Evaluación de miRNAs en la línea celular de melanoma B16 inducida a pigmentación diferencial y disminución del crecimiento celular por la L-Tirosina y la 5-bromo-2´-deoxiuridina

dc.contributor.advisorGómez Grosso, Luis Albertospa
dc.contributor.authorRivera Escobar, Hernán Mauriciospa
dc.contributor.researchgroupFisiología Celular y Molecularspa
dc.date.accessioned2021-01-15T20:59:48Zspa
dc.date.available2021-01-15T20:59:48Zspa
dc.date.issued2020-12-04spa
dc.description.abstractmiRNAs are small non-coding RNAs associated with post-transcriptional gene regulation in melanoma, a cancer of melanocytes, cells specialized in melanin synthesis. The present work aimed to evaluate the differential expression of miRNAs and to establish potential functional relationships through their targets in the B16F1 melanoma cell line under conditions of decreased cell growth and differential pigmentation induced by L-tyrosine (L-Tyr) and 5-Bromo-2'-deoxyuridine (BrdU) in vitro. A reduction in proliferation and changes in melanin concentration was confirmed in B16F1 cells exposed to 2.5 µg. mL-1 BrdU or 5 mM L-Tyr. Using DEseq2, counts obtained by small RNAseq were analyzed and differential expression of 35 miRNAs in cells exposed to L-Tyr, 22 under-expressed, and 14 over-expressed; and of 33 miRNAs by exposure to BrdU, 11 over-expressed and 21 under-expressed. The bioinformatics analysis facilitated the construction of co-expression and miRNA regulation network models together with associated targets by KEGG functional enrichment, with the control of the cell cycle, senescence, and pigmentation. Expression levels of 211-5p, 129-5p, 148b-3p, 470-5p, 470-3p, 27b-3p and 30d-5p microRNAs and Mitf, Tyr, Tyrp1, Dct, Ccnd1, Cdk4 Cdk2 and p21 mRNAs were confirmed by RT-qPCR. The results obtained, improve our understanding of the potential functional associations between miRNAs and gene sets during melanogenesis, cell cycle control, and senescence and propose new scenarios for the study of melanoma.spa
dc.description.abstractLos miRNAs son RNAs pequeños no codificantes asociados con la regulación post-transcripcional de genes, en melanoma, un cáncer de melanocitos, células especializadas en la síntesis de melanina. El objetivo del presente trabajo fue evaluar la expresión diferencial de miRNAs y establecer potenciales relaciones funcionales a través de sus dianas en la línea celular de melanoma B16F1 bajo condiciones de disminución del crecimiento celular y pigmentación diferencial inducidas por la L-tirosina (L-Tyr) y la 5-bromo-2´-deoxiuridina (BrdU) in vitro. Se confirmó una reducción en la proliferación y cambios en la concentración de melanina en células B16F1 expuestas a BrdU 2.5 µg.mL-1 o a L-Tyr 5 mM. Usando DEseq2, se analizaron los conteos obtenidos por small RNAseq y se determinó la expresión diferencial de 35 miRNAs en células expuestas a L-Tyr, 22 sub-expresados y 14 sobre-expresados; y de 33 miRNAs por exposición a BrdU, 11 sobre-expresados y 21 sub-expresados. El análisis bioinformático, facilitó la construcción de modelos en red de co-expresión y de regulación de miRNAs junto a dianas asociadas por enriquecimiento funcional KEGG, con el control del ciclo celular, senescencia y pigmentación. Los niveles de expresión de los microRNAs 211-5p, 129-5p, 148b-3p, 470-5p, 470-3p, 27b-3p y 30d-5p y de los mRNAs Mitf, Tyr, Tyrp1, Dct, Ccnd1, Cdk4 Cdk2 y p21, se confirmaron por RT-qPCR. Los resultados obtenidos, mejoran nuestra comprensión de las potenciales asociaciones funcionales entre conjuntos de miRNAs y genes durante la melanogénesis, el control del ciclo celular y la senescencia y propone nuevos escenarios para el estudio del melanoma.spa
dc.description.additionalLínea de Investigación: Bases moleculares de la diferenciación celular y transformación malignaspa
dc.description.degreelevelDoctoradospa
dc.format.extent214spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78784
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Medicina - Doctorado en Ciencias Biomédicasspa
dc.relation.referencesAbdel-Malek, Z. A., Swope, V. B., Trinkle, L. S., Ferroni, E. N., Boissy, R. E., & Nordlund, J. J. (1988). Alteration of the Cloudman melanoma cell cycle by prostaglandins E1 and E2 determined by using a 5-bromo-2'-deoxyuridine method of DNA analysis. J Cell Physiol, 136(2), 247-256. doi:10.1002/jcp.1041360206spa
dc.relation.referencesAftab, M. N., Dinger, M. E., & Perera, R. J. (2014). The role of microRNAs and long non-coding RNAs in the pathology, diagnosis, and management of melanoma. Arch Biochem Biophys, 563, 60-70. doi:10.1016/j.abb.2014.07.022spa
dc.relation.referencesAgarwal, V., Bell, G. W., Nam, J. W., & Bartel, D. P. (2015). Predicting effective microRNA target sites in mammalian mRNAs. Elife, 4. doi:10.7554/eLife.05005spa
dc.relation.referencesAlvarez Gaviria, W. (2007). Cilios, melanocitos y bases moleculares de los sentidos. Acta otorrinolaringol. cir. cabeza cuello, 35(2), 45-57. Retrieved from http://bases.bireme.br/cgi-bin/wxislind.exe/iah/online/?IsisScript=iah/iah.xis&src=google&base=LILACS&lang=p&nextAction=lnk&exprSearch=497495&indexSearch=IDspa
dc.relation.referencesAmaral, L. A., Scala, A., Barthelemy, M., & Stanley, H. E. (2000). Classes of small-world networks. Proc Natl Acad Sci U S A, 97(21), 11149-11152. doi:10.1073/pnas.200327197spa
dc.relation.referencesAmeres, S. L., & Zamore, P. D. (2013). Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol, 14(8), 475-488. doi:10.1038/nrm3611spa
dc.relation.referencesAnders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biol, 11(10), R106. doi:10.1186/gb-2010-11-10-r106spa
dc.relation.referencesAsangani, I. A., Harms, P. W., Dodson, L., Pandhi, M., Kunju, L. P., Maher, C. A., . . . Chinnaiyan, A. M. (2012). Genetic and epigenetic loss of microRNA-31 leads to feed-forward expression of EZH2 in melanoma. Oncotarget, 3(9), 1011-1025. doi:10.18632/oncotarget.622spa
dc.relation.referencesBabapoor, S., Fleming, E., Wu, R., & Dadras, S. S. (2014). A novel miR-451a isomiR, associated with amelanotypic phenotype, acts as a tumor suppressor in melanoma by retarding cell migration and invasion. PLoS One, 9(9), e107502. doi:10.1371/journal.pone.0107502spa
dc.relation.referencesBalch, C. M., Gershenwald, J. E., Soong, S. J., Thompson, J. F., Atkins, M. B., Byrd, D. R., . . . Sondak, V. K. (2009). Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol, 27(36), 6199-6206. doi:10.1200/JCO.2009.23.4799spa
dc.relation.referencesBald, T., Quast, T., Landsberg, J., Rogava, M., Glodde, N., Lopez-Ramos, D., . . . Tuting, T. (2014). Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature, 507(7490), 109-113. doi:10.1038/nature13111spa
dc.relation.referencesBandyopadhyay, D., & Medrano, E. E. (2000). Melanin accumulation accelerates melanocyte senescence by a mechanism involving p16INK4a/CDK4/pRB and E2F1. Ann N Y Acad Sci, 908, 71-84. doi:10.1111/j.1749-6632.2000.tb06637.xspa
dc.relation.referencesBates, S., Bonetta, L., MacAllan, D., Parry, D., Holder, A., Dickson, C., & Peters, G. (1994). CDK6 (PLSTIRE) and CDK4 (PSK-J3) are a distinct subset of the cyclin-dependent kinases that associate with cyclin D1. Oncogene, 9(1), 71-79. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8302605spa
dc.relation.referencesBemis, L. T., Chen, R., Amato, C. M., Classen, E. H., Robinson, S. E., Coffey, D. G., . . . Robinson, W. A. (2008). MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res, 68(5), 1362-1368. doi:10.1158/0008-5472.CAN-07-2912spa
dc.relation.referencesBennett, D. C. (2015). Genetics of melanoma progression: the rise and fall of cell senescence. Pigment Cell Melanoma Res. doi:10.1111/pcmr.12422spa
dc.relation.referencesBennett, P. E., Bemis, L., Norris, D. A., & Shellman, Y. G. (2013). miR in melanoma development: miRNAs and acquired hallmarks of cancer in melanoma. Physiol Genomics, 45(22), 1049-1059. doi:10.1152/physiolgenomics.00116.2013spa
dc.relation.referencesBhattacharya, A., Schmitz, U., Raatz, Y., Schonherr, M., Kottek, T., Schauer, M., . . . Kunz, M. (2015). miR-638 promotes melanoma metastasis and protects melanoma cells from apoptosis and autophagy. Oncotarget, 6(5), 2966-2980. doi:10.18632/oncotarget.3070spa
dc.relation.referencesBleazard, T., Lamb, J. A., & Griffiths-Jones, S. (2015). Bias in microRNA functional enrichment analysis. Bioinformatics, 31(10), 1592-1598. doi:10.1093/bioinformatics/btv023spa
dc.relation.referencesBonazzi, V. F., Stark, M. S., & Hayward, N. K. (2012). MicroRNA regulation of melanoma progression. Melanoma Res, 22(2), 101-113. doi:10.1097/CMR.0b013e32834f6fbbspa
dc.relation.referencesBoyle, G. M., Woods, S. L., Bonazzi, V. F., Stark, M. S., Hacker, E., Aoude, L. G., . . . Hayward, N. K. (2011). Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor. Pigment Cell Melanoma Res, 24(3), 525-537. doi:10.1111/j.1755-148X.2011.00849.xspa
dc.relation.referencesBrenner, M., & Hearing, V. J. (2008). The protective role of melanin against UV damage in human skin. Photochem Photobiol, 84(3), 539-549. doi:10.1111/j.1751-1097.2007.00226.xspa
dc.relation.referencesBrohee, S., Faust, K., Lima-Mendez, G., Sand, O., Janky, R., Vanderstocken, G., . . . van Helden, J. (2008). NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways. Nucleic Acids Res, 36(Web Server issue), W444-451. doi:10.1093/nar/gkn336spa
dc.relation.referencesBrohee, S., Faust, K., Lima-Mendez, G., Vanderstocken, G., & van Helden, J. (2008). Network Analysis Tools: from biological networks to clusters and pathways. Nat Protoc, 3(10), 1616-1629. doi:10.1038/nprot.2008.100spa
dc.relation.referencesBunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J. P., . . . Vogelstein, B. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science, 282(5393), 1497-1501. doi:10.1126/science.282.5393.1497spa
dc.relation.referencesCampisi, J., & d'Adda di Fagagna, F. (2007). Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol, 8(9), 729-740. doi:10.1038/nrm2233spa
dc.relation.referencesCao, Y., DePinho, R. A., Ernst, M., & Vousden, K. (2011). Cancer research: past, present and future. Nat Rev Cancer, 11(10), 749-754. doi:10.1038/nrc3138spa
dc.relation.referencesCaramuta, S., Egyhazi, S., Rodolfo, M., Witten, D., Hansson, J., Larsson, C., & Lui, W. O. (2010). MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J Invest Dermatol, 130(8), 2062-2070. doi:10.1038/jid.2010.63spa
dc.relation.referencesCosta, L. D. F. R., F. A.; Travieso, G.; Villas Boas, P. R. (2007). Characterization of complex networks: A survey of measurements. Advances in Physics, 56( 1), 167-242. doi:10.1080/00018730601170527spa
dc.relation.referencesCouts, K. L., Anderson, E. M., Gross, M. M., Sullivan, K., & Ahn, N. G. (2013). Oncogenic B-Raf signaling in melanoma cells controls a network of microRNAs with combinatorial functions. Oncogene, 32(15), 1959-1970. doi:10.1038/onc.2012.209spa
dc.relation.referencesCui, S., Zhang, K., Li, C., Chen, J., Pan, Y., Feng, B., . . . Chen, L. (2016). Methylation-associated silencing of microRNA-129-3p promotes epithelial-mesenchymal transition, invasion and metastasis of hepatocelluar cancer by targeting Aurora-A. Oncotarget, 7(47), 78009-78028. doi:10.18632/oncotarget.12870spa
dc.relation.referencesCunha, E. S., Kawahara, R., Kadowaki, M. K., Amstalden, H. G., Noleto, G. R., Cadena, S. M., . . . Martinez, G. R. (2012). Melanogenesis stimulation in B16-F10 melanoma cells induces cell cycle alterations, increased ROS levels and a differential expression of proteins as revealed by proteomic analysis. Exp Cell Res, 318(15), 1913-1925. doi:10.1016/j.yexcr.2012.05.019spa
dc.relation.referencesChang, X., Zhang, H., Lian, S., & Zhu, W. (2016). miR-137 suppresses tumor growth of malignant melanoma by targeting aurora kinase A. Biochem Biophys Res Commun, 475(3), 251-256. doi:10.1016/j.bbrc.2016.05.090spa
dc.relation.referencesCharrier-Savournin, F. B., Chateau, M. T., Gire, V., Sedivy, J., Piette, J., & Dulic, V. (2004). p21-Mediated nuclear retention of cyclin B1-Cdk1 in response to genotoxic stress. Mol Biol Cell, 15(9), 3965-3976. doi:10.1091/mbc.e03-12-0871spa
dc.relation.referencesChen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., . . . Guegler, K. J. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 33(20), e179. doi:10.1093/nar/gni178spa
dc.relation.referencesChen, J., Feilotter, H. E., Pare, G. C., Zhang, X., Pemberton, J. G., Garady, C., . . . Tron, V. A. (2010). MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma. Am J Pathol, 176(5), 2520-2529. doi:10.2353/ajpath.2010.091061spa
dc.relation.referencesChen, X., Wang, J., Shen, H., Lu, J., Li, C., Hu, D. N., . . . Tu, L. (2011). Epigenetics, microRNAs, and carcinogenesis: functional role of microRNA-137 in uveal melanoma. Invest Ophthalmol Vis Sci, 52(3), 1193-1199. doi:10.1167/iovs.10-5272spa
dc.relation.referencesChen, X. Y., Zhang, J., Hou, L. D., Zhang, R., Chen, W., Fan, H. N., . . . Zhu, J. S. (2018). Upregulation of PD-L1 predicts poor prognosis and is associated with miR-191-5p dysregulation in colon adenocarcinoma. Int J Immunopathol Pharmacol, 32, 2058738418790318. doi:10.1177/2058738418790318spa
dc.relation.referencesChen, Y., Cao, K. E., Wang, S., Chen, J., He, B., He, G. U., . . . Zhou, J. (2016). MicroRNA-138 suppresses proliferation, invasion and glycolysis in malignant melanoma cells by targeting HIF-1alpha. Exp Ther Med, 11(6), 2513-2518. doi:10.3892/etm.2016.3220spa
dc.relation.referencesCheun, W. L. (2004). The chemical structure of melanin. Pigment Cell Res, 17(4), 422-423; discussion 423-424. doi:10.1111/j.1600-0749.2004.00165_1.xspa
dc.relation.referencesd'Ischia, M., Wakamatsu, K., Cicoira, F., Di Mauro, E., Garcia-Borron, J. C., Commo, S., . . . Ito, S. (2015). Melanins and Melanogenesis: From Pigment Cells to Human Health and Technological Applications. Pigment Cell Melanoma Res. doi:10.1111/pcmr.12393spa
dc.relation.referencesDai, X., Rao, C., Li, H., Chen, Y., Fan, L., Geng, H., . . . Hou, L. (2015). Regulation of pigmentation by microRNAs: MITF-dependent microRNA-211 targets TGF-beta receptor 2. Pigment Cell Melanoma Res, 28(2), 217-222. doi:10.1111/pcmr.12334spa
dc.relation.referencesDamsky, W. E., Theodosakis, N., & Bosenberg, M. (2014). Melanoma metastasis: new concepts and evolving paradigms. Oncogene, 33(19), 2413-2422. doi:10.1038/onc.2013.194spa
dc.relation.referencesDar, A. A., Majid, S., de Semir, D., Nosrati, M., Bezrookove, V., & Kashani-Sabet, M. (2011). miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J Biol Chem, 286(19), 16606-16614. doi:10.1074/jbc.M111.227611spa
dc.relation.referencesDar, A. A., Majid, S., Rittsteuer, C., de Semir, D., Bezrookove, V., Tong, S., . . . Kashani-Sabet, M. (2013). The role of miR-18b in MDM2-p53 pathway signaling and melanoma progression. J Natl Cancer Inst, 105(6), 433-442. doi:10.1093/jnci/djt003spa
dc.relation.referencesDebacq-Chainiaux, F., Erusalimsky, J. D., Campisi, J., & Toussaint, O. (2009). Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc, 4(12), 1798-1806. doi:10.1038/nprot.2009.191spa
dc.relation.referencesDecker, H., & Tuczek, F. (2000). Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends Biochem Sci, 25(8), 392-397. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10916160spa
dc.relation.referencesDiao, Y., Jin, B., Huang, L., & Zhou, W. (2018). MiR-129-5p inhibits glioma cell progression in vitro and in vivo by targeting TGIF2. J Cell Mol Med, 22(4), 2357-2367. doi:10.1111/jcmm.13529spa
dc.relation.referencesDiermeier, S., Schmidt-Bruecken, E., Kubbies, M., Kunz-Schughart, L. A., & Brockhoff, G. (2004). Exposure to continuous bromodeoxyuridine (BrdU) differentially affects cell cycle progression of human breast and bladder cancer cell lines. Cell Prolif, 37(2), 195-206. doi:10.1111/j.1365-2184.2004.00296.xspa
dc.relation.referencesDing, J., Huang, S., Wu, S., Zhao, Y., Liang, L., Yan, M., . . . He, X. (2010). Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat Cell Biol, 12(4), 390-399. doi:10.1038/ncb2039spa
dc.relation.referencesDing, N., Wang, S., Yang, Q., Li, Y., Cheng, H., Wang, J., . . . Fang, X. (2015). Deep sequencing analysis of microRNA expression in human melanocyte and melanoma cell lines. Gene, 572(1), 135-145. doi:10.1016/j.gene.2015.07.013spa
dc.relation.referencesDing, Z., Jian, S., Peng, X., Liu, Y., Wang, J., Zheng, L., . . . Zhou, M. (2015). Loss of MiR-664 Expression Enhances Cutaneous Malignant Melanoma Proliferation by Upregulating PLP2. Medicine (Baltimore), 94(33), e1327. doi:10.1097/MD.0000000000001327spa
dc.relation.referencesDu, J., Widlund, H. R., Horstmann, M. A., Ramaswamy, S., Ross, K., Huber, W. E., . . . Fisher, D. E. (2004). Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell, 6(6), 565-576. doi:10.1016/j.ccr.2004.10.014spa
dc.relation.referencesDweep, H., & Gretz, N. (2015). miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods, 12(8), 697. doi:10.1038/nmeth.3485spa
dc.relation.referencesEkimler, S., & Sahin, K. (2014). Computational Methods for MicroRNA Target Prediction. Genes (Basel), 5(3), 671-683. doi:10.3390/genes5030671spa
dc.relation.referencesEpstein, W. L., Fukuyama, K., & Drake, T. E. (1973). Ultrastructural effects of thymidine analogs in melanosomes and virus activation in cloned hamster melanoma cells in culture. Yale J Biol Med, 46(5), 471-481. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/4798393spa
dc.relation.referencesFan, Y., Siklenka, K., Arora, S. K., Ribeiro, P., Kimmins, S., & Xia, J. (2016). miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res, 44(W1), W135-141. doi:10.1093/nar/gkw288spa
dc.relation.referencesFan, Y., & Xia, J. (2018). miRNet-Functional Analysis and Visual Exploration of miRNA-Target Interactions in a Network Context. Methods Mol Biol, 1819, 215-233. doi:10.1007/978-1-4939-8618-7_10spa
dc.relation.referencesFattore, L., Ruggiero, C. F., Pisanu, M. E., Liguoro, D., Cerri, A., Costantini, S., . . . Ciliberto, G. (2019). Reprogramming miRNAs global expression orchestrates development of drug resistance in BRAF mutated melanoma. Cell Death Differ, 26(7), 1267-1282. doi:10.1038/s41418-018-0205-5spa
dc.relation.referencesFawcett, D. W. (1966). An atlas of fine structure: the cell, its organelles, and inclusions. Philadelphia,: W. B. Saunders Co.spa
dc.relation.referencesFelli, N., Felicetti, F., Lustri, A. M., Errico, M. C., Bottero, L., Cannistraci, A., . . . Care, A. (2013). miR-126&126* restored expressions play a tumor suppressor role by directly regulating ADAM9 and MMP7 in melanoma. PLoS One, 8(2), e56824. doi:10.1371/journal.pone.0056824spa
dc.relation.referencesFernandes, B., Matama, T., Guimaraes, D., Gomes, A., & Cavaco-Paulo, A. (2016). Fluorescent quantification of melanin. Pigment Cell Melanoma Res, 29(6), 707-712. doi:10.1111/pcmr.12535spa
dc.relation.referencesFlórez Vargas, Ó. R. (2008). Expresión diferencial de ARNs pequeños en células de melanoma inducidas a supresión de crecimiento in vitro. (Maestría), Universidad Nacional de Colombia. Retrieved from http://eds.a.ebscohost.com.ezproxy.unal.edu.co/eds/detail/detail?vid=2&sid=e81e3236-0391-48e3-b816-49637e9373b2%40sessionmgr4001&hid=4213&bdata=Jmxhbmc9ZXMmc2l0ZT1lZHMtbGl2ZQ%3d%3d#AN=unc.000385548&db=cat02704aspa
dc.relation.referencesFlórez Vargas, Ó. R., & Gomez, L. A. (2008). Expresión diferencial de dos microRNAs asociados con el silenciamiento de la ciclina D1 en células de melanoma B16 en senescencia inducida por la 5-bromo-2-desoxiuridina. Revista de la Asociación Colombiana de Ciencias Biológicas. Retrieved from http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02704a&AN=unc.000385548&lang=es&site=eds-livespa
dc.relation.referencesFu, T. Y., Chang, C. C., Lin, C. T., Lai, C. H., Peng, S. Y., Ko, Y. J., & Tang, P. C. (2011). Let-7b-mediated suppression of basigin expression and metastasis in mouse melanoma cells. Exp Cell Res, 317(4), 445-451. doi:10.1016/j.yexcr.2010.11.004spa
dc.relation.referencesGanesan, A. K., Ho, H., Bodemann, B., Petersen, S., Aruri, J., Koshy, S., . . . White, M. A. (2008). Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells. PLoS Genet, 4(12), e1000298. doi:10.1371/journal.pgen.1000298spa
dc.relation.referencesGarcía, M. (2017). Mortalidad por melanoma cutáneo en Colombia: estudio de tendencias. Asociación Colombiana de Dermatologpia y cirugía dermatológica, 25(1), 8-15. Retrieved from https://revistasocolderma.org/articulo-revista/mortalidad-por-melanoma-cutaneo-en-colombia-estudio-de-tendenciasspa
dc.relation.referencesGarcia, R. I., Werner, I., & Szabo, G. (1979). Effect of 5-bromo-2'-deoxyuridine on growth and differentiation of cultured embryonic retinal pigment cells. In Vitro, 15(10), 779-788. doi:10.1007/bf02618304spa
dc.relation.referencesGaziel-Sovran, A., Segura, M. F., Di Micco, R., Collins, M. K., Hanniford, D., Vega-Saenz de Miera, E., . . . Hernando, E. (2011). miR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. Cancer Cell, 20(1), 104-118. doi:10.1016/j.ccr.2011.05.027spa
dc.relation.referencesGencia, I., Baderca, F., Avram, S., Gogulescu, A., Marcu, A., Seclaman, E., . . . Solovan, C. (2020). A preliminary study of microRNA expression in different types of primary melanoma. Bosn J Basic Med Sci, 20(2), 197-208. doi:10.17305/bjbms.2019.4271spa
dc.relation.referencesGit, A., Dvinge, H., Salmon-Divon, M., Osborne, M., Kutter, C., Hadfield, J., . . . Caldas, C. (2010). Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA, 16(5), 991-1006. doi:10.1261/rna.1947110spa
dc.relation.referencesGlovanella, B. C., Stehlin, J. S., Santamaria, C., Yim, S. O., Morgan, A. C., Williams, L. J., Jr., . . . Mumford, D. M. (1976). Human neoplastic and normal cells in tissue culture. I. Cell lines derived from malignant melanomas and normal melanocytes. J Natl Cancer Inst, 56(6), 1131-1142. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/994214spa
dc.relation.referencesGlud, M., & Gniadecki, R. (2013). MicroRNAs in the pathogenesis of malignant melanoma. J Eur Acad Dermatol Venereol, 27(2), 142-150. doi:10.1111/j.1468-3083.2012.04579.xspa
dc.relation.referencesGlud, M., Manfe, V., Biskup, E., Holst, L., Dirksen, A. M., Hastrup, N., . . . Gniadecki, R. (2011). MicroRNA miR-125b induces senescence in human melanoma cells. Melanoma Res, 21(3), 253-256. doi:10.1097/CMR.0b013e328345333bspa
dc.relation.referencesGlud, M., Rossing, M., Hother, C., Holst, L., Hastrup, N., Nielsen, F. C., . . . Drzewiecki, K. T. (2010). Downregulation of miR-125b in metastatic cutaneous malignant melanoma. Melanoma Res, 20(6), 479-484. doi:10.1097/CMR.0b013e32833e32a1spa
dc.relation.referencesGomez, L. A. (2009). Aplicación de microarreglos de cADN para estudiar algunos determinantes moleculares de la supresión del crecimiento celular en cáncer. Biomedica, 29(1).spa
dc.relation.referencesGomez, L. A., Strasberg Rieber, M., & Rieber, M. (1995). Decrease in actin gene expression in melanoma cells compared to melanocytes is partly counteracted by BrdU-induced cell adhesion and antagonized by L-tyrosine induction of terminal differentiation. Biochem Biophys Res Commun, 216(1), 84-89. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7488128spa
dc.relation.referencesGomez, L. A., Strasberg Rieber, M., & Rieber, M. (1996). PCR-mediated differential display and cloning of a melanocyte gene decreased in malignant melanoma and up-regulated with sensitization to DNA damage. DNA Cell Biol, 15(5), 423-427. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8924217spa
dc.relation.referencesGoppner, D., & Leverkus, M. (2011). Prognostic parameters for the primary care of melanoma patients: what is really risky in melanoma? J Skin Cancer, 2011, 521947. doi:10.1155/2011/521947spa
dc.relation.referencesGrant, G. R., Manduchi, E., & Stoeckert, C. J., Jr. (2007). Analysis and management of microarray gene expression data. Curr Protoc Mol Biol, Chapter 19, Unit 19 16. doi:10.1002/0471142727.mb1906s77spa
dc.relation.referencesGuerra, L., Bover, L., & Mordoh, J. (1990). Differentiating effect of L-tyrosine on the human melanoma cell line IIB-MEL-J. Exp Cell Res, 188(1), 61-65. doi:10.1016/0014-4827(90)90278-ispa
dc.relation.referencesGuzzi, P. H., Di Martino, M. T., Tagliaferri, P., Tassone, P., & Cannataro, M. (2015). Analysis of miRNA, mRNA, and TF interactions through network-based methods. EURASIP Journal on Bioinformatics and Systems Biology, 2015(1). doi:10.1186/s13637-015-0023-8spa
dc.relation.referencesHaass, N. K., Smalley, K. S., Li, L., & Herlyn, M. (2005). Adhesion, migration and communication in melanocytes and melanoma. Pigment Cell Res, 18(3), 150-159. doi:10.1111/j.1600-0749.2005.00235.xspa
dc.relation.referencesHaddad, M. M., Xu, W., Schwahn, D. J., Liao, F., & Medrano, E. E. (1999). Activation of a cAMP pathway and induction of melanogenesis correlate with association of p16(INK4) and p27(KIP1) to CDKs, loss of E2F-binding activity, and premature senescence of human melanocytes. Exp Cell Res, 253(2), 561-572. doi:10.1006/excr.1999.4688spa
dc.relation.referencesHaflidadottir, B. S., Bergsteinsdottir, K., Praetorius, C., & Steingrimsson, E. (2010). miR-148 regulates Mitf in melanoma cells. PLoS One, 5(7), e11574. doi:10.1371/journal.pone.0011574spa
dc.relation.referencesHamzeiy, H., Allmer, J., & Yousef, M. (2014). Computational methods for microRNA target prediction. Methods Mol Biol, 1107, 207-221. doi:10.1007/978-1-62703-748-8_12spa
dc.relation.referencesHanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646-674. doi:10.1016/j.cell.2011.02.013spa
dc.relation.referencesHanniford, D., Segura, M. F., Zhong, J., Philips, E., Jirau-Serrano, X., Darvishian, F., . . . Hernando, E. (2015). Identification of metastasis-suppressive microRNAs in primary melanoma. J Natl Cancer Inst, 107(3). doi:10.1093/jnci/dju494spa
dc.relation.referencesHao, S., Luo, C., Abukiwan, A., Wang, G., He, J., Huang, L., . . . He, D. (2015). miR-137 inhibits proliferation of melanoma cells by targeting PAK2. Exp Dermatol, 24(12), 947-952. doi:10.1111/exd.12812spa
dc.relation.referencesHaycock, J. W. (1993). Polyvinylpyrrolidone as a blocking agent in immunochemical studies. Anal Biochem, 208(2), 397-399. doi:10.1006/abio.1993.1068spa
dc.relation.referencesHayflick, L. (1965). The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res, 37, 614-636. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14315085spa
dc.relation.referencesHenao JD, L.-K. L., Pinzon-Velasco A. (2019). coexnet: An R package to build CO-EXpression NETworks from Microarray Data (Version version 1.8.0.) [R package].spa
dc.relation.referencesHoffmann, I., Draetta, G., & Karsenti, E. (1994). Activation of the phosphatase activity of human cdc25A by a cdk2-cyclin E dependent phosphorylation at the G1/S transition. EMBO J, 13(18), 4302-4310. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7523110spa
dc.relation.referencesHsiao, J. J., & Fisher, D. E. (2014). The roles of microphthalmia-associated transcription factor and pigmentation in melanoma. Arch Biochem Biophys, 563, 28-34. doi:10.1016/j.abb.2014.07.019spa
dc.relation.referencesInui, M., Martello, G., & Piccolo, S. (2010). MicroRNA control of signal transduction. Nat Rev Mol Cell Biol, 11(4), 252-263. doi:10.1038/nrm2868spa
dc.relation.referencesJiang, Z., Zhang, Y., Chen, X., Wu, P., & Chen, D. (2019). Inactivation of the Wnt/beta-catenin signaling pathway underlies inhibitory role of microRNA-129-5p in epithelial-mesenchymal transition and angiogenesis of prostate cancer by targeting ZIC2. Cancer Cell Int, 19, 271. doi:10.1186/s12935-019-0977-9spa
dc.relation.referencesJolliffe, I. (2014). Principal Component Analysis Wiley StatsRef: Statistics Reference Online.spa
dc.relation.referencesJolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci, 374(2065), 20150202. doi:10.1098/rsta.2015.0202spa
dc.relation.referencesKanitz, A., & Gerber, A. P. (2010). Circuitry of mRNA regulation. Wiley Interdiscip Rev Syst Biol Med, 2(2), 245-251. doi:10.1002/wsbm.55spa
dc.relation.referencesKappelmann, M., Kuphal, S., Meister, G., Vardimon, L., & Bosserhoff, A. K. (2013). MicroRNA miR-125b controls melanoma progression by direct regulation of c-Jun protein expression. Oncogene, 32(24), 2984-2991. doi:10.1038/onc.2012.307spa
dc.relation.referencesKapranov, P., Willingham, A. T., & Gingeras, T. R. (2007). Genome-wide transcription and the implications for genomic organization. Nat Rev Genet, 8(6), 413-423. doi:10.1038/nrg2083spa
dc.relation.referencesKatase, N., Terada, K., Suzuki, T., Nishimatsu, S., & Nohno, T. (2015). miR-487b, miR-3963 and miR-6412 delay myogenic differentiation in mouse myoblast-derived C2C12 cells. BMC Cell Biol, 16, 13. doi:10.1186/s12860-015-0061-9spa
dc.relation.referencesKatayama, S., Tomaru, Y., Kasukawa, T., Waki, K., Nakanishi, M., Nakamura, M., . . . Wahlestedt, C. (2005). Antisense transcription in the mammalian transcriptome. Science, 309(5740), 1564-1566. doi:10.1126/science.1112009spa
dc.relation.referencesKato, J., Matsushime, H., Hiebert, S. W., Ewen, M. E., & Sherr, C. J. (1993). Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev, 7(3), 331-342. doi:10.1101/gad.7.3.331spa
dc.relation.referencesKim, K. H., Bin, B. H., Kim, J., Dong, S. E., Park, P. J., Choi, H., . . . Lee, T. R. (2014). Novel inhibitory function of miR-125b in melanogenesis. Pigment Cell Melanoma Res, 27(1), 140-144. doi:10.1111/pcmr.12179spa
dc.relation.referencesKornfeld, J. W., & Bruning, J. C. (2014). Regulation of metabolism by long, non-coding RNAs. Front Genet, 5, 57. doi:10.3389/fgene.2014.00057spa
dc.relation.referencesKozomara, A., Birgaoanu, M., & Griffiths-Jones, S. (2019). miRBase: from microRNA sequences to function. Nucleic Acids Res, 47(D1), D155-D162. doi:10.1093/nar/gky1141spa
dc.relation.referencesKozubek, J., Ma, Z., Fleming, E., Duggan, T., Wu, R., Shin, D. G., & Dadras, S. S. (2013). In-depth characterization of microRNA transcriptome in melanoma. PLoS One, 8(9), e72699. doi:10.1371/journal.pone.0072699spa
dc.relation.referencesKuilman, T., Michaloglou, C., Mooi, W. J., & Peeper, D. S. (2010). The essence of senescence. Genes Dev, 24(22), 2463-2479. doi:10.1101/gad.1971610spa
dc.relation.referencesKunz, M. (2013). MicroRNAs in melanoma biology. Adv Exp Med Biol, 774, 103-120. doi:10.1007/978-94-007-5590-1_6spa
dc.relation.referencesKyrgidis, A., Tzellos, T. G., & Triaridis, S. (2010). Melanoma: Stem cells, sun exposure and hallmarks for carcinogenesis, molecular concepts and future clinical implications. J Carcinog, 9, 3. doi:10.4103/1477-3163.62141spa
dc.relation.referencesLagunas, M. V. (2004). Estudio paramétrico para la producción de melanina en Escherichia coli recombinante. INSTITUTO TECNOLÓGICO DE CELAYA. Retrieved from http://www.ibt.unam.mx/alfredo/VictorHugoLagunas.pdfspa
dc.relation.referencesLatchana, N., Abrams, Z. B., Howard, J. H., Regan, K., Jacob, N., Fadda, P., . . . Carson, W. E., 3rd. (2017). Plasma MicroRNA Levels Following Resection of Metastatic Melanoma. Bioinform Biol Insights, 11, 1177932217694837. doi:10.1177/1177932217694837spa
dc.relation.referencesLeal, L. G., Lopez, C., & Lopez-Kleine, L. (2014). Construction and comparison of gene co-expression networks shows complex plant immune responses. PeerJ, 2, e610. doi:10.7717/peerj.610spa
dc.relation.referencesLee, H. E., Kim, E. H., Choi, H. R., Sohn, U. D., Yun, H. Y., Baek, K. J., . . . Kim, D. S. (2012). Dipeptides Inhibit Melanin Synthesis in Mel-Ab Cells through Down-Regulation of Tyrosinase. Korean J Physiol Pharmacol, 16(4), 287-291. doi:10.4196/kjpp.2012.16.4.287spa
dc.relation.referencesLee, J. T. (2012). Epigenetic regulation by long noncoding RNAs. Science, 338(6113), 1435-1439. doi:10.1126/science.1231776spa
dc.relation.referencesLeitao, A. L., Costa, M. C., & Enguita, F. J. (2014). A guide for miRNA target prediction and analysis using web-based applications. Methods Mol Biol, 1182, 265-277. doi:10.1007/978-1-4939-1062-5_23spa
dc.relation.referencesLevkoff, L. H., Marshall, G. P., 2nd, Ross, H. H., Caldeira, M., Reynolds, B. A., Cakiroglu, M., . . . Laywell, E. D. (2008). Bromodeoxyuridine inhibits cancer cell proliferation in vitro and in vivo. Neoplasia, 10(8), 804-816. doi:10.1593/neo.08382spa
dc.relation.referencesLi, J., Donath, S., Li, Y., Qin, D., Prabhakar, B. S., & Li, P. (2010). miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet, 6(1), e1000795. doi:10.1371/journal.pgen.1000795spa
dc.relation.referencesLi, J., Li, C., Han, J., Zhang, C., Shang, D., Yao, Q., . . . Li, X. (2014). The detection of risk pathways, regulated by miRNAs, via the integration of sample-matched miRNA-mRNA profiles and pathway structure. J Biomed Inform, 49, 187-197. doi:10.1016/j.jbi.2014.02.004spa
dc.relation.referencesLi, J. Y., Zheng, L. L., Wang, T. T., & Hu, M. (2016). Functional Annotation of Metastasis-associated MicroRNAs of Melanoma: A Meta-analysis of Expression Profiles. Chin Med J (Engl), 129(20), 2484-2490. doi:10.4103/0366-6999.191793spa
dc.relation.referencesLi, M., Long, C., Yang, G., Luo, Y., & Du, H. (2016). MiR-26b inhibits melanoma cell proliferation and enhances apoptosis by suppressing TRAF5-mediated MAPK activation. Biochem Biophys Res Commun, 471(3), 361-367. doi:10.1016/j.bbrc.2016.02.021spa
dc.relation.referencesLi, R., Qian, N., Tao, K., You, N., Wang, X., & Dou, K. (2010). MicroRNAs involved in neoplastic transformation of liver cancer stem cells. J Exp Clin Cancer Res, 29, 169. doi:10.1186/1756-9966-29-169spa
dc.relation.referencesLi, R., Zhang, L., Jia, L., Duan, Y., Li, Y., Wang, J., . . . Sha, N. (2014). MicroRNA-143 targets Syndecan-1 to repress cell growth in melanoma. PLoS One, 9(4), e94855. doi:10.1371/journal.pone.0094855spa
dc.relation.referencesLi, W., Chang, J., Wang, S., Liu, X., Peng, J., Huang, D., . . . Li, J. (2015). miRNA-99b-5p suppresses liver metastasis of colorectal cancer by down-regulating mTOR. Oncotarget, 6(27), 24448-24462. doi:10.18632/oncotarget.4423spa
dc.relation.referencesLi, X., Wu, Z., Fu, X., & Han, W. (2014). lncRNAs: insights into their function and mechanics in underlying disorders. Mutat Res Rev Mutat Res, 762, 1-21. doi:10.1016/j.mrrev.2014.04.002spa
dc.relation.referencesLindgren, J., Uvdal, P., Sjovall, P., Nilsson, D. E., Engdahl, A., Schultz, B. P., & Thiel, V. (2012). Molecular preservation of the pigment melanin in fossil melanosomes. Nat Commun, 3, 824. doi:10.1038/ncomms1819spa
dc.relation.referencesLing, Y. H., Sui, M. H., Zheng, Q., Wang, K. Y., Wu, H., Li, W. Y., . . . Xu, L. N. (2018). miR-27b regulates myogenic proliferation and differentiation by targeting Pax3 in goat. Sci Rep, 8(1), 3909. doi:10.1038/s41598-018-22262-4spa
dc.relation.referencesLiu, S., Tetzlaff, M. T., Liu, A., Liegl-Atzwanger, B., Guo, J., & Xu, X. (2012). Loss of microRNA-205 expression is associated with melanoma progression. Lab Invest, 92(7), 1084-1096. doi:10.1038/labinvest.2012.62spa
dc.relation.referencesLiu, S. M., Lu, J., Lee, H. C., Chung, F. H., & Ma, N. (2014). miR-524-5p suppresses the growth of oncogenic BRAF melanoma by targeting BRAF and ERK2. Oncotarget, 5(19), 9444-9459. doi:10.18632/oncotarget.2452spa
dc.relation.referencesLiu, Y., & Simon, J. D. (2005). Metal-ion interactions and the structural organization of Sepia eumelanin. Pigment Cell Res, 18(1), 42-48. doi:10.1111/j.1600-0749.2004.00197.xspa
dc.relation.referencesLong, J., Menggen, Q., Wuren, Q., Shi, Q., & Pi, X. (2018). Long Noncoding RNA Taurine-Upregulated Gene1 (TUG1) Promotes Tumor Growth and Metastasis Through TUG1/Mir-129-5p/Astrocyte-Elevated Gene-1 (AEG-1) Axis in Malignant Melanoma. Med Sci Monit, 24, 1547-1559. doi:10.12659/msm.906616spa
dc.relation.referencesLopez-Kleine, L., Leal, L., & Lopez, C. (2013). Biostatistical approaches for the reconstruction of gene co-expression networks based on transcriptomic data. Brief Funct Genomics, 12(5), 457-467. doi:10.1093/bfgp/elt003spa
dc.relation.referencesLove, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 15(12), 550. doi:10.1186/s13059-014-0550-8spa
dc.relation.referencesLudwig, A., Rehberg, S., & Wegner, M. (2004). Melanocyte-specific expression of dopachrome tautomerase is dependent on synergistic gene activation by the Sox10 and Mitf transcription factors. FEBS Lett, 556(1-3), 236-244. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14706856spa
dc.relation.referencesLuo, C., Tetteh, P. W., Merz, P. R., Dickes, E., Abukiwan, A., Hotz-Wagenblatt, A., . . . Eichmuller, S. B. (2013). miR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes. J Invest Dermatol, 133(3), 768-775. doi:10.1038/jid.2012.357spa
dc.relation.referencesLuo, L., Xia, L., Zha, B., Zuo, C., Deng, D., Chen, M., . . . Zhang, Q. (2018). miR-335-5p targeting ICAM-1 inhibits invasion and metastasis of thyroid cancer cells. Biomed Pharmacother, 106, 983-990. doi:10.1016/j.biopha.2018.07.046spa
dc.relation.referencesMa, X., Zheng, Q., Zhao, G., Yuan, W., & Liu, W. (2020). Regulation of cellular senescence by microRNAs. Mech Ageing Dev, 189, 111264. doi:10.1016/j.mad.2020.111264spa
dc.relation.referencesMa, Z., Swede, H., Cassarino, D., Fleming, E., Fire, A., & Dadras, S. S. (2011). Up-regulated Dicer expression in patients with cutaneous melanoma. PLoS One, 6(6), e20494. doi:10.1371/journal.pone.0020494spa
dc.relation.referencesMargue, C., Philippidou, D., Reinsbach, S. E., Schmitt, M., Behrmann, I., & Kreis, S. (2013). New target genes of MITF-induced microRNA-211 contribute to melanoma cell invasion. PLoS One, 8(9), e73473. doi:10.1371/journal.pone.0073473spa
dc.relation.referencesMarin, M. B., Ghenea, S., Spiridon, L. N., Chiritoiu, G. N., Petrescu, A. J., & Petrescu, S. M. (2012). Tyrosinase degradation is prevented when EDEM1 lacks the intrinsically disordered region. PLoS One, 7(8), e42998. doi:10.1371/journal.pone.0042998spa
dc.relation.referencesMartin del Campo, S. E., Latchana, N., Levine, K. M., Grignol, V. P., Fairchild, E. T., Jaime-Ramirez, A. C., . . . Carson, W. E., 3rd. (2015). MiR-21 enhances melanoma invasiveness via inhibition of tissue inhibitor of metalloproteinases 3 expression: in vivo effects of MiR-21 inhibitor. PLoS One, 10(1), e0115919. doi:10.1371/journal.pone.0115919spa
dc.relation.referencesMartinez, I., Cazalla, D., Almstead, L. L., Steitz, J. A., & DiMaio, D. (2011). miR-29 and miR-30 regulate B-Myb expression during cellular senescence. Proc Natl Acad Sci U S A, 108(2), 522-527. doi:10.1073/pnas.1017346108spa
dc.relation.referencesMartinez, N. J., & Walhout, A. J. (2009). The interplay between transcription factors and microRNAs in genome-scale regulatory networks. Bioessays, 31(4), 435-445. doi:10.1002/bies.200800212spa
dc.relation.referencesMasterson, J. C., & O'Dea, S. (2007). 5-Bromo-2-deoxyuridine activates DNA damage signalling responses and induces a senescence-like phenotype in p16-null lung cancer cells. Anticancer Drugs, 18(9), 1053-1068. doi:10.1097/CAD.0b013e32825209f6spa
dc.relation.referencesMc Auley, M. T., Choi, H., Mooney, K., Paul, E., & Miller, V. M. (2015). Systems Biology and Synthetic Biology: A New Epoch for Toxicology Research. Advances in Toxicology, 2015, 14. doi:10.1155/2015/575403spa
dc.relation.referencesMelnikova, V. O., Bolshakov, S. V., Walker, C., & Ananthaswamy, H. N. (2004). Genomic alterations in spontaneous and carcinogen-induced murine melanoma cell lines. Oncogene, 23(13), 2347-2356. doi:10.1038/sj.onc.1207405spa
dc.relation.referencesMendes, A. D. R. M. D. A. (2003). Mutual information: a dependence measure for nonlinear time series. Econometrics. Retrieved from https://www.researchgate.net/publication/23742865_Mutual_information_a_dependence_measure_for_nonlinear_time_seriesspa
dc.relation.referencesMercer, T. R., Gerhardt, D. J., Dinger, M. E., Crawford, J., Trapnell, C., Jeddeloh, J. A., . . . Rinn, J. L. (2012). Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat Biotechnol, 30(1), 99-104. doi:10.1038/nbt.2024spa
dc.relation.referencesMeyer, P. E., Lafitte, F., & Bontempi, G. (2008). minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics, 9, 461. doi:10.1186/1471-2105-9-461spa
dc.relation.referencesMichishita, E., Nakabayashi, K., Suzuki, T., Kaul, S. C., Ogino, H., Fujii, M., . . . Ayusawa, D. (1999). 5-Bromodeoxyuridine induces senescence-like phenomena in mammalian cells regardless of cell type or species. J Biochem, 126(6), 1052-1059. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10578056spa
dc.relation.referencesMiller, A. J., & Mihm, M. C., Jr. (2006). Melanoma. N Engl J Med, 355(1), 51-65. doi:10.1056/NEJMra052166spa
dc.relation.referencesMin, H., & Yoon, S. (2010). Got target? Computational methods for microRNA target prediction and their extension. Exp Mol Med, 42(4), 233-244. doi:10.3858/emm.2010.42.4.032spa
dc.relation.referencesMione, M., & Bosserhoff, A. (2015). MicroRNAs in melanocyte and melanoma biology. Pigment Cell Melanoma Res, 28(3), 340-354. doi:10.1111/pcmr.12346spa
dc.relation.referencesMiyamura, Y., Coelho, S. G., Wolber, R., Miller, S. A., Wakamatsu, K., Zmudzka, B. Z., . . . Hearing, V. J. (2007). Regulation of human skin pigmentation and responses to ultraviolet radiation. Pigment Cell Res, 20(1), 2-13. doi:10.1111/j.1600-0749.2006.00358.xspa
dc.relation.referencesMontañez, R., Rodríguez-Caso, C., & Bellés, X. (2013). MicroRNA-mRNA Regulation Networks. In W. Dubitzky, O. Wolkenhauer, K.-H. Cho, & H. Yokota (Eds.), Encyclopedia of Systems Biology (pp. 1354-1357). New York, NY: Springer New York.spa
dc.relation.referencesMueller, D. W., Rehli, M., & Bosserhoff, A. K. (2009). miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J Invest Dermatol, 129(7), 1740-1751. doi:10.1038/jid.2008.452spa
dc.relation.referencesMuller, D. W., & Bosserhoff, A. K. (2008). Integrin beta 3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene, 27(52), 6698-6706. doi:10.1038/onc.2008.282spa
dc.relation.referencesMurray, B. S., Choe, S. E., Woods, M., Ryan, T. E., & Liu, W. (2010). An in silico analysis of microRNAs: mining the miRNAome. Mol Biosyst, 6(10), 1853-1862. doi:10.1039/c003961fspa
dc.relation.referencesNarita, M., Nunez, S., Heard, E., Narita, M., Lin, A. W., Hearn, S. A., . . . Lowe, S. W. (2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell, 113(6), 703-716. doi:10.1016/s0092-8674(03)00401-xspa
dc.relation.referencesNicetto, D., & Zaret, K. S. (2019). Role of H3K9me3 heterochromatin in cell identity establishment and maintenance. Curr Opin Genet Dev, 55, 1-10. doi:10.1016/j.gde.2019.04.013spa
dc.relation.referencesNiles, R. M., & Makarski, J. S. (1978). Control of melanogenesis in mouse melanoma cells of varying metastatic potential. J Natl Cancer Inst, 61(2), 523-526. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/210294spa
dc.relation.referencesNishioka, E., Funasaka, Y., Kondoh, H., Chakraborty, A. K., Mishima, Y., & Ichihashi, M. (1999). Expression of tyrosinase, TRP-1 and TRP-2 in ultraviolet-irradiated human melanomas and melanocytes: TRP-2 protects melanoma cells from ultraviolet B induced apoptosis. Melanoma Res, 9(5), 433-443. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10596909spa
dc.relation.referencesNoguchi, S., Kumazaki, M., Yasui, Y., Mori, T., Yamada, N., & Akao, Y. (2014). MicroRNA-203 regulates melanosome transport and tyrosinase expression in melanoma cells by targeting kinesin superfamily protein 5b. J Invest Dermatol, 134(2), 461-469. doi:10.1038/jid.2013.310spa
dc.relation.referencesNoguchi, S., Mori, T., Otsuka, Y., Yamada, N., Yasui, Y., Iwasaki, J., . . . Akao, Y. (2012). Anti-oncogenic microRNA-203 induces senescence by targeting E2F3 protein in human melanoma cells. J Biol Chem, 287(15), 11769-11777. doi:10.1074/jbc.M111.325027spa
dc.relation.referencesNoren Hooten, N., & Evans, M. K. (2017). Techniques to Induce and Quantify Cellular Senescence. J Vis Exp(123). doi:10.3791/55533spa
dc.relation.referencesNumata, J., Ebenhoh, O., & Knapp, E. W. (2008). Measuring correlations in metabolomic networks with mutual information. Genome Inform, 20, 112-122. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19425127spa
dc.relation.referencesNyholm, A. M., Lerche, C. M., Manfe, V., Biskup, E., Johansen, P., Morling, N., . . . Gniadecki, R. (2014). miR-125b induces cellular senescence in malignant melanoma. BMC Dermatol, 14, 8. doi:10.1186/1471-5945-14-8spa
dc.relation.referencesOmer, A., Singh, P., Yadav, N. K., & Singh, R. K. (2015). microRNAs: role in leukemia and their computational perspective. Wiley Interdiscip Rev RNA, 6(1), 65-78. doi:10.1002/wrna.1256spa
dc.relation.referencesOuzounova, M., Vuong, T., Ancey, P. B., Ferrand, M., Durand, G., Le-Calvez Kelm, F., . . . Hernandez-Vargas, H. (2013). MicroRNA miR-30 family regulates non-attachment growth of breast cancer cells. BMC Genomics, 14, 139. doi:10.1186/1471-2164-14-139spa
dc.relation.referencesPasztor, L. M., & Hu, F. (1972). An amelanotic variant of B16 malignant melanoma. Cancer Res, 32(8), 1769-1774. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/5044135spa
dc.relation.referencesPatterson, M. K. (1979). Measurement of growth and viability of cells in culture. Methods in Enzymology, 11, 141-152. doi:doi:10.1016/s0076-6879(79)58132-4spa
dc.relation.referencesPei, B., & Shin, D. G. (2012). Reconstruction of biological networks by incorporating prior knowledge into Bayesian network models. J Comput Biol, 19(12), 1324-1334. doi:10.1089/cmb.2011.0194spa
dc.relation.referencesPeng, D. F., Sugihara, H., & Hattori, T. (2001). Bromodeoxyuridine induces p53-dependent and -independent cell cycle arrests in human gastric carcinoma cell lines. Pathobiology, 69(2), 77-85. doi:10.1159/000048760spa
dc.relation.referencesPenna, E., Orso, F., Cimino, D., Tenaglia, E., Lembo, A., Quaglino, E., . . . Taverna, D. (2011). microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO J, 30(10), 1990-2007. doi:10.1038/emboj.2011.102spa
dc.relation.referencesPeñaloza, L. N., & Gomez, L. A. (2000). Expresión del Gen PRL-1 en Células de Melanoma Murino B-16 Inducidas a Supresión del Crecimiento con el Sensibilizador a la Radiación Ultravioleta: Bromodeoxiuridina (Maestria), Pontificia Universidad Javeriana. Bogotá-Colombia.spa
dc.relation.referencesPeterson, S. M., Thompson, J. A., Ufkin, M. L., Sathyanarayana, P., Liaw, L., & Congdon, C. B. (2014). Common features of microRNA target prediction tools. Frontiers in Genetics, 5. doi:10.3389/fgene.2014.00023spa
dc.relation.referencesPoenitzsch Strong, A. M., Setaluri, V., & Spiegelman, V. S. (2014). microRNA-340 as a modulator of RAS–RAF–MAPK signaling in melanoma. Archives of Biochemistry and Biophysics, 563, 118-124. doi:http://dx.doi.org/10.1016/j.abb.2014.07.012spa
dc.relation.referencesPozarowski, P., & Darzynkiewicz, Z. (2004). Analysis of cell cycle by flow cytometry. Methods Mol Biol, 281, 301-311. doi:10.1385/1-59259-811-0:301spa
dc.relation.referencesPrezioso, J. A., Wang, N., Duty, L., Bloomer, W. D., & Gorelik, E. (1993). Enhancement of pulmonary metastasis formation and gamma-glutamyltranspeptidase activity in B16 melanoma induced by differentiation in vitro. Clin Exp Metastasis, 11(3), 263-274. doi:10.1007/BF00121169spa
dc.relation.referencesPrice, C., & Chen, J. (2014). MicroRNAs in Cancer Biology and Therapy: Current Status and Perspectives. Genes Dis, 1(1), 53-63. doi:10.1016/j.gendis.2014.06.004spa
dc.relation.referencesPrice, P. M. (1976). The effect of 5-bromodeoxyuridine on messenger RNA production in cultured cells. Biochim Biophys Acta, 447(3), 304-311. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/987803spa
dc.relation.referencesPritchard, C. C., Cheng, H. H., & Tewari, M. (2012). MicroRNA profiling: approaches and considerations. Nat Rev Genet, 13(5), 358-369. doi:10.1038/nrg3198spa
dc.relation.referencesQi, M., Huang, X., Zhou, L., & Zhang, J. (2014). Identification of differentially expressed microRNAs in metastatic melanoma using next-generation sequencing technology. Int J Mol Med, 33(5), 1117-1121. doi:10.3892/ijmm.2014.1668spa
dc.relation.referencesQiu, H. J., Lu, X. H., Yang, S. S., Weng, C. Y., Zhang, E. K., & Chen, F. C. (2016). MiR-769 promoted cell proliferation in human melanoma by suppressing GSK3B expression. Biomed Pharmacother, 82, 117-123. doi:10.1016/j.biopha.2016.04.052spa
dc.relation.referencesRambow, F., Bechadergue, A., Luciani, F., Gros, G., Domingues, M., Bonaventure, J., . . . Larue, L. (2016). Regulation of Melanoma Progression through the TCF4/miR-125b/NEDD9 Cascade. J Invest Dermatol, 136(6), 1229-1237. doi:10.1016/j.jid.2016.02.803spa
dc.relation.referencesRamirez, C. A., & Gomez, L. A. (2005). Extracción y solubilidad de la melanina total producida por células de melanoma murino B16 expuestas al aminoácido L-tirosina. Laboratorio de Fisiología Molecular. Instituto Nacional de Salud.spa
dc.relation.referencesRauth, S., & Davidson, R. L. (1993). Suppression of tyrosinase gene expression by bromodeoxyuridine in Syrian hamster melanoma cells is not due to its incorporation into upstream or coding sequences of the tyrosinase gene. Somat Cell Mol Genet, 19(3), 285-293. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8332936spa
dc.relation.referencesRauth, S., Hoganson, G. E., & Davidson, R. L. (1990). Bromodeoxyuridine- and cyclic AMP-mediated regulation of tyrosinase in Syrian hamster melanoma cells. Somat Cell Mol Genet, 16(6), 583-592. doi:10.1007/BF01233099spa
dc.relation.referencesRen, J. W., Li, Z. J., & Tu, C. (2015). MiR-135 post-transcriptionally regulates FOXO1 expression and promotes cell proliferation in human malignant melanoma cells. Int J Clin Exp Pathol, 8(6), 6356-6366. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/26261511spa
dc.relation.referencesRieber, M., & Rieber, M. S. (1994). Cyclin-dependent kinase 2 and cyclin A interaction with E2F are targets for tyrosine induction of B16 melanoma terminal differentiation. Cell Growth Differ, 5(12), 1339-1346. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7696182spa
dc.relation.referencesRieber, M., & Strasberg-Rieber, M. (1998). Induction of p53 and melanoma cell death is reciprocal with down-regulation of E2F, cyclin D1 and pRB. Int J Cancer, 76(5), 757-760. doi:10.1002/(sici)1097-0215(19980529)76:5<757::aid-ijc22>3.0.co;2-#spa
dc.relation.referencesRieber, M., & Strasberg Rieber, M. (1998). Induction of p53 without increase in p21WAF1 in betulinic acid-mediated cell death is preferential for human metastatic melanoma. DNA Cell Biol, 17(5), 399-406. doi:10.1089/dna.1998.17.399spa
dc.relation.referencesRodier, F., & Campisi, J. (2011). Four faces of cellular senescence. J Cell Biol, 192(4), 547-556. doi:10.1083/jcb.201009094spa
dc.relation.referencesRothhammer, T., & Bosserhoff, A. K. (2007). Epigenetic events in malignant melanoma. Pigment Cell Res, 20(2), 92-111. doi:10.1111/j.1600-0749.2007.00367.xspa
dc.relation.referencesRyu, B., Kim, D. S., Deluca, A. M., & Alani, R. M. (2007). Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression. PLoS One, 2(7), e594. doi:10.1371/journal.pone.0000594spa
dc.relation.referencesSalama, R., Sadaie, M., Hoare, M., & Narita, M. (2014). Cellular senescence and its effector programs. Genes Dev, 28(2), 99-114. doi:10.1101/gad.235184.113spa
dc.relation.referencesSand, M., Skrygan, M., Sand, D., Georgas, D., Gambichler, T., Hahn, S. A., . . . Bechara, F. G. (2013). Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. Cell Tissue Res, 351(1), 85-98. doi:10.1007/s00441-012-1514-5spa
dc.relation.referencesSantiesteban, R. J., C (2012). Redes Bayesianas. Revista Vinculando. Retrieved from http://vinculando.org/articulos/redes-bayesianas.htmlspa
dc.relation.referencesSarangarajan, R., & Apte, S. P. (2006). The polymerization of melanin: a poorly understood phenomenon with egregious biological implications. Melanoma Res, 16(1), 3-10. doi:10.1097/01.cmr.0000195699.35143.dfspa
dc.relation.referencesSarkar, D., Leung, E. Y., Baguley, B. C., Finlay, G. J., & Askarian-Amiri, M. E. (2015). Epigenetic regulation in human melanoma: past and future. Epigenetics, 10(2), 103-121. doi:10.1080/15592294.2014.1003746spa
dc.relation.referencesSchefe, J. H., Lehmann, K. E., Buschmann, I. R., Unger, T., & Funke-Kaiser, H. (2006). Quantitative real-time RT-PCR data analysis: current concepts and the novel "gene expression's CT difference" formula. J Mol Med (Berl), 84(11), 901-910. doi:10.1007/s00109-006-0097-6spa
dc.relation.referencesSchultz, J., Lorenz, P., Gross, G., Ibrahim, S., & Kunz, M. (2008). MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res, 18(5), 549-557. doi:10.1038/cr.2008.45spa
dc.relation.referencesSegura, M. F., Hanniford, D., Menendez, S., Reavie, L., Zou, X., Alvarez-Diaz, S., . . . Hernando, E. (2009). Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci U S A, 106(6), 1814-1819. doi:10.1073/pnas.0808263106spa
dc.relation.referencesSerguienko, A., Grad, I., Wennerstrom, A. B., Meza-Zepeda, L. A., Thiede, B., Stratford, E. W., . . . Munthe, E. (2015). Metabolic reprogramming of metastatic breast cancer and melanoma by let-7a microRNA. Oncotarget, 6(4), 2451-2465. doi:10.18632/oncotarget.3235spa
dc.relation.referencesSerrano, M., Lin, A. W., McCurrach, M. E., Beach, D., & Lowe, S. W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88(5), 593-602. doi:10.1016/s0092-8674(00)81902-9spa
dc.relation.referencesSestakova, B., Ondrusova, L., & Vachtenheim, J. (2010). Cell cycle inhibitor p21/ WAF1/ CIP1 as a cofactor of MITF expression in melanoma cells. Pigment Cell Melanoma Res, 23(2), 238-251. doi:10.1111/j.1755-148X.2010.00670.xspa
dc.relation.referencesSetijono, S. R., Park, M., Kim, G., Kim, Y., Cho, K. W., & Song, S. J. (2018). miR-218 and miR-129 regulate breast cancer progression by targeting Lamins. Biochem Biophys Res Commun, 496(3), 826-833. doi:10.1016/j.bbrc.2018.01.146spa
dc.relation.referencesShain, A. H., Yeh, I., Kovalyshyn, I., Sriharan, A., Talevich, E., Gagnon, A., . . . Bastian, B. C. (2015). The Genetic Evolution of Melanoma from Precursor Lesions. N Engl J Med, 373(20), 1926-1936. doi:10.1056/NEJMoa1502583spa
dc.relation.referencesShain, A. H., Yeh, I., Kovalyshyn, I., Sriharan, A., Talevich, E., Gagnon, A., . . . Bastian, B. C. (2015). The Genetic Evolution of Melanoma from Precursor Lesions. New England Journal of Medicine, 373(20), 1926-1936. doi:doi:10.1056/NEJMoa1502583spa
dc.relation.referencesShen, X., Kong, S., Yang, Q., Yin, Q., Cong, H., Wang, X., & Ju, S. (2020). PCAT-1 promotes cell growth by sponging miR-129 via MAP3K7/NF-kappaB pathway in multiple myeloma. J Cell Mol Med. doi:10.1111/jcmm.15035spa
dc.relation.referencesSheppard, K. E., & McArthur, G. A. (2013). The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma. Clin Cancer Res, 19(19), 5320-5328. doi:10.1158/1078-0432.CCR-13-0259spa
dc.relation.referencesShin, S. Y., Kim, C. G., Lim, Y., & Lee, Y. H. (2011). The ETS family transcription factor ELK-1 regulates induction of the cell cycle-regulatory gene p21(Waf1/Cip1) and the BAX gene in sodium arsenite-exposed human keratinocyte HaCaT cells. J Biol Chem, 286(30), 26860-26872. doi:10.1074/jbc.M110.216721spa
dc.relation.referencesSiegel, R. L., Miller, K. D., & Jemal, A. (2020). Cancer statistics, 2020. CA Cancer J Clin, 70(1), 7-30. doi:10.3322/caac.21590spa
dc.relation.referencesSilagi, S. (1976). Effects of 5-bromodeoxyuridine on tumorigenicity, immunogenicity, virus production, plasminogen activator, and melanogenesis of mouse melanoma cells. Int Rev Cytol, 45, 65-111. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/821894spa
dc.relation.referencesSilagi, S., & Bruce, S. A. (1970). Suppression of malignancy and differentiation in melanotic melanoma cells. Proc Natl Acad Sci U S A, 66(1), 72-78. doi:10.1073/pnas.66.1.72spa
dc.relation.referencesSlominski, A. (1989). L-tyrosine induces synthesis of melanogenesis related proteins. Life Sci, 45(19), 1799-1803. doi:10.1016/0024-3205(89)90520-1spa
dc.relation.referencesSlominski, A., & Paus, R. (1990). Are L-tyrosine and L-dopa hormone-like bioregulators? J Theor Biol, 143(1), 123-138. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2359315spa
dc.relation.referencesSlominski, A., Tobin, D. J., Shibahara, S., & Wortsman, J. (2004). Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev, 84(4), 1155-1228. doi:10.1152/physrev.00044.2003spa
dc.relation.referencesSlominski, A., Zmijewski, M. A., & Pawelek, J. (2012). L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res, 25(1), 14-27. doi:10.1111/j.1755-148X.2011.00898.xspa
dc.relation.referencesSmith, V. A., Yu, J., Smulders, T. V., Hartemink, A. J., & Jarvis, E. D. (2006). Computational inference of neural information flow networks. PLoS Comput Biol, 2(11), e161. doi:10.1371/journal.pcbi.0020161spa
dc.relation.referencesSolano, F. (2014). Melanins: Skin Pigments and Much More—Types, Structural Models, Biological Functions, and Formation Routes. New Journal of Science, 2014. doi:http://dx.doi.org/10.1155/2014/498276spa
dc.relation.referencesStead, E., White, J., Faast, R., Conn, S., Goldstone, S., Rathjen, J., . . . Dalton, S. (2002). Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene, 21(54), 8320-8333. doi:10.1038/sj.onc.1206015spa
dc.relation.referencesStrasberg Rieber, M., & Rieber, M. (1995). Suppression of cyclin D1 but not cdk4 or cyclin A with induction of melanoma terminal differentiation. Biochem Biophys Res Commun, 216(1), 422-427. doi:10.1006/bbrc.1995.2640spa
dc.relation.referencesStreicher, K. L., Zhu, W., Lehmann, K. P., Georgantas, R. W., Morehouse, C. A., Brohawn, P., . . . Yao, Y. (2012). A novel oncogenic role for the miRNA-506-514 cluster in initiating melanocyte transformation and promoting melanoma growth. Oncogene, 31(12), 1558-1570. doi:10.1038/onc.2011.345spa
dc.relation.referencesSu, W., Hong, L., Xu, X., Huang, S., Herpai, D., Li, L., . . . Sun, P. (2018). miR-30 disrupts senescence and promotes cancer by targeting both p16(INK4A) and DNA damage pathways. Oncogene, 37(42), 5618-5632. doi:10.1038/s41388-018-0358-1spa
dc.relation.referencesSuh, N. (2018). MicroRNA controls of cellular senescence. BMB Rep, 51(10), 493-499. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/30269742spa
dc.relation.referencesSun, V., Zhou, W. B., Majid, S., Kashani-Sabet, M., & Dar, A. A. (2014). MicroRNA-mediated regulation of melanoma. Br J Dermatol, 171(2), 234-241. doi:10.1111/bjd.12989spa
dc.relation.referencesSun, V., Zhou, W. B., Nosrati, M., Majid, S., Thummala, S., de Semir, D., . . . Dar, A. A. (2015). Antitumor activity of miR-1280 in melanoma by regulation of Src. Mol Ther, 23(1), 71-78. doi:10.1038/mt.2014.176spa
dc.relation.referencesSuzuki, T., Michishita, E., Ogino, H., Fujii, M., & Ayusawa, D. (2002). Synergistic induction of the senescence-associated genes by 5-bromodeoxyuridine and AT-binding ligands in HeLa cells. Exp Cell Res, 276(2), 174-184. doi:10.1006/excr.2002.5524spa
dc.relation.referencesSuzuki, T., Minagawa, S., Michishita, E., Ogino, H., Fujii, M., Mitsui, Y., & Ayusawa, D. (2001). Induction of senescence-associated genes by 5-bromodeoxyuridine in HeLa cells. Exp Gerontol, 36(3), 465-474. doi:10.1016/s0531-5565(00)00223-0spa
dc.relation.referencesSwoboda, R. K., & Herlyn, M. (2013). There is a world beyond protein mutations: the role of non-coding RNAs in melanomagenesis. Exp Dermatol, 22(5), 303-306. doi:10.1111/exd.12117spa
dc.relation.referencesTam, S. W., Theodoras, A. M., Shay, J. W., Draetta, G. F., & Pagano, M. (1994). Differential expression and regulation of Cyclin D1 protein in normal and tumor human cells: association with Cdk4 is required for Cyclin D1 function in G1 progression. Oncogene, 9(9), 2663-2674. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8058330spa
dc.relation.referencesTang, H., Zhu, J., Du, W., Liu, S., Zeng, Y., Ding, Z., . . . Huang, J. (2018). CPNE1 is a target of miR-335-5p and plays an important role in the pathogenesis of non-small cell lung cancer. J Exp Clin Cancer Res, 37(1), 131. doi:10.1186/s13046-018-0811-6spa
dc.relation.referencesTay, Y., Zhang, J., Thomson, A. M., Lim, B., & Rigoutsos, I. (2008). MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 455(7216), 1124-1128. doi:10.1038/nature07299spa
dc.relation.referencesTerry, N. H., & White, R. A. (2006). Flow cytometry after bromodeoxyuridine labeling to measure S and G2+M phase durations plus doubling times in vitro and in vivo. Nat Protoc, 1(2), 859-869. doi:10.1038/nprot.2006.113spa
dc.relation.referencesThomas, L., Chan, P. W., Chang, S., & Damsky, C. (1993). 5-Bromo-2-deoxyuridine regulates invasiveness and expression of integrins and matrix-degrading proteinases in a differentiated hamster melanoma cell. J Cell Sci, 105 ( Pt 1), 191-201. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8360273spa
dc.relation.referencesThomson, D. W., Bracken, C. P., & Goodall, G. J. (2011). Experimental strategies for microRNA target identification. Nucleic Acids Res, 39(16), 6845-6853. doi:10.1093/nar/gkr330spa
dc.relation.referencesTreiber, T., Treiber, N., & Meister, G. (2019). Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol, 20(1), 5-20. doi:10.1038/s41580-018-0059-1spa
dc.relation.referencesTucker, M. A., & Goldstein, A. M. (2003). Melanoma etiology: where are we? Oncogene, 22(20), 3042-3052. doi:10.1038/sj.onc.1206444spa
dc.relation.referencesTuncbag, N., Braunstein, A., Pagnani, A., Huang, S. S., Chayes, J., Borgs, C., . . . Fraenkel, E. (2013). Simultaneous reconstruction of multiple signaling pathways via the prize-collecting steiner forest problem. J Comput Biol, 20(2), 124-136. doi:10.1089/cmb.2012.0092spa
dc.relation.referencesUlrich, K., Tritsch, G. L., & Moore, G. E. (1968). Tyrosine utilization by pigmented hamster melanoma cells cultured in vitro. Int J Cancer, 3(4), 446-453. doi:10.1002/ijc.2910030405spa
dc.relation.referencesUrán, M. E., & Cano, L. E. (2008). Melanina: implicaciones en la patogénesis de algunas enfermedades y su capacidad de evadir la respuesta inmune del hospedero. Infectio, 12, 128-148. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-93922008000200007&nrm=isospa
dc.relation.referencesVelazquez-Torres, G., Shoshan, E., Ivan, C., Huang, L., Fuentes-Mattei, E., Paret, H., . . . Bar-Eli, M. (2018). A-to-I miR-378a-3p editing can prevent melanoma progression via regulation of PARVA expression. Nat Commun, 9(1), 461. doi:10.1038/s41467-018-02851-7spa
dc.relation.referencesVitiello, M., Tuccoli, A., D'Aurizio, R., Sarti, S., Giannecchini, L., Lubrano, S., . . . Poliseno, L. (2017). Context-dependent miR-204 and miR-211 affect the biological properties of amelanotic and melanotic melanoma cells. Oncotarget, 8(15), 25395-25417. doi:10.18632/oncotarget.15915spa
dc.relation.referencesVolinia, S., Galasso, M., Costinean, S., Tagliavini, L., Gamberoni, G., Drusco, A., . . . Croce, C. M. (2010). Reprogramming of miRNA networks in cancer and leukemia. Genome Res, 20(5), 589-599. doi:10.1101/gr.098046.109spa
dc.relation.referencesWang, D., Qiu, C., Zhang, H., Wang, J., Cui, Q., & Yin, Y. (2010). Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: from functions to targets. PLoS One, 5(9). doi:10.1371/journal.pone.0013067spa
dc.relation.referencesWang, H. F., Chen, H., Ma, M. W., Wang, J. A., Tang, T. T., Ni, L. S., . . . Bai, B. X. (2013). miR-573 regulates melanoma progression by targeting the melanoma cell adhesion molecule. Oncol Rep, 30(1), 520-526. doi:10.3892/or.2013.2451spa
dc.relation.referencesWang, P., Zhao, Y., Fan, R., Chen, T., & Dong, C. (2016). MicroRNA-21a-5p Functions on the Regulation of Melanogenesis by Targeting Sox5 in Mouse Skin Melanocytes. Int J Mol Sci, 17(7). doi:10.3390/ijms17070959spa
dc.relation.referencesWang, T., & Xu, Z. (2010). miR-27 promotes osteoblast differentiation by modulating Wnt signaling. Biochem Biophys Res Commun, 402(2), 186-189. doi:10.1016/j.bbrc.2010.08.031spa
dc.relation.referencesWang, Z., Zhao, Z., Yang, Y., Luo, M., Zhang, M., Wang, X., . . . Huang, C. (2018). MiR-99b-5p and miR-203a-3p Function as Tumor Suppressors by Targeting IGF-1R in Gastric Cancer. Sci Rep, 8(1), 10119. doi:10.1038/s41598-018-27583-yspa
dc.relation.referencesWatanabe, Y., Tomita, M., & Kanai, A. (2007). Computational methods for microRNA target prediction. Methods Enzymol, 427, 65-86. doi:10.1016/S0076-6879(07)27004-1spa
dc.relation.referencesWeller, E. M., Dietrich, I., Viaggi, S., Beisker, W., & Nusse, M. (1993). Flow cytometric analysis of bromodeoxyuridine-induced micronuclei. Mutagenesis, 8(5), 437-444. doi:10.1093/mutage/8.5.437spa
dc.relation.referencesWrathall, J. R., Oliver, C., Silagi, S., & Essner, E. (1973). Suppression of pigmentation in mouse melanoma cells by 5-bromodeoxyuridine: effects on tyrosinase activity and melanosome formation. J Cell Biol, 57(2), 406-423. doi:10.1083/jcb.57.2.406spa
dc.relation.referencesWu, C., Jin, B., Chen, L., Zhuo, D., Zhang, Z., Gong, K., & Mao, Z. (2013). MiR-30d induces apoptosis and is regulated by the Akt/FOXO pathway in renal cell carcinoma. Cell Signal, 25(5), 1212-1221. doi:10.1016/j.cellsig.2013.01.028spa
dc.relation.referencesWu, Q., Guo, L., Jiang, F., Li, L., Li, Z., & Chen, F. (2015). Analysis of the miRNA-mRNA-lncRNA networks in ER+ and ER- breast cancer cell lines. J Cell Mol Med, 19(12), 2874-2887. doi:10.1111/jcmm.12681spa
dc.relation.referencesXu, J., Li, C. X., Li, Y. S., Lv, J. Y., Ma, Y., Shao, T. T., . . . Li, X. (2011). MiRNA-miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Res, 39(3), 825-836. doi:10.1093/nar/gkq832spa
dc.relation.referencesXu, J., & Wong, C. W. (2013). Enrichment analysis of miRNA targets. Methods Mol Biol, 936, 91-103. doi:10.1007/978-1-62703-083-0_8spa
dc.relation.referencesXu, S., Ge, J., Zhang, Z., & Zhou, W. (2017). MiR-129 inhibits cell proliferation and metastasis by targeting ETS1 via PI3K/AKT/mTOR pathway in prostate cancer. Biomed Pharmacother, 96, 634-641. doi:10.1016/j.biopha.2017.10.037spa
dc.relation.referencesXu, S., Yi, X. M., Zhang, Z. Y., Ge, J. P., & Zhou, W. Q. (2016). miR-129 predicts prognosis and inhibits cell growth in human prostate carcinoma. Mol Med Rep, 14(6), 5025-5032. doi:10.3892/mmr.2016.5859spa
dc.relation.referencesXu, Y., Brenn, T., Brown, E. R., Doherty, V., & Melton, D. W. (2012). Differential expression of microRNAs during melanoma progression: miR-200c, miR-205 and miR-211 are downregulated in melanoma and act as tumour suppressors. Br J Cancer, 106(3), 553-561. doi:10.1038/bjc.2011.568spa
dc.relation.referencesYa, G., Wang, H., Ma, Y., Hu, A., Ma, Y., Hu, J., & Yu, Y. (2017). Serum miR-129 functions as a biomarker for colorectal cancer by targeting estrogen receptor (ER) beta. Pharmazie, 72(2), 107-112. doi:10.1691/ph.2017.6718spa
dc.relation.referencesYang, C. H., Yue, J., Pfeffer, S. R., Handorf, C. R., & Pfeffer, L. M. (2011). MicroRNA miR-21 regulates the metastatic behavior of B16 melanoma cells. J Biol Chem, 286(45), 39172-39178. doi:10.1074/jbc.M111.285098spa
dc.relation.referencesYao, B., La, L. B., Chen, Y. C., Chang, L. J., & Chan, E. K. (2012). Defining a new role of GW182 in maintaining miRNA stability. EMBO Rep, 13(12), 1102-1108. doi:10.1038/embor.2012.160spa
dc.relation.referencesYao, S. (2016). MicroRNA biogenesis and their functions in regulating stem cell potency and differentiation. Biol Proced Online, 18, 8. doi:10.1186/s12575-016-0037-yspa
dc.relation.referencesYepes, S., Lopez, R., Andrade, R. E., Rodriguez-Urrego, P. A., Lopez-Kleine, L., & Torres, M. M. (2016). Co-expressed miRNAs in gastric adenocarcinoma. Genomics, 108(2), 93-101. doi:10.1016/j.ygeno.2016.07.002spa
dc.relation.referencesYu, X., Lin, J., Zack, D. J., Mendell, J. T., & Qian, J. (2008). Analysis of regulatory network topology reveals functionally distinct classes of microRNAs. Nucleic Acids Res, 36(20), 6494-6503. doi:10.1093/nar/gkn712spa
dc.relation.referencesYu, Y., Schleich, K., Yue, B., Ji, S., Lohneis, P., Kemper, K., . . . Lee, S. (2018). Targeting the Senescence-Overriding Cooperative Activity of Structurally Unrelated H3K9 Demethylases in Melanoma. Cancer Cell, 33(2), 322-336 e328. doi:10.1016/j.ccell.2018.01.002spa
dc.relation.referencesZeng, A., Yin, J., Li, Y., Li, R., Wang, Z., Zhou, X., . . . You, Y. (2018). miR-129-5p targets Wnt5a to block PKC/ERK/NF-kappaB and JNK pathways in glioblastoma. Cell Death Dis, 9(3), 394. doi:10.1038/s41419-018-0343-1spa
dc.relation.referencesZhang, D., & Yang, N. (2019). MiR-335-5p Inhibits Cell Proliferation, Migration and Invasion in Colorectal Cancer through Downregulating LDHB. J BUON, 24(3), 1128-1136. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/31424671spa
dc.relation.referencesZhang, L. L., Zhang, L. F., Guo, X. H., Zhang, D. Z., Yang, F., & Fan, Y. Y. (2018). Downregulation of miR-335-5p by Long Noncoding RNA ZEB1-AS1 in Gastric Cancer Promotes Tumor Proliferation and Invasion. DNA Cell Biol, 37(1), 46-52. doi:10.1089/dna.2017.3926spa
dc.relation.referencesZhang, P., Li, J., Song, Y., & Wang, X. (2017). MiR-129-5p Inhibits Proliferation and Invasion of Chondrosarcoma Cells by Regulating SOX4/Wnt/beta-Catenin Signaling Pathway. Cell Physiol Biochem, 42(1), 242-253. doi:10.1159/000477323spa
dc.relation.referencesZhang, R., Xu, J., Zhao, J., & Bai, J. (2017). Mir-30d suppresses cell proliferation of colon cancer cells by inhibiting cell autophagy and promoting cell apoptosis. Tumour Biol, 39(6), 1010428317703984. doi:10.1177/1010428317703984spa
dc.relation.referencesZhang, X., Lin, D., Lin, Y., Chen, H., Zou, M., Zhong, S., . . . Han, S. (2017). Proteasome beta-4 subunit contributes to the development of melanoma and is regulated by miR-148b. Tumour Biol, 39(6), 1010428317705767. doi:10.1177/1010428317705767spa
dc.relation.referencesZhang, Z., Zhang, S., Ma, P., Jing, Y., Peng, H., Gao, W.-Q., & Zhuang, G. (2015). Lin28B promotes melanoma growth by mediating a microRNA regulatory circuit. Carcinogenesis, 36(9), 937-945. doi:10.1093/carcin/bgv085spa
dc.relation.referencesZhao, J. J., Lin, J., Zhu, D., Wang, X., Brooks, D., Chen, M., . . . Carrasco, R. (2014). miR-30-5p functions as a tumor suppressor and novel therapeutic tool by targeting the oncogenic Wnt/beta-catenin/BCL9 pathway. Cancer Res, 74(6), 1801-1813. doi:10.1158/0008-5472.CAN-13-3311-Tspa
dc.relation.referencesZhou, J., Xu, D., Xie, H., Tang, J., Liu, R., Li, J., . . . Cao, K. (2015). miR-33a functions as a tumor suppressor in melanoma by targeting HIF-1alpha. Cancer Biol Ther, 16(6), 846-855. doi:10.1080/15384047.2015.1030545spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.proposalMelanomaspa
dc.subject.proposalMelanomaeng
dc.subject.proposalmiRNAsspa
dc.subject.proposalmiRNAseng
dc.subject.proposalL-Tyrosineeng
dc.subject.proposalL-Tirosinaspa
dc.subject.proposal5-bromo-2´-deoxiuridinaspa
dc.subject.proposal5-bromo-2´-deoxyuridineeng
dc.subject.proposalPigmentationeng
dc.subject.proposalMelaninaspa
dc.subject.proposalSenescenciaspa
dc.subject.proposalSenescenceeng
dc.subject.proposalMelanineng
dc.subject.proposalPigmentaciónspa
dc.titleEvaluación de miRNAs en la línea celular de melanoma B16 inducida a pigmentación diferencial y disminución del crecimiento celular por la L-Tirosina y la 5-bromo-2´-deoxiuridinaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80138323.2020.pdf
Tamaño:
5.2 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: