Modelo para la programación de la producción en enfoques de celdas de manufactura, integrando el diseño de plantas esbeltas, para el caso del sector de la confección de prendas de vestir
dc.contributor.advisor | Arango Serna, Martín Darío | |
dc.contributor.advisor | Zapata Cortés, Julián Andrés | |
dc.contributor.author | Cáceres Gelvez, Sebastian Eduardo | |
dc.contributor.researchgroup | GICO - Logística Industrial Organizacional | spa |
dc.date.accessioned | 2021-05-11T16:28:48Z | |
dc.date.available | 2021-05-11T16:28:48Z | |
dc.date.issued | 2021-05-10 | |
dc.description.abstract | En la presente tesis de maestría se propone un modelo para la programación de la producción en enfoques de celdas de manufactura flowshop, integrando el problema de distribución de plantas con áreas desiguales, con el objetivo de minimizar el costo total de manejo de materiales entre departamentos y de penalización por tardanza de los pedidos, para el caso del sector de la confección de prendas de vestir de la ciudad de Cúcuta. Inicialmente, se realizó una revisión sistemática de los enfoques matemáticos y métodos de solución que se han propuesto para estos importantes problemas en la literatura. De acuerdo con estos resultados, un modelo conceptual para la integración secuencial de ambos problemas es propuesto. Debido a la característica NP-hard de los problemas, se define un algoritmo genético, y se presentan los resultados de la validación y parametrización de la metaheurística para instancias de datos reconocidas en la literatura para cada uno de los problemas. Finalmente, los resultados de la aplicación del algoritmo genético en la optimización de los problemas para el caso de estudio de una empresa de confección de ropa deportiva de la ciudad de Cúcuta demuestran que el modelo propuesto obtuvo una reducción del 6,67% de los costos totales de manejo de materiales y de penalización por tardanza de los trabajos, en comparación con la situación actual de la empresa. | spa |
dc.description.abstract | This master’s thesis proposes a model for production scheduling in a flowshop manufacturing cell environment, integrating the facility layout problem with unequal area requirements, to minimize the total costs of material handling between departments and penalties due to tardiness of jobs, for the case of the garment industry in Cúcuta. Initially, a systematic review of mathematical approaches and solution methods that have been proposed for these important problems in the literature is performed. Following these results, a conceptual model for the sequential integration of both problems is proposed. Due to the NP-hard characteristic of the problems, a genetic algorithm is defined, and the results of the validation and parametrization processes of the metaheuristic, using recognized data instances in the literature for both problems, are presented. Finally, the results of the application of the genetic algorithm in the optimization of the problems for the case study of a sportswear manufacturing company in Cúcuta show that the proposed model was able to reduce in 6,67% the total costs of material handling and penalties due to tardiness of jobs, compared to the current situation of the company. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.methods | El método de investigación propuesto es de tipo mixto, es decir, comprende unos “procesos sistemáticos, empíricos y críticos de investigación e implican la recolección y el análisis de datos cuantitativos y cualitativos, así como su integración y discusión conjunta, para realizar inferencias producto de toda la información recabada (metainferencias) y lograr un mayor entendimiento del fenómeno bajo estudio” (Hernández Sampieri, Baptista Lucio, & Fernández Collado, 2014, p. 534). La investigación mixta propuesta comprenderá una ejecución secuencial, en donde en la primera etapa se recolectan y analizan los datos cualitativos relacionados con la revisión sistemática de la literatura de los temas de interés del proyecto de tesis; y en la segunda etapa, la información cualitativa recopilada alimenta la formulación y simulación del modelo matemático que se propone. | spa |
dc.description.researcharea | Ingeniería y Sistemas de Producción | spa |
dc.description.sponsorship | Ministerio de Ciencias, Tecnología e Innovación de Colombia (MINCIENCIAS) | spa |
dc.description.sponsorship | Gobernación de Norte de Santander | spa |
dc.format.extent | 247 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79499 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.department | Departamento de Ingeniería de la Organización | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería Industrial | spa |
dc.relation.references | Abduljabbar, D. A., Hashim, S. Z. M., & Sallehuddin, R. (2020). Nature-inspired optimization algorithms for community detection in complex networks: A review and future trends. Telecommunication Systems. Scopus. https://doi.org/10.1007/s11235-019-00636-x | spa |
dc.relation.references | Acevedo Villalobos, M. C., & Ramírez Vallejo, J. (2005). Diferencias regionales en la eficiencia técnica del sector confecciones en Colombia: Un análisis de fronteras estocásticas. Innovar, 15(26), 90–105. | spa |
dc.relation.references | Acosta Dreika, L. L., Jaimes Ochoa, D. A., Vargas Valero, B. J., & Velásquez Ramírez, M. T. (2015). Comparativa de competitividad del sector de la moda entre Cúcuta y el resto del país. Revista Convicciones, 2(4), 47–56. | spa |
dc.relation.references | Ahmadi, A., & Akbari Jokar, M. R. (2016). An efficient multiple-stage mathematical programming method for advanced single and multi-floor facility layout problems. Applied Mathematical Modelling, 40(9–10), 5605–5620. Scopus. https://doi.org/10.1016/j.apm.2016.01.014 | spa |
dc.relation.references | Aiello, G., Enea, M., & Galante, G. (2006). A multi-objective approach to facility layout problem by genetic search algorithm and Electre method. Robotics and Computer-Integrated Manufacturing, 22(5–6), 447–455. Scopus. https://doi.org/10.1016/j.rcim.2005.11.002 | spa |
dc.relation.references | Aiello, G., La Scalia, G., & Enea, M. (2012). A multi objective genetic algorithm for the facility layout problem based upon slicing structure encoding. Expert Systems with Applications, 39(12), 10352–10358. Scopus. https://doi.org/10.1016/j.eswa.2012.01.125 | spa |
dc.relation.references | Aiello, G., La Scalia, G., & Mario, E. (2013). A non dominated ranking Multi Objective Genetic Algorithm and electre method for unequal area facility layout problems. Expert Systems with Applications, 40(12), 4812–4819. Scopus. https://doi.org/10.1016/j.eswa.2013.02.026 | spa |
dc.relation.references | Alagoz, O., Norman, B. A., & Smith, A. E. (2008). Determining aisle structures for facility designs using a hierarchy of algorithms. IIE Transactions (Institute of Industrial Engineers), 40(11), 1019–1031. Scopus. https://doi.org/10.1080/07408170802167621 | spa |
dc.relation.references | Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with setup times/costs. European Journal of Operational Research, 246(2), 345–378. Scopus. https://doi.org/10.1016/j.ejor.2015.04.004 | spa |
dc.relation.references | Allahverdi, A., Gupta, J. N. D., & Aldowaisan, T. (1999). A review of scheduling research involving setup considerations. Omega, 27(2), 219–239. Scopus. https://doi.org/10.1016/S0305-0483(98)00042-5 | spa |
dc.relation.references | Allahverdi, A., Ng, C. T., Cheng, T. C. E., & Kovalyov, M. Y. (2008). A survey of scheduling problems with setup times or costs. European Journal of Operational Research, 187(3), 985–1032. Scopus. https://doi.org/10.1016/j.ejor.2006.06.060 | spa |
dc.relation.references | Allahyari, M. Z., & Azab, A. (2018). Mathematical modeling and multi-start search simulated annealing for unequal-area facility layout problem. Expert Systems with Applications, 91, 46–62. Scopus. https://doi.org/10.1016/j.eswa.2017.07.049 | spa |
dc.relation.references | Alvarado Gallardo, C. J. (2013). Propuesta para el diseño ergonómico de los puestos de trabajo en el área de confección de la empresa Textimoda SAS en la ciudad de San José de Cúcuta [Grado en Ingeniería Industrial, Universidad Francisco de Paula Santander]. http://alejandria.ufps.edu.co/descargas/tesis/1190148.pdf | spa |
dc.relation.references | Alves, F., Varela, M. L. R., Rocha, A. M. A. C., Pereira, A. I., & Leitão, P. (2019). A human centred hybrid MAS and meta-heuristics based system for simultaneously supporting scheduling and plant layout adjustment. FME Transactions, 47(4), 699–710. Scopus. https://doi.org/10.5937/fmet1904699A | spa |
dc.relation.references | Anjos, M. F., & Vannelli, A. (2002). An Attractor-Repeller approach to floorplanning. Mathematical Methods of Operations Research, 56(1), 3–27. Scopus. https://doi.org/10.1007/s001860200197 | spa |
dc.relation.references | Anjos, M. F., & Vannelli, A. (2006). A new mathematical-programming framework for facility-layout design. INFORMS Journal on Computing, 18(1), 111–118. Scopus. https://doi.org/10.1287/ijoc.1040.0103 | spa |
dc.relation.references | Anjos, M. F., & Vieira, M. V. C. (2016). An improved two-stage optimization-based framework for unequal-areas facility layout. Optimization Letters, 10(7), 1379–1392. Scopus. https://doi.org/10.1007/s11590-016-1008-6 | spa |
dc.relation.references | Anjos, M. F., & Vieira, M. V. C. (2017). Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions. European Journal of Operational Research, 261(1), 1–16. https://doi.org/10.1016/j.ejor.2017.01.049 | spa |
dc.relation.references | Apple, J. M. (1977). Plant layout and material handling (Third edition). John Wiley & Sons. | spa |
dc.relation.references | Arapoglu, R. A., Norman, B. A., & Smith, A. E. (2001). Locating input and output points in facilities design—A comparison of constructive, evolutionary, and exact methods. IEEE Transactions on Evolutionary Computation, 5(3), 192–203. Scopus. https://doi.org/10.1109/4235.930310 | spa |
dc.relation.references | Armour, G. C., & Buffa, E. S. (1963). A Heuristic Algorithm and Simulation Approach to Relative Location of Facilities. Management Science, 9(2), 294–309. https://doi.org/10.1287/mnsc.9.2.294 | spa |
dc.relation.references | Askin, R. G., & Goldberg, J. B. (2002). Design and analysis of lean production systems. Wiley. | spa |
dc.relation.references | Asl, A. D., Wong, K. Y., & Tiwari, M. K. (2016). Unequal-area stochastic facility layout problems: Solutions using improved covariance matrix adaptation evolution strategy, particle swarm optimisation, and genetic algorithm. International Journal of Production Research, 54(3), 799–823. Scopus. https://doi.org/10.1080/00207543.2015.1070217 | spa |
dc.relation.references | Bahramara, S., Mazza, A., Chicco, G., Shafie-khah, M., & Catalão, J. P. S. (2020). Comprehensive review on the decision-making frameworks referring to the distribution network operation problem in the presence of distributed energy resources and microgrids. International Journal of Electrical Power and Energy Systems, 115. Scopus. https://doi.org/10.1016/j.ijepes.2019.105466 | spa |
dc.relation.references | Balamurugan, K., Selladurai, V., & Ilamathi, B. (2006). Solving unequal area facility layout problems using genetic algorithm. International Journal of Logistics Systems and Management, 2(3), 281–301. Scopus. https://doi.org/10.1504/IJLSM.2006.009777 | spa |
dc.relation.references | Balamurugan, K., Selladurai, V., & Ilamathi, B. (2008). Manufacturing facilities layout design using genetic algorithm. International Journal of Manufacturing Technology and Management, 14(3–4), 461–474. Scopus. https://doi.org/10.1504/IJMTM.2008.017739 | spa |
dc.relation.references | Bazaraa, M. S. (1975). Computerized layout design: A branch and bound approach. AIIE Transactions, 7(4), 432–438. Scopus. https://doi.org/10.1080/05695557508975028 | spa |
dc.relation.references | Beasley, J. E. (1990). OR-Library: Distributing Test Problems by Electronic Mail. The Journal of the Operational Research Society, 41(11), 1069. https://doi.org/10.2307/2582903 | spa |
dc.relation.references | Behjat, S., & Salmasi, N. (2017). Total completion time minimisation of no-wait flowshop group scheduling problem with sequence dependent setup times. European Journal of Industrial Engineering, 11(1), 22–48. Scopus. https://doi.org/10.1504/EJIE.2017.081418 | spa |
dc.relation.references | Behnamian, J., Zandieh, M., & Fatemi Ghomi, S. M. T. (2010). Due windows group scheduling using an effective hybrid optimization approach. International Journal of Advanced Manufacturing Technology, 46(5–8), 721–735. Scopus. https://doi.org/10.1007/s00170-009-2147-z | spa |
dc.relation.references | Benjaafar, S. (2002). Modeling and analysis of congestion in the design of facility layouts. Management Science, 48(5), 679–704. Scopus. https://doi.org/10.1287/mnsc.48.5.679.7800 | spa |
dc.relation.references | Błażewicz, J., Domschke, W., & Pesch, E. (1996). The job shop scheduling problem: Conventional and new solution techniques. European Journal of Operational Research, 93(1), 1–33. https://doi.org/10.1016/0377-2217(95)00362-2 | spa |
dc.relation.references | Boschetti, M. A., Maniezzo, V., Roffilli, M., & Bolufé Röhler, A. (2009). Matheuristics: Optimization, Simulation and Control. En M. J. Blesa, C. Blum, L. Di Gaspero, A. Roli, M. Sampels, & A. Schaerf (Eds.), Hybrid Metaheuristics (Vol. 5818, pp. 171–177). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-04918-7_13 | spa |
dc.relation.references | Bouabda, R., Jarboui, B., Eddaly, M., & Reba, A. (2011). A branch and bound enhanced genetic algorithm for scheduling a flowline manufacturing cell with sequence dependent family setup times. Computers and Operations Research, 38(1), 387–393. Scopus. https://doi.org/10.1016/j.cor.2010.06.006 | spa |
dc.relation.references | Bozer, Y. A., & Meller, R. D. (1997). A reexamination of the distance-based facility layout problem. IIE Transactions (Institute of Industrial Engineers), 29(7), 549–560. Scopus. https://doi.org/10.1080/07408179708966365 | spa |
dc.relation.references | Bozer, Y. A., Meller, R. D., & Erlebacher, S. J. (1994). Improvement-type layout algorithm for single and multiple-floor facilities. Management Science, 40(7), 918–932. Scopus. https://doi.org/10.1287/mnsc.40.7.918 | spa |
dc.relation.references | Bozer, Y. A., & Wang, C.-T. (2012). A graph-pair representation and MIP-model-based heuristic for the unequal-area facility layout problem. European Journal of Operational Research, 218(2), 382–391. Scopus. https://doi.org/10.1016/j.ejor.2011.10.052 | spa |
dc.relation.references | Burbidge, J. L. (1975). The introduction of group technology. Heinemann. | spa |
dc.relation.references | Cámara de Comercio de Cúcuta. (2014). Documento de Estrategia. Iniciativa el Norte de la Moda (p. 29). http://www.datacucuta.com/index.php/cluster/norte-de-la-moda/559-document | spa |
dc.relation.references | Carlson, J. A., Jaffe, A., Wiles, A., Clay Mathematics Institute, & American Mathematical Society (Eds.). (2006). The Millennium prize problems. American Mathematical Society ; For The Clay Mathematics Institute. | spa |
dc.relation.references | Carro Paz, R., & González Gómez, D. (2014). Administración de operaciones. Construcción de operaciones de clase mundial. Nueva Libreria. | spa |
dc.relation.references | Castillo, I., & Sim, T. (2004). A spring-embedding approach for the facility layout problem. Journal of the Operational Research Society, 55(1), 73–81. Scopus. https://doi.org/10.1057/palgrave.jors.2601647 | spa |
dc.relation.references | Castillo, I., Westerlund, J., Emet, S., & Westerlund, T. (2005). Optimization of block layout design problems with unequal areas: A comparison of MILP and MINLP optimization methods. Computers and Chemical Engineering, 30(1), 54–69. Scopus. https://doi.org/10.1016/j.compchemeng.2005.07.012 | spa |
dc.relation.references | Castillo, I., & Westerlund, T. (2005). An ε-accurate model for optimal unequal-area block layout design. Computers and Operations Research, 32(3), 429–447. Scopus. https://doi.org/10.1016/S0305-0548(03)00246-6 | spa |
dc.relation.references | Celano, G., Costa, A., & Fichera, S. (2010). Constrained scheduling of the inspection activities on semiconductor wafers grouped in families with sequence-dependent set-up times. International Journal of Advanced Manufacturing Technology, 46(5–8), 695–705. Scopus. https://doi.org/10.1007/s00170-009-2112-x | spa |
dc.relation.references | Celano, G., Costa, A., & Fichera, S. (2011). Flow shop group scheduling with limited buffer capacity and different workforce. ICINCO - Proc. Int. Conf. Informatics Control, Autom. Rob., 2, 486–491. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052591769&partnerID=40&md5=2b8ca204364fc94669731a2d79c932ac | spa |
dc.relation.references | Černý, V. (1985). Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45(1), 41–51. https://doi.org/10.1007/BF00940812 | spa |
dc.relation.references | Chae, J., & Peters, B. A. (2006). Layout design of multi-bay facilities with limited bay flexibility. Journal of Manufacturing Systems, 25(1), 1–11. Scopus. https://doi.org/10.1016/S0278-6125(07)00004-0 | spa |
dc.relation.references | Chae, J., & Regan, A. C. (2016). Layout design problems with heterogeneous area constraints. Computers and Industrial Engineering, 102, 198–207. Scopus. https://doi.org/10.1016/j.cie.2016.10.016 | spa |
dc.relation.references | Chang, M.-S., & Ku, T.-C. (2013). A slicing tree representation and QCP-model-based heuristic algorithm for the unequal-area block facility layout problem. Mathematical Problems in Engineering, 2013. Scopus. https://doi.org/10.1155/2013/853586 | spa |
dc.relation.references | Chen, C.-F., Wu, M.-C., Li, Y.-H., Tai, P.-H., & Chiou, C.-W. (2013). A comparison of two chromosome representation schemes used in solving a family-based scheduling problem. Robotics and Computer-Integrated Manufacturing, 29(3), 21–30. Scopus. https://doi.org/10.1016/j.rcim.2012.04.009 | spa |
dc.relation.references | Chen, Y.-C., & Lee, C.-E. (2001). A bottleneck-based group scheduling procedure for job-shop cells. Journal of the Chinese Institute of Industrial Engineers, 18(5), 1–12. Scopus. https://doi.org/10.1080/10170660109509499 | spa |
dc.relation.references | Cheng, H.-M., & Ying, K.-C. (2011). Minimizing makespan in a flow-line manufacturing cell with sequence dependent family setup times. Expert Systems with Applications, 38(12), 15517–15522. Scopus. https://doi.org/10.1016/j.eswa.2011.06.008 | spa |
dc.relation.references | Cheng, T. C. E., Gupta, J. N. D., & Wang, G. (2000). A review of flowshop scheduling research with setup times. Production and Operations Management, 9(3), 262–282. Scopus. | spa |
dc.relation.references | Cho, K.-K., & Ahn, B.-H. (2003). A hybrid genetic algorithm for group scheduling with sequence dependent group setup time. International Journal of Industrial Engineering : Theory Applications and Practice, 10(4), 442–448. Scopus. | spa |
dc.relation.references | Costa, A., Cappadonna, F. A., & Fichera, S. (2017). A hybrid genetic algorithm for minimizing makespan in a flow-shop sequence-dependent group scheduling problem. Journal of Intelligent Manufacturing, 28(6), 1269–1283. Scopus. https://doi.org/10.1007/s10845-015-1049-1 | spa |
dc.relation.references | Costa, A., Cappadonna, F. V., & Fichera, S. (2020). Minimizing makespan in a Flow Shop Sequence Dependent Group Scheduling problem with blocking constraint. Engineering Applications of Artificial Intelligence, 89. Scopus. https://doi.org/10.1016/j.engappai.2019.103413 | spa |
dc.relation.references | Cuatrecasas-Arbós, L. (2009). Diseño avanzado de procesos y plantas de producción flexible. Técnicas de diseño y herramientas gráficas con soporte informático. Profit. | spa |
dc.relation.references | Daş, G. S., Gzara, F., & Stützle, T. (2020). A review on airport gate assignment problems: Single versus multi objective approaches. Omega (United Kingdom), 92. Scopus. https://doi.org/10.1016/j.omega.2019.102146 | spa |
dc.relation.references | Das, S. K. (1993). A facility layout method for flexible manufacturing systems. International Journal of Production Research, 31(2), 279–297. Scopus. https://doi.org/10.1080/00207549308956725 | spa |
dc.relation.references | Das, S., & Patnaik, A. (2015). Production planning in the apparel industry. En Garment Manufacturing Technology (pp. 81–108). Elsevier. https://doi.org/10.1016/B978-1-78242-232-7.00004-7 | spa |
dc.relation.references | Delgoshaei, A., Ariffin, M. K. A. M., Leman, Z., Baharudin, B. T. H. T. B., & Gomes, C. (2016). Review of evolution of cellular manufacturing system’s approaches: Material transferring models. International Journal of Precision Engineering and Manufacturing, 17(1), 131–149. Scopus. https://doi.org/10.1007/s12541-016-0017-9 | spa |
dc.relation.references | Dennis, P. (2015). Lean production simplified: A plain-language guide to the world’s most powerful production system (Third edition). CRC Press, Taylor & Francis Group. | spa |
dc.relation.references | Dicken, P. (2003). Global shift: Reshaping the global economic map in the 21st century (4th ed). Sage Publications. | spa |
dc.relation.references | Donaghey, C. E., & Pire, V. F. (1991). Solving the facility layout problem with BLOCPLAN. Information Management: Proceedings of Limerick University Conference, 649–658. | spa |
dc.relation.references | Dorigo, M. (1992). Optimization, learning and natural algorithms [PhD Thesis]. Politecnico di Milano. | spa |
dc.relation.references | Drira, A., Pierreval, H., & Hajri-Gabouj, S. (2007). Facility layout problems: A survey. Annual Reviews in Control, 31(2), 255–267. https://doi.org/10.1016/j.arcontrol.2007.04.001 | spa |
dc.relation.references | Dunker, T., Radons, G., & Westkämper, E. (2003). A coevolutionary algorithm for a facility layout problem. International Journal of Production Research, 41(15), 3479–3500. Scopus. https://doi.org/10.1080/0020754031000118125 | spa |
dc.relation.references | Ebrahimi, A., Kia, R., & Komijan, A. R. (2016). Solving a mathematical model integrating unequal-area facilities layout and part scheduling in a cellular manufacturing system by a genetic algorithm. SpringerPlus, 5(1). Scopus. https://doi.org/10.1186/s40064-016-2773-5 | spa |
dc.relation.references | Eddaly, M., Jarboui, B., Bouabda, R., Siarry, P., & Rebaï, A. (2013). An Estimation of Distribution Algorithm for Solving Flow Shop Scheduling Problems with Sequence-dependent Family Setup Times. En Metaheuristics for Prod. Sched. (pp. 1–17). wiley; Scopus. https://doi.org/10.1002/9781118731598.ch1 | spa |
dc.relation.references | Fares, N., & Lebbar, M. (2019). Optimization of fast fashion retail supply chain processes: Overall literature review and future research challenges. International Journal of Engineering Research in Africa, 45, 205–220. Scopus. https://doi.org/10.4028/www.scientific.net/JERA.45.205 | spa |
dc.relation.references | Fares, N., Lebbar, M., & Sbihi, N. (2019). A customer profiling’ machine learning approach, for in-store sales in fast fashion (Vol. 915). Springer Verlag; Scopus. https://doi.org/10.1007/978-3-030-11928-7_53 | spa |
dc.relation.references | Fattahi, P., Saidi Mehrabad, M., & Jolai, F. (2007). Mathematical modeling and heuristic approaches to flexible job shop scheduling problems. Journal of Intelligent Manufacturing, 18(3), 331–342. https://doi.org/10.1007/s10845-007-0026-8 | spa |
dc.relation.references | Fisher, R. D., & Thompson, G. L. (1963). Probabilistic Learning Combinations of Local Job-Shop Scheduling Rules. En J. F. Muth & G. L. Thompson (Eds.), Industrial Scheduling (pp. 225–251). Prentice-Hall. | spa |
dc.relation.references | Forza, C., & Vinelli, A. (2000). Time compression in production and distribution within the textile‐apparel chain. Integrated Manufacturing Systems, 11(2), 138–146. https://doi.org/10.1108/09576060010314134 | spa |
dc.relation.references | França, P. M., Gupta, J. N. D., Mendes, A. S., Moscato, P., & Veltink, K. J. (2005). Evolutionary algorithms for scheduling a flowshop manufacturing cell with sequence dependent family setups. Computers and Industrial Engineering, 48(3), 491–506. Scopus. https://doi.org/10.1016/j.cie.2003.11.004 | spa |
dc.relation.references | García Bautista, M. F., & Jauregui Mancipe, C. X. (2016). Caracterización de las empresas del sector textil confecciones en la ciudad de Cúcuta, Norte de Santander [Grado en Ingeniería Industrial, Universidad de Santander]. https://catalogo.udes.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=37685 | spa |
dc.relation.references | García-Hernández, L., Palomo-Romero, J. M., Salas-Morera, L., Arauzo-Azofra, A., & Pierreval, H. (2015). A novel hybrid evolutionary approach for capturing decision maker knowledge into the unequal area facility layout problem. Expert Systems with Applications, 42(10), 4697–4708. Scopus. https://doi.org/10.1016/j.eswa.2015.01.037 | spa |
dc.relation.references | García-Hernández, L., Pérez-Ortiz, M., Arauzo-Azofra, A., Salas-Morera, L., & Hervas-Martinez, C. (2014). An evolutionary neural system for incorporating expert knowledge into the UA-FLP. Neurocomputing, 135, 69–78. Scopus. https://doi.org/10.1016/j.neucom.2013.01.068 | spa |
dc.relation.references | García-Hernández, L., Pierreval, H., Salas-Morera, L., & Arauzo-Azofra, A. (2013). Handling qualitative aspects in Unequal Area Facility Layout Problem: An Interactive Genetic Algorithm. Applied Soft Computing Journal, 13(4), 1718–1727. Scopus. https://doi.org/10.1016/j.asoc.2013.01.003 | spa |
dc.relation.references | García-Hernández, L., Salas-Morera, L., Carmona-Muñoz, C., Abraham, A., & Salcedo-Sanz, S. (2020). A novel multi-objective Interactive Coral Reefs Optimization algorithm for the Unequal Area Facility Layout Problem. Swarm and Evolutionary Computation, 55. Scopus. https://doi.org/10.1016/j.swevo.2020.100688 | spa |
dc.relation.references | García-Hernández, L., Salas-Morera, L., Carmona-Muñoz, C., García-Hernández, J. A., & Salcedo-Sanz, S. (2020). A novel Island Model based on Coral Reefs Optimization algorithm for solving the unequal area facility layout problem. Engineering Applications of Artificial Intelligence, 89. Scopus. https://doi.org/10.1016/j.engappai.2019.103445 | spa |
dc.relation.references | García-Hernández, L., Salas-Morera, L., García-Hernández, J. A., Salcedo-Sanz, S., & Valente de Oliveira, J. (2019). Applying the coral reefs optimization algorithm for solving unequal area facility layout problems. Expert Systems with Applications, 138. Scopus. https://doi.org/10.1016/j.eswa.2019.07.036 | spa |
dc.relation.references | Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. W. H. Freeman. | spa |
dc.relation.references | Gau, K.-Y., & Meller, R. D. (1999). An iterative facility layout algorithm. International Journal of Production Research, 37(16), 3739–3758. Scopus. https://doi.org/10.1080/002075499190022 | spa |
dc.relation.references | Gelogullari, C. A., & Logendran, R. (2010). Group-scheduling problems in electronics manufacturing. Journal of Scheduling, 13(2), 177–202. Scopus. https://doi.org/10.1007/s10951-009-0147-3 | spa |
dc.relation.references | Gelvez Manrique, M. F. (2016). Redistribución del proceso de confección por celdas de manufactura para aumentar el volumen de producción de la empresa Sexy Jeans Ltda., en la ciudad de Cúcuta—Norte de Santander [Grado en Ingeniería Industrial, Universidad Libre Seccional Cúcuta]. https://repository.unilibre.edu.co/handle/10901/9289 | spa |
dc.relation.references | Georgiadis, M. C., Rotstein, G. E., & Macchietto, S. (1997). Optimal Layout Design in Multipurpose Batch Plants. Industrial and Engineering Chemistry Research, 36(11), 4852–4863. Scopus. https://doi.org/10.1021/ie9702845 | spa |
dc.relation.references | Ghassemi Tari, F., & Neghabi, H. (2015). A new linear adjacency approach for facility layout problem with unequal area departments. Journal of Manufacturing Systems, 37, 93–103. Scopus. https://doi.org/10.1016/j.jmsy.2015.09.003 | spa |
dc.relation.references | Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13(5), 533–549. https://doi.org/10.1016/0305-0548(86)90048-1 | spa |
dc.relation.references | Glover, F. (1989). Tabu Search—Part I. ORSA Journal on Computing, 1(3), 190–206. https://doi.org/10.1287/ijoc.1.3.190 | spa |
dc.relation.references | Gökalp, E., Gökalp, M. O., & Eren, P. E. (2018). Analyzing the Impact of a Decision Support System on a Medium Sized Apparel Company. En R. Valencia-García, M. A. Paredes-Valverde, M. del P. Salas-Zárate, & G. Alor-Hernández (Eds.), Exploring Intelligent Decision Support Systems (Vol. 764, pp. 73–87). Springer International Publishing. https://doi.org/10.1007/978-3-319-74002-7_4 | spa |
dc.relation.references | Gómez Mora, J. M., & Pulido García, M. F. (2019). Propuesta para el diseño de mantenimiento preventivo para el área de confección en la Organización Bless SAS [Grado en Ingeniería Industrial, Universidad Francisco de Paula Santander]. http://alejandria.ufps.edu.co/descargas/tesis/1192287%20%201192288.pdf | spa |
dc.relation.references | Gonçalves, J. F., & Resende, M. G. C. (2015). A biased random-key genetic algorithm for the unequal area facility layout problem. European Journal of Operational Research, 246(1), 86–107. Scopus. https://doi.org/10.1016/j.ejor.2015.04.029 | spa |
dc.relation.references | Gonzalez, R., & Realff, M. J. (1998). Operation of pipeless batch plants—I. MILP schedules. Computers and Chemical Engineering, 22(7–8), 841–855. Scopus. https://doi.org/10.1016/S0098-1354(98)00005-2 | spa |
dc.relation.references | Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. H. G. R. (1979). Optimization and Approximation in Deterministic Sequencing and Scheduling: A Survey. En Annals of Discrete Mathematics (Vol. 5, pp. 287–326). Elsevier. https://doi.org/10.1016/S0167-5060(08)70356-X | spa |
dc.relation.references | Gupta, J. N. D., & Darrow, W. P. (1986). The two-machine sequence dependent flowshop scheduling problem. European Journal of Operational Research, 24(3), 439–446. https://doi.org/10.1016/0377-2217(86)90037-8 | spa |
dc.relation.references | Gupta, J. N. D., & Schaller, J. E. (2006). Minimizing flow time in a flow-line manufacturing cell with family setup times. Journal of the Operational Research Society, 57(2), 163–176. Scopus. https://doi.org/10.1057/palgrave.jors.2601971 | spa |
dc.relation.references | Ham, I., Hitomi, K., & Yoshida, T. (1985). Group Technology: Applications to Production Management. Springer Netherlands. https://doi.org/10.1007/978-94-009-4976-8 | spa |
dc.relation.references | Hamed Hendizadeh, S., ElMekkawy, T. Y., & Gary Wang, G. (2007). Bi-criteria scheduling of a flowshop manufacturing cell with sequence dependent setup times. European Journal of Industrial Engineering, 1(4), 391–413. Scopus. | spa |
dc.relation.references | Hamed Hendizadeh, S., Faramarzi, H., Mansouri, S. A., Gupta, J. N. D., & Y ElMekkawy, T. (2008). Meta-heuristics for scheduling a flowline manufacturing cell with sequence dependent family setup times. International Journal of Production Economics, 111(2), 593–605. Scopus. https://doi.org/10.1016/j.ijpe.2007.02.031 | spa |
dc.relation.references | Hassler, M. (2003). The global clothing production system: Commodity chains and business networks. Global Networks, 3(4), 513–531. https://doi.org/10.1111/1471-0374.00075 | spa |
dc.relation.references | Heizer, J., Render, B., & Munson, C. (2017). Operations management: Sustainability and supply chain management (Twelfth edition). Pearson. | spa |
dc.relation.references | Heragu, S. S. (2016). Facilities design (Fourth edition). CRC Press, Taylor & Francis Group. | spa |
dc.relation.references | Hernández Redondo, J. V. (2017). Sistema de producción aplicando lean manufacturing en el proceso de confección para la organización Bless ubicada en la ciudad de Cúcuta, Norte de Santander [Grado en Administración de Empresas, Universidad de Pamplona]. http://serviciosacademicos.unipamplona.edu.co/prestamo/ | spa |
dc.relation.references | Hernández-Gress, E. S., Seck-Tuoh-Mora, J. C., Hernández-Romero, N., Medina-Marín, J., Lagos-Eulogio, P., & Ortíz-Perea, J. (2020). The solution of the concurrent layout scheduling problem in the job-shop environment through a local neighborhood search algorithm. Expert Systems with Applications, 144. Scopus. https://doi.org/10.1016/j.eswa.2019.113096 | spa |
dc.relation.references | Holland, J. H. (1962). Outline for a Logical Theory of Adaptive Systems. Journal of the ACM (JACM), 9(3), 297–314. https://doi.org/10.1145/321127.321128 | spa |
dc.relation.references | Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press. | spa |
dc.relation.references | Hosseini-Nasab, H., Fereidouni, S., Fatemi Ghomi, S. M. T., & Fakhrzad, M. B. (2018). Classification of facility layout problems: A review study. International Journal of Advanced Manufacturing Technology, 94(1–4), 957–977. Scopus. https://doi.org/10.1007/s00170-017-0895-8 | spa |
dc.relation.references | Hou, S., Wen, H., Feng, S., Wang, H., & Li, Z. (2019). Application of layered coding genetic algorithm in optimization of unequal area production facilities layout. Computational Intelligence and Neuroscience, 2019. Scopus. https://doi.org/10.1155/2019/3650923 | spa |
dc.relation.references | Huang, X. (2019). Bicriterion scheduling with group technology and deterioration effect. Journal of Applied Mathematics and Computing, 60(1–2), 455–464. Scopus. https://doi.org/10.1007/s12190-018-01222-1 | spa |
dc.relation.references | Ibero Casadiego, L., & Manzano Romero, L. S. (2017). Propuesta para la planeación y control de la producción de una pequeña empresa de confección de uniformes escolares en la ciudad de San José de Cúcuta [Grado en Ingeniería Industrial, Universidad Francisco de Paula Santander]. http://alejandria.ufps.edu.co/descargas/tesis/1190802.pdf | spa |
dc.relation.references | Ibrahem, A.-M., Elmekkawy, T., & Peng, Q. (2014). Robust metaheuristics for scheduling cellular flowshop with family sequence-dependent setup times. Procedia CIRP, 17, 428–433. Scopus. https://doi.org/10.1016/j.procir.2014.01.072 | spa |
dc.relation.references | Imam, M. H., & Mir, M. (1993). Automated layout of facilities of unequal areas. Computers and Industrial Engineering, 24(3), 355–366. Scopus. https://doi.org/10.1016/0360-8352(93)90032-S | spa |
dc.relation.references | Imam, M. H., & Mir, M. (1998). Cluster boundary search algorithm for building-block layout optimization. Advances in Engineering Software, 29(2), 165–173. Scopus. https://doi.org/10.1016/S0965-9978(98)00056-8 | spa |
dc.relation.references | Ingole, S., & Singh, D. (2017). Unequal-area, fixed-shape facility layout problems using the firefly algorithm. Engineering Optimization, 49(7), 1097–1115. Scopus. https://doi.org/10.1080/0305215X.2016.1235327 | spa |
dc.relation.references | Irani, S. A. (Ed.). (1999). Handbook of cellular manufacturing systems. Wiley. | spa |
dc.relation.references | Islier, A. A. (1998). A genetic algorithm approach for multiple criteria facility layout design. International Journal of Production Research, 36(6), 1549–1569. Scopus. https://doi.org/10.1080/002075498193165 | spa |
dc.relation.references | Jacobs, F. R., & Chase, R. B. (2018). Operations and supply chain management (Fifteenth edition). McGraw-Hill Education. | spa |
dc.relation.references | Jankovits, I., Luo, C., Anjos, M. F., & Vannelli, A. (2011). A convex optimisation framework for the unequal-areas facility layout problem. European Journal of Operational Research, 214(2), 199–215. Scopus. https://doi.org/10.1016/j.ejor.2011.04.013 | spa |
dc.relation.references | Jayakumar, S., & Reklaitis, G. V. (1996). Chemical plant layout via graph partitioning—II. Multiple levels. Computers and Chemical Engineering, 20(5), 563–578. Scopus. https://doi.org/10.1016/0098-1354(95)00208-1 | spa |
dc.relation.references | Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly, 1(1), 61–68. https://doi.org/10.1002/nav.3800010110 | spa |
dc.relation.references | Jones, R. M. (2006). The apparel industry (2nd ed). Blackwell Pub. | spa |
dc.relation.references | Kamoshida, R. (2018). Concurrent optimization of job shop scheduling and dynamic and flexible facility layout planning. Int. Conf. Ind. Eng. Appl., ICIEA, 289–293. Scopus. https://doi.org/10.1109/IEA.2018.8387112 | spa |
dc.relation.references | Kamoun, M., & Yano, C. A. (1996). Facility layout to support just-in-time. Transportation Science, 30(4), 315–329. Scopus. https://doi.org/10.1287/trsc.30.4.315 | spa |
dc.relation.references | Kang, S., & Chae, J. (2017). Harmony search for the layout design of an unequal area facility. Expert Systems with Applications, 79, 269–281. Scopus. https://doi.org/10.1016/j.eswa.2017.02.047 | spa |
dc.relation.references | Kazemi, M., Poormoaied, S., & Eslami, G. (2012). Optimizing combination of job shop scheduling and quadratic assignment problem through multi-objective decision making approach. Management Science Letters, 2(6), 2011–2018. https://doi.org/10.5267/j.msl.2012.06.020 | spa |
dc.relation.references | Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks, 4, 1942–1948. https://doi.org/10.1109/ICNN.1995.488968 | spa |
dc.relation.references | Keshavarz, T., Salmasi, N., & Varmazyar, M. (2014). Minimizing total completion time in the flexible flowshop sequence-dependent group scheduling problem. Annals of Operations Research, 226(1), 351–377. Scopus. https://doi.org/10.1007/s10479-014-1667-6 | spa |
dc.relation.references | Keshavarz, T., Salmasi, N., & Varmazyar, M. (2019). Flowshop sequence-dependent group scheduling with minimisation of weighted earliness and tardiness. European Journal of Industrial Engineering, 13(1), 54–80. Scopus. https://doi.org/10.1504/EJIE.2019.097920 | spa |
dc.relation.references | Khalid, Q. S., Arshad, M., Maqsood, S., Jahanzaib, M., Babar, A. R., Khan, I., Mumtaz, J., & Kim, S. (2019). Hybrid particle swarm algorithm for products’ scheduling problem in cellular manufacturing system. Symmetry, 11(6). Scopus. https://doi.org/10.3390/sym11060729 | spa |
dc.relation.references | Khare, V. K., Khare, M. K., & Neema, M. L. (1988). Combined computer-aided approach for the facilities design problem and estimation of the distribution parameter in the case of multigoal optimization. Computers and Industrial Engineering, 14(4), 465–476. Scopus. https://doi.org/10.1016/0360-8352(88)90048-4 | spa |
dc.relation.references | Kikolski, M., & Ko, C.-H. (2018). Facility layout design—Review of current research directions. Engineering Management in Production and Services, 10(3), 70–79. Scopus. https://doi.org/10.2478/emj-2018-0018 | spa |
dc.relation.references | Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671–680. https://doi.org/10.1126/science.220.4598.671 | spa |
dc.relation.references | Kitchenham, B. (2004). Procedures for Performing Systematic Reviews (Joint Technical Report Keele University Technical Report (TR/SE-0401) and National ICT Australia Ltd. (0400011T.1)). | spa |
dc.relation.references | Komarudin, & Wong, K. Y. (2010). Applying Ant System for solving Unequal Area Facility Layout Problems. European Journal of Operational Research, 202(3), 730–746. Scopus. https://doi.org/10.1016/j.ejor.2009.06.016 | spa |
dc.relation.references | Komarudin, & Wong, K. Y. (2012). Parameter tuning of ant system using fuzzy logic controller. International Journal of Operational Research, 15(2), 125–135. Scopus. https://doi.org/10.1504/IJOR.2012.048863 | spa |
dc.relation.references | Konak, A., Kulturel-Konak, S., Norman, B. A., & Smith, A. E. (2006). A new mixed integer programming formulation for facility layout design using flexible bays. Operations Research Letters, 34(6), 660–672. Scopus. https://doi.org/10.1016/j.orl.2005.09.009 | spa |
dc.relation.references | Koopmans, T. C., & Beckmann, M. (1957). Assignment Problems and the Location of Economic Activities. Econometrica, 25(1), 53. https://doi.org/10.2307/1907742 | spa |
dc.relation.references | Krajewski, L. J., Malhotra, M. K., & Ritzman, L. P. (2016). Operations management. Processes and supply chains (Eleventh edition). Pearson. | spa |
dc.relation.references | Kulturel-Konak, S. (2012). A linear programming embedded probabilistic tabu search for the unequal-area facility layout problem with flexible bays. European Journal of Operational Research, 223(3), 614–625. Scopus. https://doi.org/10.1016/j.ejor.2012.07.019 | spa |
dc.relation.references | Kulturel-Konak, S., & Konak, A. (2011a). A new relaxed flexible bay structure representation and particle swarm optimization for the unequal area facility layout problem. Engineering Optimization, 43(12), 1263–1287. Scopus. https://doi.org/10.1080/0305215X.2010.548864 | spa |
dc.relation.references | Kulturel-Konak, S., & Konak, A. (2011b). Unequal area flexible bay facility layout using ant colony optimisation. International Journal of Production Research, 49(7), 1877–1902. Scopus. https://doi.org/10.1080/00207541003614371 | spa |
dc.relation.references | Kulturel-Konak, S., & Konak, A. (2013). Linear programming based genetic algorithm for the unequal area facility layout problem. International Journal of Production Research, 51(14), 4302–4324. Scopus. https://doi.org/10.1080/00207543.2013.774481 | spa |
dc.relation.references | Kulturel-Konak, S., Smith, A. E., & Norman, B. A. (2004). Layout optimization considering production uncertainty and routing flexibility. International Journal of Production Research, 42(21), 4475–4493. Scopus. https://doi.org/10.1080/00207540412331325567 | spa |
dc.relation.references | Kundu, A., & Dan, P. K. (2012). Metaheuristic in facility layout problems: Current trend and future direction. International Journal of Industrial and Systems Engineering, 10(2), 238. https://doi.org/10.1504/IJISE.2012.045182 | spa |
dc.relation.references | Kusiak, A., & Heragu, S. S. (1987). The facility layout problem. European Journal of Operational Research, 29(3), 229–251. Scopus. https://doi.org/10.1016/0377-2217(87)90238-4 | spa |
dc.relation.references | La Scalia, G., Micale, R., Giallanza, A., & Marannano, G. (2019). Firefly algorithm based upon slicing structure encoding for unequal facility layout problem. International Journal of Industrial Engineering Computations, 10(3), 349–360. Scopus. https://doi.org/10.5267/j.ijiec.2019.2.003 | spa |
dc.relation.references | Lawler, E. L. (1973). Optimal Sequencing of a Single Machine Subject to Precedence Constraints. Management Science, 19(5), 544–546. JSTOR. | spa |
dc.relation.references | Lawrence, S. L. (1984). Supplement to Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Sc. Carnegie-Mellon University. | spa |
dc.relation.references | Leao, A. A. S., Toledo, F. M. B., Oliveira, J. F., Carravilla, M. A., & Alvarez-Valdés, R. (2020). Irregular packing problems: A review of mathematical models. European Journal of Operational Research, 282(3), 803–822. Scopus. https://doi.org/10.1016/j.ejor.2019.04.045 | spa |
dc.relation.references | Lee, K.-Y., Han, S.-N., & Roh, M.-I. (2003). An improved genetic algorithm for facility layout problems having inner structure walls and passages. Computers and Operations Research, 30(1), 117–138. Scopus. https://doi.org/10.1016/S0305-0548(01)00085-5 | spa |
dc.relation.references | Lee, Y. H., & Lee, M. H. (2002). A shape-based block layout approach to facility layout problems using hybrid genetic algorithm. Computers and Industrial Engineering, 42(2–4), 237–248. Scopus. https://doi.org/10.1016/S0360-8352(02)00018-9 | spa |
dc.relation.references | Lin, S.-W., Gupta, J. N. D., Ying, K.-C., & Lee, Z.-J. (2009). Using simulated annealing to schedule a flowshop manufacturing cell with sequence-dependent family setup times. International Journal of Production Research, 47(12), 3205–3217. Scopus. https://doi.org/10.1080/00207540701813210 | spa |
dc.relation.references | Lin, S.-W., & Ying, K.-C. (2012). Scheduling a bi-criteria flowshop manufacturing cell with sequence-dependent family setup times. European Journal of Industrial Engineering, 6(4), 474–496. Scopus. https://doi.org/10.1504/EJIE.2012.047666 | spa |
dc.relation.references | Lin, S.-W., & Ying, K.-C. (2019). Makespan optimization in a no-wait flowline manufacturing cell with sequence-dependent family setup times. Computers and Industrial Engineering, 128, 1–7. Scopus. https://doi.org/10.1016/j.cie.2018.12.025 | spa |
dc.relation.references | Lin, S.-W., Ying, K.-C., & Lee, Z.-J. (2009). Metaheuristics for scheduling a non-permutation flowline manufacturing cell with sequence dependent family setup times. Computers and Operations Research, 36(4), 1110–1121. Scopus. https://doi.org/10.1016/j.cor.2007.12.010 | spa |
dc.relation.references | Lin, S.-W., Ying, K.-C., Lu, C.-C., & Gupta, J. N. D. (2011). Applying multi-start simulated annealing to schedule a flowline manufacturing cell with sequence dependent family setup times. International Journal of Production Economics, 130(2), 246–254. Scopus. https://doi.org/10.1016/j.ijpe.2011.01.004 | spa |
dc.relation.references | Liou, C.-D., & Hsieh, Y.-C. (2015). A hybrid algorithm for the multi-stage flow shop group scheduling with sequence-dependent setup and transportation times. International Journal of Production Economics, 170, 258–267. Scopus. https://doi.org/10.1016/j.ijpe.2015.10.002 | spa |
dc.relation.references | Liou, C.-D., Hsieh, Y.-C., & Chen, Y.-Y. (2013). A new encoding scheme-based hybrid algorithm for minimising two-machine flow-shop group scheduling problem. International Journal of Systems Science, 44(1), 77–93. Scopus. https://doi.org/10.1080/00207721.2011.581396 | spa |
dc.relation.references | Liou, C.-D., & Liu, C.-H. (2010). A novel encoding scheme of PSO for two-machine group scheduling: Vol. 6145 LNCS (Peking University; Xi’an Jiaotong-Liverpool University, Trad.; Número PART 1). Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-77954654783&doi=10.1007%2f978-3-642-13495-1_16&partnerID=40&md5=0e674d343a46e28493891c85f274d416 | spa |
dc.relation.references | Liu, J., & Liu, J. (2019). Applying multi-objective ant colony optimization algorithm for solving the unequal area facility layout problems. Applied Soft Computing Journal, 74, 167–189. Scopus. https://doi.org/10.1016/j.asoc.2018.10.012 | spa |
dc.relation.references | Liu, J., Liu, J., Yan, X., & Peng, B. (2020). A heuristic algorithm combining Pareto optimization and niche technology for multi-objective unequal area facility layout problem. Engineering Applications of Artificial Intelligence, 89. Scopus. https://doi.org/10.1016/j.engappai.2019.103453 | spa |
dc.relation.references | Liu, J., Liu, S., Liu, Z., & Li, B. (2020). Configuration space evolutionary algorithm for multi-objective unequal-area facility layout problems with flexible bays. Applied Soft Computing Journal, 89. Scopus. https://doi.org/10.1016/j.asoc.2019.106052 | spa |
dc.relation.references | Liu, J., Zhang, H., He, K., & Jiang, S. (2018). Multi-objective particle swarm optimization algorithm based on objective space division for the unequal-area facility layout problem. Expert Systems with Applications, 102, 179–192. Scopus. https://doi.org/10.1016/j.eswa.2018.02.035 | spa |
dc.relation.references | Liu, Q., & Meller, R. D. (2007). A sequence-pair representation and MIP-model-based heuristic for the facility layout problem with rectangular departments. IIE Transactions (Institute of Industrial Engineers), 39(4), 377–394. Scopus. https://doi.org/10.1080/07408170600844108 | spa |
dc.relation.references | Logendran, R., Carson, S., & Hanson, E. (2005). Group scheduling in flexible flow shops. International Journal of Production Economics, 96(2), 143–155. Scopus. https://doi.org/10.1016/j.ijpe.2004.03.011 | spa |
dc.relation.references | Logendran, R., Gelogullari, C. A., & Sriskandarajah, C. (2003). Minimizing the mean flow time in a two-machine group-scheduling problem with carryover sequence dependency. Robotics and Computer-Integrated Manufacturing, 19(1–2), 21–33. Scopus. https://doi.org/10.1016/S0736-5845(02)00059-5 | spa |
dc.relation.references | Logendran, R., & Kriausakul, T. (2006). A methodology for solving the unequal area facility layout problem using distance and shape-based measures. International Journal of Production Research, 44(7), 1243–1272. Scopus. https://doi.org/10.1080/00207540500336314 | spa |
dc.relation.references | Logendran, R., Salmasi, N., & Sriskandarajah, C. (2006). Two-machine group scheduling problems in discrete parts manufacturing with sequence-dependent setups. Computers and Operations Research, 33(1), 158–180. Scopus. https://doi.org/10.1016/j.cor.2004.07.004 | spa |
dc.relation.references | Lu, D., & Logendran, R. (2013). Bi-criteria group scheduling with sequence-dependent setup time in a flow shop. Journal of the Operational Research Society, 64(4), 530–546. Scopus. https://doi.org/10.1057/jors.2012.61 | spa |
dc.relation.references | Madariaga Neto, F. (2013). Lean manufacturing: Exposición adaptada a la fabricación repetitiva de familias de productos mediante procesos discretos (Primera edición). Bubok Publishing S.L. | spa |
dc.relation.references | Maggu, P. L., & Das, G. (1980). On 2×n sequencing problem with transportation times of jobs. Pure & Applied Mathematika Sciences, 12. | spa |
dc.relation.references | Mallikarjuna, K., & Babu, K. S. (2018). Population Based Stochastic Technique for Optimum Design of Open Field Layout with Integrated Scheduling. Int. Conf. Comput., Commun. Netw. Technol., ICCCNT. 9th International Conference on Computing, Communication and Networking Technologies, ICCCNT 2018. Scopus. https://doi.org/10.1109/ICCCNT.2018.8494049 | spa |
dc.relation.references | McKendall Jr., A. R., & Hakobyan, A. (2010). Heuristics for the dynamic facility layout problem with unequal-area departments. European Journal of Operational Research, 201(1), 171–182. Scopus. https://doi.org/10.1016/j.ejor.2009.02.028 | spa |
dc.relation.references | Meller, R. D. (1992). Layout algorithms for single and multiple floor facilities [Doctoral Thesis, The University of Michigan]. http://hdl.handle.net/2027.42/129018 | spa |
dc.relation.references | Meller, R. D. (1997). The multi-bay manufacturing facility layout problem. International Journal of Production Research, 35(5), 1229–1237. Scopus. https://doi.org/10.1080/002075497195290 | spa |
dc.relation.references | Meller, R. D., & Bozer, Y. A. (1996). A new simulated annealing algorithm for the facility layout problem. International Journal of Production Research, 34(6), 1675–1692. Scopus. https://doi.org/10.1080/00207549608904990 | spa |
dc.relation.references | Meller, R. D., Chen, W., & Sherali, H. D. (2007). Applying the sequence-pair representation to optimal facility layout designs. Operations Research Letters, 35(5), 651–659. Scopus. https://doi.org/10.1016/j.orl.2006.10.007 | spa |
dc.relation.references | Meller, R. D., & Gau, K.-Y. (1996). The facility layout problem: Recent and emerging trends and perspectives. Journal of Manufacturing Systems, 15(5), 351–366. https://doi.org/10.1016/0278-6125(96)84198-7 | spa |
dc.relation.references | Meller, R. D., Narayanan, V., & Vance, P. H. (1998). Optimal facility layout design. Operations Research Letters, 23(3–5), 117–127. Scopus. https://doi.org/10.1016/S0167-6377(98)00024-8 | spa |
dc.relation.references | Mendoza Mantilla, J. A., & Jaimes Delgado, M. S. (2017). Propuesta de mejora mediante un estudio de métodos y tiempos para el área de producción de la empresa Distribuciones y Representaciones UNO en la ciudad de Cúcuta [Grado en Tecnología en Procesos Industriales, Universidad Francisco de Paula Santander]. http://alejandria.ufps.edu.co/descargas/tesis/1980260.pdf | spa |
dc.relation.references | Meyers, R. A. (Ed.). (1986). Handbook of chemicals production processes. McGraw-Hill Book Co. | spa |
dc.relation.references | Mir, M., & Imam, M. H. (1996). Analytic annealing for macrocell placement optimization. Computers and Electrical Engineering, 22(2), 169–177. Scopus. https://doi.org/10.1016/0045-7906(95)00031-3 | spa |
dc.relation.references | Mir, M., & Imam, M. H. (2001). Hybrid optimization approach for layout design of unequal-area facilities. Computers and Industrial Engineering, 39(1–2), 49–63. Scopus. https://doi.org/10.1016/S0360-8352(00)00065-6 | spa |
dc.relation.references | Mitchell, S., O’Sullivan, M., & Dunning, I. (2011). PuLP: A Linear Programming Toolkit for Python (p. 12). http://www.optimization-online.org/DB_FILE/2011/09/3178.pdf | spa |
dc.relation.references | Mok, P. Y., Cheung, T. Y., Wong, W. K., Leung, S. Y. S., & Fan, J. T. (2013). Intelligent production planning for complex garment manufacturing. Journal of Intelligent Manufacturing, 24(1), 133–145. https://doi.org/10.1007/s10845-011-0548-y | spa |
dc.relation.references | Montreuil, B., Ouazzani, N., Brotherton, E., & Nourelfath, M. (2004). Coupling zone-based layout optimization, ant colony system and domain knowledge. Proceedings of the 8th International Material Handling Research Colloquium, 301–331. | spa |
dc.relation.references | Muther, R. (1973). Systematic layout planning (2d ed. [rev. and enl.]). Cahners Books. | spa |
dc.relation.references | Muther, R., & Hales, L. (2015). Systematic Layout Planning. A total system of layout planning (fourth edition). Management & Industrial Research Publications. | spa |
dc.relation.references | Naderi, B., & Salmasi, N. (2012). Permutation flowshops in group scheduling with sequence-dependent setup times. European Journal of Industrial Engineering, 6(2), 177–198. Scopus. https://doi.org/10.1504/EJIE.2012.045604 | spa |
dc.relation.references | Nahmias, S., & Olsen, T. L. (2015). Production and operations analysis (7. ed). Waveland Pr. | spa |
dc.relation.references | Nayak, R., & Padhye, R. (2015). Garment Manufacturing Technology. Elsevier Science. http://www.totalboox.com/book/id-4668022919799682393 | spa |
dc.relation.references | Neufeld, J. S., Gupta, J. N. D., & Buscher, U. (2015). Minimising makespan in flowshop group scheduling with sequence-dependent family set-up times using inserted idle times. International Journal of Production Research, 53(6), 1791–1806. Scopus. https://doi.org/10.1080/00207543.2014.961209 | spa |
dc.relation.references | Neufeld, J. S., Gupta, J. N. D., & Buscher, U. (2016). A comprehensive review of flowshop group scheduling literature. Computers and Operations Research, 70, 56–74. Scopus. https://doi.org/10.1016/j.cor.2015.12.006 | spa |
dc.relation.references | Nieto Galindo, V. M., & López, J. E. (2017). Cadena de Textil-Confecciones. Estructura, Comercio Internacional y Protección (Documento Núm. 460; Archivos de Economía, p. 58). Departamento Nacional de Planeación, DNP. https://colaboracion.dnp.gov.co/CDT/Estudios%20Econmicos/460.pdf | spa |
dc.relation.references | Nugent, C. E., Vollmann, T. E., & Ruml, J. (1968). An Experimental Comparison of Techniques for the Assignment of Facilities to Locations. Operations Research, 16(1), 150–173. https://doi.org/10.1287/opre.16.1.150 | spa |
dc.relation.references | Ortiz Zambrano, Y. Y., & Osorio Jaimes, E. (2010). Propuesta de programación de la producción de la empresa Confecciones Y7 en la ciudad de Cúcuta por medio de la Teoría de Restricciones [Grado en Ingeniería Industrial, Universidad Francisco de Paula Santander]. http://alejandria.ufps.edu.co/descargas/tesis/0190922.pdf | spa |
dc.relation.references | Özyurt, D. B., & Realff, M. J. (1999). Geographic and process information for chemical plant layout problems. AIChE Journal, 45(10), 2161–2174. Scopus. https://doi.org/10.1002/aic.690451015 | spa |
dc.relation.references | Paes, F. G., Pessoa, A. A., & Vidal, T. (2017). A hybrid genetic algorithm with decomposition phases for the Unequal Area Facility Layout Problem. European Journal of Operational Research, 256(3), 742–756. Scopus. https://doi.org/10.1016/j.ejor.2016.07.022 | spa |
dc.relation.references | Palominos, P., Pertuzé, D., Quezada, L., & Sanchez, L. (2019). An Extension of the Systematic Layout Planning System Using QFD: Its Application to Service Oriented Physical Distribution. Engineering Management Journal, 31(4), 284–302. https://doi.org/10.1080/10429247.2019.1651444 | spa |
dc.relation.references | Palomo-Romero, J. M., Salas-Morera, L., & García-Hernández, L. (2017). An island model genetic algorithm for unequal area facility layout problems. Expert Systems with Applications, 68, 151–162. Scopus. https://doi.org/10.1016/j.eswa.2016.10.004 | spa |
dc.relation.references | Park, K. S., & Han, S. W. (2002). Performance obstacles in cellular manufacturing implementation-empirical investigation. Human Factors and Ergonomics In Manufacturing, 12(1), 17–29. Scopus. https://doi.org/10.1002/hfm.10000 | spa |
dc.relation.references | Paul, R. C., Asokan, P., & Prabhakar, V. I. (2006). A solution to the facility layout problem having passages and inner structure walls using particle swarm optimization. International Journal of Advanced Manufacturing Technology, 29(7–8), 766–771. Scopus. https://doi.org/10.1007/s00170-005-2576-2 | spa |
dc.relation.references | Pellerin, R., Perrier, N., & Berthaut, F. (2020). A survey of hybrid metaheuristics for the resource-constrained project scheduling problem. European Journal of Operational Research, 280(2), 395–416. Scopus. https://doi.org/10.1016/j.ejor.2019.01.063 | spa |
dc.relation.references | Penteado, F. D., & Ciric, A. R. (1996). An MINLP Approach for Safe Process Plant Layout. Industrial and Engineering Chemistry Research, 35(4), 1354–1361. Scopus. https://doi.org/10.1021/ie9502547 | spa |
dc.relation.references | Pinedo, M. (2016). Scheduling: Theory, algorithms, and systems (Fifth Edition). Springer. | spa |
dc.relation.references | Qin, H., Zhang, Z.-H., & Bai, D. (2016). Permutation flowshop group scheduling with position-based learning effect. Computers and Industrial Engineering, 92, 1–15. Scopus. https://doi.org/10.1016/j.cie.2015.12.001 | spa |
dc.relation.references | Ramesh, A., & Bahinipati, B. K. (2011). The Indian apparel industry: A critical review of supply chains. 1101–1111. | spa |
dc.relation.references | Ramírez Zambrano, J. R., Zambrano Miranda, M. de J., Mogroviejo, J. M., & Carreño Montaño, J. L. (2016). Informalidad laboral en los departamentos de Norte de Santander, Nariño, La Guajira y Cesar. Apuntes del CENES, 35(62), 125–145. | spa |
dc.relation.references | Ranjbar, M., & Razavi, M. N. (2012). A hybrid metaheuristic for concurrent layout and scheduling problem in a job shop environment. The International Journal of Advanced Manufacturing Technology, 62(9–12), 1249–1260. https://doi.org/10.1007/s00170-011-3859-4 | spa |
dc.relation.references | Reed, R. (1961). Plant Layout: Factors, Principles, and Techniques. R.D. Irwin. https://books.google.com.co/books?id=POdTAAAAMAAJ | spa |
dc.relation.references | Rincón Moreno, C. A., & Anaya Morales, Y. A. (2015). Propuesta para planeación y control de la producción en la empresa Confecciones Varmesí en la ciudad de Cúcuta [Grado en Ingeniería Industrial, Universidad Francisco de Paula Santander]. http://alejandria.ufps.edu.co/descargas/tesis/1191044.pdf | spa |
dc.relation.references | Ripon, K. S. N., Glette, K., Hovin, M., & Torresen, J. (2012). Job shop scheduling with transportation delays and layout planning in manufacturing systems: A multi-objective evolutionary approach: Vol. 7326 LNAI (Cent. P. Anal. Mach. Intell. (CPAMI); Univ. W. Association for Image and Machine Intelligence (AIMI); Fac. Eng. Univ. Porto (FEUP) Dep. Electr. Comput. Eng.; Instituto de Engenharia Biomedica (INEB); Univ. Waterloo Dep. Electr. Comput. Eng., Trad.). Scopus. https://doi.org/10.1007/978-3-642-31368-4_25 | spa |
dc.relation.references | Ripon, K. S. N., Glette, K., Khan, K. N., Hovin, M., & Torresen, J. (2013). Adaptive variable neighborhood search for solving multi-objective facility layout problems with unequal area facilities. Swarm and Evolutionary Computation, 8, 1–12. Scopus. https://doi.org/10.1016/j.swevo.2012.07.003 | spa |
dc.relation.references | Ripon, K. S. N., Glette, K., Mirmotahari, O., Hovin, M., & Torresen, J. (2009). Pareto Optimal Based Evolutionary Approach for Solving Multi-Objective Facility Layout Problem. En C. S. Leung, M. Lee, & J. H. Chan (Eds.), Neural Information Processing (Vol. 5864, pp. 159–168). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-10684-2_18 | spa |
dc.relation.references | Ripon, K. S. N., Khan, K. N., Glette, K., Hovin, M., & Torresen, J. (2011). Using pareto-optimality for solving multi-objective unequal area facility layout problem. Genet. Evol. Comput. Conf., GECCO, 681–688. Scopus. https://doi.org/10.1145/2001576.2001670 | spa |
dc.relation.references | Ripon, K. S. N., & Torresen, J. (2014). Integrated job shop scheduling and layout planning: A hybrid evolutionary method for optimizing multiple objectives. Evolving Systems, 5(2), 121–132. Scopus. https://doi.org/10.1007/s12530-013-9092-7 | spa |
dc.relation.references | Ruiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop heuristics. European Journal of Operational Research, 165(2), 479–494. https://doi.org/10.1016/j.ejor.2004.04.017 | spa |
dc.relation.references | Salas-Morera, L., García-Hernández, L., Antoli-Cabrera, A., & Carmona-Muñoz, C. (2020). Using eye-tracking into decision makers evaluation in evolutionary interactive UA-FLP algorithms. Neural Computing and Applications. Scopus. https://doi.org/10.1007/s00521-020-04781-2 | spa |
dc.relation.references | Salmasi, N. (2005). Multi-stage Group Scheduling Problems with Sequence Dependent Setups [PhD Thesis]. Oregon State University. | spa |
dc.relation.references | Salmasi, N., Logendran, R., & Skandari, M. R. (2010). Total flow time minimization in a flowshop sequence-dependent group scheduling problem. Computers and Operations Research, 37(1), 199–212. Scopus. https://doi.org/10.1016/j.cor.2009.04.013 | spa |
dc.relation.references | Salmasi, N., Logendran, R., & Skandari, M. R. (2011). Makespan minimization of a flowshop sequence-dependent group scheduling problem. International Journal of Advanced Manufacturing Technology, 56(5–8), 699–710. Scopus. https://doi.org/10.1007/s00170-011-3206-9 | spa |
dc.relation.references | Sánchez, P. A., Ceballos, F., & Sánchez Torres, G. (2015). Análisis del proceso productivo de una empresa de confecciones: Modelación y simulación. Ciencia e Ingeniería Neogranadina, 25(2), 137–150. https://doi.org/10.18359/rcin.1436 | spa |
dc.relation.references | Saraswat, A., Venkatadri, U., & Castillo, I. (2015). A framework for multi-objective facility layout design. Computers and Industrial Engineering, 90, 167–176. Scopus. https://doi.org/10.1016/j.cie.2015.09.006 | spa |
dc.relation.references | Saravanan, M., & Noorul Haq, A. (2008). A scatter search method to minimise makespan of cell scheduling problem. International Journal of Agile Systems and Management, 3(1–2), 18–36. Scopus. https://doi.org/10.1504/IJASM.2008.019597 | spa |
dc.relation.references | Schaller, J. E. (2000). A comparison of heuristics for family and job scheduling in a flow-line manufacturing cell. International Journal of Production Research, 38(2), 287–308. Scopus. https://doi.org/10.1080/002075400189419 | spa |
dc.relation.references | Schaller, J. E. (2001). A new lower bound for the flow shop group scheduling problem. Computers and Industrial Engineering, 41(2), 151–161. Scopus. https://doi.org/10.1016/S0360-8352(01)00049-3 | spa |
dc.relation.references | Schaller, J. E. (2005). An improved branch and bound procedure for scheduling a flow line manufacturing cell. International Journal of Production Research, 43(22), 4697–4720. Scopus. https://doi.org/10.1080/00207540500185216 | spa |
dc.relation.references | Schaller, J. E., Gupta, J. N. D., & Vakharia, A. J. (2000). Scheduling a flowline manufacturing cell with sequence dependent family setup times. European Journal of Operational Research, 125(2), 324–339. Scopus. https://doi.org/10.1016/S0377-2217(99)00387-2 | spa |
dc.relation.references | Scholz, D., Petrick, A., & Domschke, W. (2009). STaTS: A Slicing Tree and Tabu Search based heuristic for the unequal area facility layout problem. European Journal of Operational Research, 197(1), 166–178. Scopus. https://doi.org/10.1016/j.ejor.2008.06.028 | spa |
dc.relation.references | SCImago. (s/f). SJR — SCImago Journal & Country Rank. Recuperado el 4 de enero de 2020, de https://www.scimagojr.com/aboutus.php | spa |
dc.relation.references | Scott, A. J. (2006). The Changing Global Geography of Low-Technology, Labor-Intensive Industry: Clothing, Footwear, and Furniture. World Development, 34(9), 1517–1536. https://doi.org/10.1016/j.worlddev.2006.01.003 | spa |
dc.relation.references | Seo, M. J., Kim, M., & Lee, K.-H. (2016). Supply chain management strategies for small fast fashion firms: The case of the Dongdaemun Fashion District in South Korea. International Journal of Fashion Design, Technology and Education, 9(1), 51–61. Scopus. https://doi.org/10.1080/17543266.2015.1126650 | spa |
dc.relation.references | Sherali, H. D., Fraticelli, B. M. P., & Meller, R. D. (2003). Enhanced Model Formulations for Optimal Facility Layout. Operations Research, 51(4), 629–644. https://doi.org/10.1287/opre.51.4.629.16096 | spa |
dc.relation.references | Singh, S. P., & Sharma, R. R. K. (2006). A review of different approaches to the facility layout problems. International Journal of Advanced Manufacturing Technology, 30(5–6), 425–433. Scopus. https://doi.org/10.1007/s00170-005-0087-9 | spa |
dc.relation.references | Singh, S. P., & Singh, V. K. (2010). An improved heuristic approach for multi-objective facility layout problem. International Journal of Production Research, 48(4), 1171–1194. Scopus. https://doi.org/10.1080/00207540802534731 | spa |
dc.relation.references | Sivanandam, S. N., & Deepa, S. N. (2007). Introduction to genetic algorithms. Springer. | spa |
dc.relation.references | Socconini, L. (2009). “Lean manufacturing” paso a paso. Grupo Editorial Norma. | spa |
dc.relation.references | Solimanpur, M., & Elmi, A. (2011). A tabu search approach for group scheduling in buffer-constrained flow shop cells. International Journal of Computer Integrated Manufacturing, 24(3), 257–268. Scopus. https://doi.org/10.1080/0951192X.2011.552527 | spa |
dc.relation.references | Stephens, M. P., & Meyers, F. E. (2013). Manufacturing facilities design and material handling (Fifth edition). Purdue University Press. | spa |
dc.relation.references | Sule, D. R. (2008). Manufacturing facilities: Location, planning, and design (Third edition). CRC Press, Taylor & Francis Group. https://www.taylorfrancis.com/books/e/9781420044232 | spa |
dc.relation.references | Talbi, E.-G. (2009). Metaheuristics: From design to implementation. John Wiley & Sons. | spa |
dc.relation.references | Tam, K. Y. (1992a). A simulated annealing algorithm for allocating space to manufacturing cells. International Journal of Production Research, 30(1), 63–87. Scopus. https://doi.org/10.1080/00207549208942878 | spa |
dc.relation.references | Tam, K. Y. (1992b). Genetic algorithms, function optimization, and facility layout design. European Journal of Operational Research, 63(2), 322–346. Scopus. https://doi.org/10.1016/0377-2217(92)90034-7 | spa |
dc.relation.references | Tam, K. Y., & Li, S. G. (1991). A hierarchical approach to the facility layout problem. International Journal of Production Research, 29(1), 165–184. Scopus. https://doi.org/10.1080/00207549108930055 | spa |
dc.relation.references | Tang, J., Wang, X., Kaku, I., & Yung, K.-L. (2010). Optimization of parts scheduling in multiple cells considering intercell move using scatter search approach. Journal of Intelligent Manufacturing, 21(4), 525–537. Scopus. https://doi.org/10.1007/s10845-008-0236-8 | spa |
dc.relation.references | Tate, D. M., & Smith, A. E. (1995). Unequal-area facility layout by genetic search. IIE Transactions (Institute of Industrial Engineers), 27(4), 465–472. Scopus. https://doi.org/10.1080/07408179508936763 | spa |
dc.relation.references | Tavakkoli-Moghaddam, R., Javadian, N., Khorrami, A., & Gholipour-Kanani, Y. (2010). Design of a scatter search method for a novel multi-criteria group scheduling problem in a cellular manufacturing system. Expert Systems with Applications, 37(3), 2661–2669. Scopus. https://doi.org/10.1016/j.eswa.2009.08.012 | spa |
dc.relation.references | Tejeda Argáez, R. A. (2016). Estudio de tiempos y movimientos en la empresa Uniformes UNO ubicada en la ciudad de Cúcuta [Grado en Ingeniería Industrial, Universidad de Pamplona]. http://serviciosacademicos.unipamplona.edu.co/prestamo/ | spa |
dc.relation.references | Tompkins, J. A. (Ed.). (1996). Facilities planning (2nd ed). Wiley. | spa |
dc.relation.references | Tompkins, J. A., White, J. A., Bozer, Y. A., Solorio Gómez, P., Haaz Díaz, G., & Servantes González, S. R. (2011). Planeación de instalaciones. Cengage Learning. | spa |
dc.relation.references | Tong, X. (1991). SECOT: A Sequential Construction Technique for Facility Design. | spa |
dc.relation.references | Triana Beltrán, V., & Ayala Daza, Y. A. (2019). Sistema de información para la administración de la producción en la empresa Confecciones Axxu Jeans de la ciudad de Cúcuta [Grado en Ingeniería Industrial, Universidad Francisco de Paula Santander]. http://alejandria.ufps.edu.co/descargas/tesis/1191930.pdf | spa |
dc.relation.references | Turgay, S. (2018). Multi objective simulated annealing approach for facility layout design. International Journal of Mathematical, Engineering and Management Sciences, 3(4), 365–380. Scopus. | spa |
dc.relation.references | Ulutas, B. H. (2012). A modified flexible bay and slicing structure for unequal area facilities. IFAC Proc. Vol. (IFAC-PapersOnline), 14(PART 1), 1635–1640. Scopus. https://doi.org/10.3182/20120523-3-RO-2023.00362 | spa |
dc.relation.references | Ulutas, B. H., & Kulturel-Konak, S. (2012). An artificial immune system based algorithm to solve unequal area facility layout problem. Expert Systems with Applications, 39(5), 5384–5395. Scopus. https://doi.org/10.1016/j.eswa.2011.11.046 | spa |
dc.relation.references | Ulutas, B. H., & Kulturel-Konak, S. (2013). Assessing hypermutation operators of a clonal selection algorithm for the unequal area facility layout problem. Engineering Optimization, 45(3), 375–395. Scopus. https://doi.org/10.1080/0305215X.2012.678492 | spa |
dc.relation.references | van Camp, D. J. (1989). A nonlinear optimization approach for solving Facility Layout Problem. University of Toronto. | spa |
dc.relation.references | van Camp, D. J., Carter, M. W., & Vannelli, A. (1992). A nonlinear optimization approach for solving facility layout problems. European Journal of Operational Research, 57(2), 174–189. Scopus. https://doi.org/10.1016/0377-2217(92)90041-7 | spa |
dc.relation.references | Velásquez, J. D. (2015a). Una Guía Corta para Escribir Revisiones Sistemáticas de Literatura. Parte 3. DYNA, 82(189), 9–12. https://doi.org/10.15446/dyna.v82n189.48931 | spa |
dc.relation.references | Velásquez, J. D. (2015b). Una Guía Corta para Escribir Revisiones Sistemáticas de Literatura. Parte 4. DYNA, 82(190), 9–12. https://doi.org/10.15446/dyna.v82n190.49511 | spa |
dc.relation.references | Venkataramanaiah, S. (2008). Scheduling in cellular manufacturing systems: An heuristic approach. International Journal of Production Research, 46(2), 429–449. Scopus. https://doi.org/10.1080/00207540601138577 | spa |
dc.relation.references | VIP-PLANOPT, Engineering Optimization Software. (2005). VIP-PLANOPT. http://www.planopt.com/ | spa |
dc.relation.references | VOSviewer. (s/f). VOSviewer—Visualizing scientific landscapes. VOSviewer. Recuperado el 28 de abril de 2020, de https://www.vosviewer.com// | spa |
dc.relation.references | Wang, K.-J., & Chen, K.-H. (2008). An integrated facility-design model for the generator-manufacturing industry. Production Planning and Control, 19(5), 475–485. Scopus. https://doi.org/10.1080/09537280802088659 | spa |
dc.relation.references | Wang, M.-J., Hu, M. H., & Ku, M.-Y. (2005). A solution to the unequal area facilities layout problem by genetic algorithm. Computers in Industry, 56(2), 207–220. Scopus. https://doi.org/10.1016/j.compind.2004.06.003 | spa |
dc.relation.references | Wemmerlöv, U., & Hyer, N. L. (1989). Cellular manufacturing in the U.S. industry: A survey of users. International Journal of Production Research, 27(9), 1511–1530. https://doi.org/10.1080/00207548908942637 | spa |
dc.relation.references | Womack, J. P., Jones, D. T., & Roos, D. (1990). The machine that changed the world: The story of lean production ; Toyota’s secret weapon in the global car wars that is revolutionizing world industry (1. pb. ed). Free Press. | spa |
dc.relation.references | Wong, K. Y. & Komarudin. (2010). Solving facility layout problems using Flexible Bay Structure representation and Ant System algorithm. Expert Systems with Applications, 37(7), 5523–5527. Scopus. https://doi.org/10.1016/j.eswa.2009.12.080 | spa |
dc.relation.references | Wu, X., Chu, C.-H., Wang, Y., & Yan, W. (2007). A genetic algorithm for cellular manufacturing design and layout. European Journal of Operational Research, 181(1), 156–167. Scopus. https://doi.org/10.1016/j.ejor.2006.05.035 | spa |
dc.relation.references | Xiao, Y. J., Zheng, Y., Zhang, L. M., & Kuo, Y. H. (2016). A combined zone-LP and simulated annealing algorithm for unequal-area facility layout problem. Advances in Production Engineering And Management, 11(4), 259–270. Scopus. https://doi.org/10.14743/apem2016.4.225 | spa |
dc.relation.references | Xie, Y., Zhou, S., Xiao, Y., Kulturel-Konak, S., & Konak, A. (2018). A β-accurate linearization method of Euclidean distance for the facility layout problem with heterogeneous distance metrics. European Journal of Operational Research, 265(1), 26–38. Scopus. https://doi.org/10.1016/j.ejor.2017.07.052 | spa |
dc.relation.references | Yang, D.-L., & Chern, M.-S. (2000). Two-machine flowshop group scheduling problem. Computers and Operations Research, 27(10), 975–985. Scopus. https://doi.org/10.1016/S0305-0548(99)00070-2 | spa |
dc.relation.references | Yang, T., Su, C., & Hsu, Y. (2000). Systematic layout planning: A study on semiconductor wafer fabrication facilities. International Journal of Operations & Production Management, 20(11), 1359–1371. https://doi.org/10.1108/01443570010348299 | spa |
dc.relation.references | Yang, W. H. (2002). Group scheduling in a two-stage flowshop. Journal of the Operational Research Society, 53(12), 1367–1373. Scopus. https://doi.org/10.1057/palgrave.jors.2601454 | spa |
dc.relation.references | Yazdani Sabouni, M. T., & Logendran, R. (2013). Carryover sequence-dependent group scheduling with the integration of internal and external setup times. European Journal of Operational Research, 224(1), 8–22. Scopus. https://doi.org/10.1016/j.ejor.2012.07.013 | spa |
dc.relation.references | Yazdani Sabouni, M. T., & Logendran, R. (2018). Lower bound development in a flow shop electronic assembly problem with carryover sequence-dependent setup time. Computers and Industrial Engineering, 122, 149–160. Scopus. https://doi.org/10.1016/j.cie.2018.05.033 | spa |
dc.relation.references | Ying, K.-C., Gupta, J. N. D., Lin, S.-W., & Lee, Z.-J. (2010). Permutation and non-permutation schedules for the flowline manufacturing cell with sequence dependent family setups. International Journal of Production Research, 48(8), 2169–2184. Scopus. https://doi.org/10.1080/00207540802534707 | spa |
dc.relation.references | Ying, K.-C., Lee, Z.-J., Lu, C.-C., & Lin, S.-W. (2012). Metaheuristics for scheduling a no-wait flowshop manufacturing cell with sequence-dependent family setups. International Journal of Advanced Manufacturing Technology, 58(5–8), 671–682. Scopus. https://doi.org/10.1007/s00170-011-3419-y | spa |
dc.relation.references | Yuan, S., Li, T., & Wang, B. (2020). A co-evolutionary genetic algorithm for the two-machine flow shop group scheduling problem with job-related blocking and transportation times. Expert Systems with Applications, 152. Scopus. https://doi.org/10.1016/j.eswa.2020.113360 | spa |
dc.relation.references | Zhang, Y., Lu, C., Zhang, H., & Fang, Z.-F. (2013). Workshop layout optimization based on differential cellular multi-objective genetic algorithm. Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 19(4), 727–734. Scopus. | spa |
dc.relation.references | Zheng, F., & Song, Q. (2019). Lot-sizing and Scheduling with Machine-sharing in Clothing Industry. En Zheng F., Chu F., & Liu M. (Eds.), Proc. Int. Conf. Ind. Eng. Syst. Manag., IESM. Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/IESM45758.2019.8948154 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.ddc | 670 - Manufactura::677 - Textiles | spa |
dc.subject.ddc | 330 - Economía::338 - Producción | spa |
dc.subject.lemb | Corte y confección | |
dc.subject.lemb | Procesos de manufactura | |
dc.subject.proposal | Programación de la producción | spa |
dc.subject.proposal | Distribución de plantas | spa |
dc.subject.proposal | Celdas de manufactura | spa |
dc.subject.proposal | Confección de prendas de vestir | spa |
dc.subject.proposal | Algoritmo genético | spa |
dc.subject.proposal | Modelo integrado | spa |
dc.subject.proposal | Production scheduling | eng |
dc.subject.proposal | Cellular manufacturing | eng |
dc.subject.proposal | Facility layout | eng |
dc.subject.proposal | Garment industry | eng |
dc.subject.proposal | Genetic algorithm | eng |
dc.subject.proposal | Integrated model | eng |
dc.title | Modelo para la programación de la producción en enfoques de celdas de manufactura, integrando el diseño de plantas esbeltas, para el caso del sector de la confección de prendas de vestir | spa |
dc.title.translated | Model for production scheduling in manufacturing cell approaches, integrating lean plant design, for the case of the garment manufacturing sector | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Convocatoria para la Formación de Capital Humano de Alto Nivel para el Departamento de Norte de Santander – 2016 | spa |
oaire.fundername | Colfuturo | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1090437281.2021.pdf
- Tamaño:
- 5.39 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería Industrial
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: