Uso de diseño de experimentos para la optimización de la extracción de compuestos fenólicos en un extracto activo de Nectandra Reticulata

dc.contributor.advisorÁvila Murillo, Mónica Constanza
dc.contributor.advisorNarváez Cuenca, Carlos Eduardo
dc.contributor.authorPulido Teuta, Juanita
dc.contributor.researchgroupGrupo de Investigación en Química de Productos Naturales Vegetales Bioactivos (Quipronab)spa
dc.date.accessioned2023-05-29T16:28:25Z
dc.date.available2023-05-29T16:28:25Z
dc.date.issued2022
dc.descriptionilustraciones, graficasspa
dc.description.abstractLa actividad agonista en LXR modula la producción de ApoE y ABCA1, disminuyendo la placa amiloide en modelos murinos, convirtiéndose así una alternativa terapéutica del Alzheimer. Estudios previos muestran que Nectandra reticulata es agonista de LXR, por lo que es de nuestro interés identificar la composición del extracto, relacionarlo con su actividad y optimizar la extracción de este. Es así cómo se analizó el extracto activo de N. reticulata, mediante RP-UHPLC-DAD y UHPLC-ESI-HRMS. Los resultados del análisis por EM evidenciaron que la mayoría de los compuestos presentes corresponden a flavonoides glicosilados. Para confirmar la identidad de las agliconas, se realizó una hidrólisis ácida, mostrando que el compuesto principal con un área cromatográfica de 84,5% a 355 nm corresponde a la quercitrina; el segundo compuesto en abundancia del 8,0% del área cromatográfica se identificó como afzelina. En menor proporción (6,9%) se determinó 3 o 7-(6''-p-cumaroilglucósido) kaempferol. Después de la identificación se realizaron estudios in silico e in vitro, permitiendo seleccionar a la quercitrina cómo marcador, ya que este metabolito presenta una actividad superior a la de los otros compuestos identificados e incluso de su respectiva aglicona. Finalmente se realizó la validación y optimización de la extracción de este metabolito, se encontró que al hacer la extracción asistida por ultrasonido la cantidad de quercitrina en el extracto y el rendimiento del proceso se ven influenciados principalmente por la proporción etanol:agua y la temperatura del sistema. La mejores condiciones de extracción encontradas fueron 60% de etanol, 50 °C y 40 mL/g (solvente:material vegetal). (Texto tomado de la fuente)spa
dc.description.abstractThe agonistic activity of LXR modulates the production of ApoE and ABCA1, reducing amyloid plaque in murine models, that means a therapeutic alternative for Alzheimer's. Previous studies show that Nectandra reticulata is an LXR agonist, it is our interest to identify the composition of the extract, relate it to its activity and optimize its extraction. The active extract of N. reticulata was analyzed by RP-UHPLC-DAD and UHPLC-ESI-HRMS. The mass analysis showed that most of the compounds present correspond to glycosylated flavonoids. To confirm the identity of the aglycones, acid hydrolysis was performed. There it was shown that the main compound with a chromatographic area of 84.5% at 355 nm corresponds to quercitrin; the second compound in abundance of 8.0% of the chromatographic area was identified as afzeline. In a smaller proportion (chromatographic area 6.9%) 3 or 7-(6''-p-coumaroylglucoside) kaempferol were found. After the identification, in silico and in vitro studies of the molecules were carried out, these studies allowed quercitrin to be selected as a marker, since this metabolite has a higher activity than the other identified compounds and even of its respective aglycone. Finally, the validation and optimization of the extraction of this metabolite was carried out, it was found that when performing the extraction assisted by ultrasound, the amount of quercitrin in the extract and the performance of the process are mainly influenced by the proportion of ethanol:water and temperature of the system. The best extraction conditions were 60% ethanol, 50 °C and 40 mL/g (solvent:plant material ratio).eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaQuímica de productos naturalesspa
dc.format.extentxvi, 76 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83893
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesAgalloco, J., DeSantis, P., Grilli, A., & Pavell, A. (2021). Handbook of Validation in Pharmaceutical Processes, Fourth Edition. CRC Press.spa
dc.relation.referencesAguirre Rueda, D. (2014). Daño inflamatorio y estrés oxidativo en la Enfermedad de Alzheimer. Efecto de polifenoles y cannabinoides. https://roderic.uv.es/handle/10550/37242spa
dc.relation.referencesAkram, M., & Nawaz, A. (2017). Effects of medicinal plants on Alzheimer’s disease and memory deficits. Neural Regeneration Research, 12(4), 660. https://doi.org/10.4103/1673-5374.205108spa
dc.relation.referencesAkram, Robert Verpoorte, & Pomahačová, B. (2021). Methods for the analysis of galanthamine and its extraction from laboratory to industrial scale. South African Journal of Botany, 136, 51-64. https://doi.org/10.1016/j.sajb.2020.08.004spa
dc.relation.referencesAlarcón, M. E. T., Conde, C. G., & Mendez, G. L. (2019). Extracción, caracterización y actividad antioxidante del aceite esencial de Eucalyptus globulus Labill. Revista Cubana de Farmacia, 52(1), Art. 1. http://www.revfarmacia.sld.cu/index.php/far/article/view/266spa
dc.relation.referencesAlzheimer’s Disease International (ADI). (2021). About Alzheimer’s & Dementia. https://www.alzint.org/about/spa
dc.relation.referencesBalaguer Beser, Á. A., & Ruiz Fernández, L. Á. (2021). Selección de un modelo de regresión lineal múltiple para el cálculo de la precipitación media en verano. https://riunet.upv.es/handle/10251/167659spa
dc.relation.referencesBaptista, F. I., Henriques, A. G., Silva, A. M. S., Wiltfang, J., & da Cruz e Silva, O. A. B. (2014). Flavonoids as Therapeutic Compounds Targeting Key Proteins Involved in Alzheimer’s Disease. ACS Chemical Neuroscience, 5(2), 83-92. https://doi.org/10.1021/cn400213rspa
dc.relation.referencesBarbosa-Filho, J. M., Yoshida, M., & Gottlieb, O. R. (1989). Lignoids from Nectandra amazonum and N. glabrescens. Phytochemistry, 28(7), 1991. https://doi.org/10.1016/S0031-9422(00)97906-8spa
dc.relation.referencesBatiha, G. E.-S., Alkazmi, L. M., Nadwa, E. H., Rashwan, E. K., Beshbishy, A. M., Shaheen, H., & Wasef, L. (2020). Physostigmine: A Plant Alkaloid Isolated from Physostigma venenosum: A Review on Pharmacokinetics, Pharmacological and Toxicological Activities. Journal of Drug Delivery and Therapeutics, 10(1-s), Art. 1-s. https://doi.org/10.22270/jddt.v10i1-s.3866spa
dc.relation.referencesBenedetti, B., Caponigro, V., & Ardini, F. (2022). Experimental Design Step by Step: A Practical Guide for Beginners. Critical Reviews in Analytical Chemistry, 52(5), 1015-1028. https://doi.org/10.1080/10408347.2020.1848517spa
dc.relation.referencesBranch, S. K. (2005). Guidelines from the International Conference on Harmonisation (ICH). Journal of Pharmaceutical and Biomedical Analysis, 38(5), 798-805. https://doi.org/10.1016/j.jpba.2005.02.037spa
dc.relation.referencesBustos Rangel, A. M. (2021). Búsqueda de agonistas LXR en plantas colombianas con potencial terapéutico para la enfermedad de Alzheimer. https://repositorio.unal.edu.co/handle/unal/80277spa
dc.relation.referencesCaicedo Díaz, J. A. (2021). Evaluación del potencial terapéutico de agonistas sintéticos y naturales de LXR (GW3965 y Nectandra reticulata) en el modelo murino 3xTg-AD de la enfermedad de Alzheimer. https://repositorio.unal.edu.co/handle/unal/81590spa
dc.relation.referencesCalabrò, M., Rinaldi, C., Santoro, G., & Crisafulli, C. (2020). The biological pathways of Alzheimer disease: A review. AIMS Neuroscience, 8(1), 86-132. https://doi.org/10.3934/Neuroscience.2021005spa
dc.relation.referencesCambier, V., Hance, T., & de Hoffmann, E. (2000). Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize. Phytochemistry, 53(2), 223-229. https://doi.org/10.1016/S0031-9422(99)00498-7spa
dc.relation.referencesCastellani, R. J., Rolston, R. K., & Smith, M. A. (2010). Alzheimer Disease. Disease-a-month : DM, 56(9), 484-546. https://doi.org/10.1016/j.disamonth.2010.06.001spa
dc.relation.referencesConserva, G. A., Costa-Silva, T. A., Quirós-Guerrero, L. M., Marcourt, L., Wolfender, J.-L., Queiroz, E. F., Tempone, A. G., & Lago, J. H. G. (2021). Kaempferol-3-O-α-(3,4-di-E-p-coumaroyl)-rhamnopyranoside from Nectandra oppositifolia releases Ca2+ from intracellular pools of Trypanosoma cruzi affecting the bioenergetics system. Chemico-Biological Interactions, 349, 109661. https://doi.org/10.1016/j.cbi.2021.109661spa
dc.relation.referencesDewick, P. M. (2002). Medicinal Natural Products: A Biosynthetic Approach. John Wiley & Sons.spa
dc.relation.referencesDonoso, A. (2003). La enfermedad de Alzheimer. Revista chilena de neuro-psiquiatría, 41, 13-22. https://doi.org/10.4067/S0717-92272003041200003spa
dc.relation.referencesDuthey, B. (2004). Background Paper 6.11 Alzheimer Disease and other Dementias. Background Paper, 74.spa
dc.relation.referencesDyer, L. A., & Palmer, A. D. N. (Eds.). (2004). Piper: A Model Genus for Studies of Phytochemistry, Ecology, and Evolution. Springer US. https://doi.org/10.1007/978-0-387-30599-8spa
dc.relation.referencesFelipe, D. F., Brambilla, L. Z. S., Porto, C., Pilau, E. J., & Cortez, D. A. G. (2014). Phytochemical Analysis of Pfaffia glomerata Inflorescences by LC-ESI-MS/MS. Molecules, 19(10), Art. 10. https://doi.org/10.3390/molecules191015720spa
dc.relation.referencesFerreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandão, G. C., da Silva, E. G. P., Portugal, L. A., dos Reis, P. S., Souza, A. S., & dos Santos, W. N. L. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179-186. https://doi.org/10.1016/j.aca.2007.07.011spa
dc.relation.referencesFolch, J., Ettcheto, M., Petrov, D., Abad, S., Pedrós, I., Marin, M., Olloquequi, J., & Camins, A. (2018). Una revisión de los avances en la terapéutica de la enfermedad de Alzheimer: Estrategia frente a la proteína β-amiloide. Neurología, 33(1), 47-58. https://doi.org/10.1016/j.nrl.2015.03.012spa
dc.relation.referencesFouache, A., Zabaiou, N., De Joussineau, C., Morel, L., Silvente-Poirot, S., Namsi, A., Lizard, G., Poirot, M., Makishima, M., Baron, S., Lobaccaro, J.-M. A., & Trousson, A. (2019). Flavonoids differentially modulate liver X receptors activity-Structure-function relationship analysis. The Journal of Steroid Biochemistry and Molecular Biology, 190, 173-182. https://doi.org/10.1016/j.jsbmb.2019.03.028spa
dc.relation.referencesGandy, S., Knopman, D. S., & Sano, M. (2021). Talking points for physicians, patients and caregivers considering Aduhelm® infusion and the accelerated pathway for its approval by the FDA. Molecular Neurodegeneration, 16(1), 74. https://doi.org/10.1186/s13024-021-00490-zspa
dc.relation.referencesGarcez, F. R., Garcez, W. S., Martins, M., & Cruz, A. C. (1999). A Bioactive Lactone from Nectandra gardneri. Planta Medica, 65(8), 775-775. https://doi.org/10.1055/s-2006-960867spa
dc.relation.referencesGarcía, I., Ortiz, M. C., Sarabia, L., & Aldama, J. M. (2007). Validation of an analytical method to determine sulfamides in kidney by HPLC-DAD and PARAFAC2 with first-order derivative chromatograms. Analytica Chimica Acta, 587(2), 222-234. https://doi.org/10.1016/j.aca.2007.01.054spa
dc.relation.referencesGeng, P., Sun, J., Zhang, R., He, J., & Abliz, Z. (2009). An investigation of the fragmentation differences of isomeric flavonol-O-glycosides under different collision-induced dissociation based mass spectrometry. Rapid Communications in Mass Spectrometry, 23(10), 1519-1524. https://doi.org/10.1002/rcm.4021spa
dc.relation.referencesGonzález Villa, Á. A. (2004). Obtención de aceites esenciales y extractos etanólicos de plantas del Amazonas. https://repositorio.unal.edu.co/handle/unal/2800spa
dc.relation.referencesGoud, V., Ramasamy, A., Das, A., & Kalyanasundaram, D. (2019). Box-Behnken technique based multi-parametric optimization of electrostatic spray coating in the manufacturing of thermoplastic composites. Materials and Manufacturing Processes, 34(14), 1638-1645. https://doi.org/10.1080/10426914.2019.1666991spa
dc.relation.referencesGrecco, S. S., Lorenzi, H., Tempone, A. G., & Lago, J. H. G. (2016). Update: Biological and chemical aspects of Nectandra genus (Lauraceae). Tetrahedron: Asymmetry, 27(17), 793-810. https://doi.org/10.1016/j.tetasy.2016.07.009spa
dc.relation.referencesGrøntvedt, G. R., Schröder, T. N., Sando, S. B., White, L., Bråthen, G., & Doeller, C. F. (2018). Alzheimer’s disease. Current Biology: CB, 28(11), R645-R649. https://doi.org/10.1016/j.cub.2018.04.080spa
dc.relation.referencesGutiérrez Pulido, H. (2012). Análisis y diseño de experimentos [Text]. Biblioteca Hernán Malo González de la Universidad del Azuay; Biblioteca Hernán Malo González. https://biblioteca.uazuay.edu.ec/buscar/item/63520spa
dc.relation.referencesHarris, T. K., & Mildvan, A. S. (1999). High-Precision Measurement of Hydrogen Bond Lengths in Proteins by Nuclear Magnetic Resonance Methods. Proteins: Structure, Function, and Bioinformatics, 35(3), 275-282. https://doi.org/10.1002/(SICI)1097-0134(19990515)35:3<275::AID-PROT1>3.0.CO;2-Vspa
dc.relation.referencesHebert, L. E., Weuve, J., Scherr, P. A., & Evans, D. A. (2013). Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology, 80(19), 1778-1783. https://doi.org/10.1212/WNL.0b013e31828726f5spa
dc.relation.referencesHernández, M. G., & Salas, C. O. (2014). Etiología proteica de la enfermedad de Alzheimer. REDUCA, 6(1), Art. 1. http://www.revistareduca.es/index.php/reduca/article/view/1719spa
dc.relation.referencesHiebl, V., Ladurner, A., Latkolik, S., & Dirsch, V. M. (2018). Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnology Advances, 36(6), 1657-1698. https://doi.org/10.1016/j.biotechadv.2018.03.003spa
dc.relation.referencesHu, Y., Yang, Y., Yu, Y., Wen, G., Shang, N., Zhuang, W., Lu, D., Zhou, B., Liang, B., Yue, X., Li, F., Du, J., & Bu, X. (2013). Synthesis and Identification of New Flavonoids Targeting Liver X Receptor β Involved Pathway as Potential Facilitators of Aβ Clearance with Reduced Lipid Accumulation. Journal of Medicinal Chemistry, 56(15), 6033-6053. https://doi.org/10.1021/jm301913kspa
dc.relation.referencesHuang, Y., & Mucke, L. (2012). Alzheimer Mechanisms and Therapeutic Strategies. Cell, 148(6), 1204-1222. https://doi.org/10.1016/j.cell.2012.02.040spa
dc.relation.referencesHvattum, E., & Ekeberg, D. (2003). Study of the collision-induced radical cleavage of flavonoid glycosides using negative electrospray ionization tandem quadrupole mass spectrometry. Journal of Mass Spectrometry, 38(1), 43-49. https://doi.org/10.1002/jms.398spa
dc.relation.referencesJi, H., & Zhang, H. (2008). Multipotent natural agents to combat Alzheimer’s disease. Functional spectrum and structural features. Acta Pharmacologica Sinica, 29(2), 143-151. https://doi.org/10.1111/j.1745-7254.2008.00752.xspa
dc.relation.referencesJia, Y., Hoang, M. H., Jun, H.-J., Lee, J. H., & Lee, S.-J. (2013). Cyanidin, a natural flavonoid, is an agonistic ligand for liver X receptor alpha and beta and reduces cellular lipid accumulation in macrophages and hepatocytes. Bioorganic & Medicinal Chemistry Letters, 23(14), 4185-4190. https://doi.org/10.1016/j.bmcl.2013.05.030spa
dc.relation.referencesKepp, K. P. (2012). Bioinorganic Chemistry of Alzheimer’s Disease. Chemical Reviews, 112(10), 5193-5239. https://doi.org/10.1021/cr300009xspa
dc.relation.referencesKnopman, D. S., Amieva, H., Petersen, R. C., Chételat, G., Holtzman, D. M., Hyman, B. T., Nixon, R. A., & Jones, D. T. (2021). Alzheimer disease. Nature Reviews Disease Primers, 7(1), Art. 1. https://doi.org/10.1038/s41572-021-00269-yspa
dc.relation.referencesKoldamova, R., & Lefterov, I. (2007). Role of LXR and ABCA1 in the Pathogenesis of Alzheimer’s Disease -Implications for a New Therapeutic Approach. Curr. Alzheimer Res., 4(2), 171-178. https://doi.org/10.2174/156720507780362227spa
dc.relation.referencesLeardi, R. (2009). Experimental design in chemistry: A tutorial. Analytica Chimica Acta, 652(1), 161-172. https://doi.org/10.1016/j.aca.2009.06.015spa
dc.relation.referencesLei, Z., Sumner, B. W., Bhatia, A., Sarma, S. J., & Sumner, L. W. (2019). UHPLC-MS Analyses of Plant Flavonoids. Current Protocols in Plant Biology, 4(1), e20085. https://doi.org/10.1002/cppb.20085spa
dc.relation.referencesMabry, T. J., Markham, K. R., & Thomas, M. B. (1970). The Ultraviolet Spectra of Flavones and Flavonols. En T. J. Mabry, K. R. Markham, & M. B. Thomas (Eds.), The Systematic Identification of Flavonoids (pp. 41-164). Springer. https://doi.org/10.1007/978-3-642-88458-0_5spa
dc.relation.referencesMacías-Villamizar, V. E., Cuca-Suárez, L. E., & Coy-Barrera, E. D. (2015). Genus Nectandra: «Phytochemistry and Biological Activity». Boletin Latinoamericano y Del Caribe de Plantas Medicinales y Aromaticas, 27.spa
dc.relation.referencesMohandas, E., Rajmohan, V., & Raghunath, B. (2009). Neurobiology of Alzheimer’s disease. Indian Journal of Psychiatry, 51(1), 55-61. https://doi.org/10.4103/0019-5545.44908spa
dc.relation.referencesNewman, D. J., & Cragg, G. M. (2020). Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770-803. https://doi.org/10.1021/acs.jnatprod.9b01285spa
dc.relation.referencesNussbaum, R. L., & Ellis, C. E. (2003). Alzheimer’s Disease and Parkinson’s Disease. New England Journal of Medicine, 348(14), 1356-1364. https://doi.org/10.1056/NEJM2003ra020003spa
dc.relation.referencesNuutila, A. M., Kammiovirta, K., & Oksman-Caldentey, K.-M. (2002). Comparison of methods for the hydrolysis of flavonoids and phenolic acids from onion and spinach for HPLC analysis. Food Chemistry, 76(4), 519-525. https://doi.org/10.1016/S0308-8146(01)00305-3spa
dc.relation.referencesOlivero, R. A., Nocerino, J. M., & Deming, S. N. (1995). Experimental Design and Optimization. En J. Einax (Ed.), Chemometrics in Environmental Chemistry—Statistical Methods (pp. 73-122). Springer. https://doi.org/10.1007/978-3-540-49148-4_3spa
dc.relation.referencesOrnaf, R. M., & Dong, M. W. (2005). 2—Key Concepts of HPLC in Pharmaceutical Analysis. En S. Ahuja & M. W. Dong (Eds.), Separation Science and Technology (Vol. 6, pp. 19-45). Academic Press. https://doi.org/10.1016/S0149-6395(05)80046-7spa
dc.relation.referencesPlumb, J. A. (2004). Cell Sensitivity Assays: The MTT Assay. En S. P. Langdon (Ed.), Cancer Cell Culture: Methods and Protocols (pp. 165-169). Humana Press. https://doi.org/10.1385/1-59259-406-9:165spa
dc.relation.referencesRaissi, S., & Farsani, R.-E. (2009). Statistical Process Optimization Through Multi-Response Surface Methodology. International Journal of Mathematical and Computational Sciences, 3(3), 197-201.spa
dc.relation.referencesRamón, C., & Gil-Garzón, M. A. (2021). Efecto de los parámetros de operación de la extracción asistida por ultrasonido en la obtención de polifenoles de uva: Una revisión. TecnoLógicas, 24(51), Art. 51. https://doi.org/10.22430/22565337.1822spa
dc.relation.referencesRamón Vázquez, A., & Ramón Vázquez, A. (2018). Estudio del perfil transcripcional de los receptores nucleares LXR en un modelo celular de macrófago murino inmortalizado [Info:eu-repo/semantics/doctoralThesis, Universidad Complutense de Madrid]. https://eprints.ucm.es/49016/spa
dc.relation.referencesRastinejad, F., Huang, P., Chandra, V., & Khorasanizadeh, S. (2013). Understanding nuclear receptor form and function using structural biology. Journal of Molecular Endocrinology, 51(3), T1-T21. https://doi.org/10.1530/JME-13-0173spa
dc.relation.referencesRibeiro, A. B., Bolzani, V. da S., Yoshida, M., Santos, L. S., Eberlin, M. N., & Silva, D. H. S. (2005). A new neolignan and antioxidant phenols from Nectandra grandiflora. Journal of the Brazilian Chemical Society, 16, 526-530.spa
dc.relation.referencesRincón Aguilar, C. M. (2014). Actividad biológica de la familia Lauraceae. https://repositorio.unal.edu.co/handle/unal/52219spa
dc.relation.referencesRius-Pérez, S., Tormos, A. M., Pérez, S., & Taléns-Visconti, R. (2018). Patología vascular: ¿causa o efecto en la enfermedad de Alzheimer? Neurología, 33(2), 112-120. https://doi.org/10.1016/j.nrl.2015.07.010spa
dc.relation.referencesRodrigues, M. I., & Iemma, A. F. (2014). Experimental Design and Process Optimization. CRC Press.spa
dc.relation.referencesRossi, L., Mazzitelli, S., Arciello, M., Capo, C. R., & Rotilio, G. (2008). Benefits from dietary polyphenols for brain aging and Alzheimer’s disease. Neurochemical Research, 33(12), 2390-2400. https://doi.org/10.1007/s11064-008-9696-7spa
dc.relation.referencesSahoo, N., Manchikanti, P., & Dey, S. (2010). Herbal drugs: Standards and regulation. Fitoterapia, 81(6), 462-471. https://doi.org/10.1016/j.fitote.2010.02.001spa
dc.relation.referencesSahu, P. K., Ramisetti, N. R., Cecchi, T., Swain, S., Patro, C. S., & Panda, J. (2018). An overview of experimental designs in HPLC method development and validation. Journal of Pharmaceutical and Biomedical Analysis, 147, 590-611. https://doi.org/10.1016/j.jpba.2017.05.006spa
dc.relation.referencesSanabria-Castro, A., Alvarado-Echeverría, I., & Monge-Bonilla, C. (2017). Molecular Pathogenesis of Alzheimer’s Disease: An Update. Annals of Neurosciences, 24(1), 46-54. https://doi.org/10.1159/000464422spa
dc.relation.referencesSang, Z., Wang, K., Dong, J., & Tang, L. (2022). Alzheimer’s disease: Updated multi-targets therapeutics are in clinical and in progress. European Journal of Medicinal Chemistry, 238, 114464. https://doi.org/10.1016/j.ejmech.2022.114464spa
dc.relation.referencesSerrano, M. P. (2010). Mecanismos bioquímicos de la Enfermedad de Alzheimer. 20.spa
dc.relation.referencesSever, R., & Glass, C. K. (2013). Signaling by Nuclear Receptors. Cold Spring Harbor Perspectives in Biology, 5(3), a016709-a016709. https://doi.org/10.1101/cshperspect.a016709spa
dc.relation.referencesSodhi, R. K., & Singh, N. (2013). Liver X receptors: Emerging therapeutic targets for Alzheimer’s disease. Pharmacological Research, 72, 45-51. https://doi.org/10.1016/j.phrs.2013.03.008spa
dc.relation.referencesStipičević, S., Fingler, S., Zupančič-Kralj, L., & Drevenkar, V. (2003). Comparison of gas and high performance liquid chromatography with selective detection for determination of triazine herbicides and their degradation products extracted ultrasonically from soil. Journal of Separation Science, 26(14), 1237-1246. https://doi.org/10.1002/jssc.200301420spa
dc.relation.referencesTamayo, A. E. I., Pérez, C. H., & Tejeda, J. J. G. (2020). Tratamientos paliativos en la enfermedad de Alzheimer. 16 de abril, 59(275), 1-6.spa
dc.relation.referencesTaverniers, I., De Loose, M., & Van Bockstaele, E. (2004). Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. TrAC Trends in Analytical Chemistry, 23(8), 535-552. https://doi.org/10.1016/j.trac.2004.04.001spa
dc.relation.referencesTolosa, T., Rogez, H., Silva, E., & Souza, J. (2018). Optimization of Acid Hydrolysis of Myricetin-3-O-rhamnoside Using Response Surface Methodology. Journal of the Brazilian Chemical Society. https://doi.org/10.21577/0103-5053.20180125spa
dc.relation.referencesTundis, R., Loizzo, M. R., Nabavi, S. M., Orhan, I. E., Skalicka-Woźniak, K., D’Onofrio, G., & Aiello, F. (2018). Chapter 3—Natural Compounds and Their Derivatives as Multifunctional Agents for the Treatment of Alzheimer Disease. En G. Brahmachari (Ed.), Discovery and Development of Neuroprotective Agents from Natural Products (pp. 63-102). Elsevier. https://doi.org/10.1016/B978-0-12-809593-5.00003-3spa
dc.relation.referencesValencia Rincón, E. (2018). Generación de un modelo in vitro para evaluar la actividad agonista de extractos naturales, obtenidos de plantas de las familias de Lauráceas y Miristicáceas, sobre los receptores X del hígado (LXRs). https://repositorio.unal.edu.co/handle/unal/63367spa
dc.relation.referencesVeer, B., Geetanjali, & Singh, R. (2020). Chapter 6—Natural products as anti-Alzheimer’s drugs. En Atta-ur-Rahman (Ed.), Studies in Natural Products Chemistry (Vol. 66, pp. 157-174). Elsevier. https://doi.org/10.1016/B978-0-12-817907-9.00006-4spa
dc.relation.referencesWHO. (2021, septiembre 2). Dementia. https://www.who.int/news-room/fact-sheets/detail/dementiaspa
dc.relation.referencesXiao, J., Muzashvili, T. S., & Georgiev, M. I. (2014). Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnology Advances, 32(6), 1145-1156. https://doi.org/10.1016/j.biotechadv.2014.04.006spa
dc.relation.referencesXu, C., Zhang, Y., Zhu, L., Huang, Y., & Lu, J. (2011). Influence of Growing Season on Phenolic Compounds and Antioxidant Properties of Grape Berries from Vines Grown in Subtropical Climate. Journal of Agricultural and Food Chemistry, 59(4), 1078-1086. https://doi.org/10.1021/jf104157zspa
dc.relation.referencesXue-shan, Z., juan, P., Qi, W., Zhong, R., Li-hong, P., Zhi-han, T., Zhi-sheng, J., Gui-xue, W., & Lu-shan, L. (2016). Imbalanced cholesterol metabolism in Alzheimer’s disease. Clinica Chimica Acta, 456, 107-114. https://doi.org/10.1016/j.cca.2016.02.024spa
dc.relation.referencesYin, R., Messner, B., Faus-Kessler, T., Hoffmann, T., Schwab, W., Hajirezaei, M.-R., von Saint Paul, V., Heller, W., & Schäffner, A. R. (2012). Feedback inhibition of the general phenylpropanoid and flavonol biosynthetic pathways upon a compromised flavonol-3-O-glycosylation. Journal of Experimental Botany, 63(7), 2465-2478. https://doi.org/10.1093/jxb/err416spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.decsEnfermedad de Alzheimerspa
dc.subject.decsAlzheimer Diseaseeng
dc.subject.proposalAlzheimerspa
dc.subject.proposalLauraceaeeng
dc.subject.proposalModelamiento molecularspa
dc.subject.proposalBox-Bhenckeneng
dc.subject.proposalNectandraspa
dc.subject.proposalValidacióneng
dc.subject.proposalDocking moleculareng
dc.subject.proposalValidationeng
dc.titleUso de diseño de experimentos para la optimización de la extracción de compuestos fenólicos en un extracto activo de Nectandra Reticulataspa
dc.title.translatedUse of design of experiments for the optimization of the extraction of phenolic compounds in an active extract of Nectandra Reticulataeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015474719_2023.pdf
Tamaño:
1.63 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias- Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: