Rendimiento y estado nutricional del café (Coffea arabica L.) en respuesta a aplicación de biocarbón

dc.contributor.advisorRestrepo Díaz, Hermann
dc.contributor.advisorLombardini, Leonardo
dc.contributor.authorSánchez Reinoso, Alefsi David
dc.date.accessioned2022-07-26T12:54:08Z
dc.date.available2022-07-26T12:54:08Z
dc.date.issued2022
dc.descriptionilustraciones, graficasspa
dc.description.abstractEl café de Colombia es reconocido mundialmente por su sabor y aroma suave. Su cultivo genera una gran cantidad de residuos como la pulpa fresca, que conlleva a problemas medioambientales, sanitarios y económicos. La obtención de biocarbón (BC) por pirólisis de la pulpa de café y su incorporación al suelo puede ser un complemento a la nutrición mineral del cultivo. El objetivo fue evaluar el efecto de la aplicación de biocarbón obtenido de pulpa de café sobre la fisiología y el comportamiento agronómico del cultivo de café variedad Castillo el Tambo (Coffea arabica L.). La investigación fue desarrollada en dos etapas: i) vegetativa, usando plantas de tres meses de edad, realizada en condiciones de invernadero; y ii) producción, usando un cultivo comercial de café de tres años de edad, realizada en Chaparral Tolima. Cuatro dosis de BC (0, 4, 8 y 16 t ha-1) y cuatro niveles de fertilización química (FQ) (0%, 33%, 66% y 100% de los requerimientos nutricionales) fueron evaluadas. Tres grupos de variables fueron registrados durante el experimento: i) parámetros fisiológicos de plántulas y árboles de café; ii) características físicas y químicas del suelo en un cultivo comercial de café; y iii) parámetros de calidad de granos tostados y bebidas de café. Los resultados indicaron que: a) en invernadero, un efecto positivo se encontró en plantas con 8 t ha-1 BC y niveles de fertilización del 66 y 100%. b) Un efecto positivo fue observado en árboles de café tratados con 8 t ha-1 BC y 100%. c) 16 t ha-1 BC favoreció el pH, densidad aparente, estado de agregación y respiración microbiana del suelo en comparación con 0 t ha-1 BC. d) Aplicaciones de 8 y 16 t ha-1 BC y 66%-100% fertilización química registraron mayor sensibilidad a los compuestos aromáticos de granos tostados de café en la nariz electrónica. Enmiendas de BC entre 8 y 16 t ha-1 y FQ entre el 66% y 100% incrementó el contenido de SST, redujo el pH e incrementó la acidez titulable en bebidas de granos tostados de café. En conclusión, 8 t ha-1 BC de pulpa de café puede ser una alternativa para complementar la nutrición de plántulas y árboles de café. Aplicaciones entre 8 y 16 t ha-1 BC pueden apoyar las estrategias de manejo de suelos cafeteros y ayuda al aprovechamiento de residuos sólidos. El BC como un complemento a la fertilización química mostró un efecto positivo sobre el perfil aromático obtenido para los granos tostados de café y atributos de calidad en taza. (Texto tomado de la fuente)spa
dc.description.abstractColombian coffee is recognized worldwide for its mild flavor and aroma. Its cultivation generates a large amount of waste such as fresh pulp, which leads to environmental, health and economic problems. Obtaining biochar (BC) by pyrolysis of coffee pulp and its incorporation to the soil can be a complement to the crop mineral nutrition. The objective was to evaluate the effect of the application of biochar obtained from coffee pulp on the physiology and agronomic performance of the Castillo el Tambo variety coffee crop (Coffea arabica L.). The research was developed in two stages: i) vegetative, using three-month-old plants, carried out under greenhouse conditions; and ii) production, using a three-year-old commercial coffee crop, carried out in Chaparral Tolima. Four doses of BC (0, 4, 8 and 16 t ha-1) and four levels of chemical fertilization (CF) (0%, 33%, 66% and 100% of the nutritional requirements) were evaluated. Three groups of variables were recorded during the experiment: i) physiological parameters of coffee seedlings and trees; ii) physical and chemical characteristics of the soil in a commercial coffee crop; and iii) quality parameters of roasted beans and coffee beverages. The results indicated that: a) in the greenhouse, a positive effect was found in plants with 8 t ha-1 BC and fertilization levels of 66 and 100%. b) A positive effect was observed in coffee trees treated with 8 t ha-1 BC and 100%. c) 16 t ha-1 BC favored the pH, apparent density, state of aggregation and microbial respiration of the soil compared to 0 t ha-1 BC. d) Applications of 8 and 16 t ha-1 BC and 66%-100% chemical fertilization registered greater sensitivity to the aromatic compounds of roasted coffee beans in the electronic nose. Amendments of BC between 8 and 16 t ha-1 and CF between 66% and 100% increased the content of TSS, reduced the pH and increased the titratable acidity in beverages of roasted coffee beans. In conclusion, 8 t ha-1 BC of coffee pulp can be an alternative to supplement the nutrition of coffee seedlings and trees. Applications between 8 and 16 t ha-1 BC support coffee soil management strategies and help the use of solid waste. BC as a complement to chemical fertilization showed a positive effect on the aromatic profile obtained for roasted coffee beans and cup quality attributeseng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias Agrariasspa
dc.description.researchareaFisiología vegetalspa
dc.description.sponsorshipGobernación del Tolima, el Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS, convocatoria 755 del 2016, para la formación de capital humano de alto nivel para Tolima, Colombia)spa
dc.format.extentxxiii, 193 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81750
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Doctorado en Ciencias Agrariasspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAgbede, T. M., Adekiya, A. O., Odoja, A. S., Bayode, L. N., Omotehinse, P. O., & Adepehin, I. (2020). Effects of biochar and poultry manure on soil properties, growth, quality, and yield of cocoyam (Xanthosoma sagittifolium Schott) in degraded tropical sandy soil. Experimental Agriculture, 56(4), 528-543.spa
dc.relation.referencesAhmad, M., S.S. Lee, X. Dou, D. Mohan, J.K. Sung, J.E. Yang y Y.S. Ok. 2012. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 118, 536–544.spa
dc.relation.referencesAlmaroai, Y. A., & Eissa, M. A. (2020). Effect of biochar on yield and quality of tomato grown on a metal-contaminated soil. Scientia Horticulturae, 265, 109210.spa
dc.relation.referencesAlvarado-Alvarado, G., H.E. Posada-Suárez y H.A. Cortina-Guerrero. 2005. Castillo: Nueva variedad de café resistente a la roya. Chinchiná: CENICAFÉ. Avances Técnicos No 337. 8p.spa
dc.relation.referencesAnderson, C.R., L.M. Condron, T.J. Clough, M. Fiers, A. Stewart, R.A. Hill y R.R. Sherlock. 2011. Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 54(5), 309-320.spa
dc.relation.referencesArcila, J. y A. Jaramillo. 2003. Relación entre la humedad del suelo, la floración y el desarrollo del fruto del cafeto. Chinchiná. CENICAFÉ. Avances Técnicos No 311. 8 p.spa
dc.relation.referencesArcila‐Pulgarín, J., Buhr, L., Bleiholder, H., Hack, H., Meier, U., & Wicke, H. (2002). Application of the extended BBCH scale for the description of the growth stages of coffee (Coffea spp.). Ann App Biol, 141, 19-27.spa
dc.relation.referencesArcila-Pulgarín, J., F.F. Farfán, A.M. Moreno, L.F. Salazar y E. Hincapié. 2007. Sistemas de producción de café en Colombia. Chinchiná. CENICAFÉ. 309 p.spa
dc.relation.referencesAsai, H., B.K. Samson, H.M. Stephan, K. Songyikhangsuthor, K. Homma, Y. Kiyono, Y. Inoue, T. Shiraiwa y T. Horie. 2009. Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research, 111(1), 81-84.spa
dc.relation.referencesAtkinson, C.J., J.D. Fitzgerald y N.A. Hipps. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and Soil, 337(1-2), 1-18.spa
dc.relation.referencesBagyaraj, D.J., G. Thilagar, C. Ravisha, C.G. Kushalappa, K.N. Krishnamurthy y P. Vaast. 2015. Below ground microbial diversity as influenced by coffee agroforestry systems in the Western Ghats, India. Agriculture, Ecosystems and Environment, 202, 198–202. https://doi.org/10.1016/j.agee.2015.01.015spa
dc.relation.referencesBatool, A., S. Taj, A. Rashid, A. Khalid, S. Qadeer, A.R. Saleem y M.A. Ghufran. 2015. Potential of soil amendments (Biochar and Gypsum) in increasing water use efficiency of Abelmoschus esculentus L. Moench. Frontiers in plant science, 6.spa
dc.relation.referencesBedoya Cardoso, M. y R. Salazar Moreno. 2014. Optimización del uso de fertilizantes para el cultivo de café. Revista Mexicana de Ciencias Agrícolas, 8, 1433–1439.spa
dc.relation.referencesBiederman, L.A. y W.S. Harpole. 2013. Biochar and its effects on plant productivity and nutrient cycling: a meta‐analysis. GCB bioenergy, 5(2), 202-214.spa
dc.relation.referencesBommaraju, B.K. 2016. Use of biochar and compost as substrate alternatives in coffee plant production. Alma Mater Studiorum - Università Di Bologna. Studiorum - Università di Bologna.spa
dc.relation.referencesBridson, D.M. 1987. Nomenclatural notes on Psilanthus, including Coffea sect. Paracoffea (Rubiaceae tribe Coffeeae). Kew Bulletin, 42, 453-460.spa
dc.relation.referencesBrown, R. 2009. Biochar production technology. In: Lehmann, J., Joseph, S. (Eds.), Biochar for Environmental Management Science and Technology. Earthscans, UK, pp. 127–146spa
dc.relation.referencesBusscher W.J., J.M. Novak, D.E. Evans, D.W. Watts, M.A.A. Niandou y M. Ahmedna. 2010. Influence of biochar on physical properties of a Norfolk loamy sand. Soil Science, 175:10–14.spa
dc.relation.referencesCapa, D., J. Pérez-Esteban y A. Masaguer. 2015. Unsustainability of recommended fertilization rates for coffee monoculture due to high N2O emissions. Agronomy for Sustainable Development, 35(4), 1551–1559. https://doi.org/10.1007/s13593-015-0316-zspa
dc.relation.referencesCastillo-Zapata, J. y G. Moreno-Ruiz. 1988. La variedad Colombia: selección de un cultivar compuesto resistente a la roya del cafeto (No. Doc. 10283)* CO-BAC, Santafé de Bogotá).spa
dc.relation.referencesCh’ng, H.Y., O.H. Ahmed y N.M. Majid. 2016. Improving phosphorus availability, nutrient uptake and dry matter production of Zea Mays L. on a tropical acid soil using poultry manure biochar and pineapple leaves compost. Experimental Agriculture, 52(3), 447–465. https://doi.org/10.1017/S0014479715000204spa
dc.relation.referencesChan K.Y., Z. Xu. 2009. Biochar: nutrient properties and their enhancement. J. Lehmann, S. Joseph (Eds.), Biochar for Environmental Management: Science and Technology, Earthscan Publications Ltd., United Kingdom, pp. 67–81spa
dc.relation.referencesChan, K.Y., L. Van Zwieten, I. Meszaros, A. Downie y S. Joseph. 2008. Agronomic values of greenwaste biochar as a soil amendment. Soil Research, 45(8), 629-634.spa
dc.relation.referencesChaves, A.R.M., S.C.V. Martins, K.D. Batista, E.F. Celin y F.M. DaMatta. 2012. Varying leaf-to-fruit ratios affect branch growth and dieback, with little to no effect on photosynthesis, carbohydrate or mineral pools, in different canopy positions of field-grown coffee trees. Environmental and Experimental Botany, 77, 207–218. https://doi.org/10.1016/j.envexpbot.2011.11.011spa
dc.relation.referencesChen, B. y Z. Chen. 2009. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76, 127–133.spa
dc.relation.referencesChen, B., D. Zhou y L. Zhu. 2008. Transitional adsorption and partition on nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol. 42, 5137–5143.spa
dc.relation.referencesCollins, H. 2008. Use of biochar from the pyrolysis of waste organic material as a soil amendment: laboratory and greenhouse analyses. A Quarterly Progress Report Prepared for the Biochar Project.spa
dc.relation.referencesColodetti, T.V., W.N. Rodrigues, L.D. Martins y M.A. Tomaz. 2014. Differential tolerance between genotypes of conilon coffee (Coffea canephora) to low availability of nitrogen in the soil. Australian Journal of Crop Science, 8(12), 1648–1657.spa
dc.relation.referencesColodetti, T.V., W.N. Rodrigues, L.D. Martins, S.V.B. Brinate, M.A. Tomaz, J.F.T. Amaral y A.C. Verdin-Filho. 2015. Nitrogen availability modulating the growth of improved genotypes of Coffea canephora. African Journal of Agricultural Research, 10(32), 3150–3156. https://doi.org/10.5897/AJAR2015.9692spa
dc.relation.referencesCortina-Guerrero, H.A., J.R. Acuña-Zornosa, M.P. Moncada-Botero, J.C. Herrera-Pinilla y D.M. Molina-Vinasco. 2013. Variedades de café: Desarrollo de variedades. En: Manual del Cafetero Colombiano, Investigación y Tecnología para la Sostenibilidad de la Caficultura- Postcosecha y subproductos del café. Gast, F., Benavides, P., Sanz, J. R., Herrera, J. C., Ramírez, V. H., Cristancho, M. A., & Marín, S. M. Federación Nacional de Cafeteros, Cenicafé. 326 pp.spa
dc.relation.referencesDavis, A.P., R. Govaerts, D.M. Bridson y P. Stoffelen. 2006. An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Botanical Journal of the Linnean Society, 152(4), 465-512.spa
dc.relation.referencesde Barros Silva, E. B., M.M. de Melo Farnezi, N.A.V. Dessimoni-Pinto y P.H. Grazziotti. 2013. DRIS Norms and Critical Nutrients Ranges for Coffee Beverage Quality in High Jequitinhonha Valley, Brazil. Ejbs, 6(1), 39–44. https://doi.org/www.ejarr.com/Volumes/Vol6/EJBS_6_09.pdfspa
dc.relation.referencesde Beenhouwer, M., M. Van Geel, T. Ceulemans, D. Muleta, B. Lievens y O. Honnay. 2015. Changing soil characteristics alter the arbuscular mycorrhizal fungi communities of Arabica coffee (Coffea arabica) in Ethiopia across a management intensity gradient. Soil Biology and Biochemistry, 91, 133–139. https://doi.org/10.1016/j.soilbio.2015.08.037spa
dc.relation.referencesde Sousa, S.G.A., M.I. de Araújo y E.V. Wandelli. 2015. Saberes tradicionais dos povos amazônicos no contexto do processo de transição agroecológica. Revista Ambientalmente sustentable, 2(20): 1699-1717.spa
dc.relation.referencesDebela Bote, A. y V. Jan. 2017. Tree management and environmental conditions affect coffee (Coffea arabica L.) bean quality. NJAS - Wageningen Journal of Life Sciences, (September). https://doi.org/10.1016/j.njas.2017.09.002spa
dc.relation.referencesDispenza, V., C. De Pasquale, G. Fascella, M.M. Mammano y G. Alonzo. 2017. Use of biochar as peat substitute for growing substrates of Euphorbia× lomi potted plants. Spanish Journal of Agricultural Research, 14(4), 0908.spa
dc.relation.referencesDubberstein, D., F.L. Partelli, J.R.M. Dias y M.C. Espindola. 2016. Concentration and accumulation of macronutrients in leaf of coffee berries in the Amazon, Brazil. Australian Journal of Crop Science, 10(5), 701–710. https://doi.org/10.21475/ajcs.2016.10.05.p7424spa
dc.relation.referencesElad, Y., D.R. David, Y.M. Harel, M. Borenshtein, H.B. Kalifa, A. Silber y E.R. Graber. 2010. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology, 100(9), 913-921.spa
dc.relation.referencesFAO. 1999. Guía para el manejo eficiente de la nutrición de las plantas desafíos fuentes de. Revisado en octubre 5, 2021, de ftp://ftp.fao.org/agl/agll/docs/gepnms.pdfspa
dc.relation.referencesFederación Nacional de Cafeteros de Colombia. 2021a. Aprenda a vender su café. Revisado en octubre 10, 2021, de https://federaciondecafeteros.org/wp/servicios-al-caficultor/aprenda-a-vender-su-cafe/spa
dc.relation.referencesFederación Nacional de Cafeteros de Colombia. 2021b. Estadísticas cafeteras. Revisado en octubre de 2021. En: https://federaciondecafeteros.org/wp/ stadísticas-cafeteras/.spa
dc.relation.referencesFlórez-Ramos, C.P., L.N. Ibarra-Ruales, L.F. Gómez-Gil, C.Y. Carmona-González. A. Castaño-Marín y A. Ortiz. 2013. Estructura y funcionamiento de la planta de café. En: Manual del Cafetero Colombiano, Investigación y Tecnología para la Sostenibilidad de la Caficultura- Postcosecha y subproductos del café. Gast, F., Benavides, P., Sanz, J. R., Herrera, J. C., Ramírez, V. H., Cristancho, M. A., & Marín, S. M. Federación Nacional de Cafeteros, Cenicafé. 326 ppspa
dc.relation.referencesFrois de Andrade, M.A., P.A. Ramos-Cairo y J.L. Santos. 2015. Water relations and photosynthesis of young coffee plants under two water regimes and different N and K doses. Agrociencia, 49, 153–161.spa
dc.relation.referencesGómez, L.A., A. Cruz-Dominguez, D. Jiménez-Madrid, A. Ocampo-Duran y S. Parra-González. 2016. Biochar as an amendment in an oxisol and its effect on the growth of corn. Revista UDCA Actualidad ydif Divulgación Científica, 19(2), 341-349.spa
dc.relation.referencesGrillo Pinto, C., R.J. Guimarães, G. Mendes-Villela y M.S. Scalco. 2013. Critical Ranges of Levels for Primary Leaf Macronutrient. Coffee Science, Lavras, 8(4), 530–538.spa
dc.relation.referencesHoseini, M., S. Cocco, C. Casucci, V. Cardelli y G. Corti. 2021. Coffee by-products derived resources. A review. Biomass and Bioenergy, 148, 106009.spa
dc.relation.referencesJeffery, S., F.G. Verheijen, C. Kammann y D. Abalos. 2016. Biochar effects on methane emissions from soils: A meta-analysis. Soil Biology and Biochemistry, 101, 251-258.spa
dc.relation.referencesKarhu, K., T. Mattila, I. Bergström y K. Regina. 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity–results from a short-term pilot field study. Agriculture, Ecosystems & Environment, 140(1), 309-313.spa
dc.relation.referencesKeiluweit, M., P.S. Nico, M.G. Johnson y M. Kleber. 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 44, 1247–1253.spa
dc.relation.referencesKloss, S., F. Zehetner, A. Dellantonio, R. Hamid, F. Ottner, V. Liedtke, M. Schwanninger, M.H. Gerzabek y G. Soja. 2012. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J. Environ. Qual. 41, 990–1000.spa
dc.relation.referencesKuzyakov Y., I. Subbotina, H. Chen, I. Bogomolova y X. Xu. 2009 Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biology & Biochemistry 41: 210–219.spa
dc.relation.referencesLabouisse, J.P., B. Bellachew, S. Kotecha y B. Bertrand. 2008. Current status of coffee (Coffea arabica L.) genetic resources in Ethiopia: implications for conservation. Genetic Resources and Crop Evolution, 55(7), 1079–1093. https://doi.org/10.1007/s10722-008-9361-7spa
dc.relation.referencesLashermes, P., M.C. Combes, J. Robert, P. Trouslot, A. D'Hont, F. Anthony y A. Charrier. 1999. Molecular characterization and origin of the Coffea arabica L. genome. Molecular and General Genetics MGG, 261(2), 259-266.spa
dc.relation.referencesLehmann J. y S. Joseph. 2009. Biochar for environmental management: an introduction. Biochar for Environmental Management-Science and Technology, UK, Earthscan.spa
dc.relation.referencesLehmann, J., M.C. Rillig, J. Thies, C.A. Masiello, W.C. Hockaday y D. Crowley. 2011. Biochar effects on soil biota–a review. Soil Biology and Biochemistry, 43(9), 1812-1836.spa
dc.relation.referencesLi, Y.C., J.G. Shao, X.H. Wang, Y. Deng, H.P. Yang y H.P. Chen. 2014. Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption. Energy Fuels 28 (8), 5119–5127.spa
dc.relation.referencesLiang, B., J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O'neill, J.O. Skjemstad, J. Thies, F.J. Luizao, J. Petersen y E.G. Neves. 2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70(5), 1719-1730.spa
dc.relation.referencesLiu, P., W.J. Liu, H. Jiang, J.J. Chen, W.W. Li y H.Q. Yu. 2012. Modification of biochar derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresour. Technol. 121, 235–240.spa
dc.relation.referencesMachida, M., M. Aikawa y H. Tatsumoto. 2005. Prediction of simultaneous adsorption of Cu(II) and Pb(II) onto activated carbon by conventional Langmuir type equations. J. Hazard. Mater. 120 (1–3), 271–275.spa
dc.relation.referencesMajor, J., M. Rondon, D. Molina, S.J. Riha y J. Lehmann. 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and soil, 333(1-2), 117-128.spa
dc.relation.referencesMaro, G.P., J.P. Mrema, B.M. Msanya, B.H. Janssen y J.M. Teri. 2014. Developing a coffee yield prediction and integrated soil fertility management recommendation model for Northern Tanzania. International Journal of Plant & Soil Science, 3(4), 380–396.spa
dc.relation.referencesMarschner, P. 2011. Marschner’s Mineral nutrition of higher plants. (P. Marschner, Ed.) (Third). San Diego, USA: Elsevier Ltd.spa
dc.relation.referencesMartins, L.D., L. de Souza-Machado, M.A. Tomaz y J.F. Teixeira-do Amaral. 2015. The nutritional efficiency of Coffea spp. A review. African Journal of Biotechnology, 14(9), 728–734. https://doi.org/10.5897/AJB2014.14254spa
dc.relation.referencesMelke, A. y F. Ittana. 2014. Nutritional Requirement and Management of Arabica Coffee (Coffea arabica L.) in Ethiopia: National and Global Perspectives. American Journal of Experimental Agriculture, 5(5), 400–418. https://doi.org/10.9734/AJEA/2015/12510spa
dc.relation.referencesMohan, D., C.U. Pittman y P.H. Steele. 2006. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20, 848–889.spa
dc.relation.referencesMontoya, P. 2006. Caracterización de algunas propiedades físicas y factores de conversión del café. Manizales: Universidad de Caldas. 107 p.spa
dc.relation.referencesMoreno-Ruíz, L.G. 2002. Tabi: variedad de café de porte alto con resistencia a la roya. Chinchiná: CENICAFÉ. Avances Técnicos No 300. 8p.spa
dc.relation.referencesMullen, C.A., A.A. Boateng, N.M. Goldberg, I.S. Lima, D.A. Laird y K.B. Hicks. 2010. Bio-oil and bio-char production from corn cobs and stover by pyrolysis. Biomass Bioenergy 34, 67–74.spa
dc.relation.referencesMuñoz-Belalcazar, J.A., C.A. Benavides-Cardona, T.C. Lagos-Burbano y C.P. Criollo-Velázquez. 2021. Manejo agronómico sobre el rendimiento y la calidad de café (Coffea arabica) variedad Castillo en Nariño, Colombia. Agronomía Mesoamericana, 32(3), 750-763.spa
dc.relation.referencesNesper, M., C. Kueffer, S. Krishnan, C.G. Kushalappa y J. Ghazoul. 2017. Shade tree diversity enhances coffee production and quality in agroforestry systems in the Western Ghats. Agriculture, Ecosystems & Environment, 247, 172–181. https://doi.org/10.1016/j.agee.2017.06.024spa
dc.relation.referencesNoguera, D., M. Rondón, K.R. Laossi, V. Hoyos, P. Lavelle, M.H.C. de Carvalho y S. Barot. 2010. Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils. Soil biology and Biochemistry, 42(7), 1017-1027.spa
dc.relation.referencesOguntunde, P.G., M. Fosu, A.E. Ajayi y N. Van De Giesen. 2004. Effects of charcoal production on maize yield, chemical properties and texture of soil. Biology and Fertility of Soils, 39(4), 295-299.spa
dc.relation.referencesOlmo, M., J.A. Alburquerque, V. Barrón, M.C. del Campillo, A. Gallardo, M. Fuentes y R. Villar. 2014. Wheat growth and yield responses to biochar addition under Mediterranean climate conditions. Biology and Fertility of Soils, 50(8), 1177–1187. https://doi.org/10.1007/s00374-014-0959-yspa
dc.relation.referencesPérez-Díaz, A., E. Castañeda-Hidalgo, T. Salvador-Lozano, C.A. Bustamante González, R.A. Rivera-Espinosa, G. Rodríguez-Ortiz y A. Fernández-Turro. 2014. Foliar Analysis as an Estimate on the nutritional state of conilon coffee plantations. Journal of Life Sciences, 8(2), 181–187.spa
dc.relation.referencesPineda, J.A., M.Piniero y A. Ramírez. 2019. Coffee production and women's empowerment in Colombia. Human Organization, 78(1), 64-74.spa
dc.relation.referencesPosada, R.H. y E. Sieverding. 2014. Arbuscular mycorrhiza in Colombian coffee plantations fertilized with coffee pulps as organic manure. Journal of Applied Botany and Food Quality, 87, 243–248. https://doi.org/10.5073/JABFQ.2014.087.034spa
dc.relation.referencesPuerta-Quintero, G. 2016. Calidad física del café de varias regiones de Colombia según altitud, suelos y buenas prácticas de beneficio. Revista del Centro Nacional de Investigaciones del Café, 67(1), 7–40.spa
dc.relation.referencesRajapaksha, A.U., S.S. Chen, D.C. Tsang, M. Zhang, M. Vithanage, S. Mandal, B. Gao, N.S. Bolan y Y.S. Ok. 2016. Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere, 148(27), 6e291.spa
dc.relation.referencesRezende, F.A., V.A.H. Ferreira-dos Santos, C.M. Branco-de Freitas-Maia y M. Moura-Morales. 2016. Biochar in substrate composition for production of teak seedlings. Pesquisa Agropecuária Brasileira, 51(9), 1449–1456. https://doi.org/10.1590/s0100-204x2016000900043spa
dc.relation.referencesRibeiro, V.J., F.V. Andrade, R.R. Passos, E.S. Mendonça, L.L. da Silva y A.F. Sartori. 2016. Slow-release stabilized nitrogen fertilizers on initial development and nutrition of coffee plants (Coffea arabica L.). Australian Journal of Crop Science, 10(4), 497–502. https://doi.org/10.21475/ajcs.2016.10.04.p7229xspa
dc.relation.referencesRodríguez, N. 2007. Producción de bioetanol a partir de pulpa y el mucílago del café. In: Informe anual de actividades 2006-2007. Chinchiná (Colombia), Cenifacé. Disciplina de Calidad y Manejo Ambiental. 78 p.spa
dc.relation.referencesRodríguez, V. N. 2009. Estudio de un biosistema integrado para el postratamiento de las aguas residuales del café utilizando macrófitas acuáticas. Universidad Politécnica de Valencia. Departamento de Ingeniería hidráulica y Medio ambiente. Valencia España. 508 p. Esp. (Tesis: Doctor) (Tesis dirigida por Miguel Rodilla Alamá).spa
dc.relation.referencesRonga, D., F. Caradonia, M. Parisi, G. Bezzi, B. Parisi, G. Allesina y E. Francia. 2020. Using digestate and biochar as fertilizers to improve processing tomato production sustainability. Agronomy, 10(1), 138.spa
dc.relation.referencesSadeghian-Khalajabadi, S. 2008. Fertilidad del suelo y nutrición del café en Colombia. (S. M. Marín, Ed.) (32nd ed.). Chinchiná Caldas: Feriva S.Aspa
dc.relation.referencesSaha, A., B.B. Basak, N.A. Gajbhiye, KA. Kalariya y P. Manivel. 2019. Sustainable fertilization through co-application of biochar and chemical fertilizers improves yield, quality of Andrographis paniculata and soil health. Industrial Crops and Products, 140, 111607.spa
dc.relation.referencesSakai, E., E.A. Agnellos-Barbosa, J.M. de Carvalho-Silveira y R.C. de Matos-Pires. 2015. Coffee productivity and root systems in cultivation schemes with different population arrangements and with and without drip irrigation. Agricultural Water Management, 148, 16–23. https://doi.org/10.1016/j.agwat.2014.08.020spa
dc.relation.referencesSalamanca-Jimenez, A. 2017. Coffee Crop Fertilization in Colombia: A Mini-. International Potash Institute, 50, 22–30.spa
dc.relation.referencesSalamanca-Jimenez, A., T.A. Doane y W.R. Horwath. 2017. Nitrogen use efficiency of coffee at the vegetative stage as influenced by fertilizer application method. Frontiers in Plant Science, 8, 1–11. https://doi.org/10.3389/fpls.2017.00223spa
dc.relation.referencesSaleem-Akhtar, S., Li, G., Andersen, M. N., & Liu, F. (2014). Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Management, 138, 37-44.spa
dc.relation.referencesSánchez-Reinoso, A.D., E.A. Ávila-Pedraza y H. Restrepo-Díaz. 2020. Use of biochar in agricultura. Acta Biológica Colombiana, 25, 327-338.spa
dc.relation.referencesSchulz, H., G. Dunst y B. Glaser. 2013. Positive effects of composted biochar on plant growth and soil fertility. Agronomy for sustainable development, 33(4), 817-827.spa
dc.relation.referencesSeehausen, M.L., N.V. Gale, S. Dranga, V. Hudson, N. Liu, J. Michener, E. Thurston, C. Williams, S.M. Smith y S.C. Thomas. 2017. Is There a Positive Synergistic Effect of Biochar and Compost Soil Amendments on Plant Growth and Physiological Performance? Agronomy, 7(1), 13.spa
dc.relation.referencesSilva, B.M., G.C. Oliveira, M.E. Serafim, É.A. Silva, M.M. Ferreira, L.D. Norton y N. Curi. 2015. Critical soil moisture range for a coffee crop in an oxidic latosol as affected by soil management. Soil and Tillage Research, 154, 103–113. https://doi.org/10.1016/j.still.2015.06.013spa
dc.relation.referencesSohi, S.P. 2012. Carbon storage with benefits. Science 338: 1034–1035.spa
dc.relation.referencesSorrenti, G., C.A. Masiello y M. Toselli. 2016. Biochar interferes with kiwifruit Fe-nutrition in calcareous soil. Geoderma, 272, 10-19.spa
dc.relation.referencesSpokas, K.A., W.C. Koskinen, J.M. Baker, y D.C. Reicosky. 2009. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere. 77, 574–581.spa
dc.relation.referencesSteiner, C., W.G. Teixeira, J. Lehmann, T. Nehls, J.L. Vasconcelos-de Macêdo, W.E.H. Blum y W. Zech. 2007. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291, 275-290.spa
dc.relation.referencesSun, J., M. Drosos, P. Mazzei, D. Savy, D. Todisco, G. Vinci, G. Pan y A. Piccolo. 2017. The molecular properties of biochar carbon released in dilute acidic solution and its effects on maize seed germination. Science of The Total Environment, 576, 858-867.spa
dc.relation.referencesTan, X.F., S.B. Liu, Y.G. Liu, Y.L. Gu, G.M. Zeng, X.J. Hu, X. Wang, S.B. Liu y L.H. Jiang. 2016. Biochar as potential sustainable precursors for activated carbon production: multiple applications in environmental protection and energy storage. Bioresource Technology.spa
dc.relation.referencesTeixeira, W.G.T. 2009. As terras pretas de índio da Amazônia: sua caracterização e uso deste conhecimento na criação de novas áreas. Embrapa Amazônia Ocidental.spa
dc.relation.referencesTesfaye, S.G., M.R. Ismail, M.F. Ramlan, M. Marziah y H. Kausar. 2014. Effect of soil drying on rate of stress development, leaf gas exchange and proline accumulation in Robusta coffee (Coffea Canephora Pierre Ex Froehner) Clones. Experimental Agriculture, 50(3), 458–479. https://doi.org/10.1017/S001447971300063Xspa
dc.relation.referencesTong, S.J., J.Y. Li, J.H. Yuan y R.K. Xu. 2011. Adsorption of Cu(II) by biochars generated from three crop straws. Chem. Eng. J. 172, 828–834.spa
dc.relation.referencesVaccari, F.P., S. Baronti, E. Lugato, L. Genesio, S. Castaldi y Fornasier. 2011. Biochar as a strategy to sequester carbon and increase yield in durum wheat. Euro J Agron. 34(4):231-238. Doi: https://doi.org/10.1016/j.spa
dc.relation.referencesVan Zwieten, L., S. Kimber, S. Morris, K.Y. Chan, A. Downie, J. Rust, S. Joseph y A. Cowie. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and soil, 327(1-2), 235-246.spa
dc.relation.referencesVentura, M., G. Sorrenti, P. Panzacchi, E. George y G. Tonon. 2013. Biochar reduces short-term nitrate leaching from a horizon in an apple orchard. Journal of environmental quality, 42(1), 76-82.spa
dc.relation.referencesWaqas, M., Y.H. Kim, A.L. Khan, R. Shahzad, S. Asaf, M. Hamayun, y I.J. Lee. 2017. Additive effects due to biochar and endophyte application enable soybean to enhance nutrient uptake and modulate nutritional parameters. Journal of Zhejiang University-SCIENCE B, 18(2), 109–124. https://doi.org/10.1631/jzus.B1500262spa
dc.relation.referencesWhite, P.J. y P.H. Brown. 2010. Plant nutrition for sustainable development and global health. Annals of Botany, 105, 1073–1080. https://doi.org/10.1093/aob/mcq085spa
dc.relation.referencesZhang, Y., X. Wang, B. Liu, Q. Liu, H. Zheng, X. You y F. Li. 2020. Comparative study of individual and Co-Application of biochar and wood vinegar on blueberry fruit yield and nutritional quality. Chemosphere, 246, 125699.spa
dc.relation.referencesZoghi, Z., Hosseini, S. M., Kouchaksaraei, M. T., Kooch, Y., & Guidi, L. (2019). The effect of biochar amendment on the growth, morphology and physiology of Quercus castaneifolia seedlings under water-deficit stress. Eur J For Res, 138, 967-979.spa
dc.relation.referencesAbbas, T., Rizwan, M., Ali, S., Adrees, M., Mahmood, A., Zia-ur-Rehman, M., Ibrahim, M., Arshad, M., & Qayyum, M. F. (2018). Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotox Environ safe, 148, 825-833.spa
dc.relation.referencesAbideen, Z., Koyro, H. W., Huchzermeyer, B., Ansari, R., Zulfiqar, F., & Gul, B. (2020). Ameliorating effects of biochar on photosynthetic efficiency and antioxidant defence of Phragmites karka under drought stress. Plant Biology, 22, 259-266.spa
dc.relation.referencesAhmad, M., Lee, S. S., Lee, S. E., Al-Wabel, M. I., Tsang, D. C., & Ok, Y. S. (2017). Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. J Soils Sediments, 17, 717-730.spa
dc.relation.referencesAli, S., Rizwan, M., Qayyum, M. F., Ok, Y. S., Ibrahim, M., Riaz, M., Salem-Arif, M., Hafeez, F., Añ-Wabel, M. & Shahzad, A. N. (2017). Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environ Sci Pollut R, 24, 12700-12712.spa
dc.relation.referencesAlvarado-Sanabria, O., Garcés-Varón, G., & Restrepo-Díaz, H. (2017). Physiological response of rice plants (Oryza sativa L.) subjected to different periods of two night temperatures. J Stress Physiol Biochem, 13, 35-43.spa
dc.relation.referencesAmoakwah, E., Frimpong, K. A., Okae-Anti, D., & Arthur, E. (2017). Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam. Geoderma, 307, 189-197.spa
dc.relation.referencesAnjum, S. A., Xie, X. Y., Wang, L. C., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res, 6, 2026-2032.spa
dc.relation.referencesArcila‐Pulgarín, J., Buhr, L., Bleiholder, H., Hack, H., Meier, U., & Wicke, H. (2002). Application of the extended BBCH scale for the description of the growth stages of coffee (Coffea spp.). Ann App Biol, 141, 19-27.spa
dc.relation.referencesBeebe, S. E., Rao, I. M., Blair, M. W., & Acosta-Gallegos, J. A. (2013): Phenotyping common beans for adaptation to drought. Frontiers in physiology, 4.spa
dc.relation.referencesBunn, C., Läderach, P., Rivera, O. O., & Kirschke, D. (2015). A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Climatic Change, 129, 89-101.spa
dc.relation.referencesBusscher, W. J., Novak, J. M., Evans, D. E., Watts, D. W., Niandou, M. A. A., & Ahmedna, M. (2010). Influence of biochar on physical properties of a Norfolk loamy sand. Soil Sci, 175, 10–14.spa
dc.relation.referencesChaudhary, S., Kusakabe, A., & Melgar, J. C. (2016). Phytophthora infection in flooded citrus trees reduces root hydraulic conductance more than under non-flooded condition. Scientia Horticulturae, 202, 107-110.spa
dc.relation.referencesChang, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2008). Agronomic values of greenwaste biochar as a soil amendment. Soil Research, 45, 629-634.spa
dc.relation.referencesDadi, D., Daba, G., Beyene, A., Luis, P., & Van der Bruggen, B. (2019). Composting and co-composting of coffee husk and pulp with source-separated municipal solid waste: a breakthrough in valorization of coffee waste. Int J Recycl Org Waste Agricult, 8, 263–277 https://doi.org/10.1007/s40093-019-0256-8spa
dc.relation.referencesDaMatta, F. M., Avila, R. T., Cardoso, A. A., Martins, S. C., & Ramalho, J. C. (2018). Physiological and agronomic performance of the coffee crop in the context of climate change and global warming: A review. J Agr Food Chem, 66, 5264-5274.spa
dc.relation.referencesDeng, B., Bada, B., Tammeorg, P., Helenius, J., Luukkanen, O., & Starr, M. (2019). Drought stress and Acacia seyal biochar effects on sorghum gas exchange and yield: A greenhouse experiment. Agr Nat Resour, 53, 573-580.spa
dc.relation.referencesde Oliveira, M. M. T., Shuhua, L., Kumbha, D. S., Zurgil, U., Raveh, E., & Tel-Zur, N. (2020). Performance of Hylocereus (Cactaceae) species and interspecific hybrids under high-temperature stress. Plant Physiol Bioch, 153, 30-39.spa
dc.relation.referencesDíaz-Leguizamón, J. J., Chingaté-Cruz, O. F., Sánchez-Reinoso, A. D., & Restrepo-Díaz, H. (2016). The effect of foliar applications of a bio-stimulant derived from algae extract on the physiological behavior of lulo seedlings (Solanum quitoense cv. Septentrionale). Ciencia Investig Agrar, 43, 25-37.spa
dc.relation.referencesDi Rienzo J. A., Casanoves F., Balzarini M. G., Gonzalez L., Tablada M., & Robledo C. W. (2016). InfoStatversion 2016. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar.spa
dc.relation.referencesDrake, J. E., Power, S. A., Duursma, R. A., Medlyn, B. E., Aspinwall, M. J., Choat, B., Creek, D., Eamus, D., Maier, C., Pfautsch, S., Smith, R. A., & Tissue, D. T. (2017). Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: A comparison of model formulations. Agr Forest Meteorol, 247, 454-466.spa
dc.relation.referencesDubberstein, D., Rodrigues, W. P., Semedo, J. N., Rodrigues, A. P., Pais, I. P., Leitão, A. E., Partelli, F. L., Campostrini, E., Reboredo, F., Scotti-Campos, P., Lidon, F. C., Ribeiro-Barros, A. I., DaMatta, F. M., & Ramalho, J. C. (2017). Mitigation of the negative impact of warming on the Coffee crop: The Role of Increased Air [CO2] and Management Strategies. In Climate Resilient Agriculture-Strategies and Perspectives. In: Shanker A (ed) Climate resilient agriculture, strategies and perspectives. Chapter 4., IntechOpen, London, pp 57–85.spa
dc.relation.referencesEcheverria, M. C., & Nuti, M. (2017). Valorisation of the residues of coffee agro-industry: perspectives and limitations. The Open Waste Management Journal, 10(1).spa
dc.relation.referencesFederación Nacional de Cafeteros de Colombia. (2020). Estadístias caferetas. Rerieved April 16, 2021, from https://federaciondecafeteros.org/wp/estadisticas-cafeteras/spa
dc.relation.referencesFischer, B., Manzoni, S., Morillas, L., García, M., Johnson, M., & Lyon, S. (2019). Can biochar improve agricultural water use efficiency? Geophysical Research Abstracts, 21, EGU2019-7358. EGU General Assembly.spa
dc.relation.referencesFracasso, A., Trindade, L., & Amaducci, S. (2016). Drought tolerance strategies highlighted by two Sorghum bicolor races in a dry-down experiment. J Plant Physiol, 190, 1-14.spa
dc.relation.referencesGavili, E., Moosavi, A. A., & Haghighi, A. A. K. (2019). Does biochar mitigate the adverse effects of drought on the agronomic traits and yield components of soybean? Industrial crops and products, 128, 445-454.spa
dc.relation.referencesGonçalves, M., Guerreiro, M. C., Ramos, P. H., de Oliveira, L. C. A., & Sapag, K. (2013). Activated carbon prepared from coffee pulp: potential adsorbent of organic contaminants in aqueous solution. Water Sci Technol, 68, 1085-1090.spa
dc.relation.referencesHafeez, Y., Iqbal, S., Jabeen, K., Shahzad, S., Jahan, S., & Rasul, F. (2017). Effect of biochar application on seed germination and seedling growth of Glycine max (L.) Merr. Under drought stress. Pak J Bot, 49, 7-13.spa
dc.relation.referencesHussain, S., Rao, M. J.; Anjum, M. A., Ejaz, S., Zakir, I., Ali, M. A., Ahmad, N., Ahmad, S. (2019). Oxidative stress and antioxidant defense in plants under drought conditions. In: Hasanuzzaman, M., Hakeem, K., Nahar, K. & Alharby H. (eds) Plant Abiotic Stress Tolerance; Springer: Cham, Switzerland, pp. 207–219.spa
dc.relation.referencesLobell, D. B., & Gourdji, S. M. (2012). The influence of climate change on global crop productivity. Plant Physioly, 160, 1686-1697.spa
dc.relation.referencesLyu, S., Du, G., Liu, Z., Zhao, L., & Lyu, D. (2016). Effects of biochar on photosystem function and activities of protective enzymes in Pyrus ussuriensis Maxim. under drought stress. Acta Physiologiae Plantarum, 38, 1-10.spa
dc.relation.referencesMerlaen, B., De Keyser, E., Ding, L., Leroux, O., Chaumont, F., & Van Labeke, M. C. (2019). Physiological responses and aquaporin expression upon drought and osmotic stress in a conservative vs. prodigal Fragaria x ananassa cultivar. Plant Physiol Bioch, 145, 95-106.spa
dc.relation.referencesMarques, M. C., Nascimento, C. W. A., da Silva, A. J., & da Silva Gouveia-Neto, A. (2017). Tolerance of an energy crop (Jatropha curcas L.) to zinc and lead assessed by chlorophyll fluorescence and enzyme activity. S Afr J Bot, 112, 275-282spa
dc.relation.referencesMorales, F., Ancín, M., Fakhet, D., González-Torralba, J., Gámez, A. L., Seminario, A., Soba, D., Ben-Mariem, S. Garriga, M., & Aranjuelo, I. (2020). Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement. Plants, 9, 88.spa
dc.relation.referencesOcampo-López, O. L., Castañeda-Peláez, K., & Vélez-Upegui, J. J. (2017). Caracterización de los ecotopos cafeteros colombianos en el Triángulo del Café. Perspectiva Geográfica, 22, 89-108.spa
dc.relation.referencesPoltronieri, P., & Rossi, F. (2016). Challenges in specialty coffee processing and quality assurance. Challenges 7, 19.spa
dc.relation.referencesPranata-Erdiansyah, N. P., Wachjar, A., Sulistyono, E., & Supijatno, S. (2019). Growth response of seedlings of four Robusta coffee (Coffea canephora Pierre. Ex. A. Froehner) clones to drought stress. Pelita Perkebunan, 35, 1-11.spa
dc.relation.referencesRaviv, M., & Blom, T. J. (2001). The effect of water availability and quality on photosynthesis and productivity of soilless-grown cut roses. Scientia Horticulturae, 88, 257-276.spa
dc.relation.referencesRiaz, M., Arif, M. S., Hussain, Q., Khan, S. A., Tauqeer, H. M., Yasmeen, T., Ashraf, M. A., Ali, M. A., Iqbal, M., Shehzad, S. M., Fatima, S., Zia, A., Abbas, N., Siddique, M., Haider, M. S. (2019). 18 Application of biochar for the mitigation of abiotic stress-induced damages in plants. Plant Tolerance to Environmental Stress: Role of Phytoprotectants.spa
dc.relation.referencesRodríguez-Frómeta, R. A., Sánchez, J. L., & García, J. M. R. (2020). Evaluation of coffee pulp as substrate for polygalacturonase production in solid state fermentation. Emir J Food Agric, 32, 117-124.spa
dc.relation.referencesRodrigues, W. P., Silva, J. R., Ferreira, L. S., Machado Filho, J. A., Figueiredo, F. A., Ferraz, T. M., & Ramalho, J. C. (2018). Stomatal and photochemical limitations of photosynthesis in coffee (Coffea spp.) plants subjected to elevated temperatures. Crop Pasture Sci, 69, 317-325.spa
dc.relation.referencesRodríguez, N., & Zambrano, D. (2010). Los subproductos del café: Fuente de energía renovable. Avances tecnicos Cenicafe, 393, 1-8.spa
dc.relation.referencesRomdhane, L., Awad, Y. M., Radhouane, L., Dal Cortivo, C., Barion, G., Panozzo, A., & Vamerali, T. (2019). Wood biochar produces different rates of root growth and transpiration in two maize hybrids (Zea mays L.) under drought stress. Arch Agron Soil Sci, 65, 846-866.spa
dc.relation.referencesRuiz, A. D. C., & Pabón, J. D. (2013). Efecto de los fenómenos de El Niño y La Niña en la precipitación y su impacto en la producción agrícola del departamento del Atlántico (Colombia). Cuadernos de Geografía: Revista Colombiana de Geografía, 22, 35-54.spa
dc.relation.referencesSadeghian S., & Jaramillo A. (2016), Nutrición de los cafetales en Colombia, en escenarios de la niña. Chinchiná, Colombia. Cenicafé. 12 p.spa
dc.relation.referencesSharma, D. K., Andersen, S. B., Ottosen, C. O., & Rosenqvist, E. (2015). Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiol Plant, 153, 284–298spa
dc.relation.referencesShashidhar, H. E., Gowda, H. V., Raveendra, G. M., Kundur, P. J., Kumar, G. N., Suprabha, N., Upadhya P., & Sonam, R. (2012). PVC tubes to characterize roots and shoots to complement field plant productivity studies. Methodologies for root drought studies in rice, 15.spa
dc.relation.referencesSilva, B. M., de Oliveira, G. C., Serafim, M. E., Carducci, C. E., da Silva, É. A., Barbosa, S. M., Batista de Melo, L. B., dos Santos, W. J. R., de Oliveira C. H. C., & Guimarães, P. T. G. (2019). Soil management and water-use efficiency in Brazilian coffee crops. In: Coffee – Production and Research. IntechOpen. 1-17spa
dc.relation.referencesSteiner, C.,Teixeira, G., Lehmann, J., Nehls, T., de Macedo, J., & Blum, W. (2007). Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian soil. Plant Soil, 291, 275–290. doi:10.1007/s11104-007-9193-9spa
dc.relation.referencesTayyab, M., Islam, W., Khalil, F., Ziqin, P., Caifang, Z., Arafat, Y., Hui, L., Rizwan, M., Ahmad, K., Waheed, S., Tarin, M. W. K., & Hua, Z. (2018). Biochar: An efficient way to manage low water availability in plants. Appl Ecol Environ Res, 16, 2565-2583.spa
dc.relation.referencesTounekti, T., Mahdhi, M., Al-Turki, T. A., & Khemira, H. (2018). Water relations and photo-protection mechanisms during drought stress in four coffee (Coffea arabica) cultivars from southwestern Saudi Arabia. S Afr J Bot, 117, 17-25.spa
dc.relation.referencesTyree, M. T., Patin˜o, S., Bennink, J., & Alexander, J. (1995). Dynamic measurements of roots hydraulic conductance using a high-pressure flowmeter in the laboratory and field. J Expt Bot, 46, 83–94.spa
dc.relation.referencesUzoma, K. C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., & Nishihara, E. (2011). Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag, 27, 205–212.spa
dc.relation.referencesYin, J., Bassuk, N. L., Olberg, M. W., & Bauerle, T. L. (2014). Fine root hydraulic conductance is related to post-transplant recovery of two Quercus tree species. J Am Soc Hortic Sci, 139, 649-656.spa
dc.relation.referencesZandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., & Gómez‐Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia plantarum, 162, 2-12.spa
dc.relation.referencesZoghi, Z., Hosseini, S. M., Kouchaksaraei, M. T., Kooch, Y., & Guidi, L. (2019). The effect of biochar amendment on the growth, morphology and physiology of Quercus castaneifolia seedlings under water-deficit stress. Eur J For Res, 138, 967-979.spa
dc.relation.referencesAbbas, S., M.T. Javed, Q. Ali, H.J. Chaudhary y M. Rizwan. 2021. Alteration of plant physiology by the application of biochar for remediation of organic pollutants. In Handbook of Bioremediation (pp. 475-492). Academic Press.spa
dc.relation.referencesAbbas, S., M.T. Javed, Q. Ali, H.J. Chaudhary y M. Rizwan. 2021. Alteration of plant physiology by the application of biochar for remediation of organic pollutants. In Handbook of Bioremediation (pp. 475-492). Academic Press.spa
dc.relation.referencesAgbede, T. M., Adekiya, A. O., Odoja, A. S., Bayode, L. N., Omotehinse, P. O., & Adepehin, I. (2020). Effects of biochar and poultry manure on soil properties, growth, quality, and yield of cocoyam (Xanthosoma sagittifolium Schott) in degraded tropical sandy soil. Experimental Agriculture, 56(4), 528-543.spa
dc.relation.referencesAgegnehu, G., A.K. Srivastava y M.I. Bird. 2017. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied soil ecology, 119, 156-170.spa
dc.relation.referencesAkhtar, S.S., M.N. Andersen y F. Liu. 2015. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agric. Water Manag. 158, 61–68.spa
dc.relation.referencesAlam, S. N., Z. Khalid, B. Singh, A. Guldhe, D.K. Shahi y K. Bauddh. 2020. Application of Biochar in Agriculture: A Sustainable Approach for Enhanced Plant Growth, Productivity and Soil Health. In Ecological and Practical Applications for Sustainable Agriculture. Springer, Singapore. 107-130.spa
dc.relation.referencesAlef, K., y P. Nannipieri. 1995. Methods in applied soil microbiology and biochemistry (No. 631.46 M592ma). Academic Press.spa
dc.relation.referencesAli, A., D. Guo, P.G.S.A. Jeyasundar, Y. Li, R. Xiao, J. Du y Z. Zhang. 2019. Application of wood biochar in polluted soils stabilized the toxic metals and enhanced wheat (Triticum aestivum) growth and soil enzymatic activity. Ecotoxicology and environmental safety, 184, 109635spa
dc.relation.referencesAli, K., Arif, M., Jan, M. T., Khan, M. J., & Jones, D. L. (2015). Integrated use of Biochar: A tool for improving soil and wheat quality of degraded soil under wheat-maiza cropping pattern. Pakistan Journal of Botany, 47(1), 233-240.spa
dc.relation.referencesAlmaroai, Y. A., & Eissa, M. A. (2020). Effect of biochar on yield and quality of tomato grown on a metal-contaminated soil. Scientia Horticulturae, 265, 109210.spa
dc.relation.referencesAlshaal, T., H. El-Ramady, A.H. Al-Saeedi, T. Shalaby, T. Elsakhawy, A.E.D. Omara y N. Abdalla. 2017. The rhizosphere and plant nutrition under climate change. In Essential Plant Nutrients. Springer, Cham. 275-308.spa
dc.relation.referencesAl‐Wabel, M.I., Q. Hussain, A.R. Usman, M. Ahmad, A. Abduljabbar, A.S. Sallam y Y.S. Ok. 2018. Impact of biochar properties on soil conditions and agricultural sustainability: A review. Land Degradation & Development, 29(7), 2124-2161.spa
dc.relation.referencesAncy-Jenifer, A., M. Vasanthy, B. Ravindran, W.J. Chung y S.W. Chang. 2020. Treatment of coffee cherry pulping wastewater by using lectin protein isolated from Ricinus communis L. seed. Journal of Water Process Engineering, 101742.spa
dc.relation.referencesAnderson, R., P.E. Bayer y D. Edwards. 2020. Climate change and the need for agricultural adaptation. Current opinion in plant biology, 56, 197-202.spa
dc.relation.referencesArif, M., M. Ilyas, M. Riaz, K. Ali, K. Shah, I.U. Haq y S. Fahad. 2017. Biochar improves phosphorus use efficiency of organic-inorganic fertilizers, maize-wheat productivity and soil quality in a low fertility alkaline soil. Field crops research, 214, 25-37.spa
dc.relation.referencesAsai, H., B.K. Samson, H.M. Stephan, K. Songyikhangsuthor, K. Homma, Y. Kiyono y T. Horie. 2009. Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field crops research, 111(1-2), 81-84.spa
dc.relation.referencesAsegid, A. 2020. Impact of climate change on production and diversity of coffee (Coffea arabica L.) in Ethiopia. Int J Res Stud Sci Eng Technol, 7, 31-38.spa
dc.relation.referencesAwad, Y.M., S.E. Lee, M.B.M. Ahmed, N.T. Vu, M. Farooq, I.S. Kim y Y.S. Ok. 2017. Biochar, a potential hydroponic growth substrate, enhances the nutritional status and growth of leafy vegetables. Journal of Cleaner Production, 156, 581-588.spa
dc.relation.referencesBado, V. B. y A. Bationo. 2018. Integrated management of soil fertility and land resources in Sub-Saharan Africa: involving local communities. Advances in Agronomy, 150, 1-33.spa
dc.relation.referencesBaiga, R. y B.K.R. Rao. 2017. Effects of biochar, urea and their co‐application on nitrogen mineralization in soil and growth of Chinese cabbage. Soil Use and Management. https://doi.org/10.1111/sum.12328spa
dc.relation.referencesBaker, N.R. 2008. Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annu. Rev. Plant Biol. 59, 89–113.spa
dc.relation.referencesBinda, G., D. Spanu, R. Bettinetti, L. Magagnin, A. Pozzi y C. Dossi. 2020. Comprehensive comparison of microalgae-derived biochar from different feedstocks: A prospective study for future environmental applications. Algal Research, 52, 102103.spa
dc.relation.referencesBongase, E.D. 2017. Impacts of climate change on global coffee production industry. African Journal of Agricultural Research, 12(19), 1607-1611.spa
dc.relation.referencesBorchard, N., J. Siemens, B. Ladd, A. Möller y W. Amelung. 2014. Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil and Tillage Research, 144, 184–194. https://doi.org/10.1016/j.still.2014.07.016spa
dc.relation.referencesCastro, E., M. Quicazán, A. Mojica y C. Zuluaga-Domínguez. 2021. Bioactive and physicochemical profile of honey collected from Colombian organic and conventional coffee growing areas. Journal of Apicultural Research, 1-12.spa
dc.relation.referencesChandio, A.A., Y. Jiang, A. Rehman y A. Rauf. 2020. Short and long-run impacts of climate change on agriculture: an empirical evidence from China. International Journal of Climate Change Strategies and Management.spa
dc.relation.referencesChang, Y., L. Rossi, L. Zotarelli, B. Gao y A. Sarkhosh. 2021. Greenhouse Evaluation of Pinewood Biochar Effects on Nutrient Status and Physiological Performance in Muscadine Grape (Vitis rotundifolia L.). HortScience, 1(aop), 1-9.spa
dc.relation.referencesChemura, A., B.T. Mudereri, A.W. Yalew y C. Gornott. 2021. Climate change and specialty coffee potential in Ethiopia. Scientific reports, 11(1), 1-13.spa
dc.relation.referencesChen, J., H. Qian y H. Wu. 2017. Nitrogen contamination in groundwater in an agricultural region along the New Silk Road, northwest China: distribution and factors controlling its fate. Environmental Science and Pollution Research, 24(15), 13154-13167.spa
dc.relation.referencesChinchilla-Soto, C., A.M. Durán-Quesada, M. Monge-Muñoz y M.V. Gutiérrez-Soto. 2021. Quantifying the annual cycle of water use efficiency, energy and CO2 fluxes using micrometeorological and physiological techniques for a coffee field in Costa Rica. Forests, 12(7), 889.spa
dc.relation.referencesCodling, E. y A. Perry. 2013. The real dirt on biosolids as soil amendments. Agricultural research magazine. 6. University of Nebraska–Lincolnhttps://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1005&context=usdaagresmag/.spa
dc.relation.referencesCoomes, O.T. y B.C. Miltner. 2016. Indigenous charcoal and biochar production: Potential for soil improvement under shifting cultivation systems. Land Degradation & Development. n/a‐n/a. https://doi.org/10.1002/ldr.2500spa
dc.relation.referencesCorreia, P.F.C., J.G.M. Reis, F.A. Araujo, L.R. Bonette y A.E. Souza. 2020. Coffee production chain: A case study of the logistic flow of field grain for export. NETLOG 2020, Sao Pablo. 1-12.spa
dc.relation.referencesCui, X. 2020. Climate change and adaptation in agriculture: Evidence from US cropping patterns. Journal of Environmental Economics and Management, 101, 102306.spa
dc.relation.referencesCzekała, W., A. Jeżowska y D. Chełkowski. 2019. The use of biochar for the production of organic fertilizers. Journal of Ecological Engineering, 20(1).spa
dc.relation.referencesda Silveira, J.S., C. Mertz, G. Morel, S. Lacour, M.P. Belleville, N. Durand y M. Dornier. 2020. Alcoholic fermentation as a potential tool for coffee pulp detoxification and reuse: Analysis of phenolic composition and caffeine content by HPLC-DAD-MS/MS. Food chemistry, 319, 126600.spa
dc.relation.referencesDas, S.K., G.K. Ghosh y R. Avasthe. 2020. Application of biochar in agriculture and environment, and its safety issues. Biomass Conversion and Biorefinery, 1-11.spa
dc.relation.referencesDel Buono, D. 2020. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Science of The Total Environment, 141763.spa
dc.relation.referencesDeng, B., B. Bada, P. Tammeorg, J. Helenius, O. Luukkanen y M. Starr. 2019. Drought stress and Acacia seyal biochar effects on sorghum gas exchange and yield: A greenhouse experiment. Agriculture and Natural Resources.spa
dc.relation.referencesDomingues, R.R., P.F. Trugilho, C.A. Silva, I.C.N.D. Melo, L.C. Melo, Z.M. Magriotis y M.A. Sanchez-Monedero. 2017. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PloS one, 12(5), e0176884.spa
dc.relation.referencesDong, W., J. Zhao, R. Hu, Y. Dong y L. Tan. 2017. Differentiation of Chinese robusta coffees according to species, using a combined electronic nose and tongue, with the aid of chemometrics. Food chemistry, 229, 743-751.spa
dc.relation.referencesDuarte, A., J.C. Uribe, W. Sarache y A. Calderón. 2020. Economic, environmental, and social assessment of bioethanol production using multiple coffee crop residues. Energy, 119170.spa
dc.relation.referencesEl-Mageed, A., A. Taia, E.E. Belal, M.O. Rady, A. El-Mageed, A. Shimaa y W.M. Semida. 2021. Acidified biochar as a soil amendment to drought stressed (Vicia faba L.) plants: Influences on growth and productivity, nutrient status, and water use efficiency. Agronomy, 11(7), 1290.spa
dc.relation.referencesEl-Naggar, A., S.S. Lee, J. Rinklebe, M. Farooq, H. Song, A.K. Sarmah y S. Ok. 2019. Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma, 337, 536-554.spa
dc.relation.referencesFaloye, O.T., M.O. Alatise, A.E. Ajayi y B.S. Ewulo. 2019. Effects of biochar and inorganic fertiliser applications on growth, yield and water use efficiency of maize under deficit irrigation. Agricultural Water Management, 217, 165-178.spa
dc.relation.referencesFarhangi-Abriz, S. y S. Torabian. 2018. Biochar improved nodulation and nitrogen metabolism of soybean under salt stress. Symbiosis, 74(3), 215-223.spa
dc.relation.referencesFarhangi-Abriz, S., S. Torabian, R. Qin, C. Noulas, Y. Lu y S. Gao. 2021. Biochar effects on yield of cereal and legume crops using meta-analysis. Science of The Total Environment, 775, 145869.spa
dc.relation.referencesFeng, W., F. Yang, R. Cen, J. Liu, Z. Qu, Q. Miao y H. Chen. 2021. Effects of straw biochar application on soil temperature, available nitrogen and growth of corn. Journal of Environmental Management, 277, 111331.spa
dc.relation.referencesFernández-Calleja, M., A. Monteagudo, A.M. Casas, C. Boutin, P.A. Pin, F. Morales y E. Igartua. 2020. Rapid on-site phenotyping via field fluorimeter detects differences in photosynthetic performance in a hybrid—parent barley germplasm set. Sensors, 20(5), 1486.spa
dc.relation.referencesFofack, A.D. y E.A. Derick. 2020. Evaluating the bidirectional nexus between climate change and agriculture from a global perspective. World, 6, 100.spa
dc.relation.referencesGao, Y., G. Shao, J. Lu, K. Zhang, S. Wu y Z. Wang. 2020. Effects of biochar application on crop water use efficiency depend on experimental conditions: A meta-analysis. Field Crops Research, 249, 107763.spa
dc.relation.referencesGarcía-Castro, A., A. Volder, H. Restrepo-Diaz, T.W. Starman y L. Lombardini. 2017. Evaluation of different drought stress regimens on growth, leaf gas exchange properties, and carboxylation activity in purple passionflower plants. Journal of the American Society for Horticultural Science, 142(1), 57-64.spa
dc.relation.referencesGarcia-Freites, S., M. Röder y P. Thornley. 2020. Environmental trade-offs associated with bioenergy from agri-residues in sub-tropical regions: A case study of the Colombian coffee sector. Biomass and Bioenergy, 140, 105581.spa
dc.relation.referencesGaskin, J.W., R.A. Speir, K. Harris, K.C. Das, R.D. Lee, L.A. Morris, y D.S. Fisher. 2010. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal, 102, 623–633. https://doi.org/10.2134/agronj2009.0083spa
dc.relation.referencesGautam, D.K., R.M. Bajracharya y B.K. Sitaula. 2017. Effects of biochar and farm yard manure on soil properties and crop growth in an agroforestry system in the Himalaya. Sustainable Agriculture Research, 6(526-2017-2695).spa
dc.relation.referencesGavili, E., A.A. Moosavi y A.A.K. Haghighi. 2019. Does biochar mitigate the adverse effects of drought on the agronomic traits and yield components of soybean? Industrial crops and products, 128, 445-454.spa
dc.relation.referencesGebre, T., S. Singh y I. Zewide. 2021. Potato yield enhancement by combined use of NPS blended fertilizer and coffee husk biochar and its economic analysis. Tropical Agriculture, 97(4).spa
dc.relation.referencesGemechu, F.G. 2020. Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation. Trends in Food Science & Technology. 104, 235-261.spa
dc.relation.referencesGraber, E.R., Y.M. Harel, M. Kolton, E. Cytryn, A. Silber, D.R. David y Y. Elad. 2010. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337 (1-2), 481–496.spa
dc.relation.referencesGraboski, A.M., C.A. Zakrzevski, F.M. Shimizu, R.T. Paschoalin, A.C. Soares, J. Steffens y C. Steffens. 2020. Electronic nose based on carbon nanocomposite sensors for clove essential oil detection. ACS sensors, 5(6), 1814-1821.spa
dc.relation.referencesGuo, L., M.L. Bornø, W. Niu y F. Liu. 2021. Biochar amendment improves shoot biomass of tomato seedlings and sustains water relations and leaf gas exchange rates under different irrigation and nitrogen regimes. Agricultural Water Management, 245, 106580.spa
dc.relation.referencesGuo, X., Q. Ji, M. Rizwan, H. Li, D. Li y G. Chen. 2020. Effects of biochar and foliar application of selenium on the uptake and subcellular distribution of chromium in Ipomoea aquatica in chromium-polluted soils. Ecotoxicol. Environ. Saf. 206, 111184.spa
dc.relation.referencesHe, Y., Y. Yao, Y. Ji, J. Deng, G. Zhou, R. Liu y S.H. Bai. 2020. Biochar amendment boosts photosynthesis and biomass in C3 but not C4 plants: A global synthesis. GCB Bioenergy, 12(8), 605-617.spa
dc.relation.referencesHerath, H.M.S.K., M. Camps‐Arbestain y M. Hedley. 2013. Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma, 209–210, 188–197. https://doi.org/10.1016/j.geoderma.2013.06.016spa
dc.relation.referencesHoseini, M., S. Cocco, C. Casucci, V. Cardelli y G. Corti. 2021. Coffee by-products derived resources. A review. Biomass and Bioenergy, 148, 106009.spa
dc.relation.referencesHussien-Ibrahim, M.E., A.Y. Adam-Ali, G. Zhou, A.M. Ibrahim-Elsiddig, G. Zhu, N.E. Ahmed-Nimir y I. Ahmad. 2020. Biochar application affects forage sorghum under salinity stress. Chilean journal of agricultural research, 80(3), 317-325.spa
dc.relation.referencesIgalavithana, A.D., Y.S. Ok, N.K. Niazi, M. Rizwan, M.I. Al‐Wabel, A.R.A. Usman y S.S. Lee. 2017. Effect of corn residue biochar on the hydraulic properties of sandy‐loam soil. Sustainability, 9, 266. https://doi.org/10.3390/su9020266spa
dc.relation.referencesInal, A., A. Gunes, O.Z.G.E. Sahin, M.B. Taskin y E.C. Kaya. 2015. Impacts of biochar and processed poultry manure, applied to a calcareous soil, on the growth of bean and maize. Soil Use and Management, 31(1), 106-113.spa
dc.relation.referencesInternational Coffee Organization. 2021. Estadísticas del comercio. Revisado en septiembre del 2021. En: https://www.ico.org/prices/po-production.pdfspa
dc.relation.referencesIsrael, M.A., J. Amikuzuno y G. Danso-Abbeam. 2020. Assessing farmers' contribution to greenhouse gas emission and the impact of adopting climate-smart agriculture on mitigation. Ecological Processes, 9(1), 1-10.spa
dc.relation.referencesJien, S.‐H. y C.S. Wang. 2013. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena, 110, 225–233.spa
dc.relation.referencesKalaji, H.M., W. Bąba, K. Gediga, V. Goltsev, I.A. Samborska, M.D. Cetner y A. Kompała-Bąba. 2018. Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. Photosynthesis research, 136(3), 329-343.spa
dc.relation.referencesKammann, C.I., S. Linsel, J.W. Gößling y H.W. Koyro. 2011. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil–plant relations. Plant and soil, 345(1), 195-210.spa
dc.relation.referencesKarimi, A., A. Moezzi, M. Chorom y N. Enayatizamir. 2020. Application of biochar changed the status of nutrients and biological activity in a calcareous soil. Journal of Soil Science and Plant Nutrition, 20(2), 450-459.spa
dc.relation.referencesKizito, S., H. Luo, J. Lu, H. Bah, R. Dong y S. Wu. 2019. Role of nutrient-enriched biochar as a soil amendment during maize growth: exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand. Sustainability, 11(11), 3211.spa
dc.relation.referencesKnysak, D. 2017. Volatile compounds profiles in unroasted Coffea arabica and Coffea canephora beans from different countries. Food Science and Technology, 37, 444-448.spa
dc.relation.referencesKoleška, I., D. Hasanagić, V. Todorović, S. Murtić, I. Klokić, N. Parađiković y B. Kukavica. 2017. Biostimulant prevents yield loss and reduces oxidative damage in tomato plants grown on reduced NPK nutrition. Journal of Plant Interactions, 12(1), 209-218.spa
dc.relation.referencesKrall, J.P. y G.E. Edwards. 1992. Relationship between photosystem II activity and CO2 fixation in leaves. Physiol. Plant. 86, 180–187.spa
dc.relation.referencesKufa, T., T. Shimber, B. Bellachew, E. Taye y G. Adugna. 2008. Coffee diversity & knowledge. Ethiopian Institute of Agricultural Research.spa
dc.relation.referencesKwoczynski, Z. y J. Čmelík. 2021. Characterization of biomass wastes and its possibility of agriculture utilization due to biochar production by torrefaction process. Journal of Cleaner Production, 280, 124302.spa
dc.relation.referencesKyaw, E.M., I.W. Budiastra, S. Sutrisno, S. Samsudin y D.M. Mala. 2020. Prediction of caffeine content in Liberica coffee green bean by NIR spectroscopy using Kubelka-Munk Model. Jurnal Tanaman Industri dan Penyegar, 7(3), 119-126.spa
dc.relation.referencesLemma, D.T. y H.G. Megersa. 2021. Impact of climate change on East African coffee production and its mitigation strategies. World Journal of Agricultural Sciences, 17(2), 81-89.spa
dc.relation.referencesLiao, X., Y. Niu, D. Liu, Z. Chen, T. He, J. Luo y W. Ding. 2020. Four-year continuous residual effects of biochar application to a sandy loam soil on crop yield and N2O and NO emissions under maize-wheat rotation. Agriculture, Ecosystems & Environment, 302, 107109.spa
dc.relation.referencesLiu, Z., B. Dugan, C.A. Masiello, R.T. Barnes, M.E. Gallagher y H. Gonnermann. 2016. Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar-sand mixtures. J. Hydrol. 2016 (533), 461–472.spa
dc.relation.referencesLu, Z., T. Ren, J. Li, W. Hu, J. Zhang, J. Yan y J. Lu. 2020. Nutrition-mediated cell and tissue-level anatomy triggers the covariation of leaf photosynthesis and leaf mass per area. Journal of Experimental Botany, 71(20), 6524-6537.spa
dc.relation.referencesMahmood, F., I. Khan, U. Ashraf, T. Shahzad, S. Hussain, M. Shahid, M. Abid y S. Ullah, 2017. Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties. J. Soil Sci. Plant Nutr. 17, 22–32. https://doi.org/10.4067/S0718-95162017005000002spa
dc.relation.referencesManolikaki, I. y E. Diamadopoulos. 2017. Ryegrass yield and nutrient status after biochar application in two Mediterranean soils. Archives of Agronomy and Soil Science, 63(8), 1093-1107.spa
dc.relation.referencesMarek, G., B. Dobrzański, T. Oniszczuk, M. Combrzyński, D. Ćwikła y R. Rusinek. 2020. Detection and differentiation of volatile compound profiles in roasted coffee arabica beans from different countries using an electronic nose and GC-MS. Sensors, 20(7), 2124.spa
dc.relation.referencesMete, F.Z., S. Mia, F.A. Dijkstra, M. Abuyusuf y A.S.M.I. Hossain. 2015. Synergistic effects of biochar and NPK fertilizer on soybean yield in an alkaline soil. Pedosphere, 25, 713–719. https://doi.org/10.1016/S1002‐0160(15)30052‐7spa
dc.relation.referencesMorales, F., A. Pavlovič, A. Abadía y J. Abadía. 2018. Photosynthesis in poor nutrient soils, in compacted soils, and under drought. In The leaf: A platform for performing photosynthesis. Springer, Cham. 371-399.spa
dc.relation.referencesMoreira, M.T., I. Noya y G. Feijoo. 2017. The prospective use of biochar as adsorption matrix–A review from a lifecycle perspective. Bioresource technology, 246, 135-141.spa
dc.relation.referencesMurthy, P.S. y M.M. Naidu. 2012. Sustainable management of coffee industry by-products and value addition—A review. Resources, Conservation and recycling, 66, 45-58.spa
dc.relation.referencesNaeem, M.A., M. Khalid, M. Aon, G. Abbas, M. Amjad, B. Murtaza y N. Ahmad. 2018. Combined application of biochar with compost and fertilizer improves soil properties and grain yield of maize. Journal of Plant Nutrition, 41(1), 112-122.spa
dc.relation.referencesNorma Técnica Colombiana NTC 3566: Café verde, Preparación de muestras para análisis sensorial. 2002spa
dc.relation.referencesObia, A., J. Mulder, V. Martinsen, G. Cornelissen y T. Børresen. 2016. In-situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Till. Res. 155, 35–44spa
dc.relation.referencesObia, A., T. Børresen, V. Martinsen, G. Cornelissen y J. Mulder. 2017. Effect of biochar on crust formation, penetration resistance and hydraulic properties of two coarse-textured tropical soils. Soil and Tillage Research, 170, 114-121.spa
dc.relation.referencesOwsianiak, M., H. Lindhjem, G. Cornelissen, S.E. Hale, E. Sørmo y M. Sparrevik. 2021. Environmental and economic impacts of biochar production and agricultural use in six developing and middle-income countries. Science of the Total Environment, 755, 142455.spa
dc.relation.referencesPareek, N. 2017. Climate change impact on soils: Adaptation and mitigation. MOJ Eco. Environ. Sci, 2(3), 00026.spa
dc.relation.referencesPartey, S.T., K. Saito, R.F. Preziosi y G.D. Robson. 2016. Biochar use in a legume–rice rotation system: Effects on soil fertility and crop performance. Archivesof Agronomy and. Soil Science, 62, 199–215. https://doi.org/10.1080/03650340.2015.1040399spa
dc.relation.referencesPesce, M., A. Critto, S. Torresan, E. Giubilato, M. Santini, A. Zirino, y A. Marcomini. 2018. Modelling climate change impacts on nutrients and primary production in coastal waters. Science of the Total Environment, 628, 919-937.spa
dc.relation.referencesPla, I. 1983. Metodologías para la caracterización física con fines de diagnóstico de problemas de manejo y conservación de suelos en condiciones tropicales. Revista de la Facultad de Agronomía. Alcance Nº 32. Universidad Central de Venezuela. 91p.spa
dc.relation.referencesPrasad, M., N. Tzortzakis y N. McDaniel. 2018. Chemical characterization of biochar and assessment of the nutrient dynamics by means of preliminary plant growth tests. Journal of environmental management, 216, 89-95.spa
dc.relation.referencesPuerta-Quintero, G.I. 2000. Calidad en taza de algunas mezclas de variedades de café de la especie Coffea arabica L. Cenicafé, 51(1): 5-19.spa
dc.relation.referencesQian, Z.H.U., L.J. Kong, Y.Z. Shan, X.D. Yao, H.J. Zhang, F.T. Xie y A.O. Xue. 2019. Effect of Biochar on grain yield and leaf photosynthetic physiology of soybean cultivars with different phosphorus efficiencies. Journal of Integrative Agriculture, 18(10), 2242-2254.spa
dc.relation.referencesRaviv, M. y T.J. Blom. 2001. The effect of water availability and quality on photosynthesis and productivity of soilless-grown cut roses. Scientia Horticulturae, 88(4), 257-276.spa
dc.relation.referencesRazzaghi, F., P.B. Obour y E. Arthur. 2020. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 361, 114055.spa
dc.relation.referencesReichembach, L.H. & de C.L. Oliveira-Petkowicz. 2020. Extraction and characterization of a pectin from coffee (Coffea arabica L.) pulp with gelling properties. Carbohydrate Polymers, 116473.spa
dc.relation.referencesRestrepo-Diaz, H., M. Benlloch, Navarro, C. y R. Fernández-Escobar. 2008. Potassium fertilization of rainfed olive orchards. Scientia Horticulturae, 116(4), 399–403.spa
dc.relation.referencesReyes-Moreno, G., M.E. Fernández y E.D. Contreras. 2021. Balanced mixture of biochar and synthetic fertilizer increases seedling quality of Acacia mangium. Journal of the Saudi Society of Agricultural Sciences.spa
dc.relation.referencesRonga, D., F. Caradonia, M. Parisi, G. Bezzi, B. Parisi, G. Allesina y E. Francia. 2020. Using digestate and biochar as fertilizers to improve processing tomato production sustainability. Agronomy, 10(1), 138.spa
dc.relation.referencesRonga, D., M. Parisi, A. Pentangelo, M. Mori y I. Di Mola. 2019. Effects of nitrogen management on biomass production and dry matter distribution of processing tomato cropped in southern Italy. Agronomy, 9(12), 855.spa
dc.relation.referencesRusinek, R., M. Gancarz, M. Krekora y A. Nawrocka. 2019. A novel method for generation of a fingerprint using electronic nose on the example of rapeseed spoilage. J. Food Sci. 84, 51–58.spa
dc.relation.referencesSadaf, J., G.A. Shah, K. Shahzad, N. Ali, M. Shahid y S. Ali. 2017. Improvements in wheat productivity and soil quality can accomplish by coapplication of biochars and chemical fertilizers. Sci. Total Environ. 607–608, 715–724. doi: 10.1016/j.scitotenv.2017.06.178spa
dc.relation.referencesSadeghian, S. 2013. Nutrición de cafetales. En: Manual del Cafetero Colombiano, Investigación y Tecnología para la Sostenibilidad de la Caficultura- Postcosecha y subproductos del café. Gast, F., Benavides, P., Sanz, J. R., Herrera, J. C., Ramírez, V. H., Cristancho, M. A., & Marín, S. M. Federación Nacional de Cafeteros, Cenicafé. 354 pp.spa
dc.relation.referencesSaha, A., B.B. Basak, N.A. Gajbhiye, K.A. Kalariya y P. Manivel. 2019. Sustainable fertilization through co-application of biochar and chemical fertilizers improves yield, quality of Andrographis paniculata and soil health. Industrial Crops and Products, 140, 111607.spa
dc.relation.referencesSanchez-Hernandez, J.C., K.S. Ro y F.J. Díaz. 2019. Biochar and earthworms working in tandem: research opportunities for soil bioremediation. Science of the total environment, 688, 574-583.spa
dc.relation.referencesSanz-Uribe, J.R., C.E. Oliveros-Tascón, C.A. Ramírez-Gómez, A.E. Peñuela-Martínez y P.J. Ramos-Giraldo. 2013. Proceso de Beneficio. En: Manual del Cafetero Colombiano, Investigación y Tecnología para la Sostenibilidad de la Caficultura – Nutrición de Cafetales. Gast, F., Benavides, P., Sanz, J. R., Herrera, J. C., Ramírez, V. H., Cristancho, M. A., & Marín, S. M. Federación Nacional de Cafeteros, Cenicafé. 327 pp.spa
dc.relation.referencesShah, S.H., R. Houborg y M.F. McCabe. 2017. Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agronomy, 7(3), 61.spa
dc.relation.referencesShashi, M.A., M.A. Mannan, M.M. Islam y M.M. Rahman. 2018. Impact of rice husk biochar on growth, water relations and yield of maize (Zea mays L.) under drought condition. The Agriculturists, 16(02), 93-101.spa
dc.relation.referencesSilva, B. M., G.C. de Oliveira, M.E. Serafim, C.E. Carducci, É.A. da Silva, S.M. Barbosa y P.T.G. Guimarães. 2019. Soil management and water-use efficiency in Brazilian coffee Crops. In Coffee. IntechOpenspa
dc.relation.referencesSingh, C., S. Tiwari y J.S. Singh. 2020. Biochar: a sustainable tool in soil pollutant bioremediation. In bioremediation of industrial waste for environmental safety. Springer, Singapore. 475-494.spa
dc.relation.referencesSivetz M. y N.W. Desrosier. 1979. Coffee Technology, Avi, Westport, CT, USA.spa
dc.relation.referencesSong, S., S. Arora, A.K.C. Laserna, Y. Shen, B.W. Thian, J.C. Cheong y C.H. Wang. 2020. Biochar for urban agriculture: Impacts on soil chemical characteristics and on Brassica rapa growth, nutrient content and metabolism over multiple growth cycles. Science of The Total Environment, 727, 138742.spa
dc.relation.referencesSørmo, E., E. Kämäräinen, Edvardsson M. y C. Maurice. 2020. Biochar for the improvement of soil and rock with acid potential. In E3S Web of Conferences (Vol. 195, p. 06005). EDP Sciences.spa
dc.relation.referencesSorrenti, G., E. Muzzi y M. Toselli. 2019. Root growth dynamic and plant performance of nectarine trees amended with biochar and compost. Scientia Horticulturae, 257, 108710.spa
dc.relation.referencesSrivatsav, P., B.S. Bhargav, V. Shanmugasundaram, J. Arun, K.P. Gopinath y A. Bhatnagar. 2020. Biochar as an eco-friendly and economical adsorbent for the removal of colorants (dyes) from aqueous environment: A review. Water, 12(12), 3561.spa
dc.relation.referencesTang, J.W., S.D. Zhang, X.T. Zhang, J.H. Chen, X.Y. He y Q.Z. Zhang. 2020. Effects of pyrolysis temperature on soil-plant-microbe responses to Solidago canadensis L.-derived biochar in coastal salinealkali soil. Sci. Total Environ. 731:138938. doi: 10.1016/j.scitotenv.2020.138938spa
dc.relation.referencesTanure, M.M. J.M.R. C., L.M. da Costa, H.A. Huiz, R.B.A. Fernandes, P.R. Cecon, J.D.P. Junior and da Luz. 2019. Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil. Soil Till. Res., 192, 164-173.spa
dc.relation.referencesTassew, A.A., G.B. Yadessa, A.D. Bote y T.K. Obso. 2021. Influence of location, elevation gradients, processing methods, and soil quality on the physical and cup quality of coffee in the Kafa Biosphere Reserve of SW Ethiopia. Heliyon, e07790.spa
dc.relation.referencesTomczyk, A., Z. Sokołowska y P. Boguta. 2020. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19(1), 191-215.spa
dc.relation.referencesUsman, A.R.A., M.I. Al‐Wabel, Y.S. Ok, A. Al‐Harbi, M. Wahb‐Allah, A.H. El‐Naggar y A. Al‐Omran. 2016. Conocarpus biochar induces changes in soil nutrient availability and tomato growth under saline irrigation. Pedosphere, 26, 27–38. https://doi.org/10.1016/S1002-0160(15)60019-4spa
dc.relation.referencesVaccari, F., A. Maienza, F. Miglietta, S. Baronti, S. Di Lonardo, L. Giagnoni y L. Genesio. 2015. Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil. Agriculture, Ecosystems and Environment, 207, 163–170. https://doi.org/10.1016/j.agee.2015.04.015spa
dc.relation.referencesVassallo-Barco, M., L. Vives-Garnique, V. Tuesta-Monteza, H.I. Mejía-Cabrera y R.Y. Toledo. 2017. Automatic detection of nutritional deficiencies in coffee tree leaves through shape and texture descriptors. Journal of Digital Information Management, 15(1).spa
dc.relation.referencesVassilev, N., E. Martos, G. Mendes, V. Martos y M. Vassileva. 2013. Biochar of animal origin: a sustainable solution to the global problem of high-grade rock phosphate scarcity. J. Sci. Food Agric. 93, 1799–1804.spa
dc.relation.referencesVegro, C.L.R. y L.F. de Almeida. 2020. Global coffee market: Socio-economic and cultural dynamics. In Coffee Consumption and Industry Strategies in Brazil. Woodhead Publishing. 3-19.spa
dc.relation.referencesVerheijen, F.G., A. Zhuravel, F.C. Silva, A. Amaro, M. Ben-Hur y J.J. Keizer. 2019. The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment. Geoderma, 347, 194-202.spa
dc.relation.referencesVijayaraghavan, K. 2021. The importance of mineral ingredients in biochar production, properties and applications. Critical Reviews in Environmental Science and Technology, 51(2), 113-139.spa
dc.relation.referencesWang, D., P. Jiang, H. Zhang y W. Yuan. 2020. Biochar production and applications in agro and forestry systems: a review. Sci. Total Environ. 723, 137775.spa
dc.relation.referencesWang, S., J. Zheng, Y. Wang, Q. Yang, T. Chen, Y. Chen y T. Wang. 2021. Photosynthesis, chlorophyll fluorescence, and yield of peanut in response to biochar application. Frontiers in Plant Science, 12, 1000.spa
dc.relation.referencesWariyo, A., H. Gebreselassie, W. Gerbatsedik y K. Belachew. 2021. Current status on coffee leaf rust (Hemileia vastatrix) in Sidama and Gedeo zone, southern Ethiopia. International Journal of Agricultural Extension, 9(1), 01-11.spa
dc.relation.referencesXu, M., J. Zhou y P. Zhu. 2021. An electronic nose system for the monitoring of water cane shoots quality with swarm clustering algorithm. Journal of Food Safety, 41(1), e12860.spa
dc.relation.referencesXu, X., P. He, M.F. Pampolino, A.M. Johnston, S. Qiu, S. Zhao y W. Zhou. 2014. Fertilizer recommendation for maize in China based on yield response and agronomic efficiency. Field Crops Research, 157, 27-34.spa
dc.relation.referencesYadessa, A., J. Burkhardt, E. Bekele, K. Hundera y H. Goldbach. 2019. The role of soil nutrient ratios in coffee quality: Their influence on bean size and cup quality in the natural coffee forest ecosystems of Ethiopia. African Journal of Agricultural Research, 14(35), 2090-2103.spa
dc.relation.referencesYadessa, A., J. Burkhardt, E. Bekele, K. Hundera y H. Goldbach. 2020. The major factors influencing coffee quality in Ethiopia: The case of wild Arabica coffee (Coffea arabica L.) from its natural habitat of Southwest and Southeast Afromontane rainforests. African Journal of Plant Science, 14(6), 213-230.spa
dc.relation.referencesYazhini, G., R. Abishek, T. Ilakiya, S. Shanmugapriya y R.S. Piriya. 2020. Beneficial effects of biochar on agriculture and environments. International Research Journal of Pure and Applied Chemistry, 74-88.spa
dc.relation.referencesYe, L., M. Camps‐Arbestain, Q. Shen, J. Lehmann, B. Singh y M. Sabir. 2019. Biochar effects on crop yields with and without fertilizer: A meta‐analysis of field studies using separate controls. Soil Use and Management, 36(1), 2-18.spa
dc.relation.referencesYin, Y. y X. Tian. 2007. Classification of Chinese drinks by a gas sensors array and combination of the PCA with Wilks distribution. Sensors and Actuators B 124: 393–397.spa
dc.relation.referencesYuan, J.H. y R.K. Xu. 2012. Effects of biochars generated from crop residues on chemical properties of acid soils from tropical and subtropical China. Soil Research, 50, 570–578. https://doi.org/10.1071/SR12118spa
dc.relation.referencesZabini, A.V., H.E.P. Martinez, J.C.L. Neves, C.D. Cruz y S.V. Valadares. 2021. Chemical analyses of flowers and leaves for nutritional diagnoses of coffee trees. Ciência Rural, 51.spa
dc.relation.referencesZeeshan, M., W. Ahmad, F. Hussain, W. Ahamd, M. Numan, M. Shah and I. Ahmad. 2020. Phytostabalization of the heavy metals in the soil with biochar applications, the impact on chlorophyll, carotene, soil fertility and tomato crop yield. J. Clean. Prod., 255, 120318.spa
dc.relation.referencesZhang, D., G. Pan, G. Wu, G.W. Kibue, L, Li, X. Zhang y X. Liu. 2016. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol. Chemosphere. https://doi.org/10.1016/j.chemosphere.2015.04.088spa
dc.relation.referencesZhang, M., L. Zhang, M. Riaz, H. Xia y C. Jiang. 2021. Biochar amendment improved fruit quality and soil properties and microbial communities at different depths in citrus production. Journal of Cleaner Production, 292, 126062.spa
dc.relation.referencesZhang, M., R. Muhammad, L. Zhang, H. Xia, M. Cong y C. Jiang. 2019. Investigating the effect of biochar and fertilizer on the composition and function of bacteria in red soil. Applied Soil Ecology, 139, 107-116.spa
dc.relation.referencesZhang, P., F. Yang, H. Zhang, L. Liu, X. Liu, J. Chen, y C. Li. 2020a. Beneficial effects of biochar-based organic fertilizer on nitrogen assimilation, antioxidant capacities, and photosynthesis of sugar beet (Beta vulgaris L.) under Saline-Alkaline Stress. Agronomy, 10(10), 1562.spa
dc.relation.referencesZhang, Q., W. Zhou, G. Liang, X. Wang, J. Sun y P. He. 2015. Effects of different organic manures on the biochemical and microbial characteristics of albic paddy soil in a short-term experiment. PLoS One 10 (4), e0124096. https://doi.org/10.1371/journal. pone.0124096.spa
dc.relation.referencesZhang, Q., Y. Song, Z. Wu, X. Yan, A. Gunina, Y. Kuzyakov y Z. Xiong. 2020b. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation. Journal of Cleaner Production, 242, 118435.spa
dc.relation.referencesZhang, Y., X. Wang, B. Liu, Q. Liu, H. Zheng, X. You y F. Li. 2020. Comparative study of individual and Co-Application of biochar and wood vinegar on blueberry fruit yield and nutritional quality. Chemosphere, 246, 125699.spa
dc.relation.referencesZheng, W., B. Luo y X. Hu. 2020. The determinants of farmers’ fertilizers and pesticides use behavior in China: An explanation based on label effect. Journal of Cleaner Production, 272, 123054.spa
dc.relation.referencesZhou, G., X. Zhou, T. Zhang, Z. Du, Y. He, X. Wang y C. Xu. 2017. Biochar increased soil respiration in temperate forests but had no effects in subtropical forests. Forest Ecology and Management, 405, 339-349.spa
dc.relation.referencesZhu, L., H. Yang, Y. Zhao, K. Kang, Y. Liu, P. He y Z. Wei. 2019. Biochar combined with montmorillonite amendments increase bioavailable organic nitrogen and reduce nitrogen loss during composting. Bioresour. Technol. 294, 122224.spa
dc.relation.referencesZuluaga-Domínguez, C.M., A. Nieto-Veloza y M. Quicazán-de-Cuenca. 2017. Classification of Colombian honeys by electronic nose and physical-chemical parameters, using neural networks and genetic algorithms. Journal of Apicultural Research, 57(1), 145-152.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocuriCafé arábicaspa
dc.subject.agrovocuriarabica coffeeeng
dc.subject.agrovocuriPirólisisspa
dc.subject.agrovocuripyrolysiseng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónspa
dc.subject.proposalEnmienda del suelospa
dc.subject.proposalNutrición mineralspa
dc.subject.proposalRendimiento del cultivospa
dc.subject.proposalCalidad en tazaspa
dc.subject.proposalSoil amendmenteng
dc.subject.proposalMineral nutritioneng
dc.subject.proposalCrop yieldeng
dc.subject.proposalCup qualityeng
dc.titleRendimiento y estado nutricional del café (Coffea arabica L.) en respuesta a aplicación de biocarbónspa
dc.title.translatedYield and nutritional status of coffee (Coffea arabica L.) in response to biochar applicationeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameGobernación del Tolimaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1106776911.2022.pdf
Tamaño:
4.61 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: