Identificación de biomarcadores predictivos de respuesta a la quimioterapia neoadyuvante en pacientes con cáncer de mama invasivo
| dc.contributor.advisor | Combita Rojas, Alba Lucía | spa |
| dc.contributor.advisor | López-Kleine, Liliana | spa |
| dc.contributor.author | Guevara Nieto, Hedda Michelle | spa |
| dc.contributor.researchgroup | Grupo de Investigación en Biología del cáncer – Instituto Nacional de Cancerología | spa |
| dc.contributor.researchgroup | Grupo de Investigación traslacional en oncología – Instituto Nacional de Cancerología | spa |
| dc.contributor.researchgroup | Grupo de Investigación en Bioinformática y Biología de Sistemas | spa |
| dc.date.accessioned | 2025-10-22T23:09:14Z | |
| dc.date.available | 2025-10-22T23:09:14Z | |
| dc.date.issued | 2025-04-21 | |
| dc.description | ilustraciones, diagramas, fotografías | spa |
| dc.description.abstract | Esta tesis doctoral investiga los mecanismos moleculares de resistencia a la quimioterapia neoadyuvante (QNA) en mujeres colombianas con cáncer de mama en estadios II y III, mediante tres enfoques complementarios. El primer enfoque analizó muestras emparejadas pre y post-tratamiento de pacientes no respondedores mediante secuenciación de ARN. Se identificaron genes diferencialmente expresados clave como FOS y NR4A1 en todos los subtipos moleculares (Luminal A, Luminal B/HER2+, Luminal B/HER2- y Triple Negativo). El análisis reveló que la QNA modula vías moleculares asociadas con la resistencia, incluyendo la respuesta inmunológica, señalización celular, biosíntesis de estrógenos y organización de la matriz extracelular. Se observó además un aumento en la infiltración de células inmunitarias específicas en el microambiente tumoral post-tratamiento. El segundo enfoque comparó muestras pre-tratamiento entre respondedores y no respondedores, identificando genes como APOD, CCL19, GPR132, FGF10 y HBB. Destacó APOD como biomarcador potencial con efecto protector en pacientes Luminal B/HER2-. Las vías inmunológicas aparecieron enriquecidas en no respondedores, sugiriendo su papel crítico en los resultados del tratamiento. El tercer enfoque examinó la ascendencia genética, encontrando que, aunque globalmente no hubo asociación significativa con la respuesta, existieron variaciones específicas en las proporciones de ascendencia africana e indígena americana en subtipos particulares. Se validaron FGF10, WT1 y HLF como biomarcadores pronósticos. La investigación enfatiza la importancia de integrar análisis transcriptómico, dinámica del microambiente tumoral y ascendencia genética para desarrollar estrategias terapéuticas personalizadas que mejoren los resultados clínicos en poblaciones diversas. (Texto tomado de la fuente). | spa |
| dc.description.abstract | This doctoral thesis investigates the molecular mechanisms of resistance to neoadjuvant chemotherapy (NAC) in Colombian women with stage II and III breast cancer through three complementary approaches. The first approach analyzed paired pre- and post-treatment samples from non-responder patients using RNA sequencing. Key differentially expressed genes such as FOS and NR4A1 were identified across all molecular subtypes (Luminal A, Luminal B/HER2+, Luminal B/HER2-, and Triple Negative). The analysis revealed that NAC modulates molecular pathways associated with resistance, including immune response, cell signaling, estrogen biosynthesis, and extracellular matrix organization. An increase in specific immune cell infiltration in the tumor microenvironment was also observed post-treatment. The second approach compared pre-treatment samples between responders and non-responders, identifying genes such as APOD, CCL19, GPR132, FGF10, and HBB. APOD stood out as a potential biomarker with a protective effect in Luminal B/HER2- patients. Immune pathways appeared enriched in non-responders, suggesting their critical role in treatment outcomes. The third approach examined genetic ancestry, finding that while there was no significant global association with response, specific variations existed in African and Native American ancestry proportions in particular subtypes. FGF10, WT1, and HLF were validated as prognostic biomarkers. The research emphasizes the importance of integrating transcriptomic analysis, tumor microenvironment dynamics, and genetic ancestry to develop personalized therapeutic strategies that improve clinical outcomes in diverse populations. | eng |
| dc.description.degreelevel | Doctorado | spa |
| dc.description.degreename | Doctor en Oncología | spa |
| dc.description.notes | Texto en inglés | spa |
| dc.description.researcharea | Mecanismos moleculares y celulares del cáncer | spa |
| dc.format.extent | xvii, 135 páginas | spa |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89055 | |
| dc.language.iso | eng | |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Departamento de Patología | spa |
| dc.publisher.faculty | Facultad de Medicina | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Medicina - Doctorado en Oncología | spa |
| dc.relation.indexed | Bireme | spa |
| dc.relation.references | Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024 May 4;74(3):229–63 | |
| dc.relation.references | Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature [Internet]. 2000 Aug 17;406(6797):747–52. Available from: https://www.nature.com/articles/35021093 | |
| dc.relation.references | Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A [Internet]. 2001;98(19):10869–74. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11553815%5Cnhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC58566/pdf/pq010869.pdf | |
| dc.relation.references | Rubio IT, Sobrido C. Neoadjuvant approach in patients with early breast cancer: patient assessment, staging, and planning. Breast. 2022 Mar 1;62:S17–24. | |
| dc.relation.references | Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. The Lancet. 2014;384(9938):164–72. | |
| dc.relation.references | Von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. Journal of Clinical Oncology. 2012;30(15):1796–804. | |
| dc.relation.references | Helal C, Djerroudi L, Ramtohul T, Laas E, Vincent-Salomon A, Jin M, et al. Clinico-pathological factors predicting pathological response in early triple-negative breast cancer. NPJ Breast Cancer. 2025 Dec 1;11(1). | |
| dc.relation.references | Guo L, Kong D, Liu J, Zhan L, Luo L, Zheng W, et al. Breast cancer heterogeneity and its implication in personalized precision therapy. Vol. 12, Experimental Hematology and Oncology. BioMed Central Ltd; 2023. | |
| dc.relation.references | Tarantino P, Ajari O, Graham N, Vincuilla J, Parker T, Hughes ME, et al. Evolution of HER2 expression between pre-treatment biopsy and residual disease after neoadjuvant therapy for breast cancer. Eur J Cancer. 2024 Apr 1;201. | |
| dc.relation.references | Hu X, Chen W, Li F, Ren P, Wu H, Zhang C, et al. Expression changes of ER, PR, HER2, and Ki-67 in primary and metastatic breast cancer and its clinical significance. Front Oncol. 2023;13. | |
| dc.relation.references | Peng L, Zhang Z, Zhao D, Zhao J, Mao F, Sun Q. Discordance in ER, PR, HER2, and Ki-67 Expression Between Primary and Recurrent/Metastatic Lesions in Patients with Primary Early Stage Breast Cancer and the Clinical Significance: Retrospective Analysis of 75 Cases. Pathology and Oncology Research. 2021 Apr 9;27 | |
| dc.relation.references | Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Vol. 15, Nature Reviews Clinical Oncology. Nature Publishing Group; 2018. p. 81–94. | |
| dc.relation.references | Polyak K. Heterogeneity in breast cancer. Vol. 121, Journal of Clinical Investigation. 2011. p. 3786–8. | |
| dc.relation.references | Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Vol. 2018, Stem Cells International. Hindawi Limited; 2018. | |
| dc.relation.references | Bhat GR, Sethi I, Sadida HQ, Rah B, Mir R, Algehainy N, et al. Cancer cell plasticity: from cellular, molecular, and genetic mechanisms to tumor heterogeneity and drug resistance. Vol. 43, Cancer and Metastasis Reviews. Springer; 2024. p. 197–228. | |
| dc.relation.references | Saha Detroja T, Detroja R, Mukherjee S, Samson AO. Identifying Hub Genes Associated with Neoadjuvant Chemotherapy Resistance in Breast Cancer and Potential Drug Repurposing for the Development of Precision Medicine. Int J Mol Sci. 2022 Oct 1;23(20). | |
| dc.relation.references | Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 2008 Aug 1;68(15):6084–91. | |
| dc.relation.references | Tan Y, Qin S, Zhang Z, Liu Y, Zhou L, Li B, et al. Unraveling the underlying mechanisms of cancer stem cells in therapeutic resistance for optimizing treatment strategies. Vol. 4, MedComm - Oncology. John Wiley and Sons Inc; 2025. | |
| dc.relation.references | Prasetyanti PR, Medema JP. Intra-tumor heterogeneity from a cancer stem cell perspective. Vol. 16, Molecular Cancer. BioMed Central Ltd.; 2017 | |
| dc.relation.references | Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Vol. 19, Nature Medicine. 2013. p. 1423–37. | |
| dc.relation.references | XIE W, HUANG W, CAI S, CHEN H, FU W, CHEN Z, et al. NF-κB/IκBα signaling pathways are essential for resistance to heat stress-induced ROS production in pulmonary microvascular endothelial cells. Mol Med Rep. 2021 Nov 1;24(5). | |
| dc.relation.references | Shornale Akter M, Uddin MH, Atikur Rahman S, Hossain MA, Ashik MAR, Zaman NN, et al. Transcriptomic analysis revealed potential regulatory biomarkers and repurposable drugs for breast cancer treatment. Cancer Rep. 2024 May 1;7(5). | |
| dc.relation.references | Mueller SH, Lai AG, Valkovskaya M, Michailidou K, Bolla MK, Wang Q, et al. Aggregation tests identify new gene associations with breast cancer in populations with diverse ancestry. Genome Med. 2023 Dec 1;15(1). | |
| dc.relation.references | Rojas W, Parra MV, Campo O, Caro MA, Lopera JG, Arias W, et al. Genetic make up and structure of Colombian populations by means of uniparental and biparental DNA markers. Am J Phys Anthropol. 2010 Sep;143(1):13–20. | |
| dc.relation.references | Huo D, Hu H, Rhie SK, Gamazon ER, Cherniack AD, Liu J, et al. Comparison of Breast Cancer Molecular Features and Survival by African and European Ancestry in The Cancer Genome Atlas. JAMA Oncol. 2017 Dec 1;3(12):1654–62. | |
| dc.relation.references | Romero-Cordoba SL, Salido-Guadarrama I, Rebollar-Vega R, Bautista-Piña V, Dominguez-Reyes C, Tenorio-Torres A, et al. Comprehensive omic characterization of breast cancer in Mexican-Hispanic women. Nat Commun. 2021 Dec 1;12(1). | |
| dc.relation.references | Rey-Vargas L, Bejarano-Rivera LM, Mejia-Henao JC, Sua LF, Bastidas-Andrade JF, Ossa CA, et al. Association of genetic ancestry with HER2, GRB7 AND estrogen receptor expression among Colombian women with breast cancer. Front Oncol. 2022 Dec 22;12. | |
| dc.relation.references | Serrano-Gómez SJ, Fejerman L, Zabaleta J. Breast Cancer in Latinas: A focus on intrinsic subtypes distribution. Vol. 27, Cancer Epidemiology Biomarkers and Prevention. American Association for Cancer Research Inc.; 2018. p. 3–10. | |
| dc.relation.references | Serrano-Gómez SJ, Sanabria-Salas MC, Garay J, Baddoo MC, Hernández-Suarez G, Mejía JC, et al. Ancestry as a potential modifier of gene expression in breast tumors from Colombian women. PLoS One. 2017 Aug 1;12(8). | |
| dc.relation.references | Instituto Nacional de Cancerologia. Anuario estadístico 2023. 2025 Jan. | |
| dc.relation.references | Van Nes JGH, Putter H, Julien JP, Tubiana-Hulin M, Van De Vijver M, Bogaerts J, et al. Preoperative chemotherapy is safe in early breast cancer, even after 10 years of follow-up; Clinical and translational results from the EORTC trial 10902. Breast Cancer Res Treat. 2009 May;115(1):101–13. | |
| dc.relation.references | van der Hage JA, van de Velde CJH, Julien JP, Tubiana-Hulin M, Vandervelden C, Duchateau L. Preoperative Chemotherapy in Primary Operable Breast Cancer: Results From the European Organization for Research and Treatment of Cancer Trial 10902. Journal of Clinical Oncology [Internet]. 2001 Nov 15;19(22):4224–37. Available from: https://ascopubs.org/doi/10.1200/JCO.2001.19.22.4224 | |
| dc.relation.references | Colleoni M, Viale G, Zahrieh D, Pruneri G, Gentilini O, Veronesi P, et al. Chemotherapy Is More Effective in Patients with Breast Cancer Not Expressing Steroid Hormone Receptors : A Study of Preoperative Treatment. 2004;10:6622–8. | |
| dc.relation.references | Guarneri V, Broglio K, Kau SW, Cristofanilli M, Buzdar AU, Valero V, et al. Prognostic Value of Pathologic Complete Response After Primary Chemotherapy in Relation to Hormone Receptor Status and Other Factors. Journal of Clinical Oncology [Internet]. 2006;24(7):1037–44. Available from: http://ascopubs.org/doi/10.1200/JCO.2005.02.6914 | |
| dc.relation.references | Von Minckwitz G, Loibl S, Maisch A, Untch M. Lessons from the neoadjuvant setting on how best to choose adjuvant therapies. Breast. 2011;20(SUPPL. 3). | |
| dc.relation.references | Gündoǧdu A, Uluşahin M, Çekiç AB, Kazaz SN, Güner A. Pathological complete response and associated factors in breast cancer after neoadjuvant chemotherapy: A retrospective study. Turk J Surg. 2024 Mar 1;40(1):73–81 | |
| dc.relation.references | Pennisi A, Kieber-Emmons T, Makhoul I, Hutchins L. Relevance of pathological complete response after neoadjuvant therapy for breast cancer. Breast Cancer (Auckl). 2016 Jul 25;10:103–6. | |
| dc.relation.references | Spring LM, Fell G, Arfe A, Sharma C, Greenup R, Reynolds KL, et al. Pathologic Complete Response after Neoadjuvant Chemotherapy and Impact on Breast Cancer Recurrence and Survival: A Comprehensive Meta-analysis. Clinical Cancer Research. 2020 Jun 15;26(12):2838–48. | |
| dc.relation.references | Goto W, Kashiwagi S, Takada K, Asano Y, Takahashi K, Fujita H, et al. Significance of intrinsic breast cancer subtypes on the long-term prognosis after neoadjuvant chemotherapy. J Transl Med. 2018 Nov 9;16(1). | |
| dc.relation.references | Díaz-Casas SE, Castilla-Tarra JA, Pena-Torres E, Orozco-Ospino M, Mendoza-Diaz S, Nuñez-Lemus M, et al. Pathological Response to Neoadjuvant Chemotherapy and the Molecular Classification of Locally Advanced Breast Cancer in a Latin American Cohort. Oncologist. 2019 Dec 1;24(12):e1360–70. | |
| dc.relation.references | Schmitt MW, Loeb LA, Salk JJ. The influence of subclonal resistance mutations on targeted cancer therapy. Vol. 13, Nature Reviews Clinical Oncology. Nature Publishing Group; 2016. p. 335–47. | |
| dc.relation.references | Calcagno AM, Salcido CD, Gillet JP, Wu CP, Fostel JM, Mumau MD, et al. Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics. J Natl Cancer Inst. 2010 Nov 3;102(21):1637–52. | |
| dc.relation.references | Balko JM, Cook RS, Vaught DB, Kuba MG, Miller TW, Bhola NE, et al. Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance. Nat Med. 2012 Jul;18(7):1052–9. | |
| dc.relation.references | Hoogstraat M, Lips EH, Mayayo-Peralta I, Mulder L, Kristel P, van der Heijden I, et al. Comprehensive characterization of pre- and post-treatment samples of breast cancer reveal potential mechanisms of chemotherapy resistance. NPJ Breast Cancer. 2022 Dec 1;8(1). | |
| dc.relation.references | Fejerman L, Romieu I, John EM, Lazcano-Ponce E, Huntsman S, Beckman KB, et al. European ancestry is positively associated with breast cancer risk in Mexican women. Cancer Epidemiology Biomarkers and Prevention. 2010 Apr;19(4):1074–82. | |
| dc.relation.references | Fejerman L, Hu D, Huntsman S, John EM, Stern MC, Haiman CA, et al. Genetic ancestry and risk of mortality among U.S. latinas with breast cancer. Cancer Res. 2013 Dec 15;73(24):7243–53. | |
| dc.relation.references | Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209–49. | |
| dc.relation.references | Filho AM, Laversanne M, Ferlay J, Colombet M, Piñeros M, Znaor A, et al. The GLOBOCAN 2022 cancer estimates: Data sources, methods, and a snapshot of the cancer burden worldwide. Int J Cancer [Internet]. 2024 Dec 17; Available from: http://www.ncbi.nlm.nih.gov/pubmed/39688499 | |
| dc.relation.references | Warner ET, Tamimi RM, Hughes ME, Ottesen RA, Wong YN, Edge SB, et al. Racial and ethnic differences in breast cancer survival: Mediating effect of tumor characteristics and sociodemographic and treatment factors. Journal of Clinical Oncology. 2015 Jul 10;33(20):2254–61 | |
| dc.relation.references | Ward E, Jemal A, Cokkinides V, Singh GK, Cardinez C, Ghafoor A, et al. Cancer Disparities by Race/Ethnicity and Socioeconomic Status. CA Cancer J Clin. 2004 Mar 1;54(2):78–93. | |
| dc.relation.references | Wheeler SB, Reeder-Hayes KE, Carey LA. Disparities in Breast Cancer Treatment and Outcomes: Biological, Social, and Health System Determinants and Opportunities for Research. Oncologist. 2013 Sep 1;18(9):986–93. | |
| dc.relation.references | Hirko KA, Rocque G, Reasor E, Taye A, Daly A, Cutress RI, et al. The impact of race and ethnicity in breast cancer—disparities and implications for precision oncology. BMC Med. 2022 Dec 1;20(1). | |
| dc.relation.references | Cooper RM, Chao C, Mukherjee A, Zhuang Z, Haque R. Influence of Comorbidity Burden, Socioeconomic Status, and Race and Ethnicity on Survival Disparities in Patients With Cancer. Cancer Control. 2023 Jan 1;30. | |
| dc.relation.references | Bernard PS, Parker JS, Mullins M, Cheung MCU, Leung S, Voduc D, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. Journal of Clinical Oncology. 2009 Mar 10;27(8):1160–7. | |
| dc.relation.references | The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumors. Nature. 2012;490(7418):61–70. | |
| dc.relation.references | Derouane F, van Marcke C, Berlière M, Gerday A, Fellah L, Leconte I, et al. Predictive Biomarkers of Response to Neoadjuvant Chemotherapy in Breast Cancer: Current and Future Perspectives for Precision Medicine. Vol. 14, Cancers. MDPI; 2022. | |
| dc.relation.references | Prat A, Perou CM. Deconstructing the molecular portraits of breast cancer. Vol. 5, Molecular Oncology. John Wiley and Sons Ltd; 2011. p. 5–23. | |
| dc.relation.references | Marra A, Trapani D, Viale G, Criscitiello C, Curigliano G. Practical classification of triple-negative breast cancer: intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. Vol. 6, npj Breast Cancer. Nature Research; 2020. | |
| dc.relation.references | Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. Journal of Clinical Investigation. 2011 Jul 1;121(7):2750–67. | |
| dc.relation.references | Lehmann BD, Jovanović B, Chen X, Estrada M V., Johnson KN, Shyr Y, et al. Refinement of triple-negative breast cancer molecular subtypes: Implications for neoadjuvant chemotherapy selection. PLoS One. 2016 Jun 1;11(6). | |
| dc.relation.references | So JY, Ohm J, Lipkowitz S, Yang L. Triple negative breast cancer (TNBC): Non-genetic tumor heterogeneity and immune microenvironment: Emerging treatment options. Vol. 237, Pharmacology and Therapeutics. Elsevier Inc.; 2022. | |
| dc.relation.references | Zhang W, Li E, Wang L, Lehmann BD, Chen XS. Transcriptome Meta-Analysis of Triple-Negative Breast Cancer Response to Neoadjuvant Chemotherapy. Cancers (Basel). 2023 Apr 1;15(8). | |
| dc.relation.references | Marra A, Trapani D, Viale G, Criscitiello C, Curigliano G. Practical classification of triple-negative breast cancer: intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. Vol. 6, npj Breast Cancer. Nature Research; 2020. | |
| dc.relation.references | López C, Gibert-Ramos A, Bosch R, Korzynska A, García-Rojo M, Bueno G, et al. Differences in the Immune Response of the Nonmetastatic Axillary Lymph Nodes between Triple-Negative and Luminal A Breast Cancer Surrogate Subtypes. American Journal of Pathology. 2021 Mar 1;191(3):545–54. | |
| dc.relation.references | Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012 Jun 21;486(7403):346–52 | |
| dc.relation.references | Mauri D, Pavlidis N, Ioannidis JPA. Neoadjuvant versus adjuvant systemic treatment in breast cancer: A meta-analysis. J Natl Cancer Inst. 2005;97(3):188–94. | |
| dc.relation.references | Schott AF, Hayes DF. Defining the benefits of neoadjuvant chemotherapy for breast cancer. Vol. 30, Journal of Clinical Oncology. 2012. p. 1747–9. | |
| dc.relation.references | Cirier J, Body G, Jourdan ML, Bedouet L, Fleurier C, Pilloy J, et al. Impact of pathological complete response to neoadjuvant chemotherapy in invasive breast cancer according to molecular subtype. Gynecologie Obstetrique Fertilite et Senologie. 2017;45(10):535–44. | |
| dc.relation.references | European Medicines Agency. The role of the pathological Complete Response as an endpoint in neoadjuvant breast cancer studies. 2014;44(March):16–8. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2014/04/WC500165781.pdf | |
| dc.relation.references | Wang-Lopez Q, Chalabi N, Abrial C, Radosevic-Robin N, Durando X, Mouret-Reynier MA, et al. Can pathologic complete response (pCR) be used as a surrogate marker of survival after neoadjuvant therapy for breast cancer? Vol. 95, Critical Reviews in Oncology/Hematology. Elsevier Ireland Ltd; 2015. p. 88–104. | |
| dc.relation.references | Cortazar P, Geyer CE. Pathological Complete Response in Neoadjuvant Treatment of Breast Cancer. Ann Surg Oncol. 2015;22(5):1441–6. | |
| dc.relation.references | Caparica R, Lambertini M, Pondé N, Fumagalli D, de Azambuja E, Piccart M. Post-neoadjuvant treatment and the management of residual disease in breast cancer: state of the art and perspectives. Ther Adv Med Oncol. 2019;11:1758835919827714 | |
| dc.relation.references | Viale G, Fusco N. Pathology after neoadjuvant treatment - How to assess residual disease. Breast. 2022 Mar;62 Suppl 1(Suppl 1):S25–8. | |
| dc.relation.references | Hasim MS, Nessim C, Villeneuve PJ, Vanderhyden BC, Dimitroulakos J. Activating Transcription Factor 3 as a Novel Regulator of Chemotherapy Response in Breast Cancer. Transl Oncol. 2018 Aug 1;11(4):988–98. | |
| dc.relation.references | Perelmuter VM, Tashireva LA, Savelieva OE, Denisov E V, Kaigorodova E V, Zavyalova M V, et al. Mechanisms behind prometastatic changes induced by neoadjuvant chemotherapy in the breast cancer microenvironment. Breast Cancer (Dove Med Press). 2019;11:209–19. | |
| dc.relation.references | Kinnel B, Singh SK, Oprea-Ilies G, Singh R. Targeted Therapy and Mechanisms of Drug Resistance in Breast Cancer. Cancers (Basel). 2023 Feb 19;15(4). | |
| dc.relation.references | Wein L, Loi S. Mechanisms of resistance of chemotherapy in early-stage triple negative breast cancer (TNBC). Breast. 2017 Aug 1;34:S27–30. | |
| dc.relation.references | Nedeljković M, Damjanović A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge. Cells. 2019 Sep 1;8(9). | |
| dc.relation.references | Administration FDA. Guidance for industry: Pathological Complete Response in Neoadjuvant Treatment of High-Risk Early-Stage Breast Cancer: Use as an Endpoint To Support Accelerated Approval. [Internet]. [cited 2022 Nov 12]. Available from: https://www.federalregister.gov/documents/2014/10/07/2014-23845/pathological-complete-response-in-neoadjuvant-treatment-of-high-risk-early-stage-breast-cancer-use | |
| dc.relation.references | Wolff AC, Berry D, Carey LA, Colleoni M, Dowsett M, Ellis M, et al. Research issues affecting preoperative systemic therapy for operable breast cancer. Vol. 26, Journal of Clinical Oncology. 2008. p. 806–13 | |
| dc.relation.references | Saha T, Lukong KE. Breast Cancer Stem-Like Cells in Drug Resistance: A Review of Mechanisms and Novel Therapeutic Strategies to Overcome Drug Resistance. Vol. 12, Frontiers in Oncology. Frontiers Media S.A.; 2022 | |
| dc.relation.references | Lüönd F, Tiede S, Christofori G. Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. Vol. 125, British Journal of Cancer. Springer Nature; 2021. p. 164–75 | |
| dc.relation.references | Turner KM, Yeo SK, Holm TM, Shaughnessy E, Guan JL. Heterogeneity within molecular subtypes of breast cancer. Vol. 321, American Journal of Physiology - Cell Physiology. American Physiological Society; 2021. p. C343–54 | |
| dc.relation.references | Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Vol. 21, International Journal of Molecular Sciences. MDPI AG; 2020 | |
| dc.relation.references | Modi A, Roy D, Sharma S, Vishnoi JR, Pareek P, Elhence P, et al. ABC transporters in breast cancer: their roles in multidrug resistance and beyond. Vol. 30, Journal of Drug Targeting. Taylor and Francis Ltd.; 2022. p. 927–47 | |
| dc.relation.references | An J, Peng C, Tang H, Liu X, Peng F. New Advances in the Research of Resistance to Neoadjuvant Chemotherapy in Breast Cancer. Int J Mol Sci. 2021 Sep 6;22(17). | |
| dc.relation.references | Duffy MJ, Walsh S, McDermott EW, Crown J. Biomarkers in Breast Cancer: Where Are We and Where Are We Going? In: Advances in Clinical Chemistry. Academic Press Inc.; 2015. p. 1–23 | |
| dc.relation.references | Nicolini A, Ferrari P, Duffy MJ. Prognostic and predictive biomarkers in breast cancer: Past, present and future. Vol. 52, Seminars in Cancer Biology. Academic Press; 2018. p. 56–73 | |
| dc.relation.references | Alismail H. Review: Merging from traditional to potential novel breast cancer biomarkers. Vol. 36, Journal of King Saud University - Science. Elsevier B.V.; 2024 | |
| dc.relation.references | Cardoso F, van’t Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, et al. 70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer. New England Journal of Medicine. 2016 Aug 25;375(8):717–29 | |
| dc.relation.references | Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. New England Journal of Medicine. 2018 Jul 12;379(2):111–21 | |
| dc.relation.references | Orsini A, Diquigiovanni C, Bonora E. Omics Technologies Improving Breast Cancer Research and Diagnostics. Vol. 24, International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute (MDPI); 2023 | |
| dc.relation.references | Mu H, Zhang W, Qiu Y, Tao T, Wu H, Chen Z, et al. miRNAs as potential markers for breast cancer and regulators of tumorigenesis and progression (Review). Int J Oncol [Internet]. 2021 Mar 3;58(5):16. Available from: http://www.spandidos-publications.com/10.3892/ijo.2021.5196 | |
| dc.relation.references | Yang M, Huang H, Zhang Y, Wang Y, Zhao J, Lee P, et al. Identification and validation of KIF20A for predicting prognosis and treatment outcomes in patients with breast cancer. Sci Rep. 2024 Dec 1;14(1). | |
| dc.relation.references | Liu N, Zhang GD, Bai P, Su L, Tian H, He M. Eight hub genes as potential biomarkers for breast cancer diagnosis and prognosis: A TCGA-based study. World J Clin Oncol [Internet]. 2022 Aug 24;13(8):675–88. Available from: https://www.wjgnet.com/2218-4333/full/v13/i8/675.htm | |
| dc.relation.references | Xu YH, Deng JL, Wang LP, Zhang HB, Tang L, Huang Y, et al. Identification of Candidate Genes Associated with Breast Cancer Prognosis. DNA Cell Biol. 2020 Jul 1;39(7):1205–27. | |
| dc.relation.references | Tang SSK, Gui GPH. Biomarkers in the diagnosis of primary and recurrent breast cancer. Vol. 6, Biomarkers in Medicine. 2012. p. 567–85 | |
| dc.relation.references | Buniello A, Macarthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019 Jan 8;47(D1):D1005–12 | |
| dc.relation.references | Fatumo S, Chikowore T, Choudhury A, Ayub M, Martin AR, Kuchenbaecker K. A roadmap to increase diversity in genomic studies. Vol. 28, Nature Medicine. Nature Research; 2022. p. 243–50 | |
| dc.relation.references | Roelands J, Mall R, Almeer H, Thomas R, Mohamed MG, Bedri S, et al. Ancestry-associated transcriptomic profiles of breast cancer in patients of African, Arab, and European ancestry. NPJ Breast Cancer. 2021 Dec 1;7(1). | |
| dc.relation.references | Oak N, Cherniack AD, Mashl RJ, Carrot-Zhang J, Chambwe N, Damrauer JS, et al. Ancestry-specific predisposing germline variants in cancer. Genome Med. 2020 May 29;12(1). | |
| dc.relation.references | Cuda G, Cannataro M, Quaresima B, Baudi F, Casadonte R, Faniello MC, et al. Proteomic Profiling of Inherited Breast Cancer: Identification of Molecular Targets for Early Detection, Prognosis and Treatment, and Related Bioinformatics Tools. In 2003. p. 245–57. Available from: http://link.springer.com/10.1007/978-3-540-45216-4_28 | |
| dc.relation.references | Martini R, Delpe P, Chu TR, Arora K, Lord B, Verma A, et al. African Ancestry–Associated Gene Expression Profiles in Triple-Negative Breast Cancer Underlie Altered Tumor Biology and Clinical Outcome in Women of African Descent. Cancer Discov. 2022 Nov 1;12(11):2530–51 | |
| dc.relation.references | Siddharth S, Sharma D. Racial disparity and triple-negative breast cancer in African-American women: A multifaceted affair between obesity, biology, and socioeconomic determinants. Cancers (Basel). 2018 Dec 1;10(12) | |
| dc.relation.references | Dietze EC, Sistrunk C, Miranda-Carboni G, O’Regan R, Seewaldt VL. Triple-negative breast cancer in African-American women: Disparities versus biology. Vol. 15, Nature Reviews Cancer. Nature Publishing Group; 2015. p. 248–54. | |
| dc.relation.references | Slattery ML, John EM, Torres-Mejia G, Lundgreen A, Herrick JS, Baumgartner KB, et al. Genetic variation in genes involved in hormones, inflammation and energetic factors and breast cancer risk in an admixed population. Carcinogenesis. 2012 Aug;33(8):1512–21. | |
| dc.relation.references | Marker KM, Zavala VA, Vidaurre T, Lott PC, Vásquez JN, Casavilca-Zambrano S, et al. Human epidermal growth factor receptor 2–positive breast cancer is associated with Indigenous American ancestry in Latin American women. Cancer Res. 2020 May 1;80(9):1893–901. | |
| dc.relation.references | Serrano-Gomez SJ, Sanabria-Salas MC, Fejerman L. Breast Cancer Health Disparities in Hispanics/Latinas. Vol. 12, Current Breast Cancer Reports. Springer; 2020. p. 175–84. | |
| dc.relation.references | Luo M, Yang J, Schäffer AA, Chen C, Liu Y, Chen Y, et al. Ancestral Differences in Anticancer Treatment Efficacy and Their Underlying Genomic and Molecular Alterations. Cancer Discov. 2025 Mar 3;15(3):511–29. | |
| dc.relation.references | Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007 Sep;81(3):559–75. | |
| dc.relation.references | Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009 Sep;19(9):1655–64. | |
| dc.relation.references | Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000 Jun;155(2):945–59 | |
| dc.relation.references | Wen J, Shao Y, Tatevossian R, Li Y, Ellison DW, Wu G, et al. Abstract 5352: Optimization of library and enrichment procedures for RNASeq using RNA from formalin fixed paraffin embedded tissue. Cancer Res [Internet]. 2017 Jul 1;77(13_Supplement):5352. Available from: https://doi.org/10.1158/1538-7445.AM2017-5352 | |
| dc.relation.references | Heberle H, Meirelles VG, da Silva FR, Telles GP, Minghim R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. 2015 May 22;16(1). | |
| dc.relation.references | Chakravarty D, Gao J, Phillips S, Kundra R, Zhang H, Wang J, et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis Oncol [Internet]. 2017 Nov;(1):1–16. Available from: https://ascopubs.org/doi/10.1200/PO.17.00011 | |
| dc.relation.references | Xie Z, Bailey A, Kuleshov M V., Clarke DJB, Evangelista JE, Jenkins SL, et al. Gene Set Knowledge Discovery with Enrichr. Curr Protoc. 2021 Mar 1;1(3). | |
| dc.relation.references | Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017 Nov 1;77(21):e108–10. | |
| dc.relation.references | Kassambara A, Kosinski M, Biecek P, Fabian S. https://cran.r-project.org/web//packages//survminer/survminer.pdf. 2022. Survminer: Drawing Survival Curves Using “ggplot2.” | |
| dc.relation.references | Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2010 Jan;38(Database issue):D355-60. | |
| dc.relation.references | Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000 May;25(1):25–9. | |
| dc.relation.references | Osborne JD, Flatow J, Holko M, Lin SM, Kibbe WA, Zhu LJ, et al. Annotating the human genome with Disease Ontology. BMC Genomics. 2009 Jul 7;10 Suppl 1(Suppl 1):S6. | |
| dc.relation.references | Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012 May;16(5):284–7. | |
| dc.relation.references | Jiang P, Zhang Y, Ru B, Yang Y, Vu T, Paul R, et al. Systematic investigation of cytokine signaling activity at the tissue and single-cell levels. Nat Methods. 2021 Oct 1;18(10):1181–91. | |
| dc.relation.references | Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021 Jan 8;49(D1):D605–12. | |
| dc.relation.references | Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A software Environment for integrated models of biomolecular interaction networks. Genome Res. 2003 Nov;13(11):2498–504. | |
| dc.relation.references | Aran D, Hu Z, Butte AJ. xCell: Digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017 Nov 15;18(1). | |
| dc.relation.references | Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019 Jul 1;37(7):773–82. | |
| dc.relation.references | Geeleher P, Cox N, Stephanie Huang R. PRRophetic: An r package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One. 2014 Sep 17;9(9). | |
| dc.relation.references | Baskin AS, Huppert LA, Kelil T, Singer L, Mukhtar RA. The neoadjuvant approach to treatment of breast cancer: Multidisciplinary management to improve outcomes. Surgical Oncology Insight. 2024 Jun;1(2):100059. | |
| dc.relation.references | Globus O, Greenhouse I, Sella T, Gal-Yam EN. The neoadjuvant systemic treatment of early breast cancer: a narrative review. Annals of Breast Surgery. 2023 Dec;7:39–39. | |
| dc.relation.references | Schmitt MW, Loeb LA, Salk JJ. The influence of subclonal resistance mutations on targeted cancer therapy. Nat Rev Clin Oncol. 2016 Jun;13(6):335–47. | |
| dc.relation.references | Hasim MS, Nessim C, Villeneuve PJ, Vanderhyden BC, Dimitroulakos J. Activating Transcription Factor 3 as a Novel Regulator of Chemotherapy Response in Breast Cancer. Transl Oncol. 2018 Aug;11(4):988–98. | |
| dc.relation.references | Imyanitov EN, Yanus GA. Neoadjuvant therapy: Theoretical, biological and medical consideration. Vol. 7, Chinese Clinical Oncology. AME Publishing Company; 2018. | |
| dc.relation.references | Findlay JM, Castro-Giner F, Makino S, Rayner E, Kartsonaki C, Cross W, et al. Differential clonal evolution in oesophageal cancers in response to neo-adjuvant chemotherapy. Nat Commun. 2016 Apr 5;7. | |
| dc.relation.references | Andre F, Berrada N, Desmedt C. Implication of tumor microenvironment in the resistance to chemotherapy in breast cancer patients. Vol. 22, Current Opinion in Oncology. 2010. p. 547–51. | |
| dc.relation.references | Khalaf K, Hana D, Chou JTT, Singh C, Mackiewicz A, Kaczmarek M. Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance. Front Immunol. 2021;12:656364. | |
| dc.relation.references | Dzobo K, Senthebane DA, Dandara C. The Tumor Microenvironment in Tumorigenesis and Therapy Resistance Revisited. Cancers (Basel). 2023 Jan 6;15(2). | |
| dc.relation.references | Trédan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007 Oct 3;99(19):1441–54. | |
| dc.relation.references | Fejerman L, Ramirez AG, Nápoles AM, Gomez SL, Stern MC. Cancer Epidemiology in Hispanic Populations: What Have We Learned and Where Do We Need to Make Progress? Cancer Epidemiol Biomarkers Prev. 2022 May 4;31(5):932–41. | |
| dc.relation.references | Haile RW, John EM, Levine AJ, Cortessis VK, Unger JB, Gonzales M, et al. A review of cancer in U.S. Hispanic populations. Vol. 5, Cancer Prevention Research. 2012. p. 150–63. | |
| dc.relation.references | Avilés-Santa ML, Hsu L, Lam TK, Arteaga SS, Artiles L, Coady S, et al. Funding of Hispanic/Latino Health-Related Research by the National Institutes of Health: An Analysis of the Portfolio of Research Program Grants on Six Health Topic Areas. Front Public Health. 2020;8:330 | |
| dc.relation.references | Song D, Lian Y, Zhang L. The potential of activator protein 1 (AP-1) in cancer targeted therapy. Front Immunol. 2023;14:1224892. | |
| dc.relation.references | Wang J, Kuiatse I, Lee A V., Pan J, Giuliano A, Cui X. Sustained c-Jun-NH2-Kinase Activity Promotes Epithelial-Mesenchymal Transition, Invasion, and Survival of Breast Cancer Cells by Regulating Extracellular Signal-Regulated Kinase Activation. Molecular Cancer Research. 2010 Feb 17;8(2):266–77. | |
| dc.relation.references | Liu X, Bai F, Wang Y, Wang C, Chan HL, Zheng C, et al. Loss of function of GATA3 regulates FRA1 and c-FOS to activate EMT and promote mammary tumorigenesis and metastasis. Cell Death Dis. 2023 Jun 23;14(6):370. | |
| dc.relation.references | Shu Y, Lan J, Luo H, Fu H, Xiao X, Yang L. FOS‐Mediated PLCB1 Induces Radioresistance and Weakens the Antitumor Effects of CD8 + T Cells in Triple‐Negative Breast Cancer. Mol Carcinog. 2025 Jan 25;64(1):162–75. | |
| dc.relation.references | Mohan HM, Aherne CM, Rogers AC, Baird AW, Winter DC, Murphy EP. Molecular Pathways: The Role of NR4A Orphan Nuclear Receptors in Cancer. Clinical Cancer Research [Internet]. 2012 Jun 15;18(12):3223–8. Available from: https://aacrjournals.org/clincancerres/article/18/12/3223/178731/Molecular-Pathways-The-Role-of-NR4A-Orphan-Nuclear | |
| dc.relation.references | Wu H, Bi J, Peng Y, Huo L, Yu X, Yang Z, et al. Nuclear receptor NR4A1 is a tumor suppressor down-regulated in triple-negative breast cancer. Oncotarget. 2017 Aug 15;8(33):54364–77. | |
| dc.relation.references | Yousefi H, Fong J, Alahari SK. NR4A Family Genes: A Review of Comprehensive Prognostic and Gene Expression Profile Analysis in Breast Cancer. Front Oncol. 2022;12:777824. | |
| dc.relation.references | Hedrick E, Lee SO, Doddapaneni R, Singh M, Safe S. Nuclear receptor 4A1 as a drug target for breast cancer chemotherapy. Endocr Relat Cancer. 2015 Oct;22(5):831–40. | |
| dc.relation.references | Guo H, Golczer G, Wittner BS, Langenbucher A, Zachariah M, Dubash TD, et al. NR4A1 regulates expression of immediate early genes, suppressing replication stress in cancer. Mol Cell. 2021 Oct 7;81(19):4041-4058.e15. | |
| dc.relation.references | Kim YC, Kim CY, Oh JH, Kim MH. NR4A1 Regulates Tamoxifen Resistance by Suppressing ERK Signaling in ER-Positive Breast Cancer. Cells. 2021 Jun 29;10(7). | |
| dc.relation.references | Mohankumar K, Wright G, Kumaravel S, Shrestha R, Zhang L, Abdelrahim M, et al. Bis-indole-derived NR4A1 antagonists inhibit colon tumor and splenic growth and T-cell exhaustion. Cancer Immunol Immunother. 2023 Dec;72(12):3985–99. | |
| dc.relation.references | Griffiths JI, Chen J, Cosgrove PA, O’Dea A, Sharma P, Ma C, et al. Serial single-cell genomics reveals convergent subclonal evolution of resistance as patients with early-stage breast cancer progress on endocrine plus CDK4/6 therapy. Nat Cancer. 2021 Jun 3;2(6):658–71. | |
| dc.relation.references | Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020 Jun 9;22(1):61. | |
| dc.relation.references | Dhruba SR, Sahni S, Wang B, Wu D, Rajagopal PS, Schmidt Y, et al. The expression patterns of different cell types and their interactions in the tumor microenvironment are predictive of breast cancer patient response to neoadjuvant chemotherapy. bioRxiv. 2024 Jun 14 | |
| dc.relation.references | Wang Y, Gao P, Hao Z, Chen L, Li X, Jiao Y, et al. The effect of neoadjuvant chemotherapy on the tumor immune microenvironment in gastrointestinal tumors. Front Oncol. 2022;12:1054598. | |
| dc.relation.references | Park YH, Lal S, Lee JE, Choi Y La, Wen J, Ram S, et al. Chemotherapy induces dynamic immune responses in breast cancers that impact treatment outcome. Nat Commun. 2020 Dec 1;11(1). | |
| dc.relation.references | Urueña C, Lasso P, Bernal-Estevez D, Rubio D, Salazar AJ, Olaya M, et al. The breast cancer immune microenvironment is modified by neoadjuvant chemotherapy. Sci Rep. 2022 Dec 1;12(1). | |
| dc.relation.references | Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al. Polarization of Tumor-Associated Neutrophil Phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell. 2009 Sep 8;16(3):183–94. | |
| dc.relation.references | Wu L, Awaji M, Saxena S, Varney ML, Sharma B, Singh RK. IL-17–CXC Chemokine Receptor 2 Axis Facilitates Breast Cancer Progression by Up-Regulating Neutrophil Recruitment. Am J Pathol. 2020 Jan;190(1):222–33. | |
| dc.relation.references | Fabre J, Giustiniani J, Garbar C, Antonicelli F, Merrouche Y, Bensussan A, et al. Targeting the Tumor Microenvironment: The Protumor Effects of IL-17 Related to Cancer Type. Int J Mol Sci. 2016 Aug 30;17(9):1433. | |
| dc.relation.references | Xuan QJ, Wang JX, Nanding A, Wang ZP, Liu H, Lian X, et al. Tumor-associated macrophages are correlated with tamoxifen resistance in the postmenopausal breast cancer patients. Pathology and Oncology Research. 2014;20(3):619–24. | |
| dc.relation.references | Waks AG, Stover DG, Guerriero JL, Dillon D, Barry WT, Gjini E, et al. The immune microenvironment in hormone receptor-positive breast cancer before and after preoperative chemotherapy. Clinical Cancer Research. 2019 Aug 1;25(15):4644–55. | |
| dc.relation.references | Kartal-Yandim M, Adan-Gokbulut A, Baran Y. Molecular mechanisms of drug resistance and its reversal in cancer. Crit Rev Biotechnol. 2016 Jul 3;36(4):716–26. | |
| dc.relation.references | Pan S, Li Z, He Z, Qiu J, Zhou S. Molecular mechanisms for tumour resistance to chemotherapy. Clin Exp Pharmacol Physiol. 2016 Aug 4;43(8):723–37. | |
| dc.relation.references | Cetin R, Quandt E, Kaulich M. Functional Genomics Approaches to Elucidate Vulnerabilities of Intrinsic and Acquired Chemotherapy Resistance. Cells. 2021 Jan 28;10(2):260. | |
| dc.relation.references | Khan SU, Fatima K, Aisha S, Malik F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Commun Signal. 2024 Feb 12;22(1):109. | |
| dc.relation.references | Lei ZN, Tian Q, Teng QX, Wurpel JND, Zeng L, Pan Y, et al. Understanding and targeting resistance mechanisms in cancer. MedComm (Beijing). 2023 Jun;4(3):e265. | |
| dc.relation.references | Salemme V, Centonze G, Avalle L, Natalini D, Piccolantonio A, Arina P, et al. The role of tumor microenvironment in drug resistance: emerging technologies to unravel breast cancer heterogeneity. Front Oncol. 2023;13:1170264. | |
| dc.relation.references | Zardavas D, Irrthum A, Swanton C, Piccart M. Clinical management of breast cancer heterogeneity. Vol. 12, Nature Reviews Clinical Oncology. Nature Publishing Group; 2015. p. 381–94. | |
| dc.relation.references | Suehnholz SP, Nissan MH, Zhang H, Kundra R, Nandakumar S, Lu C, et al. Quantifying the Expanding Landscape of Clinical Actionability for Patients with Cancer. Cancer Discov. 2024 Jan 1;14(1):49–65. | |
| dc.relation.references | Yan Q, Bantis LE, Stanford JL, Feng Z. Combining multiple biomarkers linearly to maximize the partial area under the ROC curve. Stat Med. 2018 Feb 20;37(4):627–42. | |
| dc.relation.references | Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Vol. 79, Cancer Research. American Association for Cancer Research Inc.; 2019. p. 4557–67. | |
| dc.relation.references | Zhao R, Xie C, Gong Y, Wei S, Yuan M, Gan J, et al. A Novel Inflammatory Response-Related Gene Signature Predicts Immune Status and Prognosis of Breast Cancer. J Oncol. 2022;2022. | |
| dc.relation.references | Zhao CF, Chen SL, Wang C, Hu D, Yang XX, Tong SY, et al. The role and regulation mechanisms of APOD in prognosis and subtyping of breast cancer. Medical Data Mining. 2023;6(3):18. | |
| dc.relation.references | Fyfe-Desmarais G, Desmarais F, Rassart É, Mounier C. Apolipoprotein D in Oxidative Stress and Inflammation. Vol. 12, Antioxidants. MDPI; 2023. | |
| dc.relation.references | Desmarais F, Bergeron KF, Ntambi JM, Rassart E, Mounier C. Fatty acid mediators and the inflammasome. In: Lipid Signaling and Metabolism. Elsevier; 2020. p. 197–221. | |
| dc.relation.references | Sanchez D, Ganfornina MD. The Lipocalin Apolipoprotein D Functional Portrait: A Systematic Review. Vol. 12, Frontiers in Physiology. Frontiers Media S.A.; 2021. | |
| dc.relation.references | Zhou Y, Luo G. Apolipoproteins, as the carrier proteins for lipids, are involved in the development of breast cancer. Vol. 22, Clinical and Translational Oncology. Springer Science and Business Media Deutschland GmbH; 2020. p. 1952–62. | |
| dc.relation.references | Li J, Liu C, Chen Y, Gao C, Wang M, Ma X, et al. Tumor Characterization in Breast Cancer Identifies Immune-Relevant Gene Signatures Associated With Prognosis. Front Genet. 2019 Nov 12;10. | |
| dc.relation.references | Wang Z, Chen H, Sun L, Wang X, Xu Y, Tian S, et al. Uncovering the potential of APOD as a biomarker in gastric cancer: A retrospective and multi-center study. Comput Struct Biotechnol J. 2024 Dec 1;23:1051–64. | |
| dc.relation.references | Huo J, Guan G, Cai J, Wu L. Integrated analysis of 1804 samples of six centers to construct and validate a robust immune-related prognostic signature associated with stromal cell abundance in tumor microenvironment for gastric cancer. World J Surg Oncol. 2022 Dec 5;20(1):4. | |
| dc.relation.references | Ruchong P, Haiping T, Xiang W. A Five-Gene Prognostic Nomogram Predicting Disease-Free Survival of Differentiated Thyroid Cancer. Dis Markers. 2021 Jun 15;2021:1–15. | |
| dc.relation.references | Zhang Y, Qin Y, Li D, Yang Y. A risk prediction model mediated by genes of APOD/APOC1/SQLE associates with prognosis in cervical cancer. BMC Womens Health. 2022 Dec 1;22(1). | |
| dc.relation.references | Jiang P, Cao Y, Gao F, Sun W, Liu J, Ma Z, et al. SNX10 and PTGDS are associated with the progression and prognosis of cervical squamous cell carcinoma. BMC Cancer. 2021 Dec 11;21(1):694. | |
| dc.relation.references | Chen P, Zuo H, Xiong H, Kolar MJ, Chu Q, Saghatelian A, et al. Gpr132 sensing of lactate mediates tumor-macrophage interplay to promote breast cancer metastasis. Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):580–5. | |
| dc.relation.references | Shabgah AG, Al-Obaidi ZMJ, Rahman HS, Abdelbasset WK, Suksatan W, Bokov DO, et al. Does CCL19 act as a double-edged sword in cancer development? Vol. 207, Clinical and Experimental Immunology. Oxford University Press; 2022. p. 164–75 | |
| dc.relation.references | Wang J, Seethala RR, Zhang Q, Gooding W, Van Waes C, Hasegawa H, et al. Autocrine and paracrine chemokine receptor 7 activation in head and neck cancer: Implications for therapy. J Natl Cancer Inst. 2008 Apr 1;100(7):502–12. | |
| dc.relation.references | Lu J, Zhao J, Feng H, Wang P, Zhang Z, Zong Y, et al. Antitumor Efficacy of CC Motif Chemokine Ligand 19 in Colorectal Cancer. Dig Dis Sci. 2014 Sep 1;59(9):2153–62. | |
| dc.relation.references | Itakura M, Terashima Y, Shingyoji M, Yokoi S, Ohira M, Kageyama H, et al. High CC chemokine receptor 7 expression improves postoperative prognosis of lung adenocarcinoma patients. Br J Cancer. 2013 Sep;109(5):1100–8. | |
| dc.relation.references | Wang L, Li C, Wang J, Yang G, Lv Y, Fu B, et al. Transformable ECM Deprivation System Effectively Suppresses Renal Cell Carcinoma by Reversing Anoikis Resistance and Increasing Chemotherapy Sensitivity. Advanced Materials. 2022 Oct 20;34(43). | |
| dc.relation.references | Xiao W, Wang S, Zhang R, Sohrabi A, Yu Q, Liu S, et al. Bioengineered scaffolds for 3D culture demonstrate extracellular matrix-mediated mechanisms of chemotherapy resistance in glioblastoma. Matrix Biology. 2020 Jan;85–86:128–46. | |
| dc.relation.references | Osuna‐gómez R, Arqueros C, Galano C, Mulet M, Zamora C, Barnadas A, et al. Effector mechanisms of cd8+ hla‐dr+ t cells in breast cancer patients who respond to neoadjuvant chemotherapy. Cancers (Basel). 2021 Dec 1;13(24). | |
| dc.relation.references | Katsuno Y, Lamouille S, Derynck R. TGF-β signaling and epithelial–mesenchymal transition in cancer progression. Curr Opin Oncol. 2013 Jan;25(1):76–84. | |
| dc.relation.references | de Kruijf EM, Dekker TJA, Hawinkels LJAC, Putter H, Smit VTHBM, Kroep JR, et al. The prognostic role of TGF-β signaling pathway in breast cancer patients. Annals of Oncology. 2013 Feb;24(2):384–90. | |
| dc.relation.references | Doi T, Ishikawa T, Okayama T, Oka K, Mizushima K, Yasuda T, et al. The JAK/STAT pathway is involved in the upregulation of PD-L1 expression in pancreatic cancer cell lines. Oncol Rep. 2017 Mar;37(3):1545–54. | |
| dc.relation.references | Zhang P, Su DM, Liang M, Fu J. Chemopreventive agents induce programmed death-1-ligand 1 (PD-L1) surface expression in breast cancer cells and promote PD-L1-mediated T cell apoptosis. Mol Immunol. 2008 Mar;45(5):1470–6. | |
| dc.relation.references | Marzec M, Zhang Q, Goradia A, Raghunath PN, Liu X, Paessler M, et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proceedings of the National Academy of Sciences. 2008 Dec 30;105(52):20852–7. | |
| dc.relation.references | LEE S, SEO S, KIM B, KIM C, LEE J, KANG J, et al. IFN-gamma regulates the expression of B7-H1 in dermal fibroblast cells. J Dermatol Sci. 2005 Nov;40(2):95–103. | |
| dc.relation.references | Zhou L, Wang Z, Yu S, Xiong Y, Fan J, Lyu Y, et al. CDDO-Me Elicits Anti–Breast Cancer Activity by Targeting LRP6 and FZD7 Receptor Complex. Journal of Pharmacology and Experimental Therapeutics. 2020 Apr;373(1):149–59. | |
| dc.relation.references | Gao C, Li L, Jin X, Song X, Li H, Xu X, et al. The Involvement of Insulin-Like Growth Factor 2 Messenger Ribonucleic Acid-Binding Protein 2 in the Regulation of the Expression of Breast Cancer-Related Genes. Breast Cancer: Targets and Therapy. 2022 Oct;Volume 14:311–22. | |
| dc.relation.references | Xie Q, Xiao Y sheng, Jia S cheng, Zheng J xuan, Du Z chao, Chen Y chun, et al. FABP7 is a potential biomarker to predict response to neoadjuvant chemotherapy for breast cancer. Cancer Cell Int. 2020 Dec 23;20(1):562. | |
| dc.relation.references | Jiménez-Franco A, Jiménez-Aguilar JM, Canela-Capdevila M, García-Pablo R, Castañé H, Martínez-Navidad C, et al. Preliminary Metabolomics Study Suggests Favorable Metabolic Changes in the Plasma of Breast Cancer Patients after Surgery and Adjuvant Treatment. Biomedicines. 2024 Sep 26;12(10):2196. | |
| dc.relation.references | Kim HY, Lee KM, Kim SH, Kwon YJ, Chun YJ, Choi HK. Comparative metabolic and lipidomic profiling of human breast cancer cells with different metastatic potentials. Oncotarget. 2016 Oct 11;7(41):67111–28. | |
| dc.relation.references | Cardoso MR, Silva AApR, Talarico MCR, Sanches PHG, Sforça ML, Rocco SA, et al. Metabolomics by NMR Combined with Machine Learning to Predict Neoadjuvant Chemotherapy Response for Breast Cancer. Cancers (Basel). 2022 Oct 15;14(20):5055. | |
| dc.relation.references | Ono M, Tsuda H, Shimizu C, Yamamoto S, Shibata T, Yamamoto H, et al. Tumor-infiltrating lymphocytes are correlated with response to neoadjuvant chemotherapy in triple-negative breast cancer. Breast Cancer Res Treat. 2012 Apr 12;132(3):793–805. | |
| dc.relation.references | Issa-Nummer Y, Darb-Esfahani S, Loibl S, Kunz G, Nekljudova V, Schrader I, et al. Prospective Validation of Immunological Infiltrate for Prediction of Response to Neoadjuvant Chemotherapy in HER2-Negative Breast Cancer – A Substudy of the Neoadjuvant GeparQuinto Trial. PLoS One. 2013 Dec 2;8(12):e79775. | |
| dc.relation.references | Solinas C, Ceppi M, Lambertini M, Scartozzi M, Buisseret L, Garaud S, et al. Tumor-infiltrating lymphocytes in patients with HER2-positive breast cancer treated with neoadjuvant chemotherapy plus trastuzumab, lapatinib or their combination: A meta-analysis of randomized controlled trials. Cancer Treat Rev. 2017 Jun;57:8–15. | |
| dc.relation.references | Arqueros C, Gallardo A, Vidal S, Osuna-Gómez R, Tibau A, Lidia Bell O, et al. Clinical Relevance of Tumour-Infiltrating Immune Cells in HER2-Negative Breast Cancer Treated with Neoadjuvant Therapy. Int J Mol Sci. 2024 Feb 23;25(5):2627. | |
| dc.relation.references | Darwin N, Qodir N, Umar M, Theodorus. Effects of Neo-Adjuvant Chemotherapy on CD8 + Serum Levels in Local Advanced Stage Breast Cancer Patients. Sriwijaya Journal of Surgery. 2020 Jun 28;3(1):45–60. | |
| dc.relation.references | Deswangga MD, Alsoph Y. CD8 + Tumoral as Predictor of Neoadjuvant Chemotherapy Response in Patients with Local Advanced Stage Breast Cancer. Sriwijaya Journal of Surgery. 2018 Dec 18;1(2):1–11. | |
| dc.relation.references | Péguillet I, Milder M, Louis D, Vincent-Salomon A, Dorval T, Piperno-Neumann S, et al. High numbers of differentiated effector CD4 T cells are found in patients with cancer and correlate with clinical response after neoadjuvant therapy of breast cancer. Cancer Res. 2014 Apr 15;74(8):2204–16. | |
| dc.relation.references | Poomakkoth N, Issa A, Abdulrahman N, Abdelaziz SG, Mraiche F. p90 ribosomal S6 kinase: a potential therapeutic target in lung cancer. J Transl Med. 2016 Dec 14;14(1):14. | |
| dc.relation.references | Fejerman L, Stern MC, John EM, Torres-Mejía G, Hines LM, Wolff RK, et al. Interaction between common breast cancer susceptibility variants, genetic ancestry, and nongenetic risk factors in Hispanic women. Cancer Epidemiology Biomarkers and Prevention. 2015 Nov 1;24(11):1731–8. | |
| dc.relation.references | Joshi S, Garlapati C, Aneja R. Epigenetic Determinants of Racial Disparity in Breast Cancer: Looking beyond Genetic Alterations. Vol. 14, Cancers. MDPI; 2022. | |
| dc.relation.references | Nguyen PBH, Ohnmacht AJ, Sharifli S, Garnett MJ, Menden MP. Inferred ancestral origin of cancer cell lines associates with differential drug response. Int J Mol Sci. 2021 Sep 1;22(18). | |
| dc.relation.references | Arora K, Suehnholz SP, Zhang H, Ostrovnaya I, Kundra R, Nandakumar S, et al. Genetic Ancestry-Based Differences in Biomarker-Based Eligibility for Precision Oncology Therapies. JAMA Oncol [Internet]. 2025 Jan 9; Available from: http://www.ncbi.nlm.nih.gov/pubmed/39786754 | |
| dc.relation.references | Arora K, Tran TN, Kemel Y, Mehine M, Liu YL, Nandakumar S, et al. Genetic Ancestry Correlates with Somatic Differences in a Real-World Clinical Cancer Sequencing Cohort. Cancer Discov. 2022 Nov 1;12(11):2552–65. | |
| dc.relation.references | Guo J, Liu X, Zeng Y, Liang T, Tang K, Guo J, et al. Comprehensive Analysis of the Effects of Genetic Ancestry and Genetic Characteristics on the Clinical Evolution of Oral Squamous Cell Carcinoma. Front Cell Dev Biol. 2021;9:678464. | |
| dc.relation.references | Lee SHR, Antillon-Klussmann F, Pei D, Yang W, Roberts KG, Li Z, et al. Association of Genetic Ancestry With the Molecular Subtypes and Prognosis of Childhood Acute Lymphoblastic Leukemia. JAMA Oncol. 2022 Mar 1;8(3):354–63. | |
| dc.relation.references | Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):1–21. | |
| dc.relation.references | Elizarraras JM, Liao Y, Shi Z, Zhu Q, Pico AR, Zhang B. WebGestalt 2024: faster gene set analysis and new support for metabolomics and multi-omics. Nucleic Acids Res. 2024 Jul 5;52(W1):W415–21. | |
| dc.relation.references | Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, et al. A pathology atlas of the human cancer transcriptome. Science (1979). 2017 Aug 18;357(6352). | |
| dc.relation.references | Serrano-Gómez SJ, Sanabria MC, Garai J, Li L, Baddoo M, Miele L, et al. Molecular Profiles of Breast Cancer in Hispanic/Latina. In: Advancing the Science of Cancer in Latinos. Springer International Publishing; 2020. p. 103–9. | |
| dc.relation.references | Bertucci F, Finetti P, Goncalves A, Birnbaum D. The therapeutic response of ER+/HER2− breast cancers differs according to the molecular Basal or Luminal subtype. NPJ Breast Cancer. 2020 Dec 1;6(1). | |
| dc.relation.references | Li H, Yang P, Wang JH, Zhang J, Ma Q, Jiang Y, et al. HLF regulates ferroptosis, development and chemoresistance of triple-negative breast cancer by activating tumor cell-macrophage crosstalk. Vol. 15, Journal of Hematology and Oncology. BioMed Central Ltd; 2022. | |
| dc.relation.references | Li H, Yang P, Wang J, Zhang J, Ma Q, Jiang Y, et al. HLF regulates ferroptosis, development and chemoresistance of triple-negative breast cancer by activating tumor cell-macrophage crosstalk. J Hematol Oncol. 2022 Jan 6;15(1):2. | |
| dc.relation.references | Han T, Chen T, Chen L, Li K, Xiang D, Dou L, et al. HLF promotes ovarian cancer progression and chemoresistance via regulating Hippo signaling pathway. Cell Death Dis. 2023 Sep 14;14(9):606. | |
| dc.relation.references | Wang BD, Ceniccola K, Hwang S, Andrawis R, Horvath A, Freedman JA, et al. Alternative splicing promotes tumour aggressiveness and drug resistance in African American prostate cancer. Nat Commun. 2017 Jun 30;8:15921. | |
| dc.relation.references | American Association for Cancer Research. CancerDisparitiesProgressReport.org. Philadelphia; 2024. | |
| dc.relation.references | Miyoshi Y, Ando A, Egawa C, Taguchi T, Tamaki Y, Tamaki H, et al. High expression of Wilms’ tumor suppressor gene predicts poor prognosis in breast cancer patients. Clin Cancer Res [Internet]. 2002 May;8(5):1167–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12006533 | |
| dc.relation.references | Qi XW, Zhang F, Yang XH, Fan LJ, Zhang Y, Liang Y, et al. High Wilms’ tumor 1 mRNA expression correlates with basal-like and ERBB2 molecular subtypes and poor prognosis of breast cancer. Oncol Rep. 2012 Oct;28(4):1231–6. | |
| dc.relation.references | Zhang Y, Yan WT, Yang ZY, Li YL, Tan XN, Jiang J, et al. The role of WT1 in breast cancer: Clinical implications, biological effects and molecular mechanism. Int J Biol Sci. 2020;16(8):1474–80. | |
| dc.relation.references | Artibani M, Sims AH, Slight J, Aitken S, Thornburn A, Muir M, et al. WT1 expression in breast cancer disrupts the epithelial/mesenchymal balance of tumour cells and correlates with the metabolic response to docetaxel. Sci Rep. 2017 Mar 27;7. | |
| dc.relation.references | Reid S, Fan R, Venton L, Weidner A, Tezak A, Roberson ML, et al. West African Genetic Ancestry and Breast Cancer Outcomes Among Black Women. JAMA Netw Open. 2024 Dec 2;7(12):e2449798. | |
| dc.relation.references | Bergamino MA, Opez-Knowles EL, Morani G, Tovey H, Kilburn L, Schuster EF, et al. HER2-enriched subtype and novel molecular subgroups drive aromatase inhibitor resistance and an increased risk of relapse in early ER+/HER2+ breast cancer. EBioMedicine [Internet]. 2022;83:104205. Available from: https://doi.org/10.1016/j. | |
| dc.relation.references | Schettini F, Prat A. Dissecting the biological heterogeneity of HER2-positive breast cancer. Vol. 59, Breast. Churchill Livingstone; 2021. p. 339–50. | |
| dc.relation.references | The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012 Oct 23;490(7418):61–70. | |
| dc.relation.references | Zhu B, Tse LA, Wang D, Koka H, Zhang T, Abubakar M, et al. Immune gene expression profiling reveals heterogeneity in luminal breast tumors. Breast Cancer Research. 2019 Dec 19;21(1). | |
| dc.relation.references | Asleh K, Riaz N, Nielsen TO. Heterogeneity of triple negative breast cancer: Current advances in subtyping and treatment implications. Journal of Experimental & Clinical Cancer Research. 2022 Sep 1;41(1):265. | |
| dc.relation.references | Haque W, Verma V, Hatch S, Suzanne Klimberg V, Brian Butler E, Teh BS. Response rates and pathologic complete response by breast cancer molecular subtype following neoadjuvant chemotherapy. Breast Cancer Res Treat. 2018 Aug 1;170(3):559–67. | |
| dc.relation.references | Houssami N, MacAskill P, Von Minckwitz G, Marinovich ML, Mamounas E. Meta-analysis of the association of breast cancer subtype and pathologic complete response to neoadjuvant chemotherapy. Eur J Cancer. 2012 Dec;48(18):3342–54. | |
| dc.relation.references | Torres D, Lorenzo Bermejo J, Garcia Mesa K, Gilbert M, Briceño I, Pohl-Zeidler S, et al. Interaction between genetic ancestry and common breast cancer susceptibility variants in Colombian women. Int J Cancer. 2019 May 1;144(9):2181–91. | |
| dc.relation.references | Telonis AG, Rodriguez DA, Spanheimer PM, Figueroa ME, Goel N. Genetic Ancestry-specific Molecular and Survival Differences in Admixed Patients with Breast Cancer. Ann Surg. 2024 May 1;279(5):866–73. | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
| dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
| dc.subject.decs | Receptor ErbB-2 | spa |
| dc.subject.decs | Receptor, ErbB-2 | eng |
| dc.subject.decs | Biomarcadores | spa |
| dc.subject.decs | Biomarkers | eng |
| dc.subject.decs | Neoplasias de la Mama | spa |
| dc.subject.decs | Breast Neoplasms | eng |
| dc.subject.proposal | Cáncer de mama invasivo | spa |
| dc.subject.proposal | Quimioterapia neoadyuvante | spa |
| dc.subject.proposal | Subtipos moleculares | spa |
| dc.subject.proposal | Respuesta patológica completa | spa |
| dc.subject.proposal | Microambiente tumoral | spa |
| dc.subject.proposal | Biomarcadores predictivos | spa |
| dc.subject.proposal | Perfiles de expresión génica | spa |
| dc.subject.proposal | Invasive breast cancer | eng |
| dc.subject.proposal | Neoadjuvant chemotherapy | eng |
| dc.subject.proposal | Molecular subtypes | eng |
| dc.subject.proposal | Pathological complete response | eng |
| dc.subject.proposal | Tumor microenvironment | eng |
| dc.subject.proposal | Predictive biomarkers | eng |
| dc.subject.proposal | Gene expression profiles | eng |
| dc.title | Identificación de biomarcadores predictivos de respuesta a la quimioterapia neoadyuvante en pacientes con cáncer de mama invasivo | spa |
| dc.title.translated | Identification of predictive biomarkers for response to neoadjuvant chemotherapy in patients with invasive breast cancer | eng |
| dc.type | Trabajo de grado - Doctorado | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TD | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| dcterms.audience.professionaldevelopment | Público general | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
| oaire.fundername | Instituto Nacional de Cancerología - Colombia | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Guevara-Nieto_TesisDONCO_10_21.pdf
- Tamaño:
- 10.11 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Oncología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

