Comparación de la representación multiplex y monoplex de redes de co-expresión génica

dc.contributor.advisorLopez-Kleine, Lilianaspa
dc.contributor.authorSalas Cárdenas, Yesica Alejandraspa
dc.contributor.researchgroupMETODOS EN BIOESTADISTICAspa
dc.date.accessioned2021-11-02T18:07:04Z
dc.date.available2021-11-02T18:07:04Z
dc.date.issued2020-12-01
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractLa teoría de redes ha permitido caracterizar el comportamiento de un sistema en diferentes ámbitos, como es el caso del estudio de los sistemas complejos a través de la representación de redes de una capa (monoplex), las cuales estudian las relaciones subyacentes entre los nodos de un sistema. Recientemente, la teoría de redes ha evolucionado desarrollando el estudio de redes multicapa con el objetivo de incluir múltiples relaciones y representar las relaciones intra y entre capa, donde las intra son consideradas como en el caso monoplex. En el campo de genómica, aunque se han abordado algunas metodologías de redes multicapa, no se ha enfatizado en el caso de RCG, ni se han hecho comparaciones con la metodología tradicional de redes monoplex que ha sido utilizada hasta la fecha. El presente trabajo adoptó una metodología de redes multiplex, considerando nodos réplica (genes) en las capas y cuyas interacciones inter-capa es vacío. Las capas son RCG que corresponden a múltiples condiciones experimentales de la E. coli y cuya colección forman la estructura multiplex. El enfoque de RCG multiplex permitió hacer un aplanamiento de la estructura multiplex, en una sóla red agregada. Se buscó caracterizar y evaluar la representación de la red de co-expresión génica de la E. coli, comparando la representación monoplex frente a la multiplex, utilizando la red agregada, a través de sus medidas topológicas, propiedades globales y locales, medidas de centralidad, matriz de distancia, anovas, pruebas pareadas-t y algoritmos de alineamiento de redes, que permitieron evaluar las diferencias, y similitudes de la información obtenida de cada representación monoplex y multiplex con respecto a la red de referencia. Se sugieren avances y mejoras en el estudio de las RCG, ya que la red agregada proveniente de la estructura multiplex, estructuralmente se asemeja más a la red de referencia de la E. coli, mientras que la red monoplex precisa mayor pérdida de información que la red agregada, al compararlas con la red de referencia. (Texto tomado de la fuente).spa
dc.description.abstractNetwork theory has allowed us to characterize the behavior of a system in different areas, such as the study of complex systems through the representation of single-layer networks (monoplex), which study the relationships between the nodes of a system. Recently, network theory has evolved developing the study of multi-layer networks with the aim of including multiple relationships and representing the intra and inter-layer relationships, like single-layer networks case. In the genomics fi eld, although some multilayer network methodologies have been addressed, but not all of them have been developed on the RCG, besides no comparisons have been made with the traditional monoplex network methodology that has been used to date. This study is based on a multiplex network methodology, considering nodes (genes) replicated in the layers and whose set of interactions between layers is empty. The layers are RCG that correspond to multiple experimental conditions of E. coli and whose collection forms the multiplex structure. The multiplex RCG approach allowed to do a attening in a single aggregated network. The aim was to characterize and evaluate the representation of the E. coli gene coexpression network, comparing the monoplex representation against the multiplex representation, using the aggregate network, its topological measures, global and local properties, centrality measures, matrix of distance, anova, paired t-tests and network alignment algorithms, which allowed evaluating the differences and similarities of the information obtained from each monoplex and multiplex representation with respect to the reference network. This project suggested advances and improvements in the study of RCG, because the aggregated network coming from the multiplex structure, is more similar structurally to the reference network of the 'E. coli', while the monoplex network shows a greater loss of information than the aggregated network, when those are compared with the reference networkeng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.description.researchareaEstadística genómicaspa
dc.format.extentxi, 50 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80644
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Estadísticaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesAldana, M. (2011). Redes complejas: Estructura, dinámica y evolución (1.a ed.).spa
dc.relation.referencesAleta, A., y Moreno, Y. (2018). Multilayer networks in a nutshell. CoRR.spa
dc.relation.referencesAlonso, J., y Carabalí, J. (2019, 04). Breve tutorial para visualizar y calcular métricas de redes (grafos) en r (para economistas). , 7.spa
dc.relation.referencesBattiston, F., Nicosia, V., y Latora, V. (2016, 06). The new challenges of multiplex networks: Measures and models. The European Physical Journal Special Topics, 226 . doi: 10.1140/epjst/e2016-60274-8.spa
dc.relation.referencesBerlingerio, M., Coscia, M., y Giannotti, F. (2011). Finding and characterizing communities in multidimensional networks. 2011 International Conference on Advances in Social Networks Analysis and Mining, 490-494.spa
dc.relation.referencesBianconi, G. (2018). Multilayer networks : structure and function (1.a ed.). Oxford University Press.spa
dc.relation.referencesBoccaletti, S., Bianconi, G., Criado, R., del Genio, C., Gómez-Gardeñes, J., Romance, M., Zanin, M. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544 , 1 - 122. Descargado de http://www .sciencedirect.com/science/article/pii/S0370157314002105 doi: https://doi.org/10.1016/j.physrep.2014.07.001.spa
dc.relation.referencesCai, D., Shao, Z., He, X., Yan, X., y Han, J. (2005). Mining hidden community in heterogeneous social networks. En Proceedings of the 3rd international workshop on link discovery (p. 58-65). New York, NY, USA: Association for Computing Machinery. Descargado de https://doi.org/10.1145/1134271.1134280 doi: 10.1145/1134271.1134280.spa
dc.relation.referencesCardillo, A., Zanin, M., Gómez-Garde~nes, J., Romance, M., Garc a del Amo, A., y Boccaletti, S. (2013, 01). Modeling the multi-layer nature of the european air transport network: Resilience and passengers re-scheduling under random failures. The European Physical Journal Special Topics, 215 , 23-33. doi: 10.1140/epjst/e2013-01712-8.spa
dc.relation.referencesCovert, M., Knight, E., Reed, J., Herrgard, M., y Palsson, B. (2004, 06). Integrating high-throughput and computational data elucidates bacterial networks. Nature, 429 , 92-6. doi: 10.1038/nature02456.spa
dc.relation.referencesCsardi, G., y Nepusz, T. (2005, 11). The igraph software package for complex network research. InterJournal, Complex Systems, 1695.spa
dc.relation.referencesDalgaard, P. (2008). Introductory statistics with r (2.a ed.).spa
dc.relation.referencesDam, S., Vosa, U., Graaf, A., Franke, L., y de Magalhaes, J. P. (2017, 01). Gene co-expression analysis for functional classification and gene-disease predictions. Briefings in bioinformatics, 19 . doi: 10.1093/bib/bbw139.spa
dc.relation.referencesDe Domenico, M. (2017). Multilayer modeling and analysis of human brain networks. GigaScience, 6 (5), gix004. Descargado de http://dx.doi.org/ 10.1093/gigascience/gix004 doi: 10.1093/gigascience/gix004.spa
dc.relation.referencesDe Domenico, M., Porter, M. A., y Arenas, A. (2014, 10). MuxViz: a tool for multilayer analysis and visualization of networks. Journal of Complex Networks, 3 (2), 159-176. Descargado de https://doi.org/10.1093/comnet/cnu038 doi: 10.1093/comnet/cnu038.spa
dc.relation.referencesD'haeseleer, P., Liang, S., y Somogyi, R. (2000, 09). Genetic network inference: From co-expression clustering to reverse engineering. Bioinformatics (Oxford, England), 16 , 707-26. doi: 10.1093/bioinformatics/16.8.707.spa
dc.relation.referencesDickison, M., Havlin, S., y Stanley, H. E. (2012, Jun). Epidemics on interconnected networks. Phys. Rev. E, 85 , 066109. Descargado de https://link.aps.org/ doi/10.1103/PhysRevE.85.066109 doi: 10.1103/PhysRevE.85.066109.spa
dc.relation.referencesDidier, G., Brun, C., y Baudot, A. (2015). Identifying communities from multiplex biological networks. PeerJ , 3 , e1525. Descargado de https://doi.org/10.7717/peerj.1525 doi: 10.7717/peerj.1525.spa
dc.relation.referencesDomenico, M. D. (2018). Multilayer network modeling of integrated biological systems: Comment on \network science of biological systems at different scales: A review" by gosak et al. Physics of Life Reviews, 24 , 149 - 152. Descargado de http://www.sciencedirect./science/article/pii/ S1571064517301926 doi: https://doi.org/10.1016/j.plrev.2017.12.006.spa
dc.relation.referencesElena, P. Q. M. (2018). Evaluación de métodos de comparación de redes biológicas y su capacidad para detectar estructuras similares. Universidad Nacional de Colombia, Sede-Bogotá.spa
dc.relation.referencesElo, L. L., Järvenpää, H., Oresic, M., Lahesmaa, R., y Aittokallio, T. (2007, 06). Systematic construction of gene coexpression networks with applications to human T helper cell differentiation process. Bioinformatics, 23 (16), 2096- 2103. Descargado de https://doi.org/10.1093/bioinformatics/btm309 doi: 10.1093/bioinformatics/btm309.spa
dc.relation.referencesFong, S., Burgard, A., Herring, C., Knight, E. M., Blattner, F., Maranas, C., y Palsson, B. (2005). In silico design and adaptive evolution of escherichia coli for production of lactic acid. Biotechnology and bioengineering, 91 5 , 643-8.spa
dc.relation.referencesFong, S., Joyce, A., y Palsson, B. (2005). Parallel adaptive evolution cultures of escherichia coli lead to convergent growth phenotypes with di erent gene expression states. Genome research, 15 10 , 1365-72.spa
dc.relation.referencesFong, S., Nanchen, A., Palsson, B., y Sauer, U. (2006, 04). Latent pathway activation and increased pathway capacity enable escherichia coli adaptation to loss of key metabolic enzymes. The Journal of biological chemistry, 281, 8024-33. doi: 10.1074/jbc.M510016200.spa
dc.relation.referencesGentleman, R., Carey, V., Bates, D., Bolstad, B., Dettling, M., Dudoit, S., Zhang, J. (2004, 02). Bioconductor: Open software development for computational biology and bioinformatics. Genome biology, 5 , R80. doi: 10.1186/gb-2004-5-10-r80.spa
dc.relation.referencesGonzález Prieto, C. A. (2018). Construcción de redes de regulación génica usando datos de secuenciaci on de arn. Universidad Nacional de Colombia, Sede-Bogotá.spa
dc.relation.referencesGosak, M., Markovic, R., Dolensek, J., Rupnik, M. S., Marhl, M., Stozer, A., y Perc, M. (2018). Network science of biological systems at different scales: A review. Physics of Life Reviews, 24 , 118 - 135. Descargado de http://www .sciencedirect.com/science/article/pii/S1571064517301501 doi: https://doi.org/10.1016/j.plrev.2017.11.003.spa
dc.relation.referencesHerrgard, M. J., Fong, S., y Palsson, B. (2006). Identification of genome-scale metabolic network models using experimentally measured flux profiles. PLoS Computational Biology, 2.spa
dc.relation.referencesHolme, P., y Saram aki, J. (2012). Temporal networks. Physics Reports, 519 (3), 97 - 125. Descargado de http://www.sciencedirect.com/science/article/ pii/S0370157312000841 (Temporal Networks) doi: https://doi.org/10 .1016/j.physrep.2012.03.001.spa
dc.relation.referencesHua, Q., Joyce, A. R., Fong, S. S., y Palsson, B. (2006). Metabolic analysis of adaptive evolution for in silico-designed lactate-producing strains. Bio- technology and Bioengineering, 95 (5), 992-1002. Descargado de https:// onlinelibrary.wiley.com/doi/abs/10.1002/bit.21073 doi: https:// doi.org/10.1002/bit.21073.spa
dc.relation.referencesHuber, W., von Heydebreck, A., Sültmann, H., Poustka, A., y Vingron, M. (2002, 07). Variance stabilization applied to microarray data calibration and to the quantification of di erential expression. Bioinformatics, 18 , S96-S104. Descargado de https://doi.org/10.1093/bioinformatics/18.suppl/_1.S96 doi: 10.1093/bioinformatics/18.suppl_1.S96.spa
dc.relation.referencesIrizarry, R., Hobbs, B., Collin, F., Beazer-Barclay, Y., Antonellis, K. J., Scherf, U., y Speed, T. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4 2 , 249-64.spa
dc.relation.referencesJalili, M., Salehzadeh-Yazdi, A., Asgari, Y., Arab, S. S., Yaghmaie, M., Ardeshir, G., y Alimoghaddam, K. (2015, 11). Centiserver: A comprehensive resource, web-based application and r package for centrality analysis. PloS one, 10 , e0143111. doi: 10.1371/journal.pone.0143111.spa
dc.relation.referencesKaluza, P., Kölzsch, A., Gastner, M. T., y Blasius, B. (2010). The complex network of global cargo ship movements. Journal of the Royal Society, Interface, 1093-103.spa
dc.relation.referencesKanawati, R. (2015). Multiplex network mining: A brief survey. IEEE Intell. Informatics Bull., 16 , 24-27.spa
dc.relation.referencesKim, H., Shim, J. E., Shin, J., y Lee, I. (2015, 02). EcoliNet: a database of cofunctional gene network for Escherichia coli. Database, 2015 . Descargado de https://doi.org/10.1093/database/bav001 (bav001) doi: 10.1093/ database/bav001.spa
dc.relation.referencesKivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., y Porter, M. A. (2014). Multilayer networks. J. Complex Networks, 2 , 203-271.spa
dc.relation.referencesKuchaiev, O., y Przulj, N. (2011, May). Integrative network alignment reveals large regions of global network similarity in yeast and human. Bioinformatics (Oxford, England), 27 (10), 1390-1396. Descargado de https://doi.org/ 10.1093/bioinformatics/btr127 doi: 10.1093/bioinformatics/btr127.spa
dc.relation.referencesLeal Alaya, L. G. (2013). Desarrollo de una metodología estadística aplicada a la construcción y comparación de redes de coexpresión génica. Universidad Nacional de Colombia, Sede-Bogotá.spa
dc.relation.referencesLeandro, G. T. (2018). Medidas de centralidad en redesurbanas con datos . Universidad de Alicante, España.spa
dc.relation.referencesLewis, N. E., Cho, B.-K., Knight, E. M., y Palsson, B. O. (2009). Gene expression profiling and the use of genome-scale in silico models of escherichia coli for analysis: Providing context for content. Journal of Bacteriology, 191 (11), 3437-3444. Descargado de https://jb.asm.org/content/191/11/3437 doi: 10.1128/JB.00034-09.spa
dc.relation.referencesLeybovich, I., Puzis, R., Stern, R., y Reuben, M. (2018). Focused sana: Speeding up network alignment. En Socs.spa
dc.relation.referencesLi, W., Dai, C., Zhou, X. J., Tseng, G., Ghosh, D., y Zhou, X. J. (2015). Integrative analysis of many biological networks to study gene regulation. , 68-87. doi: 10.1017/CBO9781107706484.004.spa
dc.relation.referencesLi, W., Liu, C.-C., Zhang, T., Li, H., Waterman, M. S., y Zhou, X. J. (2011). Integrative analysis of many weighted co-expression networks using tensor computation.spa
dc.relation.referencesLotero-Vélez, L., y Hurtado, R. (2014). Vulnerabilidad de redes complejas y aplicaciones al transporte urbano: Una revisi on de la literatura. Revista EIA, 11 , 67.spa
dc.relation.referencesLouzada, V., Ara ujo, N., Andrade, J. S., y Herrmann, H. (2013). Breathing synchronization in interconnected networks. Scientific Reports, 3.spa
dc.relation.referencesMamano, N., y Hayes, W. B. (2017, 02). SANA: simulated annealing far outperforms many other search algorithms for biological network alignment. Bioinformatics, 33 (14), 2156-2164. Descargado de https://doi.org/10.1093/bioinformatics/btx090 doi: 10.1093/bioinformatics/btx090.spa
dc.relation.referencesMichael, C. (2018). Implementación del método de alineamiento de redesgedevo en R. Universidad Nacional de Colombia, Sede-Bogotá.spa
dc.relation.referencesMichoel, T., y Nachtergaele, B. (2012). Alignment and integration of complex networks by hypergraph-based spectral clustering. Physical review. E, Statistical, nonlinear, and soft matter physics, 056111.spa
dc.relation.referencesMutwil, M., Klie, S., Tohge, T., Giorgi, F., Wilkins, O., Campbell, M., Persson, S. (2011, 03). Planet: Combined sequence and expression comparisons across plant networks derived from seven species. The Plant cell , 23 , 895-910. doi:10.1105/tpc.111.083667 Newman, E. J. (2010). Networks: An introduction (1.a ed.). Oxford University Press.spa
dc.relation.referencesNewman, M. (2002, 12). Assortative mixing in networks. Physical review letters, 89 , 208701. doi: 10.1103/PhysRevLett.89.208701.spa
dc.relation.referencesOtte, E., y Rousseau, R. (2002, 12). Social network analysis: A powerful strategy, also for the information sciences. Journal of Information Science, 28 , 441-453. doi: 10.1177/016555150202800601.spa
dc.relation.referencesPerkins, A., y Langston, M. (2009, 10). Threshold selection in gene co-expression networks using spectral graph theory techniques. BMC bioinformatics, 10 Suppl 11 , S4. doi: 10.1186/1471-2105-10-S11-S4.spa
dc.relation.referencesPorter, M. (2018). What is a multilayer network. Notices of the American Mathematical Society, 65 , 1419-1423.spa
dc.relation.referencesReed, J., Famili, I., Thiele, I., y Palsson, B. (2006). Towards multidimensional genome annotation. Nature Reviews Genetics, 7 , 130-141.spa
dc.relation.referencesSingh, V., Rana, R., y Singhal, R. (2013, 04). Analysis of repeated measurement data in the clinical trials. Journal of Ayurveda and integrative medicine, 4 , 77-81. doi: 10.4103/0975-9476.113872.spa
dc.relation.referencesSoranzo, N., Bianconi, G., y Altafini, C. (2007a, 05). Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data. Bioinformatics, 23 (13), 1640-1647. Descargado de https://doi.org/10.1093/bioinformatics/btm163 doi: 10.1093/bioinformatics/btm163.spa
dc.relation.referencesSoranzo, N., Bianconi, G., y Altafini, C. (2007b, 05). Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data. Bioinformatics, 23 (13), 1640-1647. Descargado de https://doi.org/10.1093/bioinformatics/btm163 doi: 10.1093/bioinformatics/btm163.spa
dc.relation.referencesWelsh, E., Eschrich, S., Berglund, A., y Fenstermacher, D. (2013, 05). Iterative rankorder normalization of gene expression microarray data. BMC bioinformatics, 14 , 153. doi: 10.1186/1471-2105-14-153.spa
dc.relation.referencesYANG, S. (2013). Networks: An introduction by m. e. j. newman. The Journal of Mathematical Sociology, 37 (4), 250-251. Descargado de https://doi.org/ 10.1080/0022250X.2012.744247 doi: 10.1080/0022250X.2012.744247.spa
dc.relation.referencesZanin, M., y Lillo, F. (2013). Modelling the air transport with complex networks: A short review. The European Physical Journal Special Topics, 215 , 5-21.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.decsBiostatisticseng
dc.subject.decsBioestadísticaspa
dc.subject.decsGenómicaspa
dc.subject.decsGenomicseng
dc.subject.decsEscherichia colieng
dc.subject.decsEscherichia colispa
dc.subject.proposalRed multiplexspa
dc.subject.proposalMultiplex networkeng
dc.subject.proposalMonoplex networkeng
dc.subject.proposalRed monoplexspa
dc.subject.proposalE.colieng
dc.subject.proposalAggregated networkeng
dc.subject.proposalRed agregadaspa
dc.subject.proposalAlignment algorithmeng
dc.subject.proposalAlgoritmo de alineaciónspa
dc.subject.proposalCentrality measureeng
dc.subject.proposalMedidas de centralidadspa
dc.titleComparación de la representación multiplex y monoplex de redes de co-expresión génicaspa
dc.title.translatedComparison of multiplex and monoplex representation of gene co-expression networkseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032450483.2020.pdf
Tamaño:
1.42 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: