Caracterización de la expresión de proteínas relacionadas con mutaciones somáticas de significado pronóstico en Síndrome Mielodisplásico en biopsia de médula ósea de pacientes con citopenia en el Hospital Universitario Nacional de Colombia entre 2017 y 2022

dc.contributor.advisorFranco-Tavera, Oscar Andresspa
dc.contributor.authorCataño-Pulgarin, Juan Camilospa
dc.contributor.orcidCataño Pulgarin, Juan Camilo [0000000318345624]spa
dc.coverage.cityBogotáspa
dc.coverage.countryColombiaspa
dc.coverage.temporal2017-2022spa
dc.date.accessioned2024-11-07T18:15:23Z
dc.date.available2024-11-07T18:15:23Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractIntroducción. Los Síndromes Mielodisplásicos son desórdenes clonales de las células hematopoyéticas definidos por citopenia, displasia mieloide y anormalidades genéticas características. La inclusión de las mutaciones somáticas es útil en el abordaje pronóstico y la inmunohistoquímica se ha explorado como marcador indirecto de estas. Objetivo. Caracterizar en términos de frecuencia relativa, patrón e intensidad de tinción las proteínas P53, EZH2 y H3K27me3 en biopsia de médula ósea de pacientes con síndrome mielodisplásico. Métodos. Estudio observacional, analítico de corte transversal en pacientes con síndrome mielodisplásico atendidos en el Hospital Universitario Nacional de Colombia entre 2017 y 2022. Se estudió la expresión de los marcadores P53, EZH2 y H3K27me3. Se empleó X2 o coeficiente de relación de Pearson para establecer asociaciones entre la expresión y variables de interés. Resultados y Conclusiones. Se practicaron los marcadores en 23 biopsias de médula ósea. Dos casos (5%) fueron positivos para TP53; los casos restantes fueron negativos. Todos los casos mostraron algún grado de tinción con EZH2 y H3K27me3 (exceptuando un caso negativo para EZH2). La expresión de EZH2 y H3K27me3 mostró una correlación positiva en el análisis de regresión lineal. La expresión de EZH2 y H3K27me3 no mostró asociación estadística con el conteo de plaquetas, neutrófilos, los valores de hemoglobina o el IPSS-R. La expresión de EZH2 no mostró asociación con cariotipo anormal, requerimiento transfusional o necesidad de tratamiento farmacológico. El establecimiento del estado de los genes EZH2 y TP53 permitirá determinar la implicación de la expresión de estas proteínas en el pronóstico de esta entidad (Texto tomado de la fuente).spa
dc.description.abstractIntroduction. Myelodysplastic Syndromes are clonal disorders of the hematopoietic cells, defined by the presence of cytopenia, dysplasia, and characteristic genetic abnormalities. Inclusion of somatic mutations is useful in the prognostic assessment and immunohistochemistry is an indirect way to detect the presence of these mutations. Objective. To characterize the relative frequency, stain pattern and stain intensity of P53, EZH2 and H3K27me3 by immunohistochemistry in bone marrow biopsies of patients with myelodysplastic syndrome. Methods. An observational, analytic cross-sectional study was conducted in patients with myelodysplastic syndrome at the Hospital Universitario Nacional de Colombia between 2017 and 2022. Immunohistochemistry for P53, EZH2 and H3K27me3 was studied. Pearson correlation coefficient or Chi-square tests were used to establish the association between the expression of these proteins and clinical variables of interest. Results and Conclusions: Twenty-three bone marrow biopsies were studied. Two cases (5%) were positive for p53. The rest of the cases were negative. All cases were positive for EZH2 and H3K27me3 (except for one case negative for EZH2). The expression of EZH2 and H3K27me3 were positively correlated in the linear regression analysis. The expression of EZH2 and H3K27me3 did not show association with platelet and neutrophil values, hemoglobin values or IPSS-R. The expression of EZH2 did not show association with abnormal karyotype, transfusions or requirement of pharmacological treatment. The assessment of the status of EZH2 and TP53 genes will allow us to establish the implication of the expression of these proteins in the prognostic assessment of myelodysplastic syndrome.eng
dc.description.degreelevelEspecialidades Médicasspa
dc.description.degreenameEspecialista en Patología Anatómica y Clínicaspa
dc.description.methodsEstudio observacional, analítico de corte transversal en pacientes con síndrome mielodisplásico atendidos en el Hospital Universitario Nacional de Colombia entre 2017 y 2022. Se estudió la expresión de los marcadores P53, EZH2 y H3K27me3. Se empleó X2 o coeficiente de relación de Pearson para establecer asociaciones entre la expresión y variables de interés.spa
dc.format.extent87 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87160
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Especialidad en Patología Anatómica y Clínicaspa
dc.relation.referencesChan JKC, Jaffe ES KY-H. WHO classification of tumors of hematopoietic and lymphoid tissues (Revised 4th edition) IARC. WHO classification of tumors of hematopoietic and lymphoid tissues (Revised 4th edition) IARC. 2017. 353–4 p.spa
dc.relation.referencesHasserjian RP. Myelodysplastic Syndrome Updated. Pathobiology. 2019;86(1):53–61.spa
dc.relation.referencesMufti GJ, Bennett JM, Goasguen J, Bain BJ, Baumann I, Brunning R, et al. Diagnosis and classification of myelodysplastic syndrome: International Working Group on Morphology of myelodysplastic syndrome (IWGM-MDS) consensus proposals for the definition and enumeration of myeloblasts and ring sideroblasts. Haematologica. 2008;93(11):1712–7.spa
dc.relation.referencesValent P, Orazi A, Steensma DP, Ebert BL, Haase D, Malcovati L, et al. Proposed minimal diagnostic criteria for myelodysplastic syndromes (MDS) and potential pre-MDS conditions. Oncotarget. 2017;8(43):73483–500.spa
dc.relation.referencesChokr N, Pine AB, Bewersdorf JP, Shallis RM, Stahl M, Zeidan AM. Getting personal with myelodysplastic syndromes: is now the right time? Expert Rev Hematol [Internet]. 2019;12(4):215–24. Available from: https://doi.org/10.1080/17474086.2019.1592673spa
dc.relation.referencesBejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, et al. Clinical Effect of Point Mutations in Myelodysplastic Syndromes. N Engl J Med. 2011;364(26):2496–506.spa
dc.relation.referencesGondek LP, DeZern AE. Assessing clonal haematopoiesis: clinical burdens and benefits of diagnosing myelodysplastic syndrome precursor states. Lancet Haematol [Internet]. 2020;7(1):e73–81. Available from: http://dx.doi.org/10.1016/S2352-3026(19)30211-Xspa
dc.relation.referencesNazha A, Narkhede M, Radivoyevitch T, Seastone DJ, Patel BJ, Gerds AT, et al. Incorporation of molecular data into the Revised International Prognostic Scoring System in treated patients with myelodysplastic syndromes. Leukemia. 2016;30(11):2214–20.spa
dc.relation.referencesCarlos RE. Transición epidemiológica en Colombia: de las enfermedades infecciosas a las no transmisibles. Rev Ciencias Biomédicas. 2012;3(2).spa
dc.relation.referencesKawata E, Lazo-Langner A, Xenocostas A, Hsia CC, Howson-Jan K, Deotare U, et al. Clinical value of next-generation sequencing compared to cytogenetics in patients with suspected myelodysplastic syndrome. Br J Haematol. 2021;192(4):729–36.spa
dc.relation.referencesJädersten M, Saft L, Smith A, Kulasekararaj A, Pomplun S, Göhring G, et al. TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol. 2011;29(15):1971–9.spa
dc.relation.referencesSaft L, Karimi M, Ghaderi M, Matolcsy A, Mufti GJ, Kulasekararaj A, et al. P53 Protein Expression Independently Predicts Outcome in Patients With Lower-Risk Myelodysplastic Syndromes With Del(5Q). Haematologica. 2014;99(6):1041–9.spa
dc.relation.referencesCleven AHG, Nardi V, Ok CY, Goswami M, Dal Cin P, Zheng Z, et al. High p53 protein expression in therapy-related myeloid neoplasms is associated with adverse karyotype and poor outcome. Mod Pathol [Internet]. 2015;28(4):552–63. Available from: http://dx.doi.org/10.1038/modpathol.2014.153spa
dc.relation.referencesGreenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079–88.spa
dc.relation.referencesFernandez-Pol S, Ma L, Ohgami RS, Arber DA. Significance of myelodysplastic syndrome-associated somatic variants in the evaluation of patients with pancytopenia and idiopathic cytopenias of undetermined significance. Mod Pathol. 2016;29(9):996–1003.spa
dc.relation.referencesValent P, Bain BJ, Bennett JM, Wimazal F, Sperr WR, Mufti G, et al. Idiopathic cytopenia of undetermined significance (ICUS) and idiopathic dysplasia of uncertain significance (IDUS), and their distinction from low risk MDS. Leuk Res [Internet]. 2012;36(1):1–5. Available from: http://dx.doi.org/10.1016/j.leukres.2011.08.016spa
dc.relation.referencesJain M, Tripathi A. ICUS/CCUS/CHIP: basics & beyond. Expert Rev Hematol [Internet]. 2017;10(10):915–20. Available from: https://doi.org/10.1080/17474086.2017.1371588spa
dc.relation.referencesSteensma DP. The Clinical Challenge of Idiopathic Cytopenias of Undetermined Significance (ICUS) and Clonal Cytopenias of Undetermined Significance (CCUS). Curr Hematol Malig Rep. 2019;14(6):536–42.spa
dc.relation.referencesMahmood R, Altaf C, Ahmed P, Khan SA, Malik HS. Myelodysplastic syndrome in Pakistan: Clinicohematological characteristics, cytogenetic profile, and risk stratification. Turkish J Hematol. 2018;35(2):109–15.spa
dc.relation.referencesZeidan AM, Shallis RM, Wang R, Davidoff A, Ma X. Epidemiology of myelodysplastic syndromes: Why characterizing the beast is a prerequisite to taming it. Blood Rev. 2019;34:1–15.spa
dc.relation.referencesRodger EJ, Morison IM. Myelodysplastic syndrome in New Zealand and Australia. Intern Med J. 2012;42(11):1235–42.spa
dc.relation.referencesCogle CR, Craig BM, Rollison DE, List AF. Incidence of the myelodysplastic syndromes using a novel claims-based algorithm: High number of uncaptured cases by cancer registries. Blood. 2011;117(26):7121–5.spa
dc.relation.referencesSweeney MR, Applebaum KM, Arem H, Braffett BH, Poynter JN, Robien K. Medical conditions and modifiable risk factors for myelodysplastic syndrome: A systematic review. Cancer Epidemiol Biomarkers Prev. 2019;28(9):1502–17.spa
dc.relation.referencesSchnatter AR, Glass DC, Tang G, Irons RD, Rushton L. Myelodysplastic syndrome and benzene exposure among petroleum workers: An international pooled analysis. J Natl Cancer Inst. 2012;104(22):1724–37.spa
dc.relation.referencesLink DC. Mechanisms of leukemic transformation in congenital neutropenia. Curr Opin Hematol. 2019;26(1):34–40.spa
dc.relation.referencesFarrugia H, Wei A. Therapy-Related Acute Myeloid Leukaemia and Myelodysplastic Syndrome in Victoria, Australia 2003-2014. Intern Med J. 2018;48(7):822-829.spa
dc.relation.referencesCandelaria M, Dueñas-Gonzalez A. Therapy-related myelodysplastic syndrome. Expert Opin Drug Saf. 2015;14(5):655–65.spa
dc.relation.referencesNagata Y, Maciejewski JP. The functional mechanisms of mutations in myelodysplastic syndrome. Leukemia [Internet]. 2019;33(12):2779–94. Available from: http://dx.doi.org/10.1038/s41375-019-0617-3spa
dc.relation.referencesMalcovati L, Cazzola M. Recent advances in the understanding of myelodysplastic syndromes with ring sideroblasts. Br J Haematol. 2016;174(6):847–58.spa
dc.relation.referencesDan C, Chi J, Wang L. Molecular mechanisms of the progression of myelodysplastic syndrome to secondary acute myeloid leukaemia and implication for therapy. Ann Med [Internet]. 2015;47(3):209–17. Available from: http://dx.doi.org/10.3109/07853890.2015.1009156spa
dc.relation.referencesShallis RM, Ahmad R, Zeidan AM. The genetic and molecular pathogenesis of myelodysplastic syndromes. Eur J Haematol. 2018;101(3):260–71.spa
dc.relation.referencesMeggendorfer M, Haferlach C, Kern W, Haferlach T. Molecular analysis of myelodysplastic syndrome with isolated deletion of the long arm of chromosome 5 reveals a specific spectrum of molecular mutations with prognostic impact: A study on 123 patients and 27 genes. Haematologica. 2017;102(9):1502–10.spa
dc.relation.referencesEpling-Burnette PK, List AF. Advancements in the molecular pathogenesis of myelodysplastic syndrome. Curr Opin Hematol. 2009;16(2):70–6.spa
dc.relation.referencesSundaravel S, Duggan R, Bhagat T, Ebenezer DL, Liu H, Yu Y, et al. Reduced DOCK4 expression leads to erythroid dysplasia in myelodysplastic syndromes. Proc Natl Acad Sci U S A. 2015;112(46):E6359–68.spa
dc.relation.referencesFreedman MH, Alter BP. Risk of myelodysplastic syndrome and acute myeloid leukemia in congenital neutropenias. Semin Hematol. 2002;39(2):128–33.spa
dc.relation.referencesFrietsch JJ, Dornaus S, Neumann T, Scholl S, Schmidt V, Kunert C, et al. Paraneoplastic inflammation in myelodysplastic syndrome or bone marrow failure: Case series with focus on 5-azacytidine and literature review. Eur J Haematol. 2014;93(3):247–59.spa
dc.relation.referencesMontoro J, Gallur L, Merchán B, Molero A, Roldán E, Martínez-Valle F, et al. Autoimmune disorders are common in myelodysplastic syndrome patients and confer an adverse impact on outcomes. Ann Hematol. 2018;97(8):1349–56.spa
dc.relation.referencesEsatoglu SN, Hatemi G, Salihoglu A, Hatemi I, Soysal T, Celik AF, et al. A reappraisal of the association between Behçet’s disease, myelodysplastic syndrome and the presence of trisomy 8: a systematic literature review. Clin Exp Rheumatol . 2015 Nov-Dec;33(6 Suppl 94): S145-51.spa
dc.relation.referencesVijenthira A, Premkumar D, Callum J, Lin Y, Wells RA, Chodirker L, et al. The management and outcomes of patients with myelodysplastic syndrome with persistent severe thrombocytopenia: An observational single centre registry study. Leuk Res [Internet]. 2019;76(September 2018):76–81. Available from: https://doi.org/10.1016/j.leukres.2018.12.002spa
dc.relation.referencesLi W, Morrone K, Kambhampati S, Will B, Steidl U, Verma A. Thrombocytopenia in MDS: Epidemiology, mechanisms, clinical consequences and novel therapeutic strategies. Leukemia. 2016;30(3):536–44.spa
dc.relation.referencesFarah C, Bulai Livideanu C, Jegu J, Paul C, Viraben R, Lamant L, et al. Prevalence and prognostic value of cutaneous manifestations in patients with myelodysplastic syndrome. J Eur Acad Dermatology Venereol. 2010;24(10):1171–5.spa
dc.relation.referencesAmin HM, Yang Y, Shen Y, Estey EH, Giles FJ, Pierce SA, et al. Having a higher blast percentage in circulation than bone marrow: Clinical implications in myelodysplastic syndrome and acute lymphoid and myeloid leukemias. Leukemia. 2005;19(9):1567–72.spa
dc.relation.referencesKayano H. Histopathology in the diagnosis of high-risk myelodysplastic syndromes. J Clin Exp Hematop. 2018;58(2):51–60.spa
dc.relation.referencesGoasguen JE, Bennett JM, Bain BJ, Brunning R, Vallespi MT, Tomonaga M, et al. Dyserythropoiesis in the diagnosis of the myelodysplastic syndromes and other myeloid neoplasms: problem areas. Br J Haematol. 2018;182(4):526–33.spa
dc.relation.referencesLiang C, Li J, Cheng J, Chen S, Ye Z, Zhang F, et al. Characteristics of bone marrow cell dysplasia and its effectiveness in diagnosing myelodysplastic syndrome. Hematology [Internet]. 2018;23(2):65–76. Available from: https://doi.org/10.1080/10245332.2017.1347247spa
dc.relation.referencesSchemenau J, Baldus S, Anlauf M, Reinecke P, Braunstein S, Blum S, et al. Cellularity, characteristics of hematopoietic parameters and prognosis in myelodysplastic syndromes. Eur J Haematol. 2015;95(3):181–9.spa
dc.relation.referencesMatsushima T, Handa H, Yokohama A, Nagasaki J, Koiso H, Kin Y, et al. Prevalence and clinical characteristics of myelodysplastic syndrome with bone marrow eosinophilia or basophilia. Blood. 2003;101(9):3386–90.spa
dc.relation.referencesDurrani J, Maciejewski JP. Idiopathic aplastic anemia vs hypocellular myelodysplastic syndrome. Hematol (United States). 2019;2019(1):97–104.spa
dc.relation.referencesNakanishi R, Ishida M, Hodohara K, Yoshida T, Yoshii M, Okuno H, et al. Prominent gelatinous bone marrow transformation presenting prior to myelodysplastic syndrome: A case report with review of the literature. Int J Clin Exp Pathol. 2013;6(8):1677–82.spa
dc.relation.referencesTakahashi M, Koike T, Nagayama R, Fujiwara M, Koyama S, Ohnishi M, et al. Myelodysplastic syndrome with myelofibrosis: myelodysplastic syndrome as a major primary disorder for acute myelofibrosis. Clin Lab Haematol. 1991;13(1):17–23.spa
dc.relation.referencesMalcovati L, Della Porta MG, Lunghi M, Pascutto C, Vanelli L, Travaglino E, et al. Flow cytometry evaluation of erythroid and myeloid dysplasia in patients with myelodysplastic syndrome. Leukemia. 2005;19(5):776–83.spa
dc.relation.referencesDella Porta MG, Malcovati L, Invernizzi R, Travaglino E, Pascutto C, Maffioli M, et al. Flow cytometry evaluation of erythroid dysplasia in patients with myelodysplastic syndrome. Leukemia. 2006;20(4):549–55.spa
dc.relation.referencesPorwit A, Van De Loosdrecht AA, Bettelheim P, Eidenschink Brodersen L, Burbury K, Cremers E, et al. Revisiting guidelines for integration of flow cytometry results in the WHO classification of myelodysplastic syndromes - Proposal from the International/European LeukemiaNet Working Group for Flow Cytometry in MDS. Leukemia. 2014;28(9):1793–8.spa
dc.relation.referencesGoardon N, Nikolousis E, Sternberg A, Chu WK, Craddock C, Richardson P, et al. Reduced CD38 expression on CD34 + cells as a diagnostic test in myelodysplastic syndromes. Haematologica. 2009;94(8):1160–3.spa
dc.relation.referencesAlayed K, Meyerson JB, Osei ES, Blidaru G, Schlegelmilch J, Johnson M, et al. CD177 Enhances the Detection of Myelodysplastic Syndrome by Flow Cytometry. Am J Clin Pathol. 2020;153(4):554–65.spa
dc.relation.referencesSchanz J, Tüchler H, Solé F, Mallo M, Luño E, Cervera J, et al. New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. J Clin Oncol. 2012;30(8):820–9.spa
dc.relation.referencesDe Witte T, Bowen D, Robin M, Malcovati L, Niederwieser D, Yakoub-Agha I, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML: Recommendations from an international expert panel. Blood. 2017;129(13):1753–62.spa
dc.relation.referencesBaidoun F, Chen D, Patnaik M, Gangat N, Begna K, Elliott M, et al. Clinical outcome of patients diagnosed with myelodysplastic syndrome-unclassifiable (MDS-U): single center experience. Leuk Lymphoma. 2019;60(10):2483–7.spa
dc.relation.referencesGreenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454–65.spa
dc.relation.referencesScalzulli E, Pepe S, Colafigli G, Breccia M. Therapeutic strategies in low and high-risk MDS: What does the future have to offer? Blood Rev. 2021;45.spa
dc.relation.referencesSteensma DP. Myelodysplastic syndromes current treatment algorithm 2018. Blood Cancer J [Internet]. 2018;8(5). Available from: http://dx.doi.org/10.1038/s41408-018-0085-4spa
dc.relation.referencesKröger N, Brand R, Van Biezen A, Zander A, Dierlamm J, Niederwieser D, et al. Risk factors for therapy-related myelodysplastic syndrome and acute myeloid leukemia treated with allogeneic stem cell transplantation. Haematologica. 2009;94(4):542–9.spa
dc.relation.referencesMarisavljevic D, Savic A, Zeremski V, Stanisavljevic N, Jelic S. Myelodysplastic syndromes in adults aged less than 50 years: Incidence and clinicopathological data. J BUON. 2014;19(4):999–1005.spa
dc.relation.referencesWang F, Ni J, Wu L, Wang Y, He B, Yu D. Gender disparity in the survival of patients with primary myelodysplastic syndrome. J Cancer. 2019;10(5):1325–32.spa
dc.relation.referencesBreccia M, Federico V, Latagliata R, Mercanti C, D’Elia GM, Cannella L, et al. Evaluation of comorbidities at diagnosis predicts outcome in myelodysplastic syndrome patients. Leuk Res. 2011;35(2):159–62.spa
dc.relation.referencesFalantes JF, Márquez-Malaver FJ, Knight T, Calderón-Cabrera C, Martino ML, González J, et al. The incorporation of comorbidities in the prognostication of patients with lower-risk myelodysplastic syndrome*. Leuk Lymphoma. 2017;58(8):1893–902.spa
dc.relation.referencesSevindik OG, Guc Z, Kahraman S, Medeni Solmaz S, Katgi A, Acar C, et al. Hypoalbuminemia is a surrogate biomarker of poor prognosis in myelodysplastic syndrome even when adjusting for comorbidities. Leuk Lymphoma. 2015;56(9):2552–5.spa
dc.relation.referencesKulasekararaj AG, Smith AE, Mian SA, Mohamedali AM, Krishnamurthy P, Lea NC, et al. TP53 mutations in myelodysplastic syndrome are strongly correlated with aberrations of chromosome 5, and correlate with adverse prognosis. Br J Haematol. 2013;160(5):660–72.spa
dc.relation.referencesHou HA, Tsai CH, Lin CC, Chou WC, Kuo YY, Liu CY, et al. Incorporation of mutations in five genes in the revised International Prognostic Scoring System can improve risk stratification in the patients with myelodysplastic syndrome. Blood Cancer J [Internet]. 2018;8(4). Available from: http://dx.doi.org/10.1038/s41408-018-0074-7spa
dc.relation.referencesGu S, Xia J, Tian Y, Zi J, Ge Z. A novel scoring system integrating molecular abnormalities with IPSS-R can improve the risk stratification in patients with MDS. BMC Cancer. 2021;21(1):1–9.spa
dc.relation.referencesKitagawa M, Yoshida S, Kuwata T, Tanizawa T, Kamiyama R. p53 Expression in myeloid cells of myelodysplastic syndromes: Association with evolution of overt leukemia. Am J Pathol. 1994;145(2):338–44.spa
dc.relation.referencesMcGraw KL, Nguyen J, Al Ali NH, Komrokji RS, Sallman D, Zhang X, et al. Association of EZH2 protein expression by immunohistochemistry in myelodysplasia related neoplasms with mutation status, cytogenetics and clinical outcomes. Br J Haematol. 2019;184(3):450–5.spa
dc.relation.referencesStomper J, Meier R, Ma T, Pfeifer D, Ihorst G, Blagitko-Dorfs N, et al. Integrative study of EZH2 mutational status, copy number, protein expression and H3K27 trimethylation in AML/MDS patients. Clin Epigenetics. 2021;13(1):1–14.spa
dc.relation.referencesSashida G, Oshima M, Iwama A. Deregulated Polycomb functions in myeloproliferative neoplasms. Int J Hematol [Internet]. 2019;110(2):170–8. Available from: http://dx.doi.org/10.1007/s12185-019-02600-6spa
dc.relation.referencesPekmezci M, Cuevas-Ocampo AK, Perry A, Horvai AE. Significance of H3K27me3 loss in the diagnosis of malignant peripheral nerve sheath tumors. Mod Pathol [Internet]. 2017;30(12):1710–9. Available from: http://dx.doi.org/10.1038/modpathol.2017.97spa
dc.relation.referencesKazley JM, Dicaprio MR. Soft tissue and bone tumors. Pocket Foot and Ankle Medicine and Surgery. 2018.spa
dc.relation.referencesWei Y, Xia W, Zhang Z, Liu J, Wang H, Adsay N V., et al. Loss of trimethylation at lysine 27 of histone H3 is a predictor of poor outcome in breast, ovarian, and pancreatic cancers. Mol Carcinog. 2008;47(9):701–6.spa
dc.relation.referencesMalcovati L, Papaemmanuil E, Bowen DT, Boultwood J, Della Porta MG, Pascutto C, et al. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood. 2011;118(24):6239–46.spa
dc.relation.referencesMalcovati L, Karimi M, Papaemmanuil E, Ambaglio I, Jädersten M, Jansson M, et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood. 2015;126(2):233–41.spa
dc.relation.referencesKubasch AS, Fenaux P, Platzbecker U. Development of luspatercept to treat ineffective erythropoiesis. Blood Adv. 2021;5(5):1565–75.spa
dc.relation.referencesMartín I, Navarro B, Serrano A, Villamón E, Calabuig M, Solano C, et al. Impact of clinical features, cytogenetics, genetic mutations, and methylation dynamics of CDKN2B and DLC-1 promoters on treatment response to azacitidine. Ann Hematol. 2020;99(3):527–37.spa
dc.relation.referencesZhang Q, Haider M, Al Ali NH, Lancet JE, Epling-Burnette PK, List AF, et al. SF3B1 Mutations Negatively Predict for Response to Immunosuppressive Therapy in Myelodysplastic Syndromes. Clin Lymphoma, Myeloma Leuk [Internet]. 2020;20(6):400-406.e2. Available from: https://doi.org/10.1016/j.clml.2019.12.023spa
dc.relation.referencesPapaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, et al. Somatic SF3B1 Mutation in Myelodysplasia with Ring Sideroblasts . N Engl J Med. 2011;365(15):1384–95.spa
dc.relation.referencesDolatshad H, Pellagatti A, Liberante FG, Llorian M, Repapi E, Steeples V, et al. Cryptic splicing events in the iron transporter ABCB7 and other key target genes in SF3B1-mutant myelodysplastic syndromes. Leukemia. 2016;30(12):2322–31.spa
dc.relation.referencesNikpour M, Scharenberg C, Liu A, Conte S, Karimi M, Mortera-Blanco T, et al. The transporter ABCB7 is a mediator of the phenotype of acquired refractory anemia with ring sideroblasts. Leukemia. 2013;27(4):889–96.spa
dc.relation.referencesThol F, Kade S, Schlarmann C, Löffeld P, Morgan M, Krauter J, et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood. 2012;119(15):3578–84.spa
dc.relation.referencesZheng X, Zhan Z, Naren D, Li J, Yan T, Gong Y. Prognostic value of SRSF2 mutations in patients with de novo myelodysplastic syndromes: A meta-analysis. PLoS One. 2017;12(9):1–12.spa
dc.relation.referencesKim E, Ilagan JO, Liang Y, Daubner GM, Lee SCW, Ramakrishnan A, et al. SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Specific Effects on Exon Recognition. Cancer Cell [Internet]. 2015;27(5):617–30. Available from: http://dx.doi.org/10.1016/j.ccell.2015.04.006spa
dc.relation.referencesProcedure E. Immunohistochemical staining of formalin-fixed paraffin embedded tissues Immunohistochemical staining of formalin-fixed paraffin embedded tissues. 2010;13:4–6.spa
dc.relation.referencesGeisel T, Martin J, Schulze B, Schaefer R, Bach M, Virgin G, et al. An etiologic profile of anemia in 405 geriatric patients. Anemia. 2014;2014.spa
dc.relation.referencesBach V, Schruckmayer G, Sam I, Kemmler G, Stauder R. Prevalence and possible causes of anemia in the elderly: A cross-sectional analysis of a large European university hospital cohort. Clin Interv Aging. 2014;9:1187–96.spa
dc.relation.referencesZhou J, Zhou N, Liu Q, Xie ZP, Xu Y, Dai SC, et al. Prevalence of neutropenia in US residents: a population based analysis of NHANES 2011–2018. BMC Public Health. 2023;23(1):1–9.spa
dc.relation.referencesMatthew M. Hsieh, James E. Everhart, Danita D. Byrd-Holt, et al. Prevalence of Neutropenia in the U.S. Population: Age, Sex, Smoking Status, and Ethnic Differences. Ann Intern Med. 2004;146(19):486–92.spa
dc.relation.referencesYassin MA, Soliman AT, Hmissi SM, Abdulla MAJ, Itani M, Alamami AA, et al. Prevalence of neutropenia among adult Arabs in Qatar: Relation to other hematological parameters and anthropometric data. Med (United States). 2022;101(36):E30431.spa
dc.relation.referencesPalmblad J, Siersma V, Lind B, Bjerrum OW, Hasselbalch H, Andersen CL. Age-related prevalence and clinical significance of neutropenia - isolated or combined with other cytopenias: Real world data from 373 820 primary care individuals. Am J Hematol. 2020;95(5):521–8.spa
dc.relation.referencesAndersen CL, Tesfa D, Siersma VD, Sandholdt H, Hasselbalch H, Bjerrum OW, et al. Prevalence and clinical significance of neutropenia discovered in routine complete blood cell counts: A longitudinal study. J Intern Med. 2016;279(6):566–75.spa
dc.relation.referencesAgravat AH, Pujara K, Kothari RK, Dhruva GA. A clinico-pathological study of geriatric anemias. Aging Med. 2021;4(2):128–34.spa
dc.relation.referencesOrces CH. Prevalence of Anemia among Older Adults Residing in the Coastal and Andes Mountains in Ecuador: Results of the SABE Survey. Curr Gerontol Geriatr Res. 2017;2017.spa
dc.relation.referencesGuralnik JM, Eisenstaedt RS, Ferrucci L, Klein HG, Woodman RC. Prevalence of anemia in persons 65 years and older in the United States: Evidence for a high rate of unexplained anemia. Blood [Internet]. 2004;104(8):2263–8. Available from: http://dx.doi.org/10.1182/blood-2004-05-1812spa
dc.relation.referencesMichalak SS, Rupa-Matysek J, Hus I, Gil L. Unexplained anemia in the elderly - A real life analysis of 981 patients. Arch Med Sci. 2020;16(4):834–41.spa
dc.relation.referencesAlsaeed M, Ahmed SS, Seyadi K, Ahmed AJ, Alawi AS, Abulsaad K. The prevalence and impact of anemia in hospitalized older adults: A single center experience from Bahrain. J Taibah Univ Med Sci [Internet]. 2022;17(4):587–95. Available from: https://doi.org/10.1016/j.jtumed.2022.02.003spa
dc.relation.referencesSingh A, Hungund B, Kumar L, Pattanshetti M. Clinico-haematological profile of patients with bicytopenia. Pathology. 2018;50(5):540–8.spa
dc.relation.referencesNell EM, Chapanduka ZC. Aetiology of pancytopenia: Experience of a South African tertiary academic centre. Afr J Lab Med. 2022;11(1):1–8.spa
dc.relation.referencesN. GB, Rao KS. Pancytopenia: A Clinico Hematological Study. J Lab Physicians. 2011;3(01):015–20.spa
dc.relation.referencesJain A, Garg R, Kaur R, Nibhoria S, Chawla SPS, Kaur S. Clinico-hematological profile of pancytopenic adult patients in a tertiary care teaching hospital. Tzu Chi Med J. 2022;34(1):95–101.spa
dc.relation.referencesVargas-Carretero CJ, Fernandez-Vargas OE, Ron-Magaña AL, Padilla-Ortega JA, Ron-Guerrero CS, Barrera-Chairez E. Etiology and clinico-hematological profile of pancytopenia: experience of a Mexican Tertiary Care Center and review of the literature. Hematol (United Kingdom). 2019;24(1):399–404.spa
dc.relation.referencesDoshi D, Shah AN, Somani S, Jain A, Jivarajani H, Kothari P. Study of clinical and aetiological profile of 100 patients of pancytopenia at a tertiary care centre in India. Hematology. 2012;17(2):100–5.spa
dc.relation.referencesPapadaki HA, Palmblad J, Eliopoulos GD. Non-immune chronic idiopathic neutropenia of adult: An overview. Eur J Haematol. 2001;67(1):35–44.spa
dc.relation.referencesTsaknakis G, Gallì A, Papadakis S, Kanellou P, Elena C, Todisco G, et al. Incidence and prognosis of clonal hematopoiesis in patients with chronic idiopathic neutropenia. Blood. 2021;138(14):1249–57.spa
dc.relation.referencesMcGraw KL, Nguyen J, Komrokji RS, Sallman D, Al Ali NH, Padron E, et al. Immunohistochemical pattern of p53 is a measure of TP53 mutation burden and adverse clinical outcome in myelodysplastic syndromes and secondary acute myeloid leukemia. Haematologica 2016; 101:e320.spa
dc.relation.referencesRuzinova MB, Lee YS, Duncavage EJ, Welch JS. TP53 immunohistochemistry correlates with TP53 mutation status and clearance in decitabine-treated patients with myeloid malignancies. Haematologica 2019; 104:e345spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decsExamen de la Médula Óseaspa
dc.subject.decsBone Marrow Examinationeng
dc.subject.decsCélulas Madre Hematopoyéticasspa
dc.subject.decsHematopoietic Stem Cellseng
dc.subject.decsHematopoyesis Clonalspa
dc.subject.decsClonal Hematopoiesiseng
dc.subject.decsCitopeniaspa
dc.subject.decsCytopeniaeng
dc.subject.decsInmunohistoquímicaspa
dc.subject.decsImmunohistochemistryeng
dc.subject.proposalMyelodysplastic Syndromeseng
dc.subject.proposalImmunohistochemistryeng
dc.subject.proposalPrognosiseng
dc.subject.proposalBone Marroweng
dc.subject.proposalMutationeng
dc.subject.proposalSíndrome Mielodisplásicospa
dc.subject.proposalInmunohistoquímicaspa
dc.subject.proposalPronósticospa
dc.subject.proposalMédula Óseaspa
dc.subject.proposalMyelodysplastic Neoplasmseng
dc.subject.proposalMutaciónspa
dc.subject.proposalNeoplasia Mielodisplásicaspa
dc.titleCaracterización de la expresión de proteínas relacionadas con mutaciones somáticas de significado pronóstico en Síndrome Mielodisplásico en biopsia de médula ósea de pacientes con citopenia en el Hospital Universitario Nacional de Colombia entre 2017 y 2022spa
dc.title.translatedCharacterization of the expression of proteins related to somatic mutations of prognostic significance in Myelodysplastic Syndrome in bone marrow biopsy of patients with cytopenia at the Hospital Universitario Nacional de Colombia between 2017 and 2022eng
dc.typeTrabajo de grado - Especialidad Médicaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030634874.2024.pdf
Tamaño:
3.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Especialidad en Patología Anatómica y Clínica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: