection-guide/plasticizers-selection-for-adhesives-and-sealants.spa
dc.relation.referencesA. A. Hassan, A. Abbas, T. Rasheed, M. Bilal, H. M. N. Iqbal, and S. Wang, “Development, influencing parameters and interactions of bioplasticizers: An environmentally friendlier alternative to petro industry-based sources,” Sci. Total Environ., vol. 682, pp. 394–404, 2019, doi: https://doi.org/10.1016/j.scitotenv.2019.05.140.spa
dc.relation.referencesF. D. Martínez, “Producción de ésteres de poliglicerol y evaluación de diferentes formulaciones como plastificante de PVC,” Universidad Nacional de Colombia, 2010.spa
dc.relation.referencesG. Wypych, Handbook of Plasticizers, 3rd ed. ChemTec Publishing, 2017.spa
dc.relation.referencesD. Krevelen and K. Nijenhuis, “Chapter 7- Cohesive properties and and solubility,” in Properties of Polymers, 4th editio., Elsevier, 2009.spa
dc.relation.referencesY.-H. Ju, N. N. F. Sari, A. W. Go, M.-J. Wang, R. C. Agapay, and A. Ayucitra, “Preparation of Epoxidized Fatty Acid Ethyl Ester from Tung Oil as a Bio-lubricant Base-Stock,” Waste and Biomass Valorization, vol. 11, no. 8, pp. 4145–4155, 2020, doi: 10.1007/s12649-019-00749-z.spa
dc.relation.referencesD. A. G. Aranda, R. T. P. Santos, N. C. O. Tapanes, A. L. D. Ramos, and O. A. C. Antunes, “Acid-Catalyzed Homogeneous Esterification Reaction for Biodiesel Production from Palm Fatty Acids,” Catal. Letters, vol. 122, no. 1, pp. 20–25, 2008, doi: 10.1007/s10562-007-9318-z.spa
dc.relation.referencesP. Kuester, F; Rhodes, “High Oxirane Fatty Esters,” 3377304, 1968.spa
dc.relation.referencesM. Canakci and J. Gerpen, “Biodiesel production from oils and fats with high FFAs,” Trans. ASAE, vol. 44, Jan. 2001, doi: 10.13031/2013.7010.spa
dc.relation.referencesV. B. Borugadda and V. V Goud, “Improved thermo-oxidative stability of structurally modified waste cooking oil methyl esters for bio-lubricant application,” J. Clean. Prod., vol. 112, pp. 4515–4524, 2016, doi: https://doi.org/10.1016/j.jclepro.2015.06.046.spa
dc.relation.referencesJ. Brinks, K. Malins, V. Kampars, J. Prilucka, and L. Apseniece, “Optimization of rapeseed oil fatty acid esterification with methanol in the presence of sulfuric acid,” Polish J. Chem. Technol., vol. 15, no. 4, pp. 54–59, doi: https://doi.org/10.2478/pjct-2013-0068.spa
dc.relation.referencesH. Lu, Y. Liu, H. Zhou, Y. Yang, M. Chen, and B. Liang, “Production of biodiesel from Jatropha curcas L. oil,” Comput. Chem. Eng., vol. 33, no. 5, pp. 1091–1096, 2009, doi: https://doi.org/10.1016/j.compchemeng.2008.09.012spa
dc.relation.referencesJ. Cárdenas, A. Orjuela, D. L. Sánchez, P. C. Narváez, B. Katryniok, and J. Clark, “Pre-treatment of used cooking oils for the production of green chemicals: A review,” J. Clean. Prod., vol. 289, p. 125129, 2021, doi: https://doi.org/10.1016/j.jclepro.2020.125129.spa
dc.relation.referencesF. Galli, S. Nucci, C. Pirola, and C. L. Bianchi, “Epoxy methyl soyate as bio-plasticizer: Two different preparation strategies,” Chem. Eng. Trans., vol. 37, pp. 601–606, 2014, doi: 10.3303/CET1437101.spa
dc.relation.referencesV. V Goud, N. C. Pradhan, and A. V Patwardhan, “Epoxidation of karanja (Pongamia glabra) oil by H2O2,” J. Am. Oil Chem. Soc., vol. 83, no. 7, pp. 635–640, 2006, doi: 10.1007/s11746-006-1250-7.spa
dc.relation.referencesM. Kurańska and M. Niemiec, “Cleaner Production of Epoxidized Cooking Oil Using A Heterogeneous Catalyst,” Catalysts, vol. 10, Oct. 2020, doi: 10.3390/catal10111261.spa
dc.relation.referencesA. Campanella, C. Fontanini, and M. Baltanas, “High yield epoxidation of fatty acid methyl esters with performic acid generated in situ,” Chem. Eng. J., vol. 144, pp. 466–475, Nov. 2008, doi: 10.1016/j.cej.2008.07.016.spa
dc.relation.referencesV. B. Borugadda and V. V Goud, “Epoxidation of Castor Oil Fatty Acid Methyl Esters (COFAME) as a Lubricant base Stock Using Heterogeneous Ion-exchange Resin (IR-120) as a Catalyst,” Energy Procedia, vol. 54, pp. 75–84, 2014, doi: https://doi.org/10.1016/j.egypro.2014.07.249.spa
dc.relation.referencesZ. S. Petrović, A. Zlatanić, C. C. Lava, and S. Sinadinović-Fišer, “Epoxidation of soybean oil in toluene with peroxoacetic and peroxoformic acids — kinetics and side reactions,” Eur. J. Lipid Sci. Technol., vol. 104, no. 5, pp. 293–299, May 2002, doi: https://doi.org/10.1002/1438-9312(200205)104:5<293::AID-EJLT293>3.0.CO;2-W.spa
dc.relation.referencesT. Vlček and Z. S. Petrović, “Optimization of the chemoenzymatic epoxidation of soybean oil,” J. Am. Oil Chem. Soc., vol. 83, no. 3, pp. 247–252, 2006, doi: 10.1007/s11746-006-1200-4.spa
dc.relation.referencesR. Turco, C. Pischetola, R. Tesser, S. Andini, and M. Di Serio, “New findings on soybean and methylester epoxidation with alumina as the catalyst,” RSC Adv., vol. 6, no. 38, pp. 31647–31652, 2016, doi: 10.1039/C6RA01780K.spa
dc.relation.referencesB. Rangarajan, A. Havey, E. A. Grulke, and P. D. Culnan, “Kinetic parameters of a two-phase model forin situ epoxidation of soybean oil,” J. Am. Oil Chem. Soc., vol. 72, no. 10, pp. 1161–1169, 1995, doi: 10.1007/BF02540983.spa
dc.relation.referencesS. Dinda, A. V Patwardhan, V. V Goud, and N. C. Pradhan, “Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids,” Bioresour. Technol., vol. 99, no. 9, pp. 3737–3744, 2008, doi: https://doi.org/10.1016/j.biortech.2007.07.015.spa
dc.relation.referencesA. Campanella and M. A. Baltanás, “Degradation of the oxirane ring of epoxidized vegetable oils with solvated acetic acid using cation-exchange resins,” Eur. J. Lipid Sci. Technol., vol. 106, no. 8, pp. 524–530, Aug. 2004, doi: https://doi.org/10.1002/ejlt.200400965.spa
dc.relation.referencesZ. Wu et al., “Mass transfer and reaction kinetics of soybean oil epoxidation in a formic acid-autocatalyzed reaction system,” Can. J. Chem. Eng., vol. 94, no. 8, pp. 1576–1582, Aug. 2016, doi: https://doi.org/10.1002/cjce.22526.spa
dc.relation.referencesP. G. Nihul, S. T. Mhaske, and V. V Shertukde, “Epoxidized rice bran oil (ERBO) as a plasticizer for poly(vinyl chloride) (PVC),” Iran. Polym. J., vol. 23, no. 8, pp. 599–608, 2014, doi: 10.1007/s13726-014-0254-7.spa
dc.relation.referencesA. Campanella and M. A. Baltanás, “Degradation of the oxirane ring of epoxidized vegetable oils in liquid-liquid systems: II. Reactivity with solvated acetic and peracetic acids,” Lat. Am. Appl. Res., vol. 35, pp. 211–216, Jul. 2005.spa
dc.relation.referencesX. Zhao, T. Zhang, Y. Zhou, and D. Liu, “Preparation of peracetic acid from hydrogen peroxide: Part I: Kinetics for peracetic acid synthesis and hydrolysis,” J. Mol. Catal. A Chem., vol. 271, no. 1, pp. 246–252, 2007, doi: https://doi.org/10.1016/j.molcata.2007.03.012.spa
dc.relation.referencesP. T. Wai, P. Jiang, Y. Shen, P. Zhang, Q. Gu, and Y. Leng, “Catalytic developments in the epoxidation of vegetable oils and the analysis methods of epoxidized products,” RSC Adv., vol. 9, no. 65, pp. 38119–38136, 2019, doi: 10.1039/C9RA05943A.spa
dc.relation.referencesM. Mushtaq et al., “Epoxidation of methyl esters derived from Jatropha oil: An optimization study,” Grasas y Aceites, vol. 64, pp. 103–114, Mar. 2013, doi: 10.3989/gya.084612.spa
dc.relation.referencesR. J. Gall and F. P. Greenspan, “A Modified Peracid Process for Making Epoxy Compounds from Unsaturated Fatty Acid Esters,” Ind. Eng. Chem., vol. 47, no. 1, pp. 147–148, Jan. 1955, doi: 10.1021/ie50541a045.spa
dc.relation.referencesM. Kurańska, H. Beneš, A. Prociak, O. Trhlíková, Z. Walterová, and W. Stochlińska, “Investigation of epoxidation of used cooking oils with homogeneous and heterogeneous catalysts,” J. Clean. Prod., vol. 236, p. 117615, Jul. 2019, doi: 10.1016/j.jclepro.2019.117615.spa
dc.relation.referencesY. Bai, J. Wang, D. Liu, and X. Zhao, “Conversion of fatty acid methyl ester to epoxy plasticizer by auto-catalyzed in situ formation of performic acid: Kinetic modeling and application of the model,” J. Clean. Prod., vol. 259, p. 120791, Mar. 2020, doi: 10.1016/j.jclepro.2020.120791.spa
dc.relation.referencesA. Ghosh-Dastidar, S. Kaujalgikar, and B. Chaudhary, “US 9499681 B2,” 2016.spa
dc.relation.referencesM. Mushtaq, I. Tan, C. Devi, S. Majidaie, M. Nadeem, and S. Lee, “Epoxidation of Fatty Acid Methyl Esters derived from Jatropha oil,” 2011 Natl. Postgrad. Conf. - Energy Sustain. Explor. Innov. Minds, NPC 2011, Sep. 2011, doi: 10.1109/NatPC.2011.6136253.spa
dc.relation.referencesE. Milchert, A. Smagowicz, and G. Lewandowski, “Optimization of the reaction parameters of epoxidation of rapeseed oil with peracetic acid,” J. Chem. Technol. Biotechnol., vol. 85, no. 8, pp. 1099–1107, Aug. 2010, doi: https://doi.org/10.1002/jctb.2405.spa
dc.relation.referencesÁ. Osuna and A. Boyaca, “Two-phase kinetic model for epoxidation of soybean oil,” Ing. e Investig., vol. 30, pp. 188–196, Aug. 2010.spa
dc.relation.referencesL. H. Gan, S. H. Goh, and K. S. Ooi, “Kinetic studies of epoxidation and oxirane cleavage of palm olein methyl esters,” J. Am. Oil Chem. Soc., vol. 69, no. 4, pp. 347–351, 1992, doi: 10.1007/BF02636065.spa
dc.relation.referencesIcontec, “NTC 2366. Plasticos. Aceites Vegetales Epoxidados de Soya y Linaza,” 2019.spa
dc.relation.referencesArkema, “Arkema Products.” https://www.arkema.com/global/en/search/?qc=search&q=vikoflex.spa
dc.relation.referencesPETROM, “plsgreen.” https://plsgreen.com.br/en/specifications/.spa
dc.relation.referencesIEA Bioenergy, “Bio-Based Chemicals,” 2020spa
dc.relation.referencesIEA Bioenergy, “Bio-based Chemicals, Value Added Products from Biorefineries,” 2013.spa
dc.relation.referencesA. Liquide, “Biopropilenglicol, Tecnología alternativa para la producción de propilenglicol,” 2021. https://www.engineering-airliquide.com/es/biopropilenglicol.spa
dc.relation.referencesArkema, “Oleris® Bio-Based 2-Octanol,” 2020. https://www.arkema.com/global/en/products/product-finder/product/technicalpolymers/oleris/oleris-2-Octanol/.spa
dc.relation.referencesR. Jamarani, H. Erythropel, J. Nicell, R. Leask, and M. Maric, “How Green is Your Plasticizer?,” Polymers (Basel)., vol. 10, p. 834, Jul. 2018, doi: 10.3390/polym10080834.spa
dc.relation.referencesP. Walters, D. F. Cadogan, and C. J. Howick, Plasticizers. 2020.spa
dc.relation.referencesE. Stefanis and C. Panayiotou, “Prediction of Hansen Solubility Parameters with a New Group-Contribution Method,” Int. J. Thermophys., vol. 29, no. 2, pp. 568–585, 2008, doi: 10.1007/s10765-008-0415-z.spa
dc.relation.referencesB. E. Poling, J. M. Prausnitz, and J. P. O’Connell, Properties of Gases and Liquids, Fifth Edition. New York: McGraw-Hill Education, 2001.spa
dc.relation.referencesCharles M.Hansen, Hansen Solubility Parameters Second edition: A User’s Handbook, no. October 2013. 2007.spa
dc.relation.referencesD. W. Krevelen and K. Nijenhuis, “Cohesive Properties and Solubility,” in Properties of Polymers, 2009, pp. 189–227.spa
dc.relation.referencesPolymer Properties Database, “Hansen Solubility Sphere,” 2015. http://polymerdatabase.com/polymer physics/Hansen Solubility Sphere.html (accessed Feb. 23, 2021).spa
dc.relation.referencesJ. Burke, “Part 6 - Three Component Parameters,” 1984. https://cool.culturalheritage.org/byauth/burke/solpar/solpar6.html (accessed May 23, 2021).spa
dc.relation.referencesL. Mascia, Y. Kouparitsas, D. Nocita, and X. Bao, “Antiplasticization of Polymer Materials: Structural Aspects and Effects on Mechanical and Diffusion-Controlled Properties,” Polymers , vol. 12, no. 4. 2020, doi: 10.3390/polym12040769.spa
dc.relation.referencesExxonMobil Petroleum Chemical B.V.B.A, “Submission of information on DIDP CAS#68515-49-1, EC#271-091-4 as an alternative to DEHP,” 2014.spa
dc.relation.referencesRoderick Parkes, JRC Technical Reports: Practical guidelines on the application of migration modelling for the estimation of specific migration, no. 10. 2015.spa
dc.relation.referencesD. Schowope and R. Goydan, Methods for Estimating the Migration of Aditives and Impurities from Polymeric Materials. Washington D.C: U.S Environmental Protection Agency, 1990.spa
dc.relation.referencesE. H. Immergut and H. F. Mark, “Principles of Plasticization,” in <bold>Plasticization</bold> and Plasticizer Processes, vol. 48, AMERICAN CHEMICAL SOCIETY, 1965, p. 1.spa
dc.relation.referencesJ. Bicerano, Prediction of polymer properties, 3rd Editio., vol. 31, no. 02. EEUU: Marcel Dekker, Inc, 2002.spa
dc.relation.referencesC. Camacho-Zuñiga and F. A. Ruiz-Treviño, “A New Group Contribution Scheme To Estimate the Glass Transition Temperature for Polymers and Diluents,” Ind. Eng. Chem. Res., vol. 42, no. 7, pp. 1530–1534, Apr. 2003, doi: 10.1021/ie0205389.spa
dc.relation.referencesC. L. Ihemaguba and K. Marossy, “Combined thermal analysis of fluid plasticizers,” J. Therm. Anal. Calorim., vol. 147, no. 1, pp. 195–201, 2022, doi: 10.1007/s10973-020-10315-8.spa
dc.relation.referencesC. A. Angell, J. M. Sare, and E. J. Sare, “Glass transition temperatures for simple molecular liquids and their binary solutions,” J. Phys. Chem., vol. 82, no. 24, pp. 2622–2629, Nov. 1978, doi: 10.1021/j100513a016.spa
dc.relation.referencesW. A. Lee, “Calculation of the glass transition temperatures of polymers. Part I. Homopolymers and copolymers with alkyl side chains,” J. Polym. Sci. Part A-2 Polym. Phys., vol. 8, no. 4, pp. 555–570, Apr. 1970, doi: https://doi.org/10.1002/pol.1970.160080407.spa
dc.relation.referencesE. Gustafsson, T. M. Bowden, and A. R. Rennie, “Interactions of amphiphiles with plasticisers used in polymers: Understanding the basis of health and environmental challenges,” Adv. Colloid Interface Sci., vol. 277, p. 102109, 2020, doi: https://doi.org/10.1016/j.cis.2020.102109.spa
dc.relation.referencesUS EPA - United States Environmental Protection Agency, “EPI Suite TM v4.11 -Estimation Program Interface.” Washington D.C, 2021.spa
dc.relation.referencesI. Cousins and D. Mackay, “Correlating the physical–chemical properties of phthalate esters using the `three solubility’ approach,” Chemosphere, vol. 41, no. 9, pp. 1389–1399, 2000, doi: https://doi.org/10.1016/S0045-6535(00)00005-9.spa
dc.relation.referencesA. Wypch, Databook of Plasticizers. Elsevier, 2017.spa
dc.relation.referencesCAS, “Sci Finder,” 2022. https://scifinder-n.cas.org.spa
dc.relation.referencesN. RAO, S. KAUJALGIKAR, B. CHAUD-HARY, S. BHIDE, S. MORYE, and S. AGASHE, “WO 2014/061026 Al,” 2014.spa
dc.relation.referencesA. Ghosh-Dastidar, R. Eaton, A. ADAM-CZYK, B. Bell, and R. Campabell, “WO2013/003225 A2,” 2013.spa
dc.relation.referencesL. G. Krauskopf, “Plasticizer structure/performance relationships,” J. Vinyl Technol., vol. 15, no. 3, pp. 140–147, Sep. 1993, doi: https://doi.org/10.1002/vnl.730150306.spa
dc.relation.referencesISO, “ISO 660 Animal and vegetable fats and oils — Determination of acid value and acidity,” 2020.spa
dc.relation.referencesISO, “ISO 3961 Animal and vegetable fats and oils — Determination of iodine value,” p. 12, 2018.spa
dc.relation.referencesISO, “ISO 3657 Animal and vegetable fats and oils — Determination of saponification value,” p. 10, 2020.spa
dc.relation.referencesISO, “ISO 3960 Animal and vegetable fats and oils — Determination of peroxide value — Iodometric (visual) endpoint determination,” p. 10, 2017.spa
dc.relation.referencesISO, “ISO 3596 Animal and vegetable fats and oils — Determination of unsaponifiable matter — Method using diethyl ether extraction,” p. 8, 2000.spa
dc.relation.referencesASTM, “ASTM D2500 Standard Test Method for Cloud Point of Petroleum Products and Liquid Fuels,” p. 10, 2000.spa
dc.relation.referencesAMD OIL SALES, “Soybean oil, RBD (organic).” https://www.amdoilsales.com/products/soybean-oil-organic-rbd/ (accessed Nov. 15, 2022).spa
dc.relation.referencesH. Ngo, R. Latona, K. M. Wagner, A. Nuñez, R. Ashby, and R. O. Dunn, “Synthesis and low temperature characterization of iso-oleic ester derivatives,” Eur. J. Lipid Sci. Technol., vol. 118, no. 12, pp. 1915–1925, Dec. 2016, doi: https://doi.org/10.1002/ejlt.201500468.spa
dc.relation.referencesL. A. García-Zapateiro, J. M. Franco, C. Valencia, M. A. Delgado, and C. Gallegos, “Viscous, thermal and tribological characterization of oleic and ricinoleic acids-derived estolides and their blends with vegetable oils,” J. Ind. Eng. Chem., vol. 19, no. 4, pp. 1289–1298, 2013, doi: https://doi.org/10.1016/j.jiec.2012.12.030.spa
dc.relation.referencesInternational Union of Pure and Applied Chemistry, Solubility data series - Alcohols with water. 1984.spa
dc.relation.referencesV. R. Dhanuka, V. C. Malshe, and S. B. Chandalia, “Kinetics of the liquid phase esterification of carboxylic acids with alcohols in the presence of acid catalysts: Re-interpretation of published data,” Chem. Eng. Sci., vol. 32, no. 5, pp. 551–556, 1977, doi: https://doi.org/10.1016/0009-2509(77)87013-9.spa
dc.relation.referencesS. Goto, T. Tagawa, and Y. Fukuta, “Kinetics of the reaction of sulfuric acid with isobutyl alcohol,” Int. J. Chem. Kinet., vol. 21, no. 8, pp. 729–732, Aug. 1989, doi: https://doi.org/10.1002/kin.550210811.spa
dc.relation.referencesF. A. Zaher and H. M. Soliman, “Biodiesel production by direct esterification of fatty acids with propyl and butyl alcohols,” Egypt. J. Pet., vol. 24, no. 4, pp. 439–443, 2015, doi: https://doi.org/10.1016/j.ejpe.2015.10.007.spa
dc.relation.referencesW. Waskitoaji, E. Triwulandari, and A. Haryono, “Synthesis of Plasticizers Derived from Palm Oil and Their Application in Polyvinyl Chloride,” Procedia Chem., vol. 4, pp. 313–321, 2012, doi: https://doi.org/10.1016/j.proche.2012.06.044.spa
dc.relation.referencesS. Silviana, D. Anggoro, and A. Kumoro, “Kinetics study of waste cooking oil epoxidation with peroxyacetic acid using acid catalysts,” Rasayan J. Chem., vol. 12, pp. 1369–1374, Jan. 2019, doi: 10.31788/RJC.2019.1235190.spa
dc.relation.referencesW. F. Bohórquez, A. Orjuela, P. C. N. Rincón, J. G. Cadavid, and J. A. García-Nunez, “Experimental optimization during epoxidation of a high-oleic palm oil using a simplex algorithm,” Ind. Crops Prod., vol. 187, p. 115321, 2022, doi: https://doi.org/10.1016/j.indcrop.2022.115321.spa
dc.relation.referencesM. Jankovic, S. Sinadinovic-Fiser, O. Govedarica, J. Pavličević, and J. Budinski-Simendic, “Kinetics of soybean oil epoxidation with peracetic acid formed In Situ in the presence of an ion exchange resin: Pseudo-homogeneous model,” Chem. Ind. Chem. Eng. Q., vol. 23, pp. 97–111, Apr. 2017, doi: 10.2298/CICEQ150702014J.spa
dc.relation.referencesG. V Olivieri, J. V. J. de Quadros, and R. Giudici, “Epoxidation Reaction of Soybean Oil: Experimental Study and Comprehensive Kinetic Modeling,” Ind. Eng. Chem. Res., vol. 59, no. 42, pp. 18808–18823, Oct. 2020, doi: 10.1021/acs.iecr.0c03847.spa
dc.relation.referencesS. Leveneur, J. Zheng, B. Taouk, F. Burel, J. Wärnå, and T. Salmi, “Interaction of thermal and kinetic parameters for a liquid–liquid reaction system: Application to vegetable oils epoxidation by peroxycarboxylic acid,” J. Taiwan Inst. Chem. Eng., vol. 45, no. 4, pp. 1449–1458, 2014, doi: https://doi.org/10.1016/j.jtice.2014.01.015.spa
dc.relation.referencesM. Schwaab, L. Livia, and J. Pinto, “Optimum reference temperature for reparameterization of the Arrhenius equation. Part 2: Problems involving multiple reparameterizations,” Chem. Eng. Sci., 2008.spa
dc.relation.referencesK. Bakthavatchalam, S. Beyene, B. Ayalew, and S. Pilla, “Epoxidation Kinetics of High-Linolenic Triglyceride Catalyzed by Solid Acidic-Ion Exchange Resin,” Sci. Rep., vol. 9, Jun. 2019, doi: 10.1038/s41598-019-45458-8.spa
dc.relation.referencesJ. La Scala and R. P. Wool, “Effect of FA composition on epoxidation kinetics of TAG,” J. Am. Oil Chem. Soc., vol. 79, no. 4, pp. 373–378, 2002, doi: 10.1007/s11746-002-0491-9.spa
dc.relation.referencesL. M. Ramírez, J. G. Cadavid, A. Orjuela, M. F. Gutiérrez, and W. F. Bohórquez, “Epoxidation of used cooking oils: Kinetic modeling and reaction optimization,” Chem. Eng. Process. - Process Intensif., vol. 176, p. 108963, 2022, doi: https://doi.org/10.1016/j.cep.2022.108963.spa
dc.relation.referencesLG-VINA Chem, “DOP Plasticizer Data sheet.” http://aytaco.ir/wp-content/uploads/2019/01/DOP-LG.pdf.spa
dc.relation.referencesV. Borugadda and V. Goud, “Synthesis of Waste Cooking Oil Epoxide as a Bio-Lubricant Base Stock: Characterization and Optimization Study,” J. Bioprocess Eng. Biorefinery, vol. 3, pp. 57–72, Mar. 2014, doi: 10.1166/jbeb.2014.1077.spa
dc.relation.referencesV. B. Borugadda and V. V Goud, “Response surface methodology for optimization of bio-lubricant basestock synthesis from high free fatty acids castor oil,” Energy Sci. Eng., vol. 3, no. 4, pp. 371–383, Jul. 2015, doi: https://doi.org/10.1002/ese3.77.spa
dc.relation.referencesS. Satapathy and A. Palanisamy, “Mechanical and barrier properties of polyvinyl chloride plasticized with dioctyl phthalate, epoxidized soybean oil, and epoxidized cardanol,” J. Vinyl Addit. Technol., vol. 27, no. 3, pp. 599–611, Aug. 2021, doi: https://doi.org/10.1002/vnl.21831.spa
dc.relation.referencesM. Gilbert, “8 - Poly(vinyl chloride)(PVC)-based nanocomposites,” in Woodhead Publishing Series in Composites Science and Engineering, F. B. T.-A. in P. N. Gao, Ed. Woodhead Publishing, 2012, pp. 216–237.spa
dc.relation.referencesA. Lindström and M. Hakkarainen, “Environmentally friendly plasticizers for poly(vinyl chloride)—Improved mechanical properties and compatibility by using branched poly(butylene adipate) as a polymeric plasticizer,” J. Appl. Polym. Sci., vol. 100, no. 3, pp. 2180–2188, May 2006, doi: https://doi.org/10.1002/app.23633.spa
dc.relation.referencesASTM, “ASTM D882-18 Standard Test Method for Tensile Properties of Thin Plastic Sheeting,” p. 12, 2018.spa
dc.relation.referencesISO, “ISO 2528 Sheet materials — Determination of water vapour transmission rate (WVTR) — Gravimetric (dish) method,” p. 15, 2017.spa
dc.relation.referencesASTM, “ASTM D1239 Standard Test Method for Resistance of Plastic Films to Extraction by Chemicals,” 2017.spa
dc.relation.referencesISO, “ISO 176 Plastics - Determination of loss of plasticizers - Activated carbon method,” p. 4, 2005spa
dc.relation.referencesM. Altenhofen da Silva, M. G. Adeodato Vieira, A. C. Gomes Maçumoto, and M. M. Beppu, “Polyvinylchloride (PVC) and natural rubber films plasticized with a natural polymeric plasticizer obtained through polyesterification of rice fatty acid,” Polym. Test., vol. 30, no. 5, pp. 478–484, 2011, doi: https://doi.org/10.1016/j.polymertesting.2011.03.008.spa
dc.relation.referencesW. V. Titow, PVC Plastics Properties, Processing and Applications. Essex, England: ElsevierApplied Science, 1990.spa
dc.relation.referencesO. Fenollar Gimeno, “Utilización de plastificantes naturales para la obtención de PVC flexible de bajo impacto medioambiental,” Universidad Politecnica de Valencia, 2011.spa
dc.relation.referencesA. Carbonell-Verdu, M. D. Samper, D. Garcia-Garcia, L. Sanchez-Nacher, and R. Balart, “Plasticization effect of epoxidized cottonseed oil (ECSO) on poly(lactic acid),” Ind. Crops Prod., vol. 104, pp. 278–286, 2017, doi: https://doi.org/10.1016/j.indcrop.2017.04.050.spa
dc.relation.referencesA. Carbonell-Verdu, D. Garcia-Sanoguera, A. Jordá-Vilaplana, L. Sanchez-Nacher, and R. Balart, “A new biobased plasticizer for poly(vinyl chloride) based on epoxidized cottonseed oil,” J. Appl. Polym. Sci., vol. 133, no. 27, Jul. 2016, doi: https://doi.org/10.1002/app.43642.spa
dc.relation.referencesV. K. Haugaard and G. Mortensen, “11 - Biobased food packaging,” in Woodhead Publishing Series in Food Science, Technology and Nutrition, B. Mattsson and U. B. T.-E.-F. F. P. Sonesson, Eds. Woodhead Publishing, 2003, pp. 180–204.spa
dc.relation.referencesY. Wang et al., “Antibacterial poly(butylene succinate-co-terephthalate)/titanium dioxide/copper oxide nanocomposites films for food packaging applications,” Food Packag. Shelf Life, vol. 34, p. 101004, 2022, doi: https://doi.org/10.1016/j.fpsl.2022.101004.spa
dc.relation.referencesK. Subramanian, K. S. Vadivu, L. Subramaniyam, and M. D. Kumar, “Synthesis, characterization, and analysis of bioplasticizer derived from Hibiscus rosa-sinensis leaves and cinnamon bark for poly (vinyl chloride) films,” Ind. Crops Prod., vol. 182, p. 114933, 2022, doi: https://doi.org/10.1016/j.indcrop.2022.114933.spa
dc.relation.referencesSHIMADZU, “Spectrophotometric Analysis No. A421,” Tokyo, Japan, 2021.spa
dc.relation.referencesM. Pandey, G. Joshi, A. Mukherjee, and P. Thomas, “Electrical properties and thermal degradation of poly(vinyl chloride)/polyvinylidene fluoride/ZnO polymer nanocomposites,” Polym. Int., Jun. 2016.spa
dc.relation.referencesAlibaba, “DIDP diisodecyl phthalate.” https://www.alibaba.com/showroom/didp-diisodecyl-phthalate.html (accessed Jan. 21, 2021).spa
dc.relation.referencesAlibaba, “DBP dibutyl phthalate.” https://www.alibaba.com/showroom/dibutyl-phthalate-price.html (accessed Jan. 20, 2021).spa
dc.relation.referencesICIS, “ICIS Chemical Prices-B.” https://www.icis.com/explore/resources/news/2000/12/11/128127/chemical-prices-b/ (accessed Jan. 20, 2021).spa
dc.relation.referencesICIS, “Asia methanol higher on potential Saudi Arabia supply issues,” 2019. https://www.icis.com/explore/resources/news/2019/09/17/10418063/asia-methanol-higher-on-potential-saudi-arabia-supply-issues (accessed Jan. 20, 2021).spa
dc.relation.referencesICIS, “US spot fuel ethanol prices mixed amid varying demand,” 2020. https://www.icis.com/explore/resources/news/2020/07/15/10530504/us-spot-fuel-ethanol-prices-mixed-amid-varying-demand (accessed Jan. 20, 2021).spa
dc.relation.referencesAlibaba, “Propyl alcohol price.” https://www.alibaba.com/showroom/propyl-alcohol.html (accessed Jan. 20, 2021).spa
dc.relation.referencesICIS, “Southeast Asia IPA prices hit six-year high, market warns of peak,” 2020. https://www.icis.com/explore/resources/news/2020/04/06/10493861/southeast-asia-ipa-prices-hit-six-year-high-market-warns-of-peak (accessed Jan. 20, 2021).spa
dc.relation.referencesICIS, “Asia oxo-alcohols face weak demand; deep-sea cargo influx,” 2019. https://www.icis.com/explore/resources/news/2019/12/09/10451591/asia-oxo-alcohols-face-weak-demand-deep-sea-cargo-influx (accessed Jan. 20, 2021).spa
dc.relation.referencesECHEMI, “Isobutyl Alcohol Price Analysis,” 2020. https://www.echemi.com/productsInformation/pd1804281021-isobutyl-alcohol.html (accessed Jan. 20, 2021).spa
dc.relation.referencesAlibaba, “Isoamyl Alcohol price.” https://www.alibaba.com/product-detail/Best-selling-chemicals-Isoamyl-Alcohol-Cas_1600110577919.html?spm=a2700.7724857.normal_offer.d_title.dbc874a8QIsZfQ (accessed Jan. 20, 2021).spa
dc.relation.referencesMade in China, “High Pure Capryl Alcohol C8h18o Octanol.” https://hailijia888.en.made-in-china.com/product/oKIxSrkvZcUH/China-CAS-111-87-5-High-Pure-Capryl-Alcohol-C8h18o-Octanol.html (accessed Jan. 20, 2021)spa
dc.relation.referencesICIS, “Asia MEG nears six-month highs on regional output cuts, US shutdowns,” 2020. Asia MEG nears six-month highs on regional output cuts, US shutdowns (accessed Jan. 20, 2021).spa
dc.relation.referencesAlibaba, “Propylene glycol price.” https://www.alibaba.com/product-detail/Propylene-Glycol-Propylene-Glycol-Price_62329752387.html?spm=a2700.7735675.normal_offer.d_image.4a384f2aFpeMcy&s=p (accessed Jan. 20, 2021).spa
dc.relation.referencesICIS, “Asia BDO market faces year-end lull, weak downstream PBT demand,” 2019. https://www.icis.com/explore/resources/news/2019/11/07/10440781/asia-bdo-market-faces-year-end-lull-weak-downstream-pbt-demand (accessed Jan. 20, 2021).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.lembPRODUCTOS DE RESIDUOSspa
dc.subject.lembWaste productseng
dc.subject.lembINDUSTRIAS DE PLASTICOSspa
dc.subject.lembPlastics industry and tradeeng
dc.subject.proposalEsterificaciónspa
dc.subject.proposalAcidos grasosspa
dc.subject.proposalDestilado desodorizado de aceite de soyaspa
dc.subject.proposalIsobutanolspa
dc.subject.proposalEpoxidaciónspa
dc.subject.proposalEsteres de isobutilo epoxidadosspa
dc.subject.proposalCinéticaspa
dc.subject.proposalPlastificantespa
dc.subject.proposalPVCspa
dc.subject.proposalEsterificationeng
dc.subject.proposalFatty acidseng
dc.subject.proposalSoybean oil deodorizer distillateeng
dc.subject.proposalIsobutanoleng
dc.subject.proposalEpoxidationeng
dc.subject.proposalEpoxidized isobutyl esterseng
dc.subject.proposalKineticseng
dc.subject.proposalPlasticizereng
dc.subject.proposalPVCeng
dc.titleBiobased plasticizer from agroindustrial residual streamseng
dc.title.translatedPlastificante biobasado obtenido a partir de corrientes residuales agroindustrialesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ingeniería - Ingeniería Química
Tamaño:
3.82 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: