Influencia de interacciones no covalentes en el curso de reacción entre derivados de bencidina, bisfenol A y formaldehído

dc.contributor.advisorQuevedo, Rodolfo
dc.contributor.authorMartinez Manjarres, Harold Alejandro
dc.contributor.researchgroupQuímica Macrocíclicaspa
dc.date.accessioned2021-05-05T18:34:41Z
dc.date.available2021-05-05T18:34:41Z
dc.date.issued2020-11-11
dc.descriptionilustraciones a color, diagramas, tablas
dc.description.abstractEstudios espectroscópicos y computacionales permitieron establecer que bisfenol A y o-dianisidina se asocian por puentes de hidrógeno intermoleculares formando un arreglo cíclico asimétrico. Los efectos geométricos y conformacionales inducidos por este arreglo inciden en el curso de la reacción con formaldehído e impiden la formación de compuestos macrocíclicos y de oligómeros benzoxazinicos. Cuando se hizo reaccionar bisfenol A, o-dianisidina y formaldehído empleando DMF como disolvente, se obtuvo el respectivo monómero benzoxazínico como producto mayoritario. Cuando se utilizó etanol como disolvente, la reacción siguió un curso diferente, el bisfenol A no participó y se obtuvo una N-etoximetilamina producto de la condensación tipo Mannich entre o-dianisidina, formaldehído y etanol. En este trabajo se presenta el análisis estructural de estas nuevas bases de Mannich y se propone una posible explicación para el comportamiento observado basada en la nucleofília de las aminas estudiadas. Finalmente, se estableció que las N-etoximetilaminas son intermediarios de la reacción de Mannich y frente a fenoles se comportan como agentes donores de formaldehído llevando a la formación de benzoxazinas.spa
dc.description.abstractSpectroscopic and computational studies allowed to establish the association between bisphenol A and o-dianisidine through intermolecular hydrogen bonds, forming an asymmetric cyclic arrangement. The geometric and conformational effects induced by this arrangement affect the reaction course with formaldehyde and prevent the formation of macrocyclic compounds and benzoxazine oligomers. When bisphenol A, o-dianisidine and formaldehyde were reacted using DMF as solvent, the respective benzoxazine monomer was obtained as the major product. When ethanol was used as solvent, the reaction followed a different course, bisphenol A did not participate and N-ethoxymethylamine product was obtained from a Mannich type condensation between o-dianisidine, formaldehyde and ethanol. In this work, the structural analysis of these new Mannich bases is presented and a possible explanation for the observed behavior is proposed based on the nucleophilicity of the studied amines. Finally, it was established that N-ethoxymethylamines are intermediaries of the Mannich reaction and they behave as formaldehyde donor agents with phenols leading to the formation of benzoxazines.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaSíntesis Orgánicaspa
dc.format.extent1 recurso en línea (141 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79479
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.references[1] Petri M. Pihko, Hydrogen Bonding in Organic Synthesis. Weinheim: WILEY-VCH Verlag GmbH & Co., 2009.spa
dc.relation.references[2] M. S. Seo, S. Jang, H. Jung, and H. Kim, “Hydrogen-Bonding-Assisted Ketimine Formation of Benzophenone Derivatives,” J. Org. Chem., vol. 83, no. 23, pp. 14300–14306, 2018, doi: 10.1021/acs.joc.8b01908.spa
dc.relation.references[3] B. B. Sun et al., “Stereoselective synthesis of spirocyclohexadiene-pyrazolones: Via organic base and/or hydrogen bonding assisted [3 + 3] annulation reactions,” Org. Chem. Front., vol. 6, no. 11, pp. 1842–1857, 2019, doi: 10.1039/c8qo01391h.spa
dc.relation.references[4] N. Nuñez-Dallos, C. Díaz-Oviedo, and R. Quevedo, “Hydroxy- and aminomethylation reactions in the formation of oligomers from l-tyrosine and formaldehyde in basic medium,” Tetrahedron Lett., vol. 55, no. 30, pp. 4216–4221, 2014, doi: 10.1016/j.tetlet.2014.05.048.spa
dc.relation.references[5] R. Quevedo, N. Nuñez-Dallos, K. Wurst, and Á. Duarte-Ruiz, “A structural study of the intermolecular interactions of tyramine in the solid state and in solution,” J. Mol. Struct., vol. 1029, pp. 175–179, 2012, doi: 10.1016/j.molstruc.2012.07.013.spa
dc.relation.references[6] N. Nuñez-Dallos, A. Reyes, R. Quevedo, I. Ortiz, and A. Reyes, “Hydrogen bond assisted synthesis of azacyclophanes from l-tyrosine derivatives,” Tetrahedron Lett., vol. 53, no. 5, pp. 1216–1219, 2010, doi: https://doi.org/10.1016/j.tetlet.2009.12.116.spa
dc.relation.references[7] M. M. Sprung, “A summary of the reactions of aldehydes with amines,” Chem. Rev., vol. 26, no. 3, pp. 297–338, 1940, doi: 10.1021/cr60085a001.spa
dc.relation.references[8] P. W. G. SMITH and A. R. TATCHELL, “Aromatic Amines,” Aromat. Chem., pp. 105–143, 1969, doi: 10.1016/b978-0-08-012948-8.50009-7.spa
dc.relation.references[9] K.-H. Zapp et al., “Amino acids. In Ullmann’s Encyclopedia of Industrial Chemistry,” Ullmann’s Encycl. Ind. Chem., vol. 3, pp. 1–58, 2012, doi: 10.1002/14356007.a02.spa
dc.relation.references[10] F. Brotzel, H. Mayr, and M. Baidya, “Nucleophilicities of Amines , Amino Acids and Pyridines,” Org. Biomol. Chem., vol. 8, pp. 1929–1935, 2010.spa
dc.relation.references[11] J. O. H. N. G. Riffiths, C. Chemistry, and L. Ls, “Dyes- Correct,” Ullmann’s Encycl., vol. 100 C, pp. 41–93, 2011, doi: 10.1002/14356007.a03.spa
dc.relation.references[12] P. Y. Bruice, Organic chemistry. 2016.spa
dc.relation.references[13] S. Nikfar and M. Jaberidoost, Dyes and Colorants, Third Edit., vol. 2, no. 1. Elsevier, 2014.spa
dc.relation.references[14] Neue Bücher, “N Y 」 L,” Angew. Chemie, vol. 56, no. 33–34, pp. 238–238, 1943.spa
dc.relation.references[15] D. P. C. C. L. E. Y. N. to K. in 20 Weeks, “Houben-Weyl, vol. IV/2, p. 494; Science of Synthesis, vol. 31, 2007, 1475.,” Dk, vol. 53, no. 9, pp. 1689–1699, 2015, doi: 10.1017/CBO9781107415324.004.spa
dc.relation.references[16] “D. V. Banthorpe et al., J. Chem. Soc. Perkin Trans. 2 1973, 551 – 56. H. J. Shine et al., J. Am. Chem. Soc. 99 (1977) 3719 – 23. Z. J. Allan, Justus Liebigs Ann. Chem. 1978, no. 5, 705 – 09.”spa
dc.relation.references[17] “O. Winkler: ‘“Beitrag zum Nachweis von Di- phenylbasen im Harn,”’ Zentralbl. Arbeitsmed. Arbeitsschutz 9 (1959) 140 – 42.”spa
dc.relation.references[18] “H. Steinberg: ‘“The hazard of benzidine to criminal justice personnel,”’ NBS Spec. Publ. U.S. 1977, 480 – 421; Chem. Abstr. 87 (1977) 178486.”spa
dc.relation.references[19] “IUPAC. Compendium of Chemical Terminology, 2nd ed. (the ‘Gold Book’). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019-) created by S. J. Chalk. ISBN 0-9678550-9-8. https://doi.org/10.1351.”spa
dc.relation.references[20] U. Sani, H. U. Na’ibi, and S. A. Dailami, “In vitro antimicrobial and antioxidant studies on N-(2- hydroxylbenzylidene) pyridine -2-amine and its M(II) complexes,” Niger. J. Basic Appl. Sci., vol. 25, no. 1, p. 81, 2018, doi: 10.4314/njbas.v25i1.11.spa
dc.relation.references[21] J. Lim and E. E. Simanek, “Triazine dendrimers as drug delivery systems: From synthesis to therapy,” Advanced Drug Delivery Reviews. 2012, doi: 10.1016/j.addr.2012.03.008.spa
dc.relation.references[22] M. Liu, L. Guo, S. Jin, and B. Tan, “Covalent triazine frameworks: Synthesis and applications,” Journal of Materials Chemistry A. 2019, doi: 10.1039/c8ta12442f.spa
dc.relation.references[23] W. V. Farrar, “Reactions of formaldehyde with aromatic amines,” J. Appl. Chem., vol. 14, no. 9, pp. 389–399, 2007, doi: 10.1002/jctb.5010140905.spa
dc.relation.references[24] F. Hof, M. Schär, D. M. Scofield, F. Fischer, F. Diederich, and S. Sergeyev, “Preparation of Tröger base derivatives by cross-coupling methodologies,” Helvetica Chimica Acta. 2005, doi: 10.1002/hlca.200590168.spa
dc.relation.references[25] S. Satishkumar and M. Periasamy, “A convenient method for the synthesis and resolution of Tröger base,” Tetrahedron Asymmetry, 2006, doi: 10.1016/j.tetasy.2006.04.002.spa
dc.relation.references[26] C. Mannich and W. Krösche, “Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin,” Arch. Pharm. (Weinheim)., 1912, doi: 10.1002/ardp.19122500151.spa
dc.relation.references[27] N. S. Joshi, L. R. Whitaker, and M. B. Francis, “A three-component Mannich-type reaction for selective tyrosine bioconjugation,” J. Am. Chem. Soc., 2004, doi: 10.1021/ja0439017.spa
dc.relation.references[28] G. Roman, “Mannich bases in medicinal chemistry and drug design,” European Journal of Medicinal Chemistry. 2015, doi: 10.1016/j.ejmech.2014.10.076.spa
dc.relation.references[29] S. G. Subramaniapillai, “Mannich reaction: A versatile and convenient approach to bioactive skeletons,” J. Chem. Sci., 2013, doi: 10.1007/s12039-013-0405-y.spa
dc.relation.references[30] “(New Directions in Organic & Biological Chemistry) Maurilio Tramontini, Luigi Angiolini - Mannich Bases_ Chemistry and Uses-CRC-Press (1994).pdf.” .spa
dc.relation.references[31] H. Ishida and T. Agag, Handbook of Benzoxazine Resins. 2011.spa
dc.relation.references[32] T. Takeichi, T. Kano, and T. Agag, “Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets,” Polymer (Guildf)., vol. 46, no. 26, pp. 12172–12180, 2005, doi: 10.1016/j.polymer.2005.10.088.spa
dc.relation.references[33] F. W. Holly and A. C. Cope, “Condensation Products of Aldehydes and Ketones with o-Aminobenzyl Alcohol and o-Hydroxybenzylamine,” J. Am. Chem. Soc., 1944, doi: 10.1021/ja01239a022.spa
dc.relation.references[34] Y. Liu, S. Saha, S. A. Vignon, A. H. Flood, and J. F. Stoddart, “Template-directed syntheses of configurable and reconfigurable molecular switches,” Synthesis (Stuttg)., no. 19, pp. 3437–3445, 2005, doi: 10.1055/s-2005-918468.spa
dc.relation.references[35] C. X. Zhang, Y. Y. Deng, Y. Y. Zhang, P. Yang, and Y. Gu, “Study on products and reaction paths for synthesis of 3,4-dihydro-2H-3-phenyl-1,3-benzoxazine from phenol, aniline and formaldehyde,” Chinese Chem. Lett., 2015, doi: 10.1016/j.cclet.2014.12.005.spa
dc.relation.references[36] W. J. Burke, M. J. Kolbezen, and C. Wayne Stephens, “Condensation of Naphthols with Formaldehyde and Primary Amines,” J. Am. Chem. Soc., 1952, doi: 10.1021/ja01134a039.spa
dc.relation.references[37] Z. Brunovska, J. P. Liu, and H. Ishida, “L,3,5-Triphenylhexahydro-1,3,5-triazine - Active intermediate and precursor in the novel synthesis of benzoxazine monomers and oligomers,” Macromol. Chem. Phys., 1999, doi: 10.1002/(SICI)1521-3935(19990701)200:7<1745::AID-MACP1745>3.0.CO;2-D.spa
dc.relation.references[38] F. W. M. Ribeiro, A. F. Rodrigues-Oliveira, and T. C. Correra, “Benzoxazine Formation Mechanism Evaluation by Direct Observation of Reaction Intermediates,” J. Phys. Chem. A, 2019, doi: 10.1021/acs.jpca.9b05065.spa
dc.relation.references[39] A. D. Buckingham, J. E. Del Bene, and S. A. C. McDowell, “The hydrogen bond,” Chem. Phys. Lett., 2008, doi: 10.1016/j.cplett.2008.06.060.spa
dc.relation.references[40] M. J. Minch, “An Introduction to Hydrogen Bonding (Jeffrey, George A.),” J. Chem. Educ., 1999, doi: 10.1021/ed076p759.1.spa
dc.relation.references[41] T. Steiner, “The hydrogen bond in the solid state,” Angewandte Chemie - International Edition. 2002, doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U.spa
dc.relation.references[42] K. T. Mahmudov and A. J. L. Pombeiro, “Resonance-Assisted Hydrogen Bonding as a Driving Force in Synthesis and a Synthon in the Design of Materials,” Chem. - A Eur. J., vol. 22, no. 46, pp. 16356–16398, 2016, doi: 10.1002/chem.201601766.spa
dc.relation.references[43] K. C. Nicolaou, W. Qian, F. Bernal, N. Uesaka, P. M. Pihko, and J. Hinrichs, “Synthesis of the ABCD ring system of azaspiracid,” Angew. Chemie - Int. Ed., 2001, doi: 10.1002/1521-3773(20011105)40.spa
dc.relation.references[44] G. Gilli and P. Gilli, The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory. 2009.spa
dc.relation.references[45] Jencks, W.P., “Donnor-Acceptor and Charge Transfer Interactions,” in Catalysis in Chemistry and Enzymology, 1987.spa
dc.relation.references[46] B. List, “Proline-catalyzed asymmetric reactions,” Tetrahedron. 2002, doi: 10.1016/S0040-4020(02)00516-1.spa
dc.relation.references[47] B. List, L. Hoang, and H. J. Martin, “New mechanistic studies on the proline-catalyzed aldol reaction,” Proc. Natl. Acad. Sci. U. S. A., 2004, doi: 10.1073/pnas.0307979101.spa
dc.relation.references[48] H. H. Sayed El‐tamany, “Eine zweite Synthese,” vol. 116, pp. 1682–1685, 1983, doi: https://doi.org/10.1002/cber.19831160444.spa
dc.relation.references[49] T. Gulder and P. S. Baran, “Strained cyclophane natural products: Macrocyclization at its limits,” Nat. Prod. Rep., vol. 29, no. 8, pp. 899–934, 2012, doi: 10.1039/c2np20034a.spa
dc.relation.references[50] X. Yu and D. Sun, “Macrocyclic drugs and synthetic methodologies toward macrocycles,” Molecules. 2013, doi: 10.3390/molecules18066230.spa
dc.relation.references[51] J. W. Steed and J. L. Atwood, Supramolecular chemistry, 2nd Editio. John Wiley & Sons, Ltd., 2009.spa
dc.relation.references[52] J. W. Steed and J. L. Atwood, Supramolecular Chemistry: Second Edition. 2009.spa
dc.relation.references[53] N. Nuñez-Dallos, A. Reyes, and R. Quevedo, “Hydrogen bond assisted synthesis of azacyclophanes from l-tyrosine derivatives,” Tetrahedron Lett., vol. 53, no. 5, pp. 530–534, 2012, doi: https://doi.org/10.1016/j.tetlet.2011.11.086.spa
dc.relation.references[54] C. Díaz-Oviedo and R. Quevedo, “N-Benzylazacyclophane synthesis via aromatic Mannich reaction,” Tetrahedron Lett., vol. 55, no. 48, pp. 6571–6574, 2014, doi: 10.1016/j.tetlet.2014.10.023.spa
dc.relation.references[55] “Granovsky, A. A. Firefly.”spa
dc.relation.references[56] “Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347–1363.”spa
dc.relation.references[57] T. Lu and F. Chen, “Multiwfn: A multifunctional wavefunction analyzer,” J. Comput. Chem., 2012, doi: 10.1002/jcc.22885.spa
dc.relation.references[58] “Stewart, J. J. MOPAC2016; Stewart Computational Chemistry, Colorado Springs, CO, USA, 2012.No Title.”spa
dc.relation.references[59] R. Quevedo, M. González, and C. Díaz-Oviedo, “Synthesis of macrocyclic α-amino esters through the chemoselective hydrolysis of benzoxazinephanes,” Tetrahedron Lett., vol. 53, no. 13, pp. 1595–1597, 2012, doi: 10.1016/j.tetlet.2012.01.064.spa
dc.relation.references[60] J. Řezáč and P. Hobza, “Advanced corrections of hydrogen bonding and dispersion for semiempirical quantum mechanical methods,” J. Chem. Theory Comput., 2012, doi: 10.1021/ct200751e.spa
dc.relation.references[61] N. D. Yilmazer and M. Korth, Semiempirical and Molecular Mechanics Treatment of Noncovalent Interactions. 2017.spa
dc.relation.references[62] J. C. Kromann, A. S. Christensen, C. Steinmann, M. Korth, and J. H. Jensen, “A third-generation dispersion and third-generation hydrogen bonding corrected PM6 method: PM6-D3H+,” PeerJ, 2014, doi: 10.7717/peerj.449.spa
dc.relation.references[63] C. C. Pye and T. Ziegler, “An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package,” Theor. Chem. Acc., 1999, doi: 10.1007/s002140050457.spa
dc.relation.references[64] M. Evecen, H. Tanak, N. Dege, M. Kara, O. E. Dogan, and E. Ağar, “Molecular structure, spectroscopic, and density functional theory studies of o-Dianisidine,” Mol. Cryst. Liq. Cryst., vol. 648, no. 1, pp. 183–201, 2017, doi: 10.1080/15421406.2016.1275300.spa
dc.relation.references[65] J. Zhu, X. Zhao, L. Liu, R. Yang, M. Song, and S. Wu, “Thermodynamic analyses of the hydrogen bond dissociation reaction and their effects on damping and compatibility capacities of polar small molecule/nitrile-butadiene rubber systems: Molecular simulation and experimental study,” Polymer (Guildf)., vol. 155, pp. 152–167, 2018, doi: 10.1016/j.polymer.2018.09.040.spa
dc.relation.references[66] L. Sapir and D. Harries, “Revisiting Hydrogen Bond Thermodynamics in Molecular Simulations,” J. Chem. Theory Comput., 2017, doi: 10.1021/acs.jctc.7b00238.spa
dc.relation.references[67] J. H. Clark and J. Miller, “Hydrogen Bonding in Organic Synthesis. 3. Hydrogen Bond Assisted Reactions of Cyclic Organic Hydrogen Bond Electron Acceptors1 with Halogenoalkanes in the Presence of Potassium Fluoride,” J. Am. Chem. Soc., vol. 99, no. 2, pp. 498–504, 1977, doi: 10.1021/ja00444a030.spa
dc.relation.references[68] P. E. Hansen and J. Spanget-Larsen, “NMR and IR investigations of strong intramolecular hydrogen bonds,” Molecules. 2017, doi: 10.3390/molecules22040552.spa
dc.relation.references[69] M. Cheng, X. Pu, N. B. Wong, M. Li, and A. Tian, “Substituent effects on the hydrogen-bonded complex of aniline-H 2O: A computational study,” New J. Chem., 2008, doi: 10.1039/b717465a.spa
dc.relation.references[70] R. Neufeld and D. Stalke, “Accurate molecular weight determination of small molecules via DOSY-NMR by using external calibration curves with normalized diffusion coefficients,” Chem. Sci., 2015, doi: 10.1039/c5sc00670h.spa
dc.relation.references[71] D. Kanamori, A. Furukawa, T. A. Okamura, H. Yamamoto, and N. Ueyama, “Contribution of the intramolecular hydrogen bond to the shift of the pKa value and the oxidation potential of phenols and phenolate anions,” Org. Biomol. Chem., 2005, doi: 10.1039/b419361j.spa
dc.relation.references[72] G. S. Kapur, E. J. Cabrita, and S. Berger, “The qualitative probing of hydrogen bond strength by diffusion-ordered NMR spectroscopy,” Tetrahedron Lett., vol. 41, no. 37, pp. 7181–7185, 2000, doi: 10.1016/S0040-4039(00)01188-6.spa
dc.relation.references[73] P. Charisiadis, V. G. Kontogianni, C. G. Tsiafoulis, A. G. Tzakos, M. Siskos, and I. P. Gerothanassis, “1H-NMR as a structural and analytical tool of intra- and intermolecular hydrogen bonds of phenol-containing natural products and model compounds,” Molecules. 2014, doi: 10.3390/molecules190913643.spa
dc.relation.references[74] R. V. Viesser, L. C. Ducati, C. F. Tormena, and J. Autschbach, “The unexpected roles of σ and π orbitals in electron donor and acceptor group effects on the 13C NMR chemical shifts in substituted benzenes,” Chem. Sci., 2017, doi: 10.1039/c7sc02163a.spa
dc.relation.references[75] B. Diehl, “Principles in NMR spectroscopy,” NMR Spectrosc. Pharm. Anal., pp. 1–41, 2008, doi: 10.1016/B978-0-444-53173-5.00001-9.spa
dc.relation.references[76] T. F. Cummings and J. R. Shelton, “Mannich Reaction Mechanisms,” J. Org. Chem., vol. 25, no. 3, pp. 419–423, 1960, doi: 10.1021/jo01073a029.spa
dc.relation.references[77] J. Kaneti, A. J. Kirby, A. H. Koedjikov, and I. G. Pojarlieff, “Thorpe-Ingold effects in cyclizations to five-membered and six-membered rings containing planar segments. The rearrangement of N(1)-alkyl-substituted dihydroorotic acids to hydantoinacetic acids in base,” Org. Biomol. Chem., 2004, doi: 10.1039/b400248b.spa
dc.relation.references[78] J. Barluenga, A. M. Bayón, and A. Gregorio., “Monoalkylation of Primary Aromatic Amines,” J. Chem. Soc., Chem. Commun, pp. 1109–1110, 1983, doi: 10.1055/s-1993-25813.spa
dc.relation.references[79] A. K. Jordão et al., “Synthesis using microwave irradiation and antibacterial evaluation of new N,O-acetals and N,S-acetals derived from 2-amino-1,4-naphthoquinones,” Eur. J. Med. Chem., vol. 63, pp. 196–201, 2013, doi: 10.1016/j.ejmech.2013.01.010.spa
dc.relation.references[80] Z. Ji, F. Zhou, and S. Wei, “Synthesis and herbicidal activities of benzothiazole N,O-acetals,” Bioorganic Med. Chem. Lett., vol. 25, no. 19, pp. 4065–4068, 2015, doi: 10.1016/j.bmcl.2015.08.051.spa
dc.relation.references[81] Y. Harayama, M. Yoshida, D. Kamimura, and Y. Kita, “The novel and efficient direct synthesis of N,O-acetal compounds using a hypervalent iodine(III) reagent: An improved synthetic method for a key intermediate of discorhabdins,” Chem. Commun., no. 13, pp. 1764–1766, 2005, doi: 10.1039/b418212j.spa
dc.relation.references[82] J. BARLUENGA, A. BAYON, P. CAMPOS, G. ASENSIO, E. GONZALEZ-NUNEZ, and Y. MOLINA, “Preparation of N,O-aminals as synthetic equivalents of H,” J. Chem. Soc. Perkin Trans. I, vol. 21, no. 7, pp. 1631–1636, 1988.spa
dc.relation.references[83] “Frontier Orbitals and Organic Chemical Reactions,” J. Mol. Struct., 1979, doi: 10.1016/0022-2860(79)80172-6.spa
dc.relation.references[84] W. Yang and R. G. Parr, “Hardness, softness, and the fukui function in the electronic theory of metals and catalysis.,” Proc. Natl. Acad. Sci. U. S. A., 1985, doi: 10.1073/pnas.82.20.6723.spa
dc.relation.references[85] P. J. Krueger, “Intramolecular NH⋯O and NH⋯S hydrogen bonds in o-aminophenols and o-aminothiophenols,” Tetrahedron, vol. 26, no. 20, pp. 4753–4764, 1970, doi: 10.1016/S0040-4020(01)93126-6.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.otherFormaldehídos
dc.subject.otherFormaldehyde
dc.subject.otherHydrogen bridge
dc.subject.otherPuente de hidrógeno
dc.subject.proposalBencidinaspa
dc.subject.proposalFormaldehídospa
dc.subject.proposalBisfenolspa
dc.subject.proposalReacción de Mannichspa
dc.subject.proposalPuente de hidrógenospa
dc.subject.proposalN-alcoximetilaminaspa
dc.subject.proposalBenzoxazinaspa
dc.subject.proposalBenzidineeng
dc.subject.proposalFormaldehydeeng
dc.subject.proposalMannich reactioneng
dc.subject.proposalHydrogen bridgeeng
dc.subject.proposalCondensaciónspa
dc.titleInfluencia de interacciones no covalentes en el curso de reacción entre derivados de bencidina, bisfenol A y formaldehídospa
dc.title.translatedInfluence of non-covalent interactions in the course of the reaction between benzidine derivatives, bisphenol A and formaldehyde.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentOtherspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis versión final.pdf
Tamaño:
4.47 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: