Modelo para la programación de la producción en enfoques de celdas de manufactura, integrando el diseño de plantas esbeltas, para el caso del sector de la confección de prendas de vestir

dc.contributor.advisorArango Serna, Martín Darío
dc.contributor.advisorZapata Cortés, Julián Andrés
dc.contributor.authorCáceres Gelvez, Sebastian Eduardo
dc.contributor.researchgroupGICO - Logística Industrial Organizacionalspa
dc.date.accessioned2021-05-11T16:28:48Z
dc.date.available2021-05-11T16:28:48Z
dc.date.issued2021-05-10
dc.description.abstractEn la presente tesis de maestría se propone un modelo para la programación de la producción en enfoques de celdas de manufactura flowshop, integrando el problema de distribución de plantas con áreas desiguales, con el objetivo de minimizar el costo total de manejo de materiales entre departamentos y de penalización por tardanza de los pedidos, para el caso del sector de la confección de prendas de vestir de la ciudad de Cúcuta. Inicialmente, se realizó una revisión sistemática de los enfoques matemáticos y métodos de solución que se han propuesto para estos importantes problemas en la literatura. De acuerdo con estos resultados, un modelo conceptual para la integración secuencial de ambos problemas es propuesto. Debido a la característica NP-hard de los problemas, se define un algoritmo genético, y se presentan los resultados de la validación y parametrización de la metaheurística para instancias de datos reconocidas en la literatura para cada uno de los problemas. Finalmente, los resultados de la aplicación del algoritmo genético en la optimización de los problemas para el caso de estudio de una empresa de confección de ropa deportiva de la ciudad de Cúcuta demuestran que el modelo propuesto obtuvo una reducción del 6,67% de los costos totales de manejo de materiales y de penalización por tardanza de los trabajos, en comparación con la situación actual de la empresa.spa
dc.description.abstractThis master’s thesis proposes a model for production scheduling in a flowshop manufacturing cell environment, integrating the facility layout problem with unequal area requirements, to minimize the total costs of material handling between departments and penalties due to tardiness of jobs, for the case of the garment industry in Cúcuta. Initially, a systematic review of mathematical approaches and solution methods that have been proposed for these important problems in the literature is performed. Following these results, a conceptual model for the sequential integration of both problems is proposed. Due to the NP-hard characteristic of the problems, a genetic algorithm is defined, and the results of the validation and parametrization processes of the metaheuristic, using recognized data instances in the literature for both problems, are presented. Finally, the results of the application of the genetic algorithm in the optimization of the problems for the case study of a sportswear manufacturing company in Cúcuta show that the proposed model was able to reduce in 6,67% the total costs of material handling and penalties due to tardiness of jobs, compared to the current situation of the company.eng
dc.description.degreelevelMaestríaspa
dc.description.methodsEl método de investigación propuesto es de tipo mixto, es decir, comprende unos “procesos sistemáticos, empíricos y críticos de investigación e implican la recolección y el análisis de datos cuantitativos y cualitativos, así como su integración y discusión conjunta, para realizar inferencias producto de toda la información recabada (metainferencias) y lograr un mayor entendimiento del fenómeno bajo estudio” (Hernández Sampieri, Baptista Lucio, & Fernández Collado, 2014, p. 534). La investigación mixta propuesta comprenderá una ejecución secuencial, en donde en la primera etapa se recolectan y analizan los datos cualitativos relacionados con la revisión sistemática de la literatura de los temas de interés del proyecto de tesis; y en la segunda etapa, la información cualitativa recopilada alimenta la formulación y simulación del modelo matemático que se propone.spa
dc.description.researchareaIngeniería y Sistemas de Producciónspa
dc.description.sponsorshipMinisterio de Ciencias, Tecnología e Innovación de Colombia (MINCIENCIAS)spa
dc.description.sponsorshipGobernación de Norte de Santanderspa
dc.format.extent247 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79499
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería de la Organizaciónspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería Industrialspa
dc.relation.referencesAbduljabbar, D. A., Hashim, S. Z. M., & Sallehuddin, R. (2020). Nature-inspired optimization algorithms for community detection in complex networks: A review and future trends. Telecommunication Systems. Scopus. https://doi.org/10.1007/s11235-019-00636-xspa
dc.relation.referencesAcevedo Villalobos, M. C., & Ramírez Vallejo, J. (2005). Diferencias regionales en la eficiencia técnica del sector confecciones en Colombia: Un análisis de fronteras estocásticas. Innovar, 15(26), 90–105.spa
dc.relation.referencesAcosta Dreika, L. L., Jaimes Ochoa, D. A., Vargas Valero, B. J., & Velásquez Ramírez, M. T. (2015). Comparativa de competitividad del sector de la moda entre Cúcuta y el resto del país. Revista Convicciones, 2(4), 47–56.spa
dc.relation.referencesAhmadi, A., & Akbari Jokar, M. R. (2016). An efficient multiple-stage mathematical programming method for advanced single and multi-floor facility layout problems. Applied Mathematical Modelling, 40(9–10), 5605–5620. Scopus. https://doi.org/10.1016/j.apm.2016.01.014spa
dc.relation.referencesAiello, G., Enea, M., & Galante, G. (2006). A multi-objective approach to facility layout problem by genetic search algorithm and Electre method. Robotics and Computer-Integrated Manufacturing, 22(5–6), 447–455. Scopus. https://doi.org/10.1016/j.rcim.2005.11.002spa
dc.relation.referencesAiello, G., La Scalia, G., & Enea, M. (2012). A multi objective genetic algorithm for the facility layout problem based upon slicing structure encoding. Expert Systems with Applications, 39(12), 10352–10358. Scopus. https://doi.org/10.1016/j.eswa.2012.01.125spa
dc.relation.referencesAiello, G., La Scalia, G., & Mario, E. (2013). A non dominated ranking Multi Objective Genetic Algorithm and electre method for unequal area facility layout problems. Expert Systems with Applications, 40(12), 4812–4819. Scopus. https://doi.org/10.1016/j.eswa.2013.02.026spa
dc.relation.referencesAlagoz, O., Norman, B. A., & Smith, A. E. (2008). Determining aisle structures for facility designs using a hierarchy of algorithms. IIE Transactions (Institute of Industrial Engineers), 40(11), 1019–1031. Scopus. https://doi.org/10.1080/07408170802167621spa
dc.relation.referencesAllahverdi, A. (2015). The third comprehensive survey on scheduling problems with setup times/costs. European Journal of Operational Research, 246(2), 345–378. Scopus. https://doi.org/10.1016/j.ejor.2015.04.004spa
dc.relation.referencesAllahverdi, A., Gupta, J. N. D., & Aldowaisan, T. (1999). A review of scheduling research involving setup considerations. Omega, 27(2), 219–239. Scopus. https://doi.org/10.1016/S0305-0483(98)00042-5spa
dc.relation.referencesAllahverdi, A., Ng, C. T., Cheng, T. C. E., & Kovalyov, M. Y. (2008). A survey of scheduling problems with setup times or costs. European Journal of Operational Research, 187(3), 985–1032. Scopus. https://doi.org/10.1016/j.ejor.2006.06.060spa
dc.relation.referencesAllahyari, M. Z., & Azab, A. (2018). Mathematical modeling and multi-start search simulated annealing for unequal-area facility layout problem. Expert Systems with Applications, 91, 46–62. Scopus. https://doi.org/10.1016/j.eswa.2017.07.049spa
dc.relation.referencesAlvarado Gallardo, C. J. (2013). Propuesta para el diseño ergonómico de los puestos de trabajo en el área de confección de la empresa Textimoda SAS en la ciudad de San José de Cúcuta [Grado en Ingeniería Industrial, Universidad Francisco de Paula Santander]. http://alejandria.ufps.edu.co/descargas/tesis/1190148.pdfspa
dc.relation.referencesAlves, F., Varela, M. L. R., Rocha, A. M. A. C., Pereira, A. I., & Leitão, P. (2019). A human centred hybrid MAS and meta-heuristics based system for simultaneously supporting scheduling and plant layout adjustment. FME Transactions, 47(4), 699–710. Scopus. https://doi.org/10.5937/fmet1904699Aspa
dc.relation.referencesAnjos, M. F., & Vannelli, A. (2002). An Attractor-Repeller approach to floorplanning. Mathematical Methods of Operations Research, 56(1), 3–27. Scopus. https://doi.org/10.1007/s001860200197spa
dc.relation.referencesAnjos, M. F., & Vannelli, A. (2006). A new mathematical-programming framework for facility-layout design. INFORMS Journal on Computing, 18(1), 111–118. Scopus. https://doi.org/10.1287/ijoc.1040.0103spa
dc.relation.referencesAnjos, M. F., & Vieira, M. V. C. (2016). An improved two-stage optimization-based framework for unequal-areas facility layout. Optimization Letters, 10(7), 1379–1392. Scopus. https://doi.org/10.1007/s11590-016-1008-6spa
dc.relation.referencesAnjos, M. F., & Vieira, M. V. C. (2017). Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions. European Journal of Operational Research, 261(1), 1–16. https://doi.org/10.1016/j.ejor.2017.01.049spa
dc.relation.referencesApple, J. M. (1977). Plant layout and material handling (Third edition). John Wiley & Sons.spa
dc.relation.referencesArapoglu, R. A., Norman, B. A., & Smith, A. E. (2001). Locating input and output points in facilities design—A comparison of constructive, evolutionary, and exact methods. IEEE Transactions on Evolutionary Computation, 5(3), 192–203. Scopus. https://doi.org/10.1109/4235.930310spa
dc.relation.referencesArmour, G. C., & Buffa, E. S. (1963). A Heuristic Algorithm and Simulation Approach to Relative Location of Facilities. Management Science, 9(2), 294–309. https://doi.org/10.1287/mnsc.9.2.294spa
dc.relation.referencesAskin, R. G., & Goldberg, J. B. (2002). Design and analysis of lean production systems. Wiley.spa
dc.relation.referencesAsl, A. D., Wong, K. Y., & Tiwari, M. K. (2016). Unequal-area stochastic facility layout problems: Solutions using improved covariance matrix adaptation evolution strategy, particle swarm optimisation, and genetic algorithm. International Journal of Production Research, 54(3), 799–823. Scopus. https://doi.org/10.1080/00207543.2015.1070217spa
dc.relation.referencesBahramara, S., Mazza, A., Chicco, G., Shafie-khah, M., & Catalão, J. P. S. (2020). Comprehensive review on the decision-making frameworks referring to the distribution network operation problem in the presence of distributed energy resources and microgrids. International Journal of Electrical Power and Energy Systems, 115. Scopus. https://doi.org/10.1016/j.ijepes.2019.105466spa
dc.relation.referencesBalamurugan, K., Selladurai, V., & Ilamathi, B. (2006). Solving unequal area facility layout problems using genetic algorithm. International Journal of Logistics Systems and Management, 2(3), 281–301. Scopus. https://doi.org/10.1504/IJLSM.2006.009777spa
dc.relation.referencesBalamurugan, K., Selladurai, V., & Ilamathi, B. (2008). Manufacturing facilities layout design using genetic algorithm. International Journal of Manufacturing Technology and Management, 14(3–4), 461–474. Scopus. https://doi.org/10.1504/IJMTM.2008.017739spa
dc.relation.referencesBazaraa, M. S. (1975). Computerized layout design: A branch and bound approach. AIIE Transactions, 7(4), 432–438. Scopus. https://doi.org/10.1080/05695557508975028spa
dc.relation.referencesBeasley, J. E. (1990). OR-Library: Distributing Test Problems by Electronic Mail. The Journal of the Operational Research Society, 41(11), 1069. https://doi.org/10.2307/2582903spa
dc.relation.referencesBehjat, S., & Salmasi, N. (2017). Total completion time minimisation of no-wait flowshop group scheduling problem with sequence dependent setup times. European Journal of Industrial Engineering, 11(1), 22–48. Scopus. https://doi.org/10.1504/EJIE.2017.081418spa
dc.relation.referencesBehnamian, J., Zandieh, M., & Fatemi Ghomi, S. M. T. (2010). Due windows group scheduling using an effective hybrid optimization approach. International Journal of Advanced Manufacturing Technology, 46(5–8), 721–735. Scopus. https://doi.org/10.1007/s00170-009-2147-zspa
dc.relation.referencesBenjaafar, S. (2002). Modeling and analysis of congestion in the design of facility layouts. Management Science, 48(5), 679–704. Scopus. https://doi.org/10.1287/mnsc.48.5.679.7800spa
dc.relation.referencesBłażewicz, J., Domschke, W., & Pesch, E. (1996). The job shop scheduling problem: Conventional and new solution techniques. European Journal of Operational Research, 93(1), 1–33. https://doi.org/10.1016/0377-2217(95)00362-2spa
dc.relation.referencesBoschetti, M. A., Maniezzo, V., Roffilli, M., & Bolufé Röhler, A. (2009). Matheuristics: Optimization, Simulation and Control. En M. J. Blesa, C. Blum, L. Di Gaspero, A. Roli, M. Sampels, & A. Schaerf (Eds.), Hybrid Metaheuristics (Vol. 5818, pp. 171–177). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-04918-7_13spa
dc.relation.referencesBouabda, R., Jarboui, B., Eddaly, M., & Reba, A. (2011). A branch and bound enhanced genetic algorithm for scheduling a flowline manufacturing cell with sequence dependent family setup times. Computers and Operations Research, 38(1), 387–393. Scopus. https://doi.org/10.1016/j.cor.2010.06.006spa
dc.relation.referencesBozer, Y. A., & Meller, R. D. (1997). A reexamination of the distance-based facility layout problem. IIE Transactions (Institute of Industrial Engineers), 29(7), 549–560. Scopus. https://doi.org/10.1080/07408179708966365spa
dc.relation.referencesBozer, Y. A., Meller, R. D., & Erlebacher, S. J. (1994). Improvement-type layout algorithm for single and multiple-floor facilities. Management Science, 40(7), 918–932. Scopus. https://doi.org/10.1287/mnsc.40.7.918spa
dc.relation.referencesBozer, Y. A., & Wang, C.-T. (2012). A graph-pair representation and MIP-model-based heuristic for the unequal-area facility layout problem. European Journal of Operational Research, 218(2), 382–391. Scopus. https://doi.org/10.1016/j.ejor.2011.10.052spa
dc.relation.referencesBurbidge, J. L. (1975). The introduction of group technology. Heinemann.spa
dc.relation.referencesCámara de Comercio de Cúcuta. (2014). Documento de Estrategia. Iniciativa el Norte de la Moda (p. 29). http://www.datacucuta.com/index.php/cluster/norte-de-la-moda/559-documentspa
dc.relation.referencesCarlson, J. A., Jaffe, A., Wiles, A., Clay Mathematics Institute, & American Mathematical Society (Eds.). (2006). The Millennium prize problems. American Mathematical Society ; For The Clay Mathematics Institute.spa
dc.relation.referencesCarro Paz, R., & González Gómez, D. (2014). Administración de operaciones. Construcción de operaciones de clase mundial. Nueva Libreria.spa
dc.relation.referencesCastillo, I., & Sim, T. (2004). A spring-embedding approach for the facility layout problem. Journal of the Operational Research Society, 55(1), 73–81. Scopus. https://doi.org/10.1057/palgrave.jors.2601647spa
dc.relation.referencesCastillo, I., Westerlund, J., Emet, S., & Westerlund, T. (2005). Optimization of block layout design problems with unequal areas: A comparison of MILP and MINLP optimization methods. Computers and Chemical Engineering, 30(1), 54–69. Scopus. https://doi.org/10.1016/j.compchemeng.2005.07.012spa
dc.relation.referencesCastillo, I., & Westerlund, T. (2005). An ε-accurate model for optimal unequal-area block layout design. Computers and Operations Research, 32(3), 429–447. Scopus. https://doi.org/10.1016/S0305-0548(03)00246-6spa
dc.relation.referencesCelano, G., Costa, A., & Fichera, S. (2010). Constrained scheduling of the inspection activities on semiconductor wafers grouped in families with sequence-dependent set-up times. International Journal of Advanced Manufacturing Technology, 46(5–8), 695–705. Scopus. https://doi.org/10.1007/s00170-009-2112-xspa
dc.relation.referencesCelano, G., Costa, A., & Fichera, S. (2011). Flow shop group scheduling with limited buffer capacity and different workforce. ICINCO - Proc. Int. Conf. Informatics Control, Autom. Rob., 2, 486–491. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052591769&partnerID=40&md5=2b8ca204364fc94669731a2d79c932acspa
dc.relation.referencesČerný, V. (1985). Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45(1), 41–51. https://doi.org/10.1007/BF00940812spa
dc.relation.referencesChae, J., & Peters, B. A. (2006). Layout design of multi-bay facilities with limited bay flexibility. Journal of Manufacturing Systems, 25(1), 1–11. Scopus. https://doi.org/10.1016/S0278-6125(07)00004-0spa
dc.relation.referencesChae, J., & Regan, A. C. (2016). Layout design problems with heterogeneous area constraints. Computers and Industrial Engineering, 102, 198–207. Scopus. https://doi.org/10.1016/j.cie.2016.10.016spa
dc.relation.referencesChang, M.-S., & Ku, T.-C. (2013). A slicing tree representation and QCP-model-based heuristic algorithm for the unequal-area block facility layout problem. Mathematical Problems in Engineering, 2013. Scopus. https://doi.org/10.1155/2013/853586spa
dc.relation.referencesChen, C.-F., Wu, M.-C., Li, Y.-H., Tai, P.-H., & Chiou, C.-W. (2013). A comparison of two chromosome representation schemes used in solving a family-based scheduling problem. Robotics and Computer-Integrated Manufacturing, 29(3), 21–30. Scopus. https://doi.org/10.1016/j.rcim.2012.04.009spa
dc.relation.referencesChen, Y.-C., & Lee, C.-E. (2001). A bottleneck-based group scheduling procedure for job-shop cells. Journal of the Chinese Institute of Industrial Engineers, 18(5), 1–12. Scopus. https://doi.org/10.1080/10170660109509499spa
dc.relation.referencesCheng, H.-M., & Ying, K.-C. (2011). Minimizing makespan in a flow-line manufacturing cell with sequence dependent family setup times. Expert Systems with Applications, 38(12), 15517–15522. Scopus. https://doi.org/10.1016/j.eswa.2011.06.008spa
dc.relation.referencesCheng, T. C. E., Gupta, J. N. D., & Wang, G. (2000). A review of flowshop scheduling research with setup times. Production and Operations Management, 9(3), 262–282. Scopus.spa
dc.relation.referencesCho, K.-K., & Ahn, B.-H. (2003). A hybrid genetic algorithm for group scheduling with sequence dependent group setup time. International Journal of Industrial Engineering : Theory Applications and Practice, 10(4), 442–448. Scopus.spa
dc.relation.referencesCosta, A., Cappadonna, F. A., & Fichera, S. (2017). A hybrid genetic algorithm for minimizing makespan in a flow-shop sequence-dependent group scheduling problem. Journal of Intelligent Manufacturing, 28(6), 1269–1283. Scopus. https://doi.org/10.1007/s10845-015-1049-1spa
dc.relation.referencesCosta, A., Cappadonna, F. V., & Fichera, S. (2020). Minimizing makespan in a Flow Shop Sequence Dependent Group Scheduling problem with blocking constraint. Engineering Applications of Artificial Intelligence, 89. Scopus. https://doi.org/10.1016/j.engappai.2019.103413spa
dc.relation.referencesCuatrecasas-Arbós, L. (2009). Diseño avanzado de procesos y plantas de producción flexible. Técnicas de diseño y herramientas gráficas con soporte informático. Profit.spa
dc.relation.referencesDaş, G. S., Gzara, F., & Stützle, T. (2020). A review on airport gate assignment problems: Single versus multi objective approaches. Omega (United Kingdom), 92. Scopus. https://doi.org/10.1016/j.omega.2019.102146spa
dc.relation.referencesDas, S. K. (1993). A facility layout method for flexible manufacturing systems. International Journal of Production Research, 31(2), 279–297. Scopus. https://doi.org/10.1080/00207549308956725spa
dc.relation.referencesDas, S., & Patnaik, A. (2015). Production planning in the apparel industry. En Garment Manufacturing Technology (pp. 81–108). Elsevier. https://doi.org/10.1016/B978-1-78242-232-7.00004-7spa
dc.relation.referencesDelgoshaei, A., Ariffin, M. K. A. M., Leman, Z., Baharudin, B. T. H. T. B., & Gomes, C. (2016). Review of evolution of cellular manufacturing system’s approaches: Material transferring models. International Journal of Precision Engineering and Manufacturing, 17(1), 131–149. Scopus. https://doi.org/10.1007/s12541-016-0017-9spa
dc.relation.referencesDennis, P. (2015). Lean production simplified: A plain-language guide to the world’s most powerful production system (Third edition). CRC Press, Taylor & Francis Group.spa
dc.relation.referencesDicken, P. (2003). Global shift: Reshaping the global economic map in the 21st century (4th ed). Sage Publications.spa
dc.relation.referencesDonaghey, C. E., & Pire, V. F. (1991). Solving the facility layout problem with BLOCPLAN. Information Management: Proceedings of Limerick University Conference, 649–658.spa
dc.relation.referencesDorigo, M. (1992). Optimization, learning and natural algorithms [PhD Thesis]. Politecnico di Milano.spa
dc.relation.referencesDrira, A., Pierreval, H., & Hajri-Gabouj, S. (2007). Facility layout problems: A survey. Annual Reviews in Control, 31(2), 255–267. https://doi.org/10.1016/j.arcontrol.2007.04.001spa
dc.relation.referencesDunker, T., Radons, G., & Westkämper, E. (2003). A coevolutionary algorithm for a facility layout problem. International Journal of Production Research, 41(15), 3479–3500. Scopus. https://doi.org/10.1080/0020754031000118125spa
dc.relation.referencesEbrahimi, A., Kia, R., & Komijan, A. R. (2016). Solving a mathematical model integrating unequal-area facilities layout and part scheduling in a cellular manufacturing system by a genetic algorithm. SpringerPlus, 5(1). Scopus. https://doi.org/10.1186/s40064-016-2773-5spa
dc.relation.referencesEddaly, M., Jarboui, B., Bouabda, R., Siarry, P., & Rebaï, A. (2013). An Estimation of Distribution Algorithm for Solving Flow Shop Scheduling Problems with Sequence-dependent Family Setup Times. En Metaheuristics for Prod. Sched. (pp. 1–17). wiley; Scopus. https://doi.org/10.1002/9781118731598.ch1spa
dc.relation.referencesFares, N., & Lebbar, M. (2019). Optimization of fast fashion retail supply chain processes: Overall literature review and future research challenges. International Journal of Engineering Research in Africa, 45, 205–220. Scopus. https://doi.org/10.4028/www.scientific.net/JERA.45.205spa
dc.relation.referencesFares, N., Lebbar, M., & Sbihi, N. (2019). A customer profiling’ machine learning approach, for in-store sales in fast fashion (Vol. 915). Springer Verlag; Scopus. https://doi.org/10.1007/978-3-030-11928-7_53spa
dc.relation.referencesFattahi, P., Saidi Mehrabad, M., & Jolai, F. (2007). Mathematical modeling and heuristic approaches to flexible job shop scheduling problems. Journal of Intelligent Manufacturing, 18(3), 331–342. https://doi.org/10.1007/s10845-007-0026-8spa
dc.relation.referencesFisher, R. D., & Thompson, G. L. (1963). Probabilistic Learning Combinations of Local Job-Shop Scheduling Rules. En J. F. Muth & G. L. Thompson (Eds.), Industrial Scheduling (pp. 225–251). Prentice-Hall.spa
dc.relation.referencesForza, C., & Vinelli, A. (2000). Time compression in production and distribution within the textile‐apparel chain. Integrated Manufacturing Systems, 11(2), 138–146. https://doi.org/10.1108/09576060010314134spa
dc.relation.referencesFrança, P. M., Gupta, J. N. D., Mendes, A. S., Moscato, P., & Veltink, K. J. (2005). Evolutionary algorithms for scheduling a flowshop manufacturing cell with sequence dependent family setups. Computers and Industrial Engineering, 48(3), 491–506. Scopus. https://doi.org/10.1016/j.cie.2003.11.004spa
dc.relation.referencesGarcía Bautista, M. F., & Jauregui Mancipe, C. X. (2016). Caracterización de las empresas del sector textil confecciones en la ciudad de Cúcuta, Norte de Santander [Grado en Ingeniería Industrial, Universidad de Santander]. https://catalogo.udes.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=37685spa
dc.relation.referencesGarcía-Hernández, L., Palomo-Romero, J. M., Salas-Morera, L., Arauzo-Azofra, A., & Pierreval, H. (2015). A novel hybrid evolutionary approach for capturing decision maker knowledge into the unequal area facility layout problem. Expert Systems with Applications, 42(10), 4697–4708. Scopus. https://doi.org/10.1016/j.eswa.2015.01.037spa
dc.relation.referencesGarcía-Hernández, L., Pérez-Ortiz, M., Arauzo-Azofra, A., Salas-Morera, L., & Hervas-Martinez, C. (2014). An evolutionary neural system for incorporating expert knowledge into the UA-FLP. Neurocomputing, 135, 69–78. Scopus. https://doi.org/10.1016/j.neucom.2013.01.068spa
dc.relation.referencesGarcía-Hernández, L., Pierreval, H., Salas-Morera, L., & Arauzo-Azofra, A. (2013). Handling qualitative aspects in Unequal Area Facility Layout Problem: An Interactive Genetic Algorithm. Applied Soft Computing Journal, 13(4), 1718–1727. Scopus. https://doi.org/10.1016/j.asoc.2013.01.003spa
dc.relation.referencesGarcía-Hernández, L., Salas-Morera, L., Carmona-Muñoz, C., Abraham, A., & Salcedo-Sanz, S. (2020). A novel multi-objective Interactive Coral Reefs Optimization algorithm for the Unequal Area Facility Layout Problem. Swarm and Evolutionary Computation, 55. Scopus. https://doi.org/10.1016/j.swevo.2020.100688spa
dc.relation.referencesGarcía-Hernández, L., Salas-Morera, L., Carmona-Muñoz, C., García-Hernández, J. A., & Salcedo-Sanz, S. (2020). A novel Island Model based on Coral Reefs Optimization algorithm for solving the unequal area facility layout problem. Engineering Applications of Artificial Intelligence, 89. Scopus. https://doi.org/10.1016/j.engappai.2019.103445spa
dc.relation.referencesGarcía-Hernández, L., Salas-Morera, L., García-Hernández, J. A., Salcedo-Sanz, S., & Valente de Oliveira, J. (2019). Applying the coral reefs optimization algorithm for solving unequal area facility layout problems. Expert Systems with Applications, 138. Scopus. https://doi.org/10.1016/j.eswa.2019.07.036spa
dc.relation.referencesGarey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. W. H. Freeman.spa
dc.relation.referencesGau, K.-Y., & Meller, R. D. (1999). An iterative facility layout algorithm. International Journal of Production Research, 37(16), 3739–3758. Scopus. https://doi.org/10.1080/002075499190022spa
dc.relation.referencesGelogullari, C. A., & Logendran, R. (2010). Group-scheduling problems in electronics manufacturing. Journal of Scheduling, 13(2), 177–202. Scopus. https://doi.org/10.1007/s10951-009-0147-3spa
dc.relation.referencesGelvez Manrique, M. F. (2016). Redistribución del proceso de confección por celdas de manufactura para aumentar el volumen de producción de la empresa Sexy Jeans Ltda., en la ciudad de Cúcuta—Norte de Santander [Grado en Ingeniería Industrial, Universidad Libre Seccional Cúcuta]. https://repository.unilibre.edu.co/handle/10901/9289spa
dc.relation.referencesGeorgiadis, M. C., Rotstein, G. E., & Macchietto, S. (1997). Optimal Layout Design in Multipurpose Batch Plants. Industrial and Engineering Chemistry Research, 36(11), 4852–4863. Scopus. https://doi.org/10.1021/ie9702845spa
dc.relation.referencesGhassemi Tari, F., & Neghabi, H. (2015). A new linear adjacency approach for facility layout problem with unequal area departments. Journal of Manufacturing Systems, 37, 93–103. Scopus. https://doi.org/10.1016/j.jmsy.2015.09.003spa
dc.relation.referencesGlover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13(5), 533–549. https://doi.org/10.1016/0305-0548(86)90048-1spa
dc.relation.referencesGlover, F. (1989). Tabu Search—Part I. ORSA Journal on Computing, 1(3), 190–206. https://doi.org/10.1287/ijoc.1.3.190spa
dc.relation.referencesGökalp, E., Gökalp, M. O., & Eren, P. E. (2018). Analyzing the Impact of a Decision Support System on a Medium Sized Apparel Company. En R. Valencia-García, M. A. Paredes-Valverde, M. del P. Salas-Zárate, & G. Alor-Hernández (Eds.), Exploring Intelligent Decision Support Systems (Vol. 764, pp. 73–87). Springer International Publishing. https://doi.org/10.1007/978-3-319-74002-7_4spa
dc.relation.referencesGómez Mora, J. M., & Pulido García, M. F. (2019). Propuesta para el diseño de mantenimiento preventivo para el área de confección en la Organización Bless SAS [Grado en Ingeniería Industrial, Universidad Francisco de Paula Santander]. http://alejandria.ufps.edu.co/descargas/tesis/1192287%20%201192288.pdfspa
dc.relation.referencesGonçalves, J. F., & Resende, M. G. C. (2015). A biased random-key genetic algorithm for the unequal area facility layout problem. European Journal of Operational Research, 246(1), 86–107. Scopus. https://doi.org/10.1016/j.ejor.2015.04.029spa
dc.relation.referencesGonzalez, R., & Realff, M. J. (1998). Operation of pipeless batch plants—I. MILP schedules. Computers and Chemical Engineering, 22(7–8), 841–855. Scopus. https://doi.org/10.1016/S0098-1354(98)00005-2spa
dc.relation.referencesGraham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. H. G. R. (1979). Optimization and Approximation in Deterministic Sequencing and Scheduling: A Survey. En Annals of Discrete Mathematics (Vol. 5, pp. 287–326). Elsevier. https://doi.org/10.1016/S0167-5060(08)70356-Xspa
dc.relation.referencesGupta, J. N. D., & Darrow, W. P. (1986). The two-machine sequence dependent flowshop scheduling problem. European Journal of Operational Research, 24(3), 439–446. https://doi.org/10.1016/0377-2217(86)90037-8spa
dc.relation.referencesGupta, J. N. D., & Schaller, J. E. (2006). Minimizing flow time in a flow-line manufacturing cell with family setup times. Journal of the Operational Research Society, 57(2), 163–176. Scopus. https://doi.org/10.1057/palgrave.jors.2601971spa
dc.relation.referencesHam, I., Hitomi, K., & Yoshida, T. (1985). Group Technology: Applications to Production Management. Springer Netherlands. https://doi.org/10.1007/978-94-009-4976-8spa
dc.relation.referencesHamed Hendizadeh, S., ElMekkawy, T. Y., & Gary Wang, G. (2007). Bi-criteria scheduling of a flowshop manufacturing cell with sequence dependent setup times. European Journal of Industrial Engineering, 1(4), 391–413. Scopus.spa
dc.relation.referencesHamed Hendizadeh, S., Faramarzi, H., Mansouri, S. A., Gupta, J. N. D., & Y ElMekkawy, T. (2008). Meta-heuristics for scheduling a flowline manufacturing cell with sequence dependent family setup times. International Journal of Production Economics, 111(2), 593–605. Scopus. https://doi.org/10.1016/j.ijpe.2007.02.031spa
dc.relation.referencesHassler, M. (2003). The global clothing production system: Commodity chains and business networks. Global Networks, 3(4), 513–531. https://doi.org/10.1111/1471-0374.00075spa
dc.relation.referencesHeizer, J., Render, B., & Munson, C. (2017). Operations management: Sustainability and supply chain management (Twelfth edition). Pearson.spa
dc.relation.referencesHeragu, S. S. (2016). Facilities design (Fourth edition). CRC Press, Taylor & Francis Group.spa
dc.relation.referencesHernández Redondo, J. V. (2017). Sistema de producción aplicando lean manufacturing en el proceso de confección para la organización Bless ubicada en la ciudad de Cúcuta, Norte de Santander [Grado en Administración de Empresas, Universidad de Pamplona]. http://serviciosacademicos.unipamplona.edu.co/prestamo/spa
dc.relation.referencesHernández-Gress, E. S., Seck-Tuoh-Mora, J. C., Hernández-Romero, N., Medina-Marín, J., Lagos-Eulogio, P., & Ortíz-Perea, J. (2020). The solution of the concurrent layout scheduling problem in the job-shop environment through a local neighborhood search algorithm. Expert Systems with Applications, 144. Scopus. https://doi.org/10.1016/j.eswa.2019.113096spa
dc.relation.referencesHolland, J. H. (1962). Outline for a Logical Theory of Adaptive Systems. Journal of the ACM (JACM), 9(3), 297–314. https://doi.org/10.1145/321127.321128spa
dc.relation.referencesHolland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press.spa
dc.relation.referencesHosseini-Nasab, H., Fereidouni, S., Fatemi Ghomi, S. M. T., & Fakhrzad, M. B. (2018). Classification of facility layout problems: A review study. International Journal of Advanced Manufacturing Technology, 94(1–4), 957–977. Scopus. https://doi.org/10.1007/s00170-017-0895-8spa
dc.relation.referencesHou, S., Wen, H., Feng, S., Wang, H., & Li, Z. (2019). Application of layered coding genetic algorithm in optimization of unequal area production facilities layout. Computational Intelligence and Neuroscience, 2019. Scopus. https://doi.org/10.1155/2019/3650923spa
dc.relation.referencesHuang, X. (2019). Bicriterion scheduling with group technology and deterioration effect. Journal of Applied Mathematics and Computing, 60(1–2), 455–464. Scopus. https://doi.org/10.1007/s12190-018-01222-1spa
dc.relation.referencesIbero Casadiego, L., & Manzano Romero, L. S. (2017). Propuesta para la planeación y control de la producción de una pequeña empresa de confección de uniformes escolares en la ciudad de San José de Cúcuta [Grado en Ingeniería Industrial, Universidad Francisco de Paula Santander]. http://alejandria.ufps.edu.co/descargas/tesis/1190802.pdfspa
dc.relation.referencesIbrahem, A.-M., Elmekkawy, T., & Peng, Q. (2014). Robust metaheuristics for scheduling cellular flowshop with family sequence-dependent setup times. Procedia CIRP, 17, 428–433. Scopus. https://doi.org/10.1016/j.procir.2014.01.072spa
dc.relation.referencesImam, M. H., & Mir, M. (1993). Automated layout of facilities of unequal areas. Computers and Industrial Engineering, 24(3), 355–366. Scopus. https://doi.org/10.1016/0360-8352(93)90032-Sspa
dc.relation.referencesImam, M. H., & Mir, M. (1998). Cluster boundary search algorithm for building-block layout optimization. Advances in Engineering Software, 29(2), 165–173. Scopus. https://doi.org/10.1016/S0965-9978(98)00056-8spa
dc.relation.referencesIngole, S., & Singh, D. (2017). Unequal-area, fixed-shape facility layout problems using the firefly algorithm. Engineering Optimization, 49(7), 1097–1115. Scopus. https://doi.org/10.1080/0305215X.2016.1235327spa
dc.relation.referencesIrani, S. A. (Ed.). (1999). Handbook of cellular manufacturing systems. Wiley.spa
dc.relation.referencesIslier, A. A. (1998). A genetic algorithm approach for multiple criteria facility layout design. International Journal of Production Research, 36(6), 1549–1569. Scopus. https://doi.org/10.1080/002075498193165spa
dc.relation.referencesJacobs, F. R., & Chase, R. B. (2018). Operations and supply chain management (Fifteenth edition). McGraw-Hill Education.spa
dc.relation.referencesJankovits, I., Luo, C., Anjos, M. F., & Vannelli, A. (2011). A convex optimisation framework for the unequal-areas facility layout problem. European Journal of Operational Research, 214(2), 199–215. Scopus. https://doi.org/10.1016/j.ejor.2011.04.013spa
dc.relation.referencesJayakumar, S., & Reklaitis, G. V. (1996). Chemical plant layout via graph partitioning—II. Multiple levels. Computers and Chemical Engineering, 20(5), 563–578. Scopus. https://doi.org/10.1016/0098-1354(95)00208-1spa
dc.relation.referencesJohnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly, 1(1), 61–68. https://doi.org/10.1002/nav.3800010110spa
dc.relation.referencesJones, R. M. (2006). The apparel industry (2nd ed). Blackwell Pub.spa
dc.relation.referencesKamoshida, R. (2018). Concurrent optimization of job shop scheduling and dynamic and flexible facility layout planning. Int. Conf. Ind. Eng. Appl., ICIEA, 289–293. Scopus. https://doi.org/10.1109/IEA.2018.8387112spa
dc.relation.referencesKamoun, M., & Yano, C. A. (1996). Facility layout to support just-in-time. Transportation Science, 30(4), 315–329. Scopus. https://doi.org/10.1287/trsc.30.4.315spa
dc.relation.referencesKang, S., & Chae, J. (2017). Harmony search for the layout design of an unequal area facility. Expert Systems with Applications, 79, 269–281. Scopus. https://doi.org/10.1016/j.eswa.2017.02.047spa
dc.relation.referencesKazemi, M., Poormoaied, S., & Eslami, G. (2012). Optimizing combination of job shop scheduling and quadratic assignment problem through multi-objective decision making approach. Management Science Letters, 2(6), 2011–2018. https://doi.org/10.5267/j.msl.2012.06.020spa
dc.relation.referencesKennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks, 4, 1942–1948. https://doi.org/10.1109/ICNN.1995.488968spa
dc.relation.referencesKeshavarz, T., Salmasi, N., & Varmazyar, M. (2014). Minimizing total completion time in the flexible flowshop sequence-dependent group scheduling problem. Annals of Operations Research, 226(1), 351–377. Scopus. https://doi.org/10.1007/s10479-014-1667-6spa
dc.relation.referencesKeshavarz, T., Salmasi, N., & Varmazyar, M. (2019). Flowshop sequence-dependent group scheduling with minimisation of weighted earliness and tardiness. European Journal of Industrial Engineering, 13(1), 54–80. Scopus. https://doi.org/10.1504/EJIE.2019.097920spa
dc.relation.referencesKhalid, Q. S., Arshad, M., Maqsood, S., Jahanzaib, M., Babar, A. R., Khan, I., Mumtaz, J., & Kim, S. (2019). Hybrid particle swarm algorithm for products’ scheduling problem in cellular manufacturing system. Symmetry, 11(6). Scopus. https://doi.org/10.3390/sym11060729spa
dc.relation.referencesKhare, V. K., Khare, M. K., & Neema, M. L. (1988). Combined computer-aided approach for the facilities design problem and estimation of the distribution parameter in the case of multigoal optimization. Computers and Industrial Engineering, 14(4), 465–476. Scopus. https://doi.org/10.1016/0360-8352(88)90048-4spa
dc.relation.referencesKikolski, M., & Ko, C.-H. (2018). Facility layout design—Review of current research directions. Engineering Management in Production and Services, 10(3), 70–79. Scopus. https://doi.org/10.2478/emj-2018-0018spa
dc.relation.referencesKirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671–680. https://doi.org/10.1126/science.220.4598.671spa
dc.relation.referencesKitchenham, B. (2004). Procedures for Performing Systematic Reviews (Joint Technical Report Keele University Technical Report (TR/SE-0401) and National ICT Australia Ltd. (0400011T.1)).spa
dc.relation.referencesKomarudin, & Wong, K. Y. (2010). Applying Ant System for solving Unequal Area Facility Layout Problems. European Journal of Operational Research, 202(3), 730–746. Scopus. https://doi.org/10.1016/j.ejor.2009.06.016spa
dc.relation.referencesKomarudin, & Wong, K. Y. (2012). Parameter tuning of ant system using fuzzy logic controller. International Journal of Operational Research, 15(2), 125–135. Scopus. https://doi.org/10.1504/IJOR.2012.048863spa
dc.relation.referencesKonak, A., Kulturel-Konak, S., Norman, B. A., & Smith, A. E. (2006). A new mixed integer programming formulation for facility layout design using flexible bays. Operations Research Letters, 34(6), 660–672. Scopus. https://doi.org/10.1016/j.orl.2005.09.009spa
dc.relation.referencesKoopmans, T. C., & Beckmann, M. (1957). Assignment Problems and the Location of Economic Activities. Econometrica, 25(1), 53. https://doi.org/10.2307/1907742spa
dc.relation.referencesKrajewski, L. J., Malhotra, M. K., & Ritzman, L. P. (2016). Operations management. Processes and supply chains (Eleventh edition). Pearson.spa
dc.relation.referencesKulturel-Konak, S. (2012). A linear programming embedded probabilistic tabu search for the unequal-area facility layout problem with flexible bays. European Journal of Operational Research, 223(3), 614–625. Scopus. https://doi.org/10.1016/j.ejor.2012.07.019spa
dc.relation.referencesKulturel-Konak, S., & Konak, A. (2011a). A new relaxed flexible bay structure representation and particle swarm optimization for the unequal area facility layout problem. Engineering Optimization, 43(12), 1263–1287. Scopus. https://doi.org/10.1080/0305215X.2010.548864spa
dc.relation.referencesKulturel-Konak, S., & Konak, A. (2011b). Unequal area flexible bay facility layout using ant colony optimisation. International Journal of Production Research, 49(7), 1877–1902. Scopus. https://doi.org/10.1080/00207541003614371spa
dc.relation.referencesKulturel-Konak, S., & Konak, A. (2013). Linear programming based genetic algorithm for the unequal area facility layout problem. International Journal of Production Research, 51(14), 4302–4324. Scopus. https://doi.org/10.1080/00207543.2013.774481spa
dc.relation.referencesKulturel-Konak, S., Smith, A. E., & Norman, B. A. (2004). Layout optimization considering production uncertainty and routing flexibility. International Journal of Production Research, 42(21), 4475–4493. Scopus. https://doi.org/10.1080/00207540412331325567spa
dc.relation.referencesKundu, A., & Dan, P. K. (2012). Metaheuristic in facility layout problems: Current trend and future direction. International Journal of Industrial and Systems Engineering, 10(2), 238. https://doi.org/10.1504/IJISE.2012.045182spa
dc.relation.referencesKusiak, A., & Heragu, S. S. (1987). The facility layout problem. European Journal of Operational Research, 29(3), 229–251. Scopus. https://doi.org/10.1016/0377-2217(87)90238-4spa
dc.relation.referencesLa Scalia, G., Micale, R., Giallanza, A., & Marannano, G. (2019). Firefly algorithm based upon slicing structure encoding for unequal facility layout problem. International Journal of Industrial Engineering Computations, 10(3), 349–360. Scopus. https://doi.org/10.5267/j.ijiec.2019.2.003spa
dc.relation.referencesLawler, E. L. (1973). Optimal Sequencing of a Single Machine Subject to Precedence Constraints. Management Science, 19(5), 544–546. JSTOR.spa
dc.relation.referencesLawrence, S. L. (1984). Supplement to Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Sc. Carnegie-Mellon University.spa
dc.relation.referencesLeao, A. A. S., Toledo, F. M. B., Oliveira, J. F., Carravilla, M. A., & Alvarez-Valdés, R. (2020). Irregular packing problems: A review of mathematical models. European Journal of Operational Research, 282(3), 803–822. Scopus. https://doi.org/10.1016/j.ejor.2019.04.045spa
dc.relation.referencesLee, K.-Y., Han, S.-N., & Roh, M.-I. (2003). An improved genetic algorithm for facility layout problems having inner structure walls and passages. Computers and Operations Research, 30(1), 117–138. Scopus. https://doi.org/10.1016/S0305-0548(01)00085-5spa
dc.relation.referencesLee, Y. H., & Lee, M. H. (2002). A shape-based block layout approach to facility layout problems using hybrid genetic algorithm. Computers and Industrial Engineering, 42(2–4), 237–248. Scopus. https://doi.org/10.1016/S0360-8352(02)00018-9spa
dc.relation.referencesLin, S.-W., Gupta, J. N. D., Ying, K.-C., & Lee, Z.-J. (2009). Using simulated annealing to schedule a flowshop manufacturing cell with sequence-dependent family setup times. International Journal of Production Research, 47(12), 3205–3217. Scopus. https://doi.org/10.1080/00207540701813210spa
dc.relation.referencesLin, S.-W., & Ying, K.-C. (2012). Scheduling a bi-criteria flowshop manufacturing cell with sequence-dependent family setup times. European Journal of Industrial Engineering, 6(4), 474–496. Scopus. https://doi.org/10.1504/EJIE.2012.047666spa
dc.relation.referencesLin, S.-W., & Ying, K.-C. (2019). Makespan optimization in a no-wait flowline manufacturing cell with sequence-dependent family setup times. Computers and Industrial Engineering, 128, 1–7. Scopus. https://doi.org/10.1016/j.cie.2018.12.025spa
dc.relation.referencesLin, S.-W., Ying, K.-C., & Lee, Z.-J. (2009). Metaheuristics for scheduling a non-permutation flowline manufacturing cell with sequence dependent family setup times. Computers and Operations Research, 36(4), 1110–1121. Scopus. https://doi.org/10.1016/j.cor.2007.12.010spa
dc.relation.referencesLin, S.-W., Ying, K.-C., Lu, C.-C., & Gupta, J. N. D. (2011). Applying multi-start simulated annealing to schedule a flowline manufacturing cell with sequence dependent family setup times. International Journal of Production Economics, 130(2), 246–254. Scopus. https://doi.org/10.1016/j.ijpe.2011.01.004spa
dc.relation.referencesLiou, C.-D., & Hsieh, Y.-C. (2015). A hybrid algorithm for the multi-stage flow shop group scheduling with sequence-dependent setup and transportation times. International Journal of Production Economics, 170, 258–267. Scopus. https://doi.org/10.1016/j.ijpe.2015.10.002spa
dc.relation.referencesLiou, C.-D., Hsieh, Y.-C., & Chen, Y.-Y. (2013). A new encoding scheme-based hybrid algorithm for minimising two-machine flow-shop group scheduling problem. International Journal of Systems Science, 44(1), 77–93. Scopus. https://doi.org/10.1080/00207721.2011.581396spa
dc.relation.referencesLiou, C.-D., & Liu, C.-H. (2010). A novel encoding scheme of PSO for two-machine group scheduling: Vol. 6145 LNCS (Peking University; Xi’an Jiaotong-Liverpool University, Trad.; Número PART 1). Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-77954654783&doi=10.1007%2f978-3-642-13495-1_16&partnerID=40&md5=0e674d343a46e28493891c85f274d416spa
dc.relation.referencesLiu, J., & Liu, J. (2019). Applying multi-objective ant colony optimization algorithm for solving the unequal area facility layout problems. Applied Soft Computing Journal, 74, 167–189. Scopus. https://doi.org/10.1016/j.asoc.2018.10.012spa
dc.relation.referencesLiu, J., Liu, J., Yan, X., & Peng, B. (2020). A heuristic algorithm combining Pareto optimization and niche technology for multi-objective unequal area facility layout problem. Engineering Applications of Artificial Intelligence, 89. Scopus. https://doi.org/10.1016/j.engappai.2019.103453spa
dc.relation.referencesLiu, J., Liu, S., Liu, Z., & Li, B. (2020). Configuration space evolutionary algorithm for multi-objective unequal-area facility layout problems with flexible bays. Applied Soft Computing Journal, 89. Scopus. https://doi.org/10.1016/j.asoc.2019.106052spa
dc.relation.referencesLiu, J., Zhang, H., He, K., & Jiang, S. (2018). Multi-objective particle swarm optimization algorithm based on objective space division for the unequal-area facility layout problem. Expert Systems with Applications, 102, 179–192. Scopus. https://doi.org/10.1016/j.eswa.2018.02.035spa
dc.relation.referencesLiu, Q., & Meller, R. D. (2007). A sequence-pair representation and MIP-model-based heuristic for the facility layout problem with rectangular departments. IIE Transactions (Institute of Industrial Engineers), 39(4), 377–394. Scopus. https://doi.org/10.1080/07408170600844108spa
dc.relation.referencesLogendran, R., Carson, S., & Hanson, E. (2005). Group scheduling in flexible flow shops. International Journal of Production Economics, 96(2), 143–155. Scopus. https://doi.org/10.1016/j.ijpe.2004.03.011spa
dc.relation.referencesLogendran, R., Gelogullari, C. A., & Sriskandarajah, C. (2003). Minimizing the mean flow time in a two-machine group-scheduling problem with carryover sequence dependency. Robotics and Computer-Integrated Manufacturing, 19(1–2), 21–33. Scopus. https://doi.org/10.1016/S0736-5845(02)00059-5spa
dc.relation.referencesLogendran, R., & Kriausakul, T. (2006). A methodology for solving the unequal area facility layout problem using distance and shape-based measures. International Journal of Production Research, 44(7), 1243–1272. Scopus. https://doi.org/10.1080/00207540500336314spa
dc.relation.referencesLogendran, R., Salmasi, N., & Sriskandarajah, C. (2006). Two-machine group scheduling problems in discrete parts manufacturing with sequence-dependent setups. Computers and Operations Research, 33(1), 158–180. Scopus. https://doi.org/10.1016/j.cor.2004.07.004spa
dc.relation.referencesLu, D., & Logendran, R. (2013). Bi-criteria group scheduling with sequence-dependent setup time in a flow shop. Journal of the Operational Research Society, 64(4), 530–546. Scopus. https://doi.org/10.1057/jors.2012.61spa
dc.relation.referencesMadariaga Neto, F. (2013). Lean manufacturing: Exposición adaptada a la fabricación repetitiva de familias de productos mediante procesos discretos (Primera edición). Bubok Publishing S.L.spa
dc.relation.referencesMaggu, P. L., & Das, G. (1980). On 2×n sequencing problem with transportation times of jobs. Pure & Applied Mathematika Sciences, 12.spa
dc.relation.referencesMallikarjuna, K., & Babu, K. S. (2018). Population Based Stochastic Technique for Optimum Design of Open Field Layout with Integrated Scheduling. Int. Conf. Comput., Commun. Netw. Technol., ICCCNT. 9th International Conference on Computing, Communication and Networking Technologies, ICCCNT 2018. Scopus. https://doi.org/10.1109/ICCCNT.2018.8494049spa
dc.relation.referencesMcKendall Jr., A. R., & Hakobyan, A. (2010). Heuristics for the dynamic facility layout problem with unequal-area departments. European Journal of Operational Research, 201(1), 171–182. Scopus. https://doi.org/10.1016/j.ejor.2009.02.028spa
dc.relation.referencesMeller, R. D. (1992). Layout algorithms for single and multiple floor facilities [Doctoral Thesis, The University of Michigan]. http://hdl.handle.net/2027.42/129018spa
dc.relation.referencesMeller, R. D. (1997). The multi-bay manufacturing facility layout problem. International Journal of Production Research, 35(5), 1229–1237. Scopus. https://doi.org/10.1080/002075497195290spa
dc.relation.referencesMeller, R. D., & Bozer, Y. A. (1996). A new simulated annealing algorithm for the facility layout problem. International Journal of Production Research, 34(6), 1675–1692. Scopus. https://doi.org/10.1080/00207549608904990spa
dc.relation.referencesMeller, R. D., Chen, W., & Sherali, H. D. (2007). Applying the sequence-pair representation to optimal facility layout designs. Operations Research Letters, 35(5), 651–659. Scopus. https://doi.org/10.1016/j.orl.2006.10.007spa
dc.relation.referencesMeller, R. D., & Gau, K.-Y. (1996). The facility layout problem: Recent and emerging trends and perspectives. Journal of Manufacturing Systems, 15(5), 351–366. https://doi.org/10.1016/0278-6125(96)84198-7spa
dc.relation.referencesMeller, R. D., Narayanan, V., & Vance, P. H. (1998). Optimal facility layout design. Operations Research Letters, 23(3–5), 117–127. Scopus. https://doi.org/10.1016/S0167-6377(98)00024-8spa
dc.relation.referencesMendoza Mantilla, J. A., & Jaimes Delgado, M. S. (2017). Propuesta de mejora mediante un estudio de métodos y tiempos para el área de producción de la empresa Distribuciones y Representaciones UNO en la ciudad de Cúcuta [Grado en Tecnología en Procesos Industriales, Universidad Francisco de Paula Santander]. http://alejandria.ufps.edu.co/descargas/tesis/1980260.pdfspa
dc.relation.referencesMeyers, R. A. (Ed.). (1986). Handbook of chemicals production processes. McGraw-Hill Book Co.spa
dc.relation.referencesMir, M., & Imam, M. H. (1996). Analytic annealing for macrocell placement optimization. Computers and Electrical Engineering, 22(2), 169–177. Scopus. https://doi.org/10.1016/0045-7906(95)00031-3spa
dc.relation.referencesMir, M., & Imam, M. H. (2001). Hybrid optimization approach for layout design of unequal-area facilities. Computers and Industrial Engineering, 39(1–2), 49–63. Scopus. https://doi.org/10.1016/S0360-8352(00)00065-6spa
dc.relation.referencesMitchell, S., O’Sullivan, M., & Dunning, I. (2011). PuLP: A Linear Programming Toolkit for Python (p. 12). http://www.optimization-online.org/DB_FILE/2011/09/3178.pdfspa
dc.relation.referencesMok, P. Y., Cheung, T. Y., Wong, W. K., Leung, S. Y. S., & Fan, J. T. (2013). Intelligent production planning for complex garment manufacturing. Journal of Intelligent Manufacturing, 24(1), 133–145. https://doi.org/10.1007/s10845-011-0548-yspa
dc.relation.referencesMontreuil, B., Ouazzani, N., Brotherton, E., & Nourelfath, M. (2004). Coupling zone-based layout optimization, ant colony system and domain knowledge. Proceedings of the 8th International Material Handling Research Colloquium, 301–331.spa
dc.relation.referencesMuther, R. (1973). Systematic layout planning (2d ed. [rev. and enl.]). Cahners Books.spa
dc.relation.referencesMuther, R., & Hales, L. (2015). Systematic Layout Planning. A total system of layout planning (fourth edition). Management & Industrial Research Publications.spa
dc.relation.referencesNaderi, B., & Salmasi, N. (2012). Permutation flowshops in group scheduling with sequence-dependent setup times. European Journal of Industrial Engineering, 6(2), 177–198. Scopus. https://doi.org/10.1504/EJIE.2012.045604spa
dc.relation.referencesNahmias, S., & Olsen, T. L. (2015). Production and operations analysis (7. ed). Waveland Pr.spa
dc.relation.referencesNayak, R., & Padhye, R. (2015). Garment Manufacturing Technology. Elsevier Science. http://www.totalboox.com/book/id-4668022919799682393spa
dc.relation.referencesNeufeld, J. S., Gupta, J. N. D., & Buscher, U. (2015). Minimising makespan in flowshop group scheduling with sequence-dependent family set-up times using inserted idle times. International Journal of Production Research, 53(6), 1791–1806. Scopus. https://doi.org/10.1080/00207543.2014.961209spa
dc.relation.referencesNeufeld, J. S., Gupta, J. N. D., & Buscher, U. (2016). A comprehensive review of flowshop group scheduling literature. Computers and Operations Research, 70, 56–74. Scopus. https://doi.org/10.1016/j.cor.2015.12.006spa
dc.relation.referencesNieto Galindo, V. M., & López, J. E. (2017). Cadena de Textil-Confecciones. Estructura, Comercio Internacional y Protección (Documento Núm. 460; Archivos de Economía, p. 58). Departamento Nacional de Planeación, DNP. https://colaboracion.dnp.gov.co/CDT/Estudios%20Econmicos/460.pdfspa
dc.relation.referencesNugent, C. E., Vollmann, T. E., & Ruml, J. (1968). An Experimental Comparison of Techniques for the Assignment of Facilities to Locations. Operations Research, 16(1), 150–173. https://doi.org/10.1287/opre.16.1.150spa
dc.relation.referencesOrtiz Zambrano, Y. Y., & Osorio Jaimes, E. (2010). Propuesta de programación de la producción de la empresa Confecciones Y7 en la ciudad de Cúcuta por medio de la Teoría de Restricciones [Grado en Ingeniería Industrial, Universidad Francisco de Paula Santander]. http://alejandria.ufps.edu.co/descargas/tesis/0190922.pdfspa
dc.relation.referencesÖzyurt, D. B., & Realff, M. J. (1999). Geographic and process information for chemical plant layout problems. AIChE Journal, 45(10), 2161–2174. Scopus. https://doi.org/10.1002/aic.690451015spa
dc.relation.referencesPaes, F. G., Pessoa, A. A., & Vidal, T. (2017). A hybrid genetic algorithm with decomposition phases for the Unequal Area Facility Layout Problem. European Journal of Operational Research, 256(3), 742–756. Scopus. https://doi.org/10.1016/j.ejor.2016.07.022spa
dc.relation.referencesPalominos, P., Pertuzé, D., Quezada, L., & Sanchez, L. (2019). An Extension of the Systematic Layout Planning System Using QFD: Its Application to Service Oriented Physical Distribution. Engineering Management Journal, 31(4), 284–302. https://doi.org/10.1080/10429247.2019.1651444spa
dc.relation.referencesPalomo-Romero, J. M., Salas-Morera, L., & García-Hernández, L. (2017). An island model genetic algorithm for unequal area facility layout problems. Expert Systems with Applications, 68, 151–162. Scopus. https://doi.org/10.1016/j.eswa.2016.10.004spa
dc.relation.referencesPark, K. S., & Han, S. W. (2002). Performance obstacles in cellular manufacturing implementation-empirical investigation. Human Factors and Ergonomics In Manufacturing, 12(1), 17–29. Scopus. https://doi.org/10.1002/hfm.10000spa
dc.relation.referencesPaul, R. C., Asokan, P., & Prabhakar, V. I. (2006). A solution to the facility layout problem having passages and inner structure walls using particle swarm optimization. International Journal of Advanced Manufacturing Technology, 29(7–8), 766–771. Scopus. https://doi.org/10.1007/s00170-005-2576-2spa
dc.relation.referencesPellerin, R., Perrier, N., & Berthaut, F. (2020). A survey of hybrid metaheuristics for the resource-constrained project scheduling problem. European Journal of Operational Research, 280(2), 395–416. Scopus. https://doi.org/10.1016/j.ejor.2019.01.063spa
dc.relation.referencesPenteado, F. D., & Ciric, A. R. (1996). An MINLP Approach for Safe Process Plant Layout. Industrial and Engineering Chemistry Research, 35(4), 1354–1361. Scopus. https://doi.org/10.1021/ie9502547spa
dc.relation.referencesPinedo, M. (2016). Scheduling: Theory, algorithms, and systems (Fifth Edition). Springer.spa
dc.relation.referencesQin, H., Zhang, Z.-H., & Bai, D. (2016). Permutation flowshop group scheduling with position-based learning effect. Computers and Industrial Engineering, 92, 1–15. Scopus. https://doi.org/10.1016/j.cie.2015.12.001spa
dc.relation.referencesRamesh, A., & Bahinipati, B. K. (2011). The Indian apparel industry: A critical review of supply chains. 1101–1111.spa
dc.relation.referencesRamírez Zambrano, J. R., Zambrano Miranda, M. de J., Mogroviejo, J. M., & Carreño Montaño, J. L. (2016). Informalidad laboral en los departamentos de Norte de Santander, Nariño, La Guajira y Cesar. Apuntes del CENES, 35(62), 125–145.spa
dc.relation.referencesRanjbar, M., & Razavi, M. N. (2012). A hybrid metaheuristic for concurrent layout and scheduling problem in a job shop environment. The International Journal of Advanced Manufacturing Technology, 62(9–12), 1249–1260. https://doi.org/10.1007/s00170-011-3859-4spa
dc.relation.referencesReed, R. (1961). Plant Layout: Factors, Principles, and Techniques. R.D. Irwin. https://books.google.com.co/books?id=POdTAAAAMAAJspa
dc.relation.referencesRincón Moreno, C. A., & Anaya Morales, Y. A. (2015). Propuesta para planeación y control de la producción en la empresa Confecciones Varmesí en la ciudad de Cúcuta [Grado en Ingeniería Industrial, Universidad Francisco de Paula Santander]. http://alejandria.ufps.edu.co/descargas/tesis/1191044.pdfspa
dc.relation.referencesRipon, K. S. N., Glette, K., Hovin, M., & Torresen, J. (2012). Job shop scheduling with transportation delays and layout planning in manufacturing systems: A multi-objective evolutionary approach: Vol. 7326 LNAI (Cent. P. Anal. Mach. Intell. (CPAMI); Univ. W. Association for Image and Machine Intelligence (AIMI); Fac. Eng. Univ. Porto (FEUP) Dep. Electr. Comput. Eng.; Instituto de Engenharia Biomedica (INEB); Univ. Waterloo Dep. Electr. Comput. Eng., Trad.). Scopus. https://doi.org/10.1007/978-3-642-31368-4_25spa
dc.relation.referencesRipon, K. S. N., Glette, K., Khan, K. N., Hovin, M., & Torresen, J. (2013). Adaptive variable neighborhood search for solving multi-objective facility layout problems with unequal area facilities. Swarm and Evolutionary Computation, 8, 1–12. Scopus. https://doi.org/10.1016/j.swevo.2012.07.003spa
dc.relation.referencesRipon, K. S. N., Glette, K., Mirmotahari, O., Hovin, M., & Torresen, J. (2009). Pareto Optimal Based Evolutionary Approach for Solving Multi-Objective Facility Layout Problem. En C. S. Leung, M. Lee, & J. H. Chan (Eds.), Neural Information Processing (Vol. 5864, pp. 159–168). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-10684-2_18spa
dc.relation.referencesRipon, K. S. N., Khan, K. N., Glette, K., Hovin, M., & Torresen, J. (2011). Using pareto-optimality for solving multi-objective unequal area facility layout problem. Genet. Evol. Comput. Conf., GECCO, 681–688. Scopus. https://doi.org/10.1145/2001576.2001670spa
dc.relation.referencesRipon, K. S. N., & Torresen, J. (2014). Integrated job shop scheduling and layout planning: A hybrid evolutionary method for optimizing multiple objectives. Evolving Systems, 5(2), 121–132. Scopus. https://doi.org/10.1007/s12530-013-9092-7spa
dc.relation.referencesRuiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop heuristics. European Journal of Operational Research, 165(2), 479–494. https://doi.org/10.1016/j.ejor.2004.04.017spa
dc.relation.referencesSalas-Morera, L., García-Hernández, L., Antoli-Cabrera, A., & Carmona-Muñoz, C. (2020). Using eye-tracking into decision makers evaluation in evolutionary interactive UA-FLP algorithms. Neural Computing and Applications. Scopus. https://doi.org/10.1007/s00521-020-04781-2spa
dc.relation.referencesSalmasi, N. (2005). Multi-stage Group Scheduling Problems with Sequence Dependent Setups [PhD Thesis]. Oregon State University.spa
dc.relation.referencesSalmasi, N., Logendran, R., & Skandari, M. R. (2010). Total flow time minimization in a flowshop sequence-dependent group scheduling problem. Computers and Operations Research, 37(1), 199–212. Scopus. https://doi.org/10.1016/j.cor.2009.04.013spa
dc.relation.referencesSalmasi, N., Logendran, R., & Skandari, M. R. (2011). Makespan minimization of a flowshop sequence-dependent group scheduling problem. International Journal of Advanced Manufacturing Technology, 56(5–8), 699–710. Scopus. https://doi.org/10.1007/s00170-011-3206-9spa
dc.relation.referencesSánchez, P. A., Ceballos, F., & Sánchez Torres, G. (2015). Análisis del proceso productivo de una empresa de confecciones: Modelación y simulación. Ciencia e Ingeniería Neogranadina, 25(2), 137–150. https://doi.org/10.18359/rcin.1436spa
dc.relation.referencesSaraswat, A., Venkatadri, U., & Castillo, I. (2015). A framework for multi-objective facility layout design. Computers and Industrial Engineering, 90, 167–176. Scopus. https://doi.org/10.1016/j.cie.2015.09.006spa
dc.relation.referencesSaravanan, M., & Noorul Haq, A. (2008). A scatter search method to minimise makespan of cell scheduling problem. International Journal of Agile Systems and Management, 3(1–2), 18–36. Scopus. https://doi.org/10.1504/IJASM.2008.019597spa
dc.relation.referencesSchaller, J. E. (2000). A comparison of heuristics for family and job scheduling in a flow-line manufacturing cell. International Journal of Production Research, 38(2), 287–308. Scopus. https://doi.org/10.1080/002075400189419spa
dc.relation.referencesSchaller, J. E. (2001). A new lower bound for the flow shop group scheduling problem. Computers and Industrial Engineering, 41(2), 151–161. Scopus. https://doi.org/10.1016/S0360-8352(01)00049-3spa
dc.relation.referencesSchaller, J. E. (2005). An improved branch and bound procedure for scheduling a flow line manufacturing cell. International Journal of Production Research, 43(22), 4697–4720. Scopus. https://doi.org/10.1080/00207540500185216spa
dc.relation.referencesSchaller, J. E., Gupta, J. N. D., & Vakharia, A. J. (2000). Scheduling a flowline manufacturing cell with sequence dependent family setup times. European Journal of Operational Research, 125(2), 324–339. Scopus. https://doi.org/10.1016/S0377-2217(99)00387-2spa
dc.relation.referencesScholz, D., Petrick, A., & Domschke, W. (2009). STaTS: A Slicing Tree and Tabu Search based heuristic for the unequal area facility layout problem. European Journal of Operational Research, 197(1), 166–178. Scopus. https://doi.org/10.1016/j.ejor.2008.06.028spa
dc.relation.referencesSCImago. (s/f). SJR — SCImago Journal & Country Rank. Recuperado el 4 de enero de 2020, de https://www.scimagojr.com/aboutus.phpspa
dc.relation.referencesScott, A. J. (2006). The Changing Global Geography of Low-Technology, Labor-Intensive Industry: Clothing, Footwear, and Furniture. World Development, 34(9), 1517–1536. https://doi.org/10.1016/j.worlddev.2006.01.003spa
dc.relation.referencesSeo, M. J., Kim, M., & Lee, K.-H. (2016). Supply chain management strategies for small fast fashion firms: The case of the Dongdaemun Fashion District in South Korea. International Journal of Fashion Design, Technology and Education, 9(1), 51–61. Scopus. https://doi.org/10.1080/17543266.2015.1126650spa
dc.relation.referencesSherali, H. D., Fraticelli, B. M. P., & Meller, R. D. (2003). Enhanced Model Formulations for Optimal Facility Layout. Operations Research, 51(4), 629–644. https://doi.org/10.1287/opre.51.4.629.16096spa
dc.relation.referencesSingh, S. P., & Sharma, R. R. K. (2006). A review of different approaches to the facility layout problems. International Journal of Advanced Manufacturing Technology, 30(5–6), 425–433. Scopus. https://doi.org/10.1007/s00170-005-0087-9spa
dc.relation.referencesSingh, S. P., & Singh, V. K. (2010). An improved heuristic approach for multi-objective facility layout problem. International Journal of Production Research, 48(4), 1171–1194. Scopus. https://doi.org/10.1080/00207540802534731spa
dc.relation.referencesSivanandam, S. N., & Deepa, S. N. (2007). Introduction to genetic algorithms. Springer.spa
dc.relation.referencesSocconini, L. (2009). “Lean manufacturing” paso a paso. Grupo Editorial Norma.spa
dc.relation.referencesSolimanpur, M., & Elmi, A. (2011). A tabu search approach for group scheduling in buffer-constrained flow shop cells. International Journal of Computer Integrated Manufacturing, 24(3), 257–268. Scopus. https://doi.org/10.1080/0951192X.2011.552527spa
dc.relation.referencesStephens, M. P., & Meyers, F. E. (2013). Manufacturing facilities design and material handling (Fifth edition). Purdue University Press.spa
dc.relation.referencesSule, D. R. (2008). Manufacturing facilities: Location, planning, and design (Third edition). CRC Press, Taylor & Francis Group. https://www.taylorfrancis.com/books/e/9781420044232spa
dc.relation.referencesTalbi, E.-G. (2009). Metaheuristics: From design to implementation. John Wiley & Sons.spa
dc.relation.referencesTam, K. Y. (1992a). A simulated annealing algorithm for allocating space to manufacturing cells. International Journal of Production Research, 30(1), 63–87. Scopus. https://doi.org/10.1080/00207549208942878spa
dc.relation.referencesTam, K. Y. (1992b). Genetic algorithms, function optimization, and facility layout design. European Journal of Operational Research, 63(2), 322–346. Scopus. https://doi.org/10.1016/0377-2217(92)90034-7spa
dc.relation.referencesTam, K. Y., & Li, S. G. (1991). A hierarchical approach to the facility layout problem. International Journal of Production Research, 29(1), 165–184. Scopus. https://doi.org/10.1080/00207549108930055spa
dc.relation.referencesTang, J., Wang, X., Kaku, I., & Yung, K.-L. (2010). Optimization of parts scheduling in multiple cells considering intercell move using scatter search approach. Journal of Intelligent Manufacturing, 21(4), 525–537. Scopus. https://doi.org/10.1007/s10845-008-0236-8spa
dc.relation.referencesTate, D. M., & Smith, A. E. (1995). Unequal-area facility layout by genetic search. IIE Transactions (Institute of Industrial Engineers), 27(4), 465–472. Scopus. https://doi.org/10.1080/07408179508936763spa
dc.relation.referencesTavakkoli-Moghaddam, R., Javadian, N., Khorrami, A., & Gholipour-Kanani, Y. (2010). Design of a scatter search method for a novel multi-criteria group scheduling problem in a cellular manufacturing system. Expert Systems with Applications, 37(3), 2661–2669. Scopus. https://doi.org/10.1016/j.eswa.2009.08.012spa
dc.relation.referencesTejeda Argáez, R. A. (2016). Estudio de tiempos y movimientos en la empresa Uniformes UNO ubicada en la ciudad de Cúcuta [Grado en Ingeniería Industrial, Universidad de Pamplona]. http://serviciosacademicos.unipamplona.edu.co/prestamo/spa
dc.relation.referencesTompkins, J. A. (Ed.). (1996). Facilities planning (2nd ed). Wiley.spa
dc.relation.referencesTompkins, J. A., White, J. A., Bozer, Y. A., Solorio Gómez, P., Haaz Díaz, G., & Servantes González, S. R. (2011). Planeación de instalaciones. Cengage Learning.spa
dc.relation.referencesTong, X. (1991). SECOT: A Sequential Construction Technique for Facility Design.spa
dc.relation.referencesTriana Beltrán, V., & Ayala Daza, Y. A. (2019). Sistema de información para la administración de la producción en la empresa Confecciones Axxu Jeans de la ciudad de Cúcuta [Grado en Ingeniería Industrial, Universidad Francisco de Paula Santander]. http://alejandria.ufps.edu.co/descargas/tesis/1191930.pdfspa
dc.relation.referencesTurgay, S. (2018). Multi objective simulated annealing approach for facility layout design. International Journal of Mathematical, Engineering and Management Sciences, 3(4), 365–380. Scopus.spa
dc.relation.referencesUlutas, B. H. (2012). A modified flexible bay and slicing structure for unequal area facilities. IFAC Proc. Vol. (IFAC-PapersOnline), 14(PART 1), 1635–1640. Scopus. https://doi.org/10.3182/20120523-3-RO-2023.00362spa
dc.relation.referencesUlutas, B. H., & Kulturel-Konak, S. (2012). An artificial immune system based algorithm to solve unequal area facility layout problem. Expert Systems with Applications, 39(5), 5384–5395. Scopus. https://doi.org/10.1016/j.eswa.2011.11.046spa
dc.relation.referencesUlutas, B. H., & Kulturel-Konak, S. (2013). Assessing hypermutation operators of a clonal selection algorithm for the unequal area facility layout problem. Engineering Optimization, 45(3), 375–395. Scopus. https://doi.org/10.1080/0305215X.2012.678492spa
dc.relation.referencesvan Camp, D. J. (1989). A nonlinear optimization approach for solving Facility Layout Problem. University of Toronto.spa
dc.relation.referencesvan Camp, D. J., Carter, M. W., & Vannelli, A. (1992). A nonlinear optimization approach for solving facility layout problems. European Journal of Operational Research, 57(2), 174–189. Scopus. https://doi.org/10.1016/0377-2217(92)90041-7spa
dc.relation.referencesVelásquez, J. D. (2015a). Una Guía Corta para Escribir Revisiones Sistemáticas de Literatura. Parte 3. DYNA, 82(189), 9–12. https://doi.org/10.15446/dyna.v82n189.48931spa
dc.relation.referencesVelásquez, J. D. (2015b). Una Guía Corta para Escribir Revisiones Sistemáticas de Literatura. Parte 4. DYNA, 82(190), 9–12. https://doi.org/10.15446/dyna.v82n190.49511spa
dc.relation.referencesVenkataramanaiah, S. (2008). Scheduling in cellular manufacturing systems: An heuristic approach. International Journal of Production Research, 46(2), 429–449. Scopus. https://doi.org/10.1080/00207540601138577spa
dc.relation.referencesVIP-PLANOPT, Engineering Optimization Software. (2005). VIP-PLANOPT. http://www.planopt.com/spa
dc.relation.referencesVOSviewer. (s/f). VOSviewer—Visualizing scientific landscapes. VOSviewer. Recuperado el 28 de abril de 2020, de https://www.vosviewer.com//spa
dc.relation.referencesWang, K.-J., & Chen, K.-H. (2008). An integrated facility-design model for the generator-manufacturing industry. Production Planning and Control, 19(5), 475–485. Scopus. https://doi.org/10.1080/09537280802088659spa
dc.relation.referencesWang, M.-J., Hu, M. H., & Ku, M.-Y. (2005). A solution to the unequal area facilities layout problem by genetic algorithm. Computers in Industry, 56(2), 207–220. Scopus. https://doi.org/10.1016/j.compind.2004.06.003spa
dc.relation.referencesWemmerlöv, U., & Hyer, N. L. (1989). Cellular manufacturing in the U.S. industry: A survey of users. International Journal of Production Research, 27(9), 1511–1530. https://doi.org/10.1080/00207548908942637spa
dc.relation.referencesWomack, J. P., Jones, D. T., & Roos, D. (1990). The machine that changed the world: The story of lean production ; Toyota’s secret weapon in the global car wars that is revolutionizing world industry (1. pb. ed). Free Press.spa
dc.relation.referencesWong, K. Y. & Komarudin. (2010). Solving facility layout problems using Flexible Bay Structure representation and Ant System algorithm. Expert Systems with Applications, 37(7), 5523–5527. Scopus. https://doi.org/10.1016/j.eswa.2009.12.080spa
dc.relation.referencesWu, X., Chu, C.-H., Wang, Y., & Yan, W. (2007). A genetic algorithm for cellular manufacturing design and layout. European Journal of Operational Research, 181(1), 156–167. Scopus. https://doi.org/10.1016/j.ejor.2006.05.035spa
dc.relation.referencesXiao, Y. J., Zheng, Y., Zhang, L. M., & Kuo, Y. H. (2016). A combined zone-LP and simulated annealing algorithm for unequal-area facility layout problem. Advances in Production Engineering And Management, 11(4), 259–270. Scopus. https://doi.org/10.14743/apem2016.4.225spa
dc.relation.referencesXie, Y., Zhou, S., Xiao, Y., Kulturel-Konak, S., & Konak, A. (2018). A β-accurate linearization method of Euclidean distance for the facility layout problem with heterogeneous distance metrics. European Journal of Operational Research, 265(1), 26–38. Scopus. https://doi.org/10.1016/j.ejor.2017.07.052spa
dc.relation.referencesYang, D.-L., & Chern, M.-S. (2000). Two-machine flowshop group scheduling problem. Computers and Operations Research, 27(10), 975–985. Scopus. https://doi.org/10.1016/S0305-0548(99)00070-2spa
dc.relation.referencesYang, T., Su, C., & Hsu, Y. (2000). Systematic layout planning: A study on semiconductor wafer fabrication facilities. International Journal of Operations & Production Management, 20(11), 1359–1371. https://doi.org/10.1108/01443570010348299spa
dc.relation.referencesYang, W. H. (2002). Group scheduling in a two-stage flowshop. Journal of the Operational Research Society, 53(12), 1367–1373. Scopus. https://doi.org/10.1057/palgrave.jors.2601454spa
dc.relation.referencesYazdani Sabouni, M. T., & Logendran, R. (2013). Carryover sequence-dependent group scheduling with the integration of internal and external setup times. European Journal of Operational Research, 224(1), 8–22. Scopus. https://doi.org/10.1016/j.ejor.2012.07.013spa
dc.relation.referencesYazdani Sabouni, M. T., & Logendran, R. (2018). Lower bound development in a flow shop electronic assembly problem with carryover sequence-dependent setup time. Computers and Industrial Engineering, 122, 149–160. Scopus. https://doi.org/10.1016/j.cie.2018.05.033spa
dc.relation.referencesYing, K.-C., Gupta, J. N. D., Lin, S.-W., & Lee, Z.-J. (2010). Permutation and non-permutation schedules for the flowline manufacturing cell with sequence dependent family setups. International Journal of Production Research, 48(8), 2169–2184. Scopus. https://doi.org/10.1080/00207540802534707spa
dc.relation.referencesYing, K.-C., Lee, Z.-J., Lu, C.-C., & Lin, S.-W. (2012). Metaheuristics for scheduling a no-wait flowshop manufacturing cell with sequence-dependent family setups. International Journal of Advanced Manufacturing Technology, 58(5–8), 671–682. Scopus. https://doi.org/10.1007/s00170-011-3419-yspa
dc.relation.referencesYuan, S., Li, T., & Wang, B. (2020). A co-evolutionary genetic algorithm for the two-machine flow shop group scheduling problem with job-related blocking and transportation times. Expert Systems with Applications, 152. Scopus. https://doi.org/10.1016/j.eswa.2020.113360spa
dc.relation.referencesZhang, Y., Lu, C., Zhang, H., & Fang, Z.-F. (2013). Workshop layout optimization based on differential cellular multi-objective genetic algorithm. Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 19(4), 727–734. Scopus.spa
dc.relation.referencesZheng, F., & Song, Q. (2019). Lot-sizing and Scheduling with Machine-sharing in Clothing Industry. En Zheng F., Chu F., & Liu M. (Eds.), Proc. Int. Conf. Ind. Eng. Syst. Manag., IESM. Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/IESM45758.2019.8948154spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc670 - Manufactura::677 - Textilesspa
dc.subject.ddc330 - Economía::338 - Producciónspa
dc.subject.lembCorte y confección
dc.subject.lembProcesos de manufactura
dc.subject.proposalProgramación de la producciónspa
dc.subject.proposalDistribución de plantasspa
dc.subject.proposalCeldas de manufacturaspa
dc.subject.proposalConfección de prendas de vestirspa
dc.subject.proposalAlgoritmo genéticospa
dc.subject.proposalModelo integradospa
dc.subject.proposalProduction schedulingeng
dc.subject.proposalCellular manufacturingeng
dc.subject.proposalFacility layouteng
dc.subject.proposalGarment industryeng
dc.subject.proposalGenetic algorithmeng
dc.subject.proposalIntegrated modeleng
dc.titleModelo para la programación de la producción en enfoques de celdas de manufactura, integrando el diseño de plantas esbeltas, para el caso del sector de la confección de prendas de vestirspa
dc.title.translatedModel for production scheduling in manufacturing cell approaches, integrating lean plant design, for the case of the garment manufacturing sectoreng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleConvocatoria para la Formación de Capital Humano de Alto Nivel para el Departamento de Norte de Santander – 2016spa
oaire.fundernameColfuturospa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1090437281.2021.pdf
Tamaño:
5.39 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: