Evaluación del efecto de condiciones de cultivo sobre la producción de Penicillium sp. HC1 usado en la degradación de residuos vegetales de cultivos de flores en Guasca – Cundinamarca

dc.contributor.advisorMoreno Sarmiento, Nubia Carmenza
dc.contributor.advisorGutiérrez Rojas, Ivonne
dc.contributor.authorGarcía Rico, Danna Lorena
dc.contributor.researchgroupBioprocesos y Bioprospecciónspa
dc.coverage.countryColombia
dc.coverage.regionGuasca
dc.coverage.regionCundinamarca
dc.date.accessioned2024-01-17T14:23:59Z
dc.date.available2024-01-17T14:23:59Z
dc.date.issued2023-12-05
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEn las últimas décadas, Colombia se ha posicionado como un referente a nivel mundial en la industria floricultora. Sin embargo, este próspero sector enfrenta retos ambientales, siendo la generación de residuos una preocupación constante. En contexto, la producción de desechos de clavel en el país es de 1500 kg/mes por hectárea, de los cuales en promedio el 10% es utilizado en compostaje y el 90% restante es dado por lo general como alimento para animales, lo cual ha sido cuestionable por magnificar los plaguicidas en la cadena trófica. Es así, como la búsqueda de soluciones sostenibles y eficientes para la degradación de residuos vegetales se ha convertido en una prioridad de este sector agrícola. Una alternativa que se ha venido estudiando es el uso directo de microorganismos con capacidad lignocelulolítica. Biocultivos S.A. y el Instituto de Biotecnología de la Universidad Nacional de Colombia – IBUN desarrollaron un inóculo a partir de Penicillium sp. HC1 para acelerar la degradación de material lignocelulósico. Este bioinsumo presenta desafíos alineados a la producción y calidad de sus conidios en fermentación sumergida y, por tanto, el presente trabajo evaluó diferentes condiciones de cultivo sobre la producción de Penicillium sp. HC1, así como su uso en la degradación de residuos de material vegetal de cultivos de residuos de clavel en búsqueda de la mejora del producto. Esta investigación no mostró cambios significativos en el producto final utilizando CaCl2. Por otra parte, se profundizó en la influencia que tienen diversos aditivos complejos como casaminoácidos, aminoácidos ramificados, otros suplementos y vitaminas al ser agregados al medio de cultivo líquido en la producción de Penicillium sp. HC1, encontrándose resultados positivos. Concentraciones de 13 g/L de casaminoácidos mejoran la producción de biomasa y conidios 6% y 11% respectivamente con relación al control (medio base). Del mismo modo, los llamados aminoácidos de prueba (AP) en esta investigación, resultaron ser un reemplazo efectivo y más económico a los casaminoácidos, obteniendo además mejoría en la viabilidad y productividad de los conidios de Penicillium sp. HC1. Sin embargo, la tolerancia térmica no mostraba progreso. Esto se solucionó al adicionar vitaminas obteniendo un incremento del 64% de la tolerancia térmica con respecto al valor obtenido con el producto inicial. Adicionalmente, se exploró el efecto que tienen tres flujos aire en el proceso de fermentación sumergida en tanque agitado, logrando una mejoría significativa en el producto a 2,5 vvm. En resumen, la biomasa mejoró un 27%, los conidios 16%, la viabilidad 76% y la tolerancia térmica 54% en el producto del biorreactor. Por último, se validó el uso de Penicillium sp. HC1 proveniente del medio de cultivo MBAP VIT producido a 2,5 vvm, satisfaciendo así una necesidad agrícola en la industria floricultora, que busca constantemente alternativas para el manejo de sus residuos vegetales. Esta investigación demostró la mejora en la aceleración de la degradación de los residuos de clavel utilizando Penicillium sp. HC1, consiguiendo resultados favorables en co-cultivos con Pleurotus ostreatus T1.1. (Texto tomado de la fuente)spa
dc.description.abstractIn recent decades, Colombia has positioned itself as a world leader in the flower industry. However, this thriving sector faces environmental challenges, with waste generation being a constant concern. In context, carnation waste production in the country is 1500 kg/month per hectare, of which an average of 10% is used in composting and the remaining 90% is usually given as animal feed, which has been questioned for magnifying pesticides in the food chain. Thus, the search for sustainable and efficient solutions for the degradation of plant residues has become a priority in this agricultural sector. One alternative that has been studied is the direct use of microorganisms with lignocellulolytic capacity. Biocultivos S.A. and the Institute of Biotechnology of the National University of Colombia - IBUN developed an inoculum from Penicillium sp. HC1 to accelerate the degradation of lignocellulosic material. This bioinput presents challenges aligned to the production and quality of its conidia in submerged fermentation and, therefore, the present work evaluated different culture conditions on the production of Penicillium sp. HC1, as well as its use in the degradation of plant material residues from carnation residue crops in search of product improvement. This research did not show significant changes in the final product using CaCl2. On the other hand, the influence of various complex additives such as casamino acids, branched amino acids, other supplements and vitamins when added to the liquid culture medium on the production of Penicillium sp. HC1 was studied, and positive results were found. Concentrations of 13 g/L of casamino acids improve the production of biomass and conidia 6% and 11%, respectively, with respect to the control (base medium). Similarly, the so-called test amino acids (PA) in this research proved to be an effective and more economical replacement for casamino acids, also improving the viability and productivity of Penicillium sp. HC1 conidia. However, thermal tolerance did not show progress. This was solved by adding vitamins, obtaining a 64% increase in thermal tolerance with respect to the initial product. Additionally, the effect of three air flows in the submerged fermentation process in a stirred tank was explored, achieving a significant improvement in the product at 2.5 vvm. In summary, biomass improved 27%, conidia 16%, viability 76% and thermal tolerance 54% in the bioreactor product. Finally, the use of Penicillium sp. HC1 from the MBAP VIT culture medium produced at 2.5 vvm was validated, thus satisfying an agricultural need in the floriculture industry, which is constantly looking for alternatives for the management of its plant residues. This research demonstrated the improvement in the acceleration of carnation waste degradation using Penicillium sp. HC1, achieving favorable results in co-cultures with Pleurotus ostreatus T1.1.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Microbiologíaspa
dc.description.researchareaBioinsumosspa
dc.format.extentxvii, 149 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85343
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesAbdul Manan, M., & Webb, C. (2018). Estimating fungal growth in submerged fermentation in the presence of solid particles based on colour development. Biotechnology & Biotechnological Equipment, 32(3), 618–627. https://doi.org/10.1080/13102818.2018.1440974spa
dc.relation.referencesAdams, T. H., Wieser, J. K., & Yu, J.-H. (1998). Asexual Sporulation in Aspergillus nidulans. Microbiology and Molecular Biology Reviews, 62(1), 35–54. https://doi.org/10.1128/MMBR.62.1.35-54.1998spa
dc.relation.referencesAhmed, J., Taslim, A., Raihan, T., Sohag, Md. M. H., Hasan, M., Suhani, S., Qadri, F., & Azad, A. K. (2023). Characterization of an endo‐beta‐1,4 glucanase gene from paper‐degrading and denim bio‐stoning cellulase producing Aspergillus isolates. Biotechnology and Applied Biochemistry, 70(3), 1057–1071. https://doi.org/10.1002/bab.2420spa
dc.relation.referencesAlbaek, M. O., Gernaey, K. V., Hansen, M. S., & Stocks, S. M. (2011). Modeling enzyme production with Aspergillus oryzae in pilot scale vessels with different agitation, aeration, and agitator types. Biotechnology and Bioengineering, 108(8), 1828–1840. https://doi.org/10.1002/bit.23121spa
dc.relation.referencesAlfonso Moreno, F., Robayo Quintana, M., Ferrucho Rodríguez, L., & Vargas Oyola, M. (2016). Aprovechamiento de residuos vegetales de pétalos de rosas, tallos de girasol y vástago de plátano para la fabricación artesanal de papel. INVENTUM, 11(20), 71–82. https://doi.org/10.26620/uniminuto.inventum.11.20.2016.71-82spa
dc.relation.referencesAl-Snafi, P. D. A. E. (2017). Chemical contents and medical importance of Dianthus caryophyllus- A review. IOSR Journal of Pharmacy (IOSRPHR), 07(03), 61–71. https://doi.org/10.9790/3013-0703016171spa
dc.relation.referencesArdestani, F., Fatemi, S. A., Yakhchali, B., Hosseyni, M., & Najafpour, G. (2009). The Effects of Methionine and Acetate Concentrations on Mycophenolic Acid Production by Penicillium bervicompactum MUCL 19011 in Submerged Culture. International Journal of Chemical, Materials and Biomolecular Sciences, 2.spa
dc.relation.referencesArdestani, F., & Marzban, A. (2012). L-isoleucine Effects on Yield and Productivity of a Batch Fermentation Process for Mycophenolic Acid Production by Penicillium brevicompactum. World Applied Science Journal, 20, 742–747.spa
dc.relation.referencesAsadollahzadeh, M., Mohammadi, M., & Lennartsson, P. R. (2023). Fungal biotechnology. En Current Developments in Biotechnology and Bioengineering (pp. 31–66). Elsevier. https://doi.org/10.1016/B978-0-323-91872-5.00006-5spa
dc.relation.referencesAsocolflores. (2022). ASOCOLFLORES – BALANCE 2022: El fortalecimiento de la sostenibilidad, el reencuentro y la promoción marcaron este año para las flores de Colombia | Agricultura & Ganadería.spa
dc.relation.referencesBapat, P. M., Das, D., Sohoni, S. V, & Wangikar, P. P. (2006). Hierarchical amino acid utilization and its influence on fermentation dynamics: rifamycin B fermentation using Amycolatopsis mediterraneiS699, a case study. Microbial Cell Factories, 5(1), 32. https://doi.org/10.1186/1475-2859-5-32spa
dc.relation.referencesBarriga, M. (2007). No te comas al mundo, las raíces de las flores: las deudas y los impactos de la floricultura en Colombia.spa
dc.relation.referencesBasto, B., da Silva, N. R., Teixeira, J. A., & Silvério, S. C. (2022). Production of Natural Pigments by Penicillium brevicompactum Using Agro-Industrial Byproducts. Fermentation, 8(10), 536. https://doi.org/10.3390/fermentation8100536spa
dc.relation.referencesBasu, S. N., & Bhattacharyya, J. P. (1962). Studies on the Growth and Sporulation of Some Species of Penicillium. Journal of General Microbiology, 27(1), 61–73. https://doi.org/10.1099/00221287-27-1-61spa
dc.relation.referencesBeguin, H. (2010). Tritirachium egenum, a thiamine- and siderophore-auxotrophic fungal species isolated from a Penicillium rugulosum. FEMS Microbiology Ecology, 74(1), 165–173. https://doi.org/10.1111/j.1574-6941.2010.00929.xspa
dc.relation.referencesBeitel, S. M., & Knob, A. (2013). Penicillium miczynskii β -glucosidase: A Glucose-Tolerant Enzyme Produced Using Pineapple Peel as Substrate. Industrial Biotechnology, 9(5), 293–300. https://doi.org/10.1089/ind.2013.0016spa
dc.relation.referencesBernal Ruiz, S. M., & Gómez Sánchez, L. C. (2016). Hidrólisis parcial de cascarilla de cebada mediante el uso de extracto enzimático producido por Penicillium sp. HC1 para la obtención de xilosa. Pontificia Universidad Javeriana.spa
dc.relation.referencesBerovič, M., Cimerman, A., Steiner, W., & Koloini, T. (1991). Submerged citric acid fermentation: rheological properties ofAspergillus niger broth in a stirred tank reactor. Applied Microbiology and Biotechnology, 34(5), 579–581. https://doi.org/10.1007/BF00167902spa
dc.relation.referencesBird, R. B., Stewart, W. E., & Lightfoot. (2002). Transport Phenomena (John Wiley and Sons Inc., Ed.; 2nd Ed.).spa
dc.relation.referencesBockelmann, W., Portius, S., Lick, S., & Heller, K. J. (1999). Sporulation of Penicillium camemberti in Submerged Batch Culture. Systematic and Applied Microbiology, 22(3), 479–485. https://doi.org/10.1016/S0723-2020(99)80058-7spa
dc.relation.referencesBonilla López, D. S. (2020). Efecto de la incorporación de tamo de arroz degradado por Talaromyces sayulitensis HC1 y el enriquecimiento con nitrogeno sobre la germinación y el crecimiento de arroz y tomate. Pontificia Universidad Javeriana.spa
dc.relation.referencesBonilla Rojas, M. P. (2021). La maravilla del sector de la Floricultura. ANEIA - Universidad de Los Andes. https://agronegocios.uniandes.edu.co/2022/03/la-maravilla-del-sector-de-la-floricultura/spa
dc.relation.referencesBonnarme, P., & Jeffries, T. W. (1990). Mn(II) Regulation of Lignin Peroxidases and Manganese-Dependent Peroxidases from Lignin-Degrading White Rot Fungi. Applied and Environmental Microbiology, 56(1), 210–217. https://doi.org/10.1128/aem.56.1.210-217.1990spa
dc.relation.referencesBoyle, J. (2005). Lehninger principles of biochemistry (4th ed.): Nelson, D., and Cox, M. Biochemistry and Molecular Biology Education, 33(1), 74–75. https://doi.org/10.1002/bmb.2005.494033010419spa
dc.relation.referencesCadena Forero, D. M. (2022). Cadena Forero, 2021. Incorporacion de la economía circular en el sector floricultor de la sabana de bogotá en colombia. Universidad de La Sabana.spa
dc.relation.referencesCalderón Tenori, C. D., Porras Rey, L., Mena, F., Solano Díaz, K., & Arias Andrés, M. (2001). Producción de enzimas ligninolíticas y biodegradación del herbicida diuron por hongos de la pudrición blanca colectados en Costa Rica, cultivados sobre rastrojo de piña. r, Instituto Regional de Estudios en Sustancias Tóxicas de la Universidad Nacional (IRETUNA).spa
dc.relation.referencesCanteri, H., & Ghoul, M. (2015). Submerged Liquid Culture for Production of Biomass and Spores of Penicillium. https://doi.org/10.1080/87559129.2015.1015136, 31(3), 262–278. https://doi.org/10.1080/87559129.2015.1015136spa
dc.relation.referencesCarrillo, L. (2003). Los hongos de los alimentos y forrajes. Universidad Nacional de Jujuy.spa
dc.relation.referencesCeniflores. (2023). Sector Floricultor. https://ceniflores.org/sector-floricultor/spa
dc.relation.referencesChen, H. (2013). Modern Solid State Fermentation. Springer Netherlands. https://doi.org/10.1007/978-94-007-6043-1spa
dc.relation.referencesChen, M., Wang, J., Lin, L., Xu, X., Wei, W., Shen, Y., & Wei, D. (2022). Synergistic Regulation of Metabolism by Ca 2+ /Reactive Oxygen Species in Penicillium brevicompactum Improves Production of Mycophenolic Acid and Investigation of the Ca 2+ Channel. ACS Synthetic Biology, 11(1), 273–285. https://doi.org/10.1021/acssynbio.1c00413spa
dc.relation.referencesCho, Y. J., Hwang, H. J., Kim, S. W., Song, C. H., & Yun, J. W. (2002a). Effect of carbon source and aeration rate on broth rheology and fungal morphology during red pigment production by Paecilomyces sinclairii in a batch bioreactor. Journal of Biotechnology, 95(1), 13–23. https://doi.org/10.1016/S0168-1656(01)00445-Xspa
dc.relation.referencesCho, Y. J., Hwang, H. J., Kim, S. W., Song, C. H., & Yun, J. W. (2002b). Effect of carbon source and aeration rate on broth rheology and fungal morphology during red pigment production by Paecilomyces sinclairii in a batch bioreactor. Journal of Biotechnology, 95(1), 13–23. https://doi.org/10.1016/S0168-1656(01)00445-Xspa
dc.relation.referencesCliquet, S., & Jackson, M. A. (2005). Impact of carbon and nitrogen nutrition on the quality, yield and composition of blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus. Journal of Industrial Microbiology & Biotechnology, 32(5), 204–210. https://doi.org/10.1007/s10295-005-0232-3spa
dc.relation.referencesColombia CO. (2019). Colombia CO. En floricultura, la respuesta es Colombia.spa
dc.relation.referencesCunningham, R., & López, G. (1994). Etanol de lignocelulósicos: tecnología y perspectivas. Programa CYTED.spa
dc.relation.referencesda Costa, S. G., Pereira, O. L., Teixeira-Ferreira, A., Valente, R. H., de Rezende, S. T., Guimarães, V. M., & Genta, F. A. (2018). Penicillium citrinum UFV1 β-glucosidases: purification, characterization, and application for biomass saccharification. Biotechnology for Biofuels, 11(1), 226. https://doi.org/10.1186/s13068-018-1226-5spa
dc.relation.referencesDANE, & DIRPEN. (2011). Censo de Fincas Productoras de Flores En 28 municipios de la Sabana de Bogotá y Cundinamarca 2009.spa
dc.relation.referencesDay, J. B., Mantle, P. G., & Shaw, B. I. (1980). Production of Verruculogen by Penicillium estinogenum in Stirred Fermenters. Microbiology, 117(2), 405–410. https://doi.org/10.1099/00221287-117-2-405spa
dc.relation.referencesde Carvalho, C. C. C. R. (2016). Fungi in Fermentation and Biotransformation Systems. 525–541. https://doi.org/10.1007/978-3-319-29137-6_21spa
dc.relation.referencesde Castro Coêlho, M., da Câmara Rocha, J., Augusto Santos, F., Carlos Ramos Gonçalves, J., Maria de Vasconcelos, S., Cristina Soares de Lima Grisi, T., Florentino de Melo Santos, S., Antônio Machado de Araújo, D., & Campos Teixeira de Carvalho-Gonçalves, L. (2021). Use of agroindustrial wastes for the production of cellulases by Penicillium sp. FSDE15. Journal of King Saud University - Science, 33(6), 101553. https://doi.org/10.1016/J.JKSUS.2021.101553spa
dc.relation.referencesDetroy, R. W., DeMarini, D. M., & Stil, P. E. (1978). Mycoviruses of Penicillium stoloniferum: influence of carbon-nitrogen nutrition upon replication. Northern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, Peoria, IL, U. S. A., 947–953spa
dc.relation.referencesDietsch, R., Jakobs-Schönwandt, D., Grünberger, A., & Patel, A. (2021). Desiccation-tolerant fungal blastospores: From production to application. Current Research in Biotechnology, 3, 323–339. https://doi.org/10.1016/j.crbiot.2021.11.005spa
dc.relation.referencesDijksterhuis, J., & Samson, R. A. (2002). Food and Crop Spoilage on Storage. En Agricultural Applications (pp. 39–52). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-03059-2_3spa
dc.relation.referencesDurán Sequeda, D. E. (2017). Evaluación de la fuente, concentración y relación de carbono nitrógeno (C:N) sobre la formación de conidios de Penicillium sp. HC1 en medio líquido.spa
dc.relation.referencesDyer, P. S., & O’Gorman, C. M. (2011a). A fungal sexual revolution: Aspergillus and Penicillium show the way. Current Opinion in Microbiology, 14(6), 649–654. https://doi.org/10.1016/j.mib.2011.10.001spa
dc.relation.referencesDyer, P. S., & O’Gorman, C. M. (2011b). A fungal sexual revolution: Aspergillus and Penicillium show the way. Current Opinion in Microbiology, 14(6), 649–654. https://doi.org/10.1016/j.mib.2011.10.001spa
dc.relation.referencesElisashvili, V., Kachlishvili, E., Tsiklauri, N., Metreveli, E., Khardziani, T., & Agathos, S. N. (2009). Lignocellulose-degrading enzyme production by white-rot Basidiomycetes isolated from the forests of Georgia. World Journal of Microbiology and Biotechnology, 25(2), 331–339. https://doi.org/10.1007/s11274-008-9897-xspa
dc.relation.referencesEriksson, T., Börjesson, J., & Tjerneld, F. (2002). Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme and Microbial Technology, 31(3), 353–364. https://doi.org/10.1016/S0141-0229(02)00134-5spa
dc.relation.referencesEspinosa Negrín, A. M., López González, L. M., & Casdelo Gutiérrez, N. L. (2022). Pretratamientos aplicados a biomasas lignocelulósicas: una revisión de los principales métodos analíticos utilizados para su evaluación. Revista Cubana de Química, 34 (1), 87–110.spa
dc.relation.referencesFernandes, T. V., Klaasse Bos, G. J., Zeeman, G., Sanders, J. P. M., & van Lier, J. B. (2009). Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass. Bioresource Technology, 100(9), 2575–2579. https://doi.org/10.1016/j.biortech.2008.12.012spa
dc.relation.referencesFlorverde. (2022). Florverde 25 años trabajando por la sostenibilidad. Florverde Sustainable Flowers.spa
dc.relation.referencesFoster, J. W., McDaniel, L. E., Woodruff, H. B., & Stokes, J. L. (1945). Microbiological Aspects of Penicillin. Journal of Bacteriology, 50(3), 365–368. https://doi.org/10.1128/jb.50.3.365-368.1945spa
dc.relation.referencesFoster, J. W., Woodruff, H. B., & McDaniel, L. E. (1946). Microbiological Aspects of Penicillin. Journal of Bacteriology, 51(4), 465–478. https://doi.org/10.1128/jb.51.4.465-478.1946spa
dc.relation.referencesFrisvad, J. C. (2015). Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species. Frontiers in microbiology, 5(DEC). https://doi.org/10.3389/FMICB.2014.00773spa
dc.relation.referencesFrisvad, J. C., Smedsgaard, J., Larsen, T. O., & Samson, R. A. (2004). Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. En IN MYCOLOGY (Vol. 49).spa
dc.relation.referencesFrivsad, J. C. (1985). Creatine sucrose agar, a differential medium for mycotoxin producing terverticillate Penicillium species. Letters in Applied Microbiology, 1(6), 109–113. https://doi.org/10.1111/j.1472-765X.1985.tb01500.xspa
dc.relation.referencesGarcía Castillo, C. (2015). Evaluación del efecto de la luz sobre la morfología, el crecimiento y la conidiogénesis de Penicillium sp. HC1 [Tesis de pregrado en microbiología]. Pontificia Universidad Javeriana.spa
dc.relation.referencesGarcía, D. A. (2019). Producción sostenible en el sector floricultor colombiano. Semillero de Investigación Desarrollo Sostenible. Fundación Universitaria de la Cámara de Comercio de Bogotá.spa
dc.relation.referencesGarcía Mora, A. E. (2006). Estudio de la degradación de residuos lignocelulósicos derivados del procesamiento industrial del cranberry (Vaccinium macrocarpon Ait.). http://cybertesis.uach.cl/tesis/uach/2006/egg216e/doc/egg216e.pdfspa
dc.relation.referencesGarcía-Rico, R. O., Martín, J. F., & Fierro, F. (2011). Heterotrimeric Gα protein Pga1 from Penicillium chrysogenum triggers germination in response to carbon sources and affects negatively resistance to different stress conditions. Fungal Genetics and Biology, 48(6), 641–649. https://doi.org/10.1016/j.fgb.2010.11.013spa
dc.relation.referencesGarcía-Soto, M. J., Botello-Alvarez, E., Jiménez-Islas, H., Navarrete-Bolaños, J. L., Barajas-Conde, E., Rico-Martínez, R., Guevara-González, R. G., & Torres-Pacheco, I. (2006). Growth morphology and hydrodynamics of filamentous fungi in submerged cultures.spa
dc.relation.referencesGermec, M., & Turhan, I. (2023). Effect of pH control and aeration on inulinase production from sugarbeet molasses in a bench-scale bioreactor. Biomass Conversion and Biorefinery, 13(6), 4727–4739. https://doi.org/10.1007/s13399-021-01436-7spa
dc.relation.referencesGomes, D. G., Coelho, E., Silva, R., Domingues, L., & Teixeira, J. A. (2023). Bioreactors and engineering of filamentous fungi cultivation. En Current Developments in Biotechnology and Bioengineering (pp. 219–250). Elsevier. https://doi.org/10.1016/B978-0-323-91872-5.00018-1spa
dc.relation.referencesGupta, R., Mehta, G., Khasa, Y. P., & Kuhad, R. C. (2011). Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation, 22(4), 797–804. https://doi.org/10.1007/s10532-010-9404-6spa
dc.relation.referencesGutiérrez, I., Villamil, A., Aguirre Morales, M., Reyes-Pineda, E., Lemos-Gordo, S., Méndez-Pedraza, J., Núñez-Arbeláez, Á., Parra-Fajardo, L., Alfonso-Piragua, A., Avendaño-Herrera, D., Melgarejo, L. M., Camelo, C., & Rodríguez, J. (2012). Estimación de poblaciones de microorganismos ligninolíticos y celulolíticos y actividad de β-Glucosidasa en agrosistemas de arroz. (pp. 89–107).spa
dc.relation.referencesGutiérrez Rojas, I. (2017). Evaluación del efecto de condiciones de cultivo sobre la conidiogénesis en Penicillium sp. (HC1).spa
dc.relation.referencesGutiérrez-Rojas, I., Moreno-Sarmiento, N., & Montoya, D. (2015). Mecanismos y regulación de la hidrólisis enzimática de celulosa en hongos filamentosos: casos clásicos y nuevos modelos. Revista Iberoamericana de Micología, 32(1), 1–12. https://doi.org/10.1016/j.riam.2013.10.009spa
dc.relation.referencesHadley, G., & Harrold, C. E. (1958). The Sporulation of Penicillium notatum Westling in Submerged Liquid Culture. Journal of Experimental Botany, 9(3), 408–417. https://doi.org/10.1093/jxb/9.3.408spa
dc.relation.referencesHarvey, L. M., McNeil, B., Berry, D. R., & White, S. (1998). Autolysis in Batch Cultures of Penicillium Chrysogenum at Varying Agitation Rates. Enzyme and Microbial Technology, 22(6), 446–458. https://doi.org/10.1016/S0141-0229(97)00234-2spa
dc.relation.referencesHeath, I. B. (1995). Integration and regulation of hyphal tip growth. Canadian Journal of Botany, 73(S1), 131–139. https://doi.org/10.1139/b95-236spa
dc.relation.referencesHoubraken, J., Kocsubé, S., Visagie, C. M., Yilmaz, N., Wang, X.-C., Meijer, M., Kraak, B., Hubka, V., Bensch, K., Samson, R. A., & Frisvad, J. C. (2020). Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Studies in Mycology, 95, 5–169. https://doi.org/10.1016/j.simyco.2020.05.002spa
dc.relation.referencesHoubraken, J., & Samson, R. A. (2011). Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology, 70, 1–51. https://doi.org/10.3114/sim.2011.70.01spa
dc.relation.referencesHoward, R. L., Abotsi, E., Jansen, van R. E. L., & Howard, S. (2003). Lignocellulose biotechnology: issues of bioconversion and enzyme production. African Journal of Biotechnology, 2(12), 602–619. https://doi.org/10.5897/AJB2003.000-1115spa
dc.relation.referencesIbba, M., Taylor, S. J. C., Weedon, C. M., & Mantle, P. G. (1987). Submerged Fermentation of Penicillium paxilli Biosynthesizing Paxilline, a Process Inhibited by Calcium-induced Sporulation. Microbiology, 133(11), 3109–3119. https://doi.org/10.1099/00221287-133-11-3109spa
dc.relation.referencesIcontec. (2023). Certificación Florverde.spa
dc.relation.referencesIdárraga, P., & Callejas, P. (2011). Catálogo de plantas vasculares. Análisis florístico de la vegetación del Departamento de Antioquia. Series Biodiversidad y Recursos Naturales. Universidad de Antioquia, Missouri Botanical Garden & Oficina de planeación departamental de la gobernación de Antioquia, II.spa
dc.relation.referencesIjadpanahsaravi, M., Punt, M., Wösten, H. A. B., & Teertstra, W. R. (2021). Minimal nutrient requirements for induction of germination of Aspergillus niger conidia. Fungal Biology, 125(3), 231–238. https://doi.org/10.1016/j.funbio.2020.11.004spa
dc.relation.referencesInch, J. M. M., Humphreys, A. M., Trinci, A. P. J., & Gillespie, A. T. (1986). Growth and blastospore formation by Paecilomyces fumosoroseus, a pathogen of brown planthopper (Nilaparvata lugens). Transactions of the British Mycological Society, 87(2), 215–222. https://doi.org/10.1016/S0007-1536(86)80023-7spa
dc.relation.referencesIssaly, N., Chauveau, H., Aglevor, F., Fargues, J., & Durand, A. (2005). Influence of nutrient, pH and dissolved oxygen on the production of Metarhizium flavoviride Mf189 blastospores in submerged batch culture. Process Biochemistry, 40(3–4), 1425–1431. https://doi.org/10.1016/j.procbio.2004.06.029spa
dc.relation.referencesJackson, M. A., Macguire, M. R., Lacey, L. A., & Wraight, S. P. (1997). Liquid culture production of desiccation tolerant blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus. Mycological Research, 101(1), 35-41., 101, 35–41.spa
dc.relation.referencesJackson, M. A., & Schisler, D. A. (1992). The Composition and Attributes of Colletotrichum truncatum Spores Are Altered by the Nutritional Environment. Applied and Environmental Microbiology, 58(7), 2260–2265. https://doi.org/10.1128/aem.58.7.2260-2265.1992spa
dc.relation.referencesJin, Z., Hou, Q., & Niu, T. (2020). Effect of cultivating Pleurotus ostreatus on substrates supplemented with herb residues on yield characteristics, substrates degradation, and fruiting bodies’ properties. Journal of the Science of Food and Agriculture, 100(13), 4901–4910. https://doi.org/10.1002/jsfa.10551spa
dc.relation.referencesJung, B., Kim, S., & Lee, J. (2014). Microcyle Conidiation in Filamentous Fungi. Mycobiology, 42(1), 1–5. https://doi.org/10.5941/MYCO.2014.42.1.1spa
dc.relation.referencesK., M., R.R., R., K., M., C., L. A., & N., G. (2014). Effect of co-culturing of cellulolytic fungal isolates for degradation of lignocellulosic material. Journal of Yeast and Fungal Research, 5(3), 31–38. https://doi.org/10.5897/JYFR2014.0134spa
dc.relation.referencesKirk, T. K., & Farrell, R. L. (1987). Enzymatic “Combustion”: The Microbial Degradation of Lignin. Annual Review of Microbiology, 41(1), 465–501. https://doi.org/10.1146/annurev.mi.41.100187.002341spa
dc.relation.referencesKobori, N. N., Mascarin, G. M., Jackson, M. A., & Schisler, D. A. (2015). Liquid culture production of microsclerotia and submerged conidia by Trichoderma harzianum active against damping-off disease caused by Rhizoctonia solani. Fungal Biology, 119(4), 179–190. https://doi.org/10.1016/j.funbio.2014.12.005spa
dc.relation.referencesKrull, R., Wucherpfennig, T., Esfandabadi, M. E., Walisko, R., Melzer, G., Hempel, D. C., Kampen, I., Kwade, A., & Wittmann, C. (2013). Characterization and control of fungal morphology for improved production performance in biotechnology. Journal of biotechnology, 163(2), 112–123. https://doi.org/10.1016/J.JBIOTEC.2012.06.024spa
dc.relation.referencesLange, M., & Peiter, E. (2020). Calcium Transport Proteins in Fungi: The Phylogenetic Diversity of Their Relevance for Growth, Virulence, and Stress Resistance. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.03100spa
dc.relation.referencesLarroche, C., & Gros, J. B. (1997). Special transformation processes using fungal spores and immobilized cells. Advances in biochemical engineering/biotechnology, 55, 179–220. https://doi.org/10.1007/BFB0102066spa
dc.relation.referencesMa, Q., Zhou, W., Du, X., Huang, H., & Gong, Z. (2023). Combined dilute sulfuric acid and Tween 80 pretreatment of corn stover significantly improves the enzyme digestibility: Synergistic removal of hemicellulose and lignin. Bioresource Technology, 382, 129218. https://doi.org/10.1016/j.biortech.2023.129218spa
dc.relation.referencesMacias Camacho, J. G. (2017). Modelo macro cinético de la producción de conidios en fermentación sumergida por lotes a partir de Penicillium pinophilum.spa
dc.relation.referencesMaiorano, A. E., da Silva, E. S., Perna, R. F., Ottoni, C. A., Piccoli, R. A. M., Fernandez, R. C., Maresma, B. G., & de Andrade Rodrigues, M. F. (2020). Effect of agitation speed and aeration rate on fructosyltransferase production of Aspergillus oryzae IPT-301 in stirred tank bioreactor. Biotechnology Letters, 42(12), 2619–2629. https://doi.org/10.1007/s10529-020-03006-9spa
dc.relation.referencesMalloch, D., & Cain, R. F. (1972). The Trichocomataceae: Ascomycetes with Aspergillus, Paecilomyces , and Penicillium imperfect states . Canadian Journal of Botany, 50(12), 2613–2628. https://doi.org/10.1139/B72-335spa
dc.relation.referencesMartínez, Á. T., Ruiz-Dueñas, F. J., Martínez, M. J., del Río, J. C., & Gutiérrez, A. (2009). Enzymatic delignification of plant cell wall: from nature to mill. Current Opinion in Biotechnology, 20(3), 348–357. https://doi.org/10.1016/j.copbio.2009.05.002spa
dc.relation.referencesMartínez Benítez, E. (2003). Estudio de especies micotoxígenas del genero Penicillium: Penicillium verrucosum Dierckx. Universitat Autónoma de Barcelona.spa
dc.relation.referencesMejía Rivera, C. del M. (2021). Evaluación de lignina como precursor para el desarrollo de electrodos de supercondensadores. Universidad Pontificia Bolivariana.spa
dc.relation.referencesMéndez Zavala, A., Contreras Esquivel, J. C., Lara Victoriano, F., Rodríguez Herrera, R., & Aguilar, C. N. (2007). Producción fungica de un pigmento rojo empleando la cepa xerofilica Penicillium purpurogenum GH-2. Revista Mexicana de Ingeniería Química, 6, 267–273.spa
dc.relation.referencesMendonça Maciel, M. J., Castro e Silva, A., & Telles Ribeiro, H. C. (2010). Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: a review. Electronic Journal of Biotechnology, 13(6), 0–0. https://doi.org/10.2225/vol13-issue6-fulltext-2spa
dc.relation.referencesMinagricultura. (2020). Cadena de Flores, Follajes y Ornamentales.spa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural. (2020). Informe de rendición de cuentas 2019 - 2020.spa
dc.relation.referencesMontero, H., Vera, M., & García, A. (2019). Síntesis de los indicadores asociados a la generación de residuos.spa
dc.relation.referencesMontero Sánchez, H. F., & Quintero Cardoso, J. (2010). Guías de buenas prácticas ambientales para cultivos de flores y ornamentales. Asocolflores y MAVDT.spa
dc.relation.referencesMorton. (1961). The induction of sporulation in mould fungi. Proceedings of the Royal Society of London. Series B. Biological Sciences, 153(953), 548–569. https://doi.org/10.1098/rspb.1961.0018spa
dc.relation.referencesMoss, M. O. (1987). Morphology and Physiology of Penicillium and Acremonium. En Penicillium and Acremonium (pp. 37–71). Springer US. https://doi.org/10.1007/978-1-4899-1986-1_2spa
dc.relation.referencesMukherjee, S., & Ghorai, S. (2023). Fungal biology. En Current Developments in Biotechnology and Bioengineering (pp. 67–104). Elsevier. https://doi.org/10.1016/B978-0-323-91872-5.00017-Xspa
dc.relation.referencesNugrahini, A. D., Kurniawan, M. P., & Kinasih, D. A. (2022). Development of lignocellulose-based bioethanol from chrysanthemum flower waste (Chrysanthemum sp.). IOP Conference Series: Earth and Environmental Science, 963(1), 012017. https://doi.org/10.1088/1755-1315/963/1/012017spa
dc.relation.referencesOspina, A., & Piñeros, Y. (2007). Estudio de la producción de ligninasas a partir del cultivo de Pleuoruts sp. sobre residuos de palma, efecto del pH y la temperatura. Universidad Jorge Tadeo Lozano.spa
dc.relation.referencesPaixão, F. R. S., Fernandes, É. K. K., & Pedrini, N. (2019). Thermotolerance of Fungal Conidia (pp. 185–196). https://doi.org/10.1007/978-3-030-23045-6_6spa
dc.relation.referencesPapagianni, M. (2004). Fungal morphology and metabolite production in submerged mycelial processes. Biotechnology Advances, 22(3), 189–259. https://doi.org/10.1016/j.biotechadv.2003.09.005spa
dc.relation.referencesPark, H. S., & Yu, J. H. (2012). Genetic control of asexual sporulation in filamentous fungi. Current Opinion in Microbiology, 15(6), 669–677. https://doi.org/10.1016/J.MIB.2012.09.006spa
dc.relation.referencesPascual, S., Melgarejo, P., & Magan, N. (1997). Induction of submerged conidiation of the biocontrol agent Penicillium oxalicum. Applied Microbiology and Biotechnology, 48(3), 389–392. https://doi.org/10.1007/s002530051068spa
dc.relation.referencesPatel, G., Patil, M. D., Soni, S., Khobragade, T. P., Chisti, Y., & Banerjee, U. C. (2016). Production of mycophenolic acid by Penicillium brevicompactum—A comparison of two methods of optimization. Biotechnology Reports, 11, 77–85. https://doi.org/10.1016/j.btre.2016.07.003spa
dc.relation.referencesPazout, J., & Schroder, P. (1988). Microcycle Conidiation in Submerged Cultures of Penicillium cyclopium Attained without Temperature Changes. Microbiology, 134(10), 2685–2692. https://doi.org/10.1099/00221287-134-10-2685spa
dc.relation.referencesPedraza-Zapata, D. C., Sánchez-Garibello, A. M., Quevedo-Hidalgo, B., Moreno-Sarmiento, N., & Gutiérrez-Rojas, I. (2017). Promising cellulolytic fungi isolates for rice straw degradation. Journal of Microbiology, 55(9), 711–719. https://doi.org/10.1007/S12275-017-6282-1/METRICSspa
dc.relation.referencesPereira, P. C. G., Parente, C. E. T., Carvalho, G. O., Torres, J. P. M., Meire, R. O., Dorneles, P. R., & Malm, O. (2021). A review on pesticides in flower production: A push to reduce human exposure and environmental contamination. Environmental Pollution, 289, 117817. https://doi.org/10.1016/j.envpol.2021.117817spa
dc.relation.referencesPirt, S. J., & Callow, D. S. (1959). Continuous-Flow Culture of the Filamentous Mould Penicillium Chrysogenum and the Control of its Morphology. Nature, 184(4683), 307–310. https://doi.org/10.1038/184307a0spa
dc.relation.referencesPitt, D., & Mosley, M. J. (1986). Oxidation of carbon sources via the tricarboxylic acid cycle during calcium-induced conidation of Penicillium notatum. Antonie van Leeuwenhoek, 52(6), 467–482. https://doi.org/10.1007/BF00423408spa
dc.relation.referencesPitt, & Poole, P. C. (1981). Calcium-induced conidiation in Penicillium notatum in submerged culture. Transactions of the British Mycological Society, 76(2), 219–230. https://doi.org/10.1016/S0007-1536(81)80142-8spa
dc.relation.referencesPitt, & Hocking, A. D. (2009). Fungi and food spoilage. En Fungi and Food Spoilage. Springer US. https://doi.org/10.1007/978-0-387-92207-2spa
dc.relation.referencesPodrepšek, G. H., Knez, Ž., & Leitgeb, M. (2023). Industrial production of enzymes for use in animal-feed bioprocessing. En Valorization of Biomass to Bioproducts (pp. 349–387). Elsevier. https://doi.org/10.1016/B978-0-12-822887-6.00019-Xspa
dc.relation.referencesPorto de Souza Vandenberghe, L., Wedderhoff Herrmann, L., de Oliveira Penha, R., Murawski de Mello, A. F., Martínez-Burgos, W. J., Magalhães Junior, A. I., de Souza Kirnev, P. C., de Carvalho, J. C., & Soccol, C. R. (2022). Engineering aspects for scale-up of bioreactors. En Current Developments in Biotechnology and Bioengineering (pp. 59–85). Elsevier. https://doi.org/10.1016/B978-0-323-91167-2.00002-2spa
dc.relation.referencesPrinsen, P. (2010). Composición química de diversos materiales lignocelulósicos de interés industrial y análisis estructural de sus ligninas [Tesis de maestría en Estudios Avanzados en Química]. Universidad de Sevilla.spa
dc.relation.referencesProcolombia. (2019). Procolombia. Exportaciones Turismo Inversión Marca País. ¿Cómo funciona el sector floricultor en Colombia?spa
dc.relation.referencesPunt, M., Teertstra, W. R., & Wösten, H. A. B. (2022). Penicillium roqueforti conidia induced by L-amino acids can germinate without detectable swelling. Antonie van Leeuwenhoek, 115(1), 103–110. https://doi.org/10.1007/s10482-021-01686-5spa
dc.relation.referencesQi, J., Zhang, X., Zhou, Y., Zhang, C., Wen, J., Deng, S., Luo, B., Fan, M., & Xia, Y. (2023). Selectively enzymatic conversion of wood constituents with white and brown rot fungi. Industrial Crops and Products, 199, 116703. https://doi.org/10.1016/j.indcrop.2023.116703spa
dc.relation.referencesQuevedo Hidalgo, B. E. (2011). Evaluación de la degradación de residuos de floricultura para la obtención de azúcares con el uso de tres hongos lignocelulolíticos. https://repositorio.unal.edu.co/handle/unal/9578spa
dc.relation.referencesQuevedo-Hidalgo, B., Narváez-Rincón, P. C., Pedroza-Rodríguez, A. M., & Velásquez-Lozano, M. E. (2014). Production of lignocellulolytic enzymes from floriculture residues using Pleurotus ostreatus. Universitas Scientiarum, 20(1), 117. https://doi.org/10.11144/Javeriana.SC20-1.eplespa
dc.relation.referencesR, K. C., M, Y. A., M, A. M., V, R. O., & Ch, L. C. (2017). Residuos agroindustriales su impacto, manejo y aprovechamiento. Revista Colombiana de Ciencia Animal - RECIA, 9(S1), 122–132. https://doi.org/10.24188/RECIA.V9.NS.2017.530spa
dc.relation.referencesRangel Ortega, S. X. (2012). Estudio del efecto de enzimas ligninolíticas y celulolíticas obtenidas del hongo Pleurotus ostreatus sobre una gramínea forrajera tropical.spa
dc.relation.referencesReddy, A. S. N., Ali, G. S., Celesnik, H., & Day, I. S. (2011). Coping with Stresses: Roles of Calcium- and Calcium/Calmodulin-Regulated Gene Expression. The Plant Cell, 23(6), 2010–2032. https://doi.org/10.1105/tpc.111.084988spa
dc.relation.referencesRefai, M., Abo El-Yazid, H., & Tawakkol, W. (2015). The genus Penicillium A guide for historical, classification and identification of penicilli, their industrial applications and detrimental effects. https://matteroffactsblog.wordpress.com/.../ancient-egyptians-used-pencil...spa
dc.relation.referencesRengifo, L. R., Rosas, P., Méndez, N., Ludeña, Y., Sirvas, S., Samolski, I., & Villena, G. K. (2022). Comparison of Pigment Production by Filamentous Fungal Strains under Submerged (SmF) and Surface Adhesion Fermentation (SAF). Journal of Fungi, 9(1), 48. https://doi.org/10.3390/jof9010048spa
dc.relation.referencesRho, Y. T. (2011). Effects of carbon and nitrogen sources on immunosuppressant mycophenolic acid fermentation by Penicillium brevi-compactum. The Korean Journal of Microbiology.spa
dc.relation.referencesRoberto-López, N. D. (2013). Composición química y evaluación de degradabilidad de residuos tóxicos de un núcleo ensilado a base de desechos de clavel. CIENCIA Y AGRICULTURA, 10(1), 9. https://doi.org/10.19053/01228420.2823spa
dc.relation.referencesRodríguez, D., & Romero, K. (2014). Evaluación del efecto de inductores sobre la conidiogénesis de Penicillium sp. HC1 en medio líquido [Tesis de pregrado microbiología]. Pontificia Universidad Javeriana .spa
dc.relation.referencesRodríguez Porcel, E. M., Casas López, J. L., Sánchez Pérez, J. A., Fernández Sevilla, J. M., & Chisti, Y. (2023). Effects of pellet morphology on broth rheology in fermentations of Aspergillus terreus. Biochemical Engineering Journal, 26(2–3), 139–144. https://doi.org/10.1016/j.bej.2005.04.011spa
dc.relation.referencesRodríguez Sánchez, I. J., & Rodríguez Alfonso, M. A. (2017). Evaluación in vitro de actividades directas de promoción de crecimiento vegetal de Penicillium sp. HC1. Pontificia Universidad Javeriana.spa
dc.relation.referencesRojas, L. (2011). Evaluación de pre-tratamientos biológicos y térmicos previos a la hidrólisis enzimática de fibra prensada de palma, para la producción de azúcares fermentables. [Tesis de Maestría]. Universidad Nacional de Colombia.spa
dc.relation.referencesRoncal, T., & Ugalde, U. (2003). Conidiation induction in Penicillium. Research in Microbiology, 154(8), 539–546. https://doi.org/10.1016/S0923-2508(03)00168-2spa
dc.relation.referencesRoy, A., Kumar, A., Baruah, D., & Tamuli, R. (2021). Calcium signaling is involved in diverse cellular processes in fungi. Mycology, 12(1), 10–24. https://doi.org/10.1080/21501203.2020.1785962spa
dc.relation.referencesSaha, B. C. (2004). Lignocellulose Biodegradation and Applications in Biotechnology (B. C. Saha & K. Hayashi, Eds.; Vol. 889). American Chemical Society. https://doi.org/10.1021/bk-2004-0889spa
dc.relation.referencesSamson, R. A., Houbraken, J., Thrane, U., Frisvad, J. C., & Andersen, B. (2010). Food and Indoor Fungi. CBS-KNAW Fungal Biodiversity Centre. https://pure.knaw.nl/portal/en/publications/food-and-indoor-fungispa
dc.relation.referencesSamson, R. A., Yilmaz, N., Houbraken, J., Spierenburg, H., Seifert, K. A., Peterson, S. W., Varga, J., & Frisvad, J. C. (2011). Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Studies in Mycology, 70, 159–183. https://doi.org/10.3114/sim.2011.70.04spa
dc.relation.referencesSánchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), 185–194. https://doi.org/10.1016/j.biotechadv.2008.11.001spa
dc.relation.referencesSánchez Garibello, A. M. (2013). Evaluación de la degradación del tamo de arroz por hongos celulolíticos aislados de suelos de cultivo de arroz. Universidad Nacional de Colombia.spa
dc.relation.referencesSánchez Rodríguez, L. (2012). Evaluación cuantitativa de la degradación del tamo de arroz empleando microorganismos nativos lignocelulolíticos. Universidad Colegio Mayor de Cundinamarca.spa
dc.relation.referencesSantos, A. L. F., Kawase, K. Y. F., & Coelho, G. L. V. (2011). Enzymatic saccharification of lignocellulosic materials after treatment with supercritical carbon dioxide. The Journal of Supercritical Fluids, 56(3), 277–282. https://doi.org/10.1016/j.supflu.2010.10.044spa
dc.relation.referencesSantos Díaz, A. M., Grijalba Bernal, E. P., Torres Torres, L., & Uribe Gutiérrez, L. A. (2022). Plaguicidas microbianos: control y aseguramiento de calidad. Corporación colombiana de investigación agropecuaria - AGROSAVIA. https://doi.org/10.21930/agrosavia.manual.7405125spa
dc.relation.referencesSantos Ríos, E. G. (2021). Aprovechamiento de los residuos generados en la industria de la floricultura para la producción de etanol y furfural.spa
dc.relation.referencesSantos-Ebinuma, V. C., Roberto, I. C., Simas Teixeira, M. F., & Pessoa, A. (2013). Improving of red colorants production by a new Penicillium purpurogenum strain in submerged culture and the effect of different parameters in their stability. Biotechnology Progress, 29(3), 778–785. https://doi.org/10.1002/btpr.1720spa
dc.relation.referencesSantoyo, F., González, A. E., Terrón, M. C., Ramírez, L., & Pisabarro, A. G. (2008). Quantitative linkage mapping of lignin-degrading enzymatic activities in Pleurotus ostreatus. Enzyme and Microbial Technology, 43(2), 137–143. https://doi.org/10.1016/j.enzmictec.2007.11.007spa
dc.relation.referencesScervino, J. M., Papinutti, V. L., Godoy, M. S., Rodriguez, M. A., Della Monica, I., Recchi, M., Pettinari, M. J., & Godeas, A. M. (2011). Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production. Journal of Applied Microbiology, 110(5), 1215–1223. https://doi.org/10.1111/j.1365-2672.2011.04972.xspa
dc.relation.referencesSchisler, D. A. (1991). Influence of Nutrition During Conidiation of Colletotrichum truncatum on Conidial Germination and Efficacy in Inciting Disease in Sesbania exaltata. Phytopathology, 81(4), 458. https://doi.org/10.1094/Phyto-81-458spa
dc.relation.referencesSeydametova, E., & Zainol, N. (2021). Morphological, physiological, biochemical and molecular characterization of statin-producing Penicillium microfungi isolated from little-explored tropical ecosystems. Current Research in Microbial Sciences, 2, 100044. https://doi.org/10.1016/J.CRMICR.2021.100044spa
dc.relation.referencesShora, H., Metwally, M., & Zaki, M. (2021). Optimization of L-glutaminase production by Penicillium chrysogenum. THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY (Botany), 17(2), 157. https://doi.org/10.5455/egyjebb.20211118082536spa
dc.relation.referencesSingh, R. S., Chauhan, K., & Pandey, A. (2019). Influence of aeration, agitation and process duration on fungal inulinase production from paneer whey in a stirred tank reactor. Bioresource Technology Reports, 8, 100343. https://doi.org/10.1016/j.biteb.2019.100343spa
dc.relation.referencesSinghal, V., & Rathore, V. S. (2001). Effects of Zn2+ and Cu2+ on growth, lignin degradation and ligninolytic enzymes in Phanerochaete chrysosporium. . World Journal of Microbiology and Biotechnology, 17(3), 235–240. https://doi.org/10.1023/A:1016617025769spa
dc.relation.referencesSomogy, M. (1952). Notes on sugar determination. The Journal of Biological Chemistry, 195, 19–23.spa
dc.relation.referencesSpalding, D. H., & Lieberman, M. (1965). Factors affecting the production of ethylene by Penicillium digitatum. Plant Physiology, 40(4), 645–648. https://doi.org/10.1104/pp.40.4.645spa
dc.relation.referencesStamatiu Sánchez, K., Alarcón, A., Ferrera Cerrato, R., Nava Díaz, C., Sánchez Escudero, J., Cruz Sánchez, J. S., & Castillo, M. de P. (2015). Tolerancia de hongos filamentosos a endosulfán, clorpirifós y clorotalonil en condiciones in vitro. Revista internacional de contaminación ambiental, 31.spa
dc.relation.referencesSu, Y. C. (1983). Fermentative Production of Ankapigments (Monascus-pigments). Korean Journal of Applied Microbiology and Bioengineering, 11, 325–337.spa
dc.relation.referencesSun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83(1), 1–11. https://doi.org/10.1016/S0960-8524(01)00212-7spa
dc.relation.referencesSwain, S. S., Rout, Y., Sahoo, P. B., & Nayak, S. (2023). Microbial perspectives for the agricultural soil health management in mountain forests under climatic stress. En Understanding Soils of Mountainous Landscapes (pp. 59–90). Elsevier. https://doi.org/10.1016/B978-0-323-95925-4.00006-6spa
dc.relation.referencesTang, Z.-Y., Li, L., Tang, W., Shen, J.-W., Yang, Q.-Z., Ma, C., & He, Y.-C. (2023). Significantly enhanced enzymatic hydrolysis of waste rice hull through a novel surfactant-based deep eutectic solvent pretreatment. Bioresource Technology, 381, 129106. https://doi.org/10.1016/j.biortech.2023.129106spa
dc.relation.referencesTaniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K., & Tanaka, T. (2005). Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. Journal of Bioscience and Bioengineering, 100(6), 637–643. https://doi.org/10.1263/jbb.100.637spa
dc.relation.referencesTibasosa Rodríguez, G. (2014). Evaluación del efecto de fuentes de carbono y de nitrógeno sobre la conidiogénesis de Penicillium sp. HC1 en medio sólido y líquido.spa
dc.relation.referencesTinoco, Pickard, & Vazquez-Duhalt. (2001). Kinetic differences of purified laccases from six Pleurotus ostreatus strains. Letters in Applied Microbiology, 32(5), 331–335. https://doi.org/10.1046/j.1472-765X.2001.00913.xspa
dc.relation.referencesTisi, R., Rigamonti, M., Groppi, S., & Belotti, F. (2016). Calcium homeostasis and signaling in fungi and their relevance forpathogenicity of yeasts and filamentous fungi. AIMS Molecular Science, 3(4), 505–549. https://doi.org/10.3934/molsci.2016.4.505spa
dc.relation.referencesTlecuitl-Beristain, S., Viniegra-González, G., Díaz-Godínez, G., & Loera, O. (2010). Medium Selection and Effect of Higher Oxygen Concentration Pulses on Metarhizium anisopliae var. lepidiotum Conidial Production and Quality. Mycopathologia, 169(5), 387–394. https://doi.org/10.1007/s11046-009-9268-7spa
dc.relation.referencesTorres-Garcia, D., Gené, J., & García, D. (2022). New and interesting species of Penicillium (Eurotiomycetes, Aspergillaceae) in freshwater sediments from Spain. MycoKeys, 86, 103–145. https://doi.org/10.3897/mycokeys.86.73861spa
dc.relation.referencesUgalde, U. O., & Pitt, D. (1986). Calcium uptake kinetics in relation to conidiation in submerged cultures of Penicillium cyclopium. Transactions of the British Mycological Society, 87(2), 199–203. https://doi.org/10.1016/S0007-1536(86)80021-3spa
dc.relation.referencesUgalde, U. O., Virto, M. D., & Pitt, D. (1990). Calcium binding and induction of conidiation in protoplasts of Penicillium cyclopium. Antonie van Leeuwenhoek, 57(1), 43–49. https://doi.org/10.1007/BF00400335spa
dc.relation.referencesUgalde, U., & Pitt, D. (1983). Morphology and calcium-induced conidiation of Penicillium cyclopium in submerged culture. Transactions of the British Mycological Society, 80(2), 319–325. https://doi.org/10.1016/S0007-1536(83)80016-3spa
dc.relation.referencesVan Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2spa
dc.relation.referencesVargas Corredor, Y. A., & Pérez Pérez, L. I. (2018). Aprovechamiento de residuos agroindustriales para el mejoramiento de la calidad del ambiente. Revista Facultad de Ciencias Básicas, 14(1), 59–72. https://doi.org/10.18359/rfcb.xxxxspa
dc.relation.referencesVargas Rodríguez, Á. A., & Romero Gutiérrez, C. C. (2009). Evaluación del efecto de la aplicación de un residuo vegetal de crisantemo degradado por Pleurotus ostreatus en un proceso de compostaje en microcosmos. Pontificia Universidad Javeriana.spa
dc.relation.referencesVillarreal Usaquén, K. N. (2022). Estrategias de contribución al desarrollo sostenible en el sector floricultor colombiano. Universidad Militar Nueva Granada. Facultad de Ingeniería.spa
dc.relation.referencesVisagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H. W., Perrone, G., Seifert, K. A., Varga, J., Yaguchi, T., & Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78(1), 343–371. https://doi.org/10.1016/J.SIMYCO.2014.09.001spa
dc.relation.referencesVogl, C., Klein, C. M., Batke, A. F., Schweingruber, M. E., & Stolz, J. (2008). Characterization of Thi9, a Novel Thiamine (Vitamin B1) Transporter from Schizosaccharomyces pombe. Journal of Biological Chemistry, 283(12), 7379–7389. https://doi.org/10.1074/jbc.M708275200spa
dc.relation.referencesVrabl, P., Fuchs, V., Pichler, B., Schinagl, C. W., & Burgstaller, W. (2012). Organic Acid Excretion in Penicillium ochrochloron Increases with Ambient pH. Frontiers in Microbiology, 3. https://doi.org/10.3389/fmicb.2012.00121spa
dc.relation.referencesWang, H., Chen, Q., Zhang, S., & Lu, L. (2021). A Transient Receptor Potential-like Calcium Ion Channel in the Filamentous Fungus Aspergillus nidulans. Journal of Fungi, 7(11), 920. https://doi.org/10.3390/jof7110920spa
dc.relation.referencesWarren, S. J., Keshavarz-Moore, E., Shamlou, P. A., Lilly, M. D., Thomas, C. R., & Dixon, K. (1995). Rheologies and morphologies of three actinomycetes in submerged culture. Biotechnology and Bioengineering, 45(1), 80–85. https://doi.org/10.1002/bit.260450111spa
dc.relation.referencesWu, W., Li, P., Huang, L., Wei, Y., Li, J., Zhang, L., & Jin, Y. (2023). The Role of Lignin Structure on Cellulase Adsorption and Enzymatic Hydrolysis. Biomass, 3(1), 96–107. https://doi.org/10.3390/biomass3010007spa
dc.relation.referencesXu, H., & Hosen, Y. (2010). Effects of soil water content and rice straw incorporation in the fallow season on CH4 emissions during fallow and the following rice-cropping seasons. Plant and Soil, 335(1–2), 373–383. https://doi.org/10.1007/s11104-010-0426-yspa
dc.relation.referencesYepes Maya, D. M., & Chejne Janna, F. (2012). Gasificación de biomasa residual en el sector floricultor, caso: Oriente Antioqueño Gasification of waste biomass in the flower industry, case: Eastern Antioquia.spa
dc.relation.referencesZambrano Arcentales, M. A. (2017). Formación de un complejo enzimático lignocelulolítico a partir de hongos de pudrición de la madera para hidrolizar paja de trigo. https://repositorio.uchile.cl/handle/2250/144760spa
dc.relation.referencesZeidler, G., & Margalith, P. (1973). Modification of the sporulation cycle in Penicillium digitatum (Sacc.). Canadian Journal of Microbiology, 19(4), 481–483. https://doi.org/10.1139/m73-077spa
dc.relation.referencesZhai, R., Hu, J., & Saddler, J. N. (2018). The inhibition of hemicellulosic sugars on cellulose hydrolysis are highly dependant on the cellulase productive binding, processivity, and substrate surface charges. Bioresource Technology, 258, 79–87. https://doi.org/10.1016/j.biortech.2017.12.006spa
dc.relation.referencesZhang, Y., & Yamaura, K. (2020). Transcriptome Analysis of White-Rot Fungi in Response to Lignocellulose or Lignocellulose-Derived Material Using RNA Sequencing Technology. Advances in Bioscience and Biotechnology, 11(08), 355–368. https://doi.org/10.4236/abb.2020.118025spa
dc.relation.referencesZhang, Y.-H. P., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering, 88(7), 797–824. https://doi.org/10.1002/bit.20282spa
dc.relation.referencesZhou, Y., Han, L.-R., He, H.-W., Sang, B., Yu, D.-L., Feng, J.-T., & Zhang, X. (2018). Effects of Agitation, Aeration and Temperature on Production of a Novel Glycoprotein GP-1 by Streptomyces kanasenisi ZX01 and Scale-Up Based on Volumetric Oxygen Transfer Coefficient. Molecules, 23(1), 125. https://doi.org/10.3390/molecules23010125spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.ddc570 - Biologíaspa
dc.subject.decsResiduos
dc.subject.decsWaste Productseng
dc.subject.decsGestión de Residuosspa
dc.subject.proposalPenicillium sp.spa
dc.subject.proposalCalciospa
dc.subject.proposalCasaminoácidosspa
dc.subject.proposalAireaciónspa
dc.subject.proposalBioprocesosspa
dc.subject.proposalDegradaciónspa
dc.subject.proposalFloresspa
dc.subject.proposalCalciumeng
dc.subject.proposalCasamino acidseng
dc.subject.proposalAerationeng
dc.subject.proposalBioprocesseng
dc.subject.proposalDegradationeng
dc.subject.proposalFlowerseng
dc.titleEvaluación del efecto de condiciones de cultivo sobre la producción de Penicillium sp. HC1 usado en la degradación de residuos vegetales de cultivos de flores en Guasca – Cundinamarcaspa
dc.title.translatedEvaluation of the effect of growing conditions on the production of Penicillium sp. HC1 used in the degradation of plant residues from flower crops in Guasca - Cundinamarcaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1069305875.2023.pdf
Tamaño:
3.64 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: