Analysis of the forecasting performance of the threshold autoregressive model

dc.contributorNieto Sánchez, Fabio Humbertospa
dc.contributor.authorVaca González, Paola Andreaspa
dc.date.accessioned2019-07-02T23:22:09Zspa
dc.date.available2019-07-02T23:22:09Zspa
dc.date.issued2018-04-23spa
dc.description.abstractAbstract: In this investigation, we analyze the forecasting performance of the threshold autoregressive (TAR) model. To this aim, we find the Bayesian predictive distribution from this model, and then, we conduct an out-of-sample forecasting exercise, where we compare forecasts from the TAR model with those from a linear model and nonlinear smooth transition autoregressive, self-exciting threshold autoregressive and Markov-switching autoregressive models. For this empirical forecast evaluation, we: i) use the U.S. and Colombian GDP, unemployment rate, industrial production index and inflation time series, which lead us to estimate and forecast forty models; and, ii) use evaluation criteria and statistical tests that are mostly employed in literature. We also compare the in-sample properties of the estimated models. For the overall comparison, we find a satisfactory performance of the TAR model in forecasting the chosen economic time series, and a shape changing characteristic in the Bayesian predictive distributions of this model that may capture the cycles in the economic time series. This gives important signals about the forecasting ability of the TAR model in the economic field.spa
dc.description.abstractResumen: En esta investigación, se analiza la capacidad de pronóstico del modelo Autorregresivo de Umbrales (TAR). Para esta finalidad, se encuentra la distribución predictiva Bayesiana, y luego, se conduce un ejercicio de pronóstico fuera de la muestra, donde se comparan los pronósticos del modelo TAR con auqellos de un modelo lineal y de los modelos no lineales Autorregresivo de Transición Suave, Autorregresivo de Umbrales Auto-Excitado y Autorregresivo de Cambio de Régimen. Para esta evaluación de pronósticos empírica, i) se utilizan las series del PIB, el desempleo, el índice de producción industrial y la inflación de Estados Unidos y Colombia, lo cual lleva a estimar y pronosticar cuarenta modelos; y, ii) se utilizan criterios y test estadísticos los cuales on ampliamente aplicados en la literatura. De igual manera, se comparan las propiedades dentro de la muestra de los modelos estimados. Para todo el ejercicio de comparación, se encuentra un comportamiento satisfactorio del modelo TAR para pronosticar las distintas series económicas, y se encuentra una característica de cambio de forma en la distribución predictiva del modelo TAR que puede capturar los ciclos presentados en las series económicas. Esto arroja importantes indicios sobre la capacidad de pronóstico del modelo TAR en el campo económico.spa
dc.description.degreelevelMaestríaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/65786/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/64780
dc.language.isospaspa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Estadística Estadísticaspa
dc.relation.ispartofEstadísticaspa
dc.relation.referencesVaca González, Paola Andrea (2018) Analysis of the forecasting performance of the threshold autoregressive model. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc5 Ciencias naturales y matemáticas / Sciencespa
dc.subject.ddc51 Matemáticas / Mathematicsspa
dc.subject.proposalBayesian predictive distributionsspa
dc.subject.proposalForecasts comparisonspa
dc.subject.proposalThreshold autoregressive modelspa
dc.subject.proposalLinear modelspa
dc.subject.proposalNonlinear modelspa
dc.subject.proposalDistribuciones predictivas Bayesianasspa
dc.subject.proposalComparación de pronósticosspa
dc.subject.proposalModelo autorregresivo de umbralesspa
dc.subject.proposalModelo linealspa
dc.subject.proposalModelo no linealspa
dc.titleAnalysis of the forecasting performance of the threshold autoregressive modelspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013597742.2018.pdf
Tamaño:
2.64 MB
Formato:
Adobe Portable Document Format