Predicción del perfil de resistencia a partir de las secuencias del genoma de aislamientos colombianos de Acinetobacter baumannii

dc.contributor.advisorBarreto Hernández, Emiliano
dc.contributor.advisorReguero Reza, María Teresa Jesús
dc.contributor.authorAguilar Gonzalez, Karen Jhovana
dc.contributor.researchgroupGrupo de Epidemiologia Molecularspa
dc.contributor.researchgroupGrupo de Bioinformaticaspa
dc.date.accessioned2021-10-07T22:16:47Z
dc.date.available2021-10-07T22:16:47Z
dc.date.issued2021-04
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractLa creciente resistencia a los antibióticos y las pocas alternativas terapéuticas disponibles vuelven una urgencia la necesidad de optimizar los diagnósticos actuales que nos permitan prescripciones más rápidas y efectivas. Últimamente uno de los enfoques para predecir resistencia a partir de los datos de secuenciación de genoma consta en aplicar modelos basados en aprendizaje de máquina, los cuales han ido tomando credibilidad debido a la capacidad de realizar predicciones precisas. Además, gracias al creciente conocimiento acerca de mecanismos de resistencia asociados a A. baumannii, este patógeno nos brinda una alternativa para desarrollar estos modelos. En este trabajo se utilizaron 343 genomas, 76 colombianos del Instituto Nacional de Salud y 267 recolectados de la base de datos Biosample NCBI, para la obtención de modelos basados en aprendizaje de máquina empleando regresión lasso, random forest y gradient boosting, para predecir la concentración mínima inhibitoria de 10 antibióticos. Random forest fue el algoritmo que mostró los mejores resultados, logrando una precisión promedio dentro de +/- una dilución doble de 91% (I.C 95, 85- 97), una tasa de very major error y major error de 1,71% y 0,7%, respectivamente. Como datos de entrada para los modelos se utilizaron genes de resistencia, los cuales fueron identificados utilizando el software Resistance Gene Identifier. Estos resultados demuestran que la predicción de la susceptibilidad de A. baumannii a los antibióticos, basada en la secuencia del genoma son prometedoras como posibles herramienta de diagnóstico en la clínica. (Texto tomado de la fuente).spa
dc.description.abstractThe increasing resistance to antibiotics and the few therapeutic choices available turns into an urgency the need to optimize the current diagnoses that allow faster and more efficient prescriptions. Lately, an approach to predict resistance from genome sequencing data applies machine learning models, which has taken credibility due to its capability to make reliable predictions. Further, thanks to the increasing knowledge about resistance mechanisms associated with A. baumannii, there is enough accessible data for developing these models. We used 343 genomes, 76 from the Colombian National Institute of Health, and 267 gathered from the Biosample NCBI database. We created models based on machine learning using lasso regression, random forest, and gradient boosting, to predict the minimum inhibitory concentration of 10 antibiotics. Random forest was the algorithm that show is better results, achieving an average accuracy within +/- a double dilution of 91% (I.C 95, 85- 97), a very major error, and a major error rate of 1.71% and 0.7% respectively. We employ known resistance genes as the model input, which were identified using the Resistance Gene Identifier software. These results show that the A. baumannii antibiotics susceptibility prediction, based on genome sequence, is promising as a possible diagnostic tool in the clinic.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Microbiologíaspa
dc.description.notesIncluye anexosspa
dc.description.researchareaBiología molecular de agentes infecciososspa
dc.format.extentxiii, 155 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80437
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentObservatorio Astronómico Nacionalspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesAbdi, S. N., Ghotaslou, R., Ganbarov, K., Mobed, A., Tanomand, A., Yousefi, M., Asgharzadeh, M., & Kafil, H. S. (2020). Acinetobacter baumannii Efflux Pumps and Antibiotic Resistance. Infection and Drug Resistance, 13, 423-434. https://doi.org/10.2147/IDR.S228089spa
dc.relation.referencesAlbornoz, H., Paciel, D., & Medina, J. (2018). Tratamiento de Acinetobacter spp extremadamente resistente (XDR) y panresistente (PR) (p. 6). Catedra de Enfermedade Infecciosas. http://www.infectologia.edu.uy/images/archivos/Esquemas_Tto_Acineto_XDR.pdfspa
dc.relation.referencesAlcock, B. P., Raphenya, A. R., Lau, T. T. Y., Tsang, K. K., Bouchard, M., Edalatmand, A., Huynh, W., Nguyen, A.-L. V., Cheng, A. A., Liu, S., Min, S. Y., Miroshnichenko, A., Tran, H.-K., Werfalli, R. E., Nasir, J. A., Oloni, M., Speicher, D. J., Florescu, A., Singh, B., … McArthur, A. G. (2020). CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Research, 48(D1), D517-D525. https://doi.org/10.1093/nar/gkz935spa
dc.relation.referencesAL-Enawey, A. W., Saadedin, S. M. K., & Al-Khaldi, S. A.-M. (2020). ISOLATION, IDENTIFICATION AND ANTIMICROBIAL SUSCEPTIBILITY OF STAPHYLOCOCCUS AUREUS AND ACINETOBACTER BAUMANNII ISOLATED FROM BABYLON HOSPITALS. 6.spa
dc.relation.referencesAlzuhairi, M. A., Abdulmohsen, A. M., Falih, M. N., & Hanafiah, M. M. (2020). Genomic sequencing analysis of Acinetobacter baumannii strain ABIQM1, isolated from a meningitis patient. Gene Reports, 19, 100631. https://doi.org/10.1016/j.genrep.2020.100631spa
dc.relation.referencesAsif, M., Alvi, I. A., & Rehman, S. U. (2018). Insight into Acinetobacter baumannii: Pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infection and Drug Resistance, 11, 1249-1260. https://doi.org/10.2147/IDR.S166750spa
dc.relation.referencesAun, E., Brauer, A., Kisand, V., Tenson, T., & Remm, M. (2018). A k-mer-based method for the identification of phenotype-associated genomic biomarkers and predicting phenotypes of sequenced bacteria. PLOS Computational Biology, 14(10), e1006434. https://doi.org/10.1371/journal.pcbi.1006434spa
dc.relation.referencesAyodele, T. (2010). Types of Machine Learning Algorithms. En Yagang Zhang (Ed.), New Advances in Machine Learning. InTech. https://doi.org/10.5772/9385 Aytan-Aktug, D., Clausen, P. T. L. C., Bortolaia, V., Aarestrup, F. M., & Lund, O. (2020). Prediction of Acquired Antimicrobial Resistance for Multiple Bacterial Species Using Neural Networks. MSystems, 5(1), e00774-19, /msystems/5/1/msys.00774- 19.atom. https://doi.org/10.1128/mSystems.00774-19spa
dc.relation.referencesBabcock University, F.Y, O., J.E.T, A., O, A., J. O, H., O, O., & J, A. (2017). Supervised Machine Learning Algorithms: Classification and Comparison. International Journal of Computer Trends and Technology, 48(3), 128-138. https://doi.org/10.14445/22312803/IJCTT-V48P126spa
dc.relation.referencesBarlam, T. F., Cosgrove, S. E., Abbo, L. M., MacDougall, C., Schuetz, A. N., Septimus, E. J., Srinivasan, A., Dellit, T. H., Falck-Ytter, Y. T., Fishman, N. O., Hamilton, C. W., Jenkins, T. C., Lipsett, P. A., Malani, P. N., May, L. S., Moran, G. J., Neuhauser, M. M., Newland, J. G., Ohl, C. A., … Trivedi, K. K. (2016). Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clinical Infectious Diseases, 62(10), e51-e77. https://doi.org/10.1093/cid/ciw118spa
dc.relation.referencesBarletta Farías, R., Pérez Ponce, L., Castro Vega, G., Pujol Pérez, M., Barletta del Castillo, J., & Dueñas Pérez, Y. (2018). Acinetobacter baumannii multirresistente: Un reto para la terapéutica actual. MediSur, 16(2), 322-334. http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1727- 897X2018000200015&lng=es&nrm=iso&tlng=esspa
dc.relation.referencesBioSample - NCBI. (2020). National Center for Biotechnology Information. Retrieved January 06, 2020, from https://www.ncbi.nlm.nih.gov/biosamplespa
dc.relation.referencesBiswas, Raju, Panja, Anindya Sundar, & Bandopadhyay, Rajib. (2019). Molecular Mechanism of Antibiotic Resistance: The Untouched Area of Future Hope | SpringerLink. https://link.springer.com/article/10.1007/s12088-019-00781-6spa
dc.relation.referencesBottou, L. (2010). Large-Scale Machine Learning with Stochastic Gradient Descent. En Y. Lechevallier & G. Saporta (Eds.), Proceedings of COMPSTAT’2010 (pp. 177-186). Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-2604-3_16spa
dc.relation.referencesBradley, P., Gordon, N. C., Walker, T. M., Dunn, L., Heys, S., Huang, B., Earle, S., Pankhurst, L. J., Anson, L., Cesare, M. de, Piazza, P., Votintseva, A. A., Golubchik, T., Wilson, D. J., Wyllie, D. H., Diel, R., Niemann, S., Feuerriegel, S., Kohl, T. A., … Iqbal, Z. (2015). Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nature Communications, 6(1), 1-15. https://doi.org/10.1038/ncomms10063spa
dc.relation.referencesBreiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324spa
dc.relation.referencesBrennan, L. A., Tri, A. N., & Marcot, B. G. (2019). Quantitative Analyses in Wildlife Science. JHU Press.spa
dc.relation.referencesCai, H. Y., McDowall, R., Parker, L., Kaufman, E. I., & Caswell, J. L. (2019). Changes in antimicrobial susceptibility profiles of Mycoplasma bovis over time. Canadian Journal of Veterinary Research = Revue Canadienne de Recherche Veterinaire, 83(1), 34-41. https://europepmc.org/articles/PMC6318825/spa
dc.relation.referencesCanovas-Segura, B., Morales, A., Lopez Martinez-Carrasco, A., Campos, M., Juarez, J. M., Lopez Rodriguez, L., & Palacios, F. (2019). Improving Interpretable Prediction Models for Antimicrobial Resistance. 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS), 543-546. https://doi.org/10.1109/CBMS.2019.00111spa
dc.relation.referencesCao, J., Wang, J., Wang, Y., Wang, L., Bi, Y., Zhu, B., & Gao, G. F. (2020). Tigecycline resistance tet(X3) gene is going wild. Biosafety and Health, 2(1), 9-11. https://doi.org/10.1016/j.bsheal.2020.01.002spa
dc.relation.referencesCasellas, J. M. (2011). Resistencia a los antibacterianos en América Latina: Consecuencias para la infectología. 16spa
dc.relation.referencesCenters for Disease Control and Prevention (U.S.). (2019). Antibiotic resistance threats in the United States, 2019. Centers for Disease Control and Prevention (U.S.). https://doi.org/10.15620/cdc:82532spa
dc.relation.referencesCerezales, M., Xanthopoulou, K., Wille, J., Bustamante, Z., Seifert, H., Gallego, L., & Higgins, P. G. (2019). Acinetobacter baumannii analysis by core genome multilocus sequence typing in two hospitals in Bolivia: Endemicity of international clone 7 isolates (CC25). International Journal of Antimicrobial Agents, 53(6), 844-849. https://doi.org/10.1016/j.ijantimicag.2019.03.019spa
dc.relation.referencesChakravarty, B. (2020). Genetic mechanisms of antibiotic resistance and virulence in Acinetobacter baumannii: Background, challenges and future prospects. Molecular Biology Reports, 47(5), 4037-4046. https://doi.org/10.1007/s11033-020-05389-4spa
dc.relation.referencesChen, C., Clark, C. G., Langner, S., Boyd, D. A., Bharat, A., McCorrister, S. J., McArthur, A. G., Graham, M. R., Westmacott, G. R., & Van Domselaar, G. (2019). Detection of Antimicrobial Resistance Using Proteomics and the Comprehensive Antibiotic Resistance Database: A Case Study. PROTEOMICS – Clinical Applications, 1800182. https://doi.org/10.1002/prca.201800182spa
dc.relation.referencesChen, M. L., Doddi, A., Royer, J., Freschi, L., Schito, M., Ezewudo, M., Kohane, I. S., Beam, A., & Farhat, M. (2019). Beyond multidrug resistance: Leveraging rare variants with machine and statistical learning models in Mycobacterium tuberculosis resistance prediction. EBioMedicine, 43, 356-369. https://doi.org/10.1016/j.ebiom.2019.04.016spa
dc.relation.referencesChen, X., & Ishwaran, H. (2012). Random forests for genomic data analysis. Genomics, 99(6), 323-329. https://doi.org/10.1016/j.ygeno.2012.04.003 Clinical and Laboratory Standards Institute, & Weinstein, M. P. (2018). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically.spa
dc.relation.referencesCorrea, A., del Campo, R., Escandón-Vargas, K., Perenguez, M., Rodríguez-Baños, M., Hernández-Gómez, C., Pallares, C., Perez, F., Arias, C. A., Cantón, R., & Villegas, M. V. (2017). Distinct Genetic Diversity of Carbapenem-Resistant Acinetobacter baumannii from Colombian Hospitals. Microbial Drug Resistance, 24(1), 48-54. https://doi.org/10.1089/mdr.2016.0190spa
dc.relation.referencesCorredor, S. M., Leal, A. L., Castillo, J. S., Gutierrez, G. B., Andrade, L. C., & Rodriguez, D. (2018). PROGRAMA DE PREVENCIÓN, VIGILANCIA Y CONTROL DE INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUD-IAAS Y LA RESISTENCIA ANTIMICROBIANA. 64.spa
dc.relation.referencesCui, Z.-H., Ni, W.-N., Tang, T., He, B., Zhong, Z.-X., Fang, L.-X., Chen, L., Chen, C., Cui, C.-Y., Liu, Y.-H., Liao, X.-P., & Sun, J. (2020). Rapid detection of plasmid-mediated high-level tigecycline resistance in Escherichia coli and Acinetobacter spp. Journal of Antimicrobial Chemotherapy, 75(6), 1479-1483. https://doi.org/10.1093/jac/dkaa029spa
dc.relation.referencesDavis, J. J., Boisvert, S., Brettin, T., Kenyon, R. W., Mao, C., Olson, R., Overbeek, R., Santerre, J., Shukla, M., Wattam, A. R., Will, R., Xia, F., & Stevens, R. (2016). Antimicrobial Resistance Prediction in PATRIC and RAST. Scientific Reports, 6, 27930. https://doi.org/10.1038/srep27930spa
dc.relation.referencesDe Bruyne, S., Speeckaert, M. M., Van Biesen, W., & Delanghe, J. R. (2020). Recent evolutions of machine learning applications in clinical laboratory medicine. Critical Reviews in Clinical Laboratory Sciences, 1-22. https://doi.org/10.1080/10408363.2020.1828811spa
dc.relation.referencesDe’ath, G., & Fabricius, K. E. (2000). Classification and Regression Trees: A Powerful yet Simple Technique for Ecological Data Analysis. Ecology, 81(11), 3178-3192. https://doi.org/10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2spa
dc.relation.referencesDeelder, W., Christakoudi, S., Phelan, J., Benavente, E. D., Campino, S., McNerney, R., Palla, L., & Clark, T. G. (2019). Machine Learning Predicts Accurately Mycobacterium tuberculosis Drug Resistance From Whole Genome Sequencing Data. Frontiers in Genetics, 10. https://doi.org/10.3389/fgene.2019.00922spa
dc.relation.referencesDidelot, X., Bowden, R., Wilson, D. J., Peto, T. E. A., & Crook, D. W. (2012). Transforming clinical microbiology with bacterial genome sequencing. Nature Reviews Genetics, 13(9), 601-612. https://doi.org/10.1038/nrg3226spa
dc.relation.referencesDrouin, A., Giguère, S., Déraspe, M., Marchand, M., Tyers, M., Loo, V. G., Bourgault, A.- M., Laviolette, F., & Corbeil, J. (2016). Predictive computational phenotyping and biomarker discovery using reference-free genome comparisons. BMC Genomics, 17(1), 754. https://doi.org/10.1186/s12864-016-2889-6spa
dc.relation.referencesDrouin, A., Letarte, G., Raymond, F., Marchand, M., Corbeil, J., & Laviolette, F. (2019). Interpretable genotype-to-phenotype classifiers with performance guarantees. Scientific Reports, 9(1), 4071. https://doi.org/10.1038/s41598-019-40561-2spa
dc.relation.referencesEdgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460-2461. https://doi.org/10.1093/bioinformatics/btq461 Eliopoulos, G. M., Maragakis, L. L., & Perl, T. M. (2008). Acinetobacter baumannii: Epidemiology, Antimicrobial Resistance, and Treatment Options. Clinical Infectious Diseases, 46(8), 1254-1263. https://doi.org/10.1086/529198spa
dc.relation.referencesEyre, D. W., De Silva, D., Cole, K., Peters, J., Cole, M. J., Grad, Y. H., Demczuk, W., Martin, I., Mulvey, M. R., Crook, D. W., Walker, A. S., Peto, T. E. A., & Paul, J. (2017). WGS to predict antibiotic MICs for Neisseria gonorrhoeae. Journal of Antimicrobial Chemotherapy, 72(7), 1937-1947. https://doi.org/10.1093/jac/dkx067spa
dc.relation.referencesFàbrega, A., Madurga, S., Giralt, E., & Vila, J. (2009). Mechanism of action of and resistance to quinolones. Microbial Biotechnology, 2(1), 40-61. https://doi.org/10.1111/j.1751-7915.2008.00063.xspa
dc.relation.referencesGao, L., Lyu, Y., & Li, Y. (2017). Trends in Drug Resistance of Acinetobacter baumannii over a 10-year Period: Nationwide Data from the China Surveillance of Antimicrobial Resistance Program. Chinese Medical Journal, 130(6), 659-664. https://doi.org/10.4103/0366-6999.201601spa
dc.relation.referencesGarnacho-Montero, J., & Timsit, J.-F. (2019). Managing Acinetobacter baumannii infections. Current Opinion in Infectious Diseases, 32(1), 69–76. https://doi.org/10.1097/QCO.0000000000000518spa
dc.relation.referencesGeisinger, E., Vargas-Cuebas, G., Mortman, N. J., Syal, S., Dai, Y., Wainwright, E. L., Lazinski, D., Wood, S., Zhu, Z., Anthony, J., Opijnen, T. van, & Isberg, R. R. (2019). The Landscape of Phenotypic and Transcriptional Responses to Ciprofloxacin in Acinetobacter baumannii: Acquired Resistance Alleles Modulate Drug-Induced SOS Response and Prophage Replication. MBio, 10(3). https://doi.org/10.1128/mBio.01127-19spa
dc.relation.referencesGenome - NCBI. (2020). National Center for Biotechnology Information. Retrieved January 06, 2020, from https://www.ncbi.nlm.nih.gov/genomespa
dc.relation.referencesGéron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O’Reilly Media, Inc.spa
dc.relation.referencesGiacobbe, D. R., Mora, S., Giacomini, M., & Bassetti, M. (2020). Machine Learning and Multidrug-Resistant Gram-Negative Bacteria: An Interesting Combination for Current and Future Research. Antibiotics, 9(2), 54. https://doi.org/10.3390/antibiotics9020054spa
dc.relation.referencesGoldstein, E., MacFadden, D. R., & Lipsitch, M. (2018). Antimicrobial resistance and use, and rates of hospitalization associated with bacterial infections, including sepsis. arXiv:1803.07189 [q-bio]. http://arxiv.org/abs/1803.07189spa
dc.relation.referencesGómez, R. F., Castillo, A., Chávez-Vivas, M., Gómez, R. F., Castillo, A., & Chávez-Vivas, M. (2017). Characterization of multidrug-resistant Acinetobacter ssp. Strains isolated from medical intensive care units in Cali—Colombia. Colombia Médica, 48(4), 183-190. https://doi.org/10.25100/cm.v48i4.2858spa
dc.relation.referencesGordon, N. C., Price, J. R., Cole, K., Everitt, R., Morgan, M., Finney, J., Kearns, A. M., Pichon, B., Young, B., Wilson, D. J., Llewelyn, M. J., Paul, J., Peto, T. E. A., Crook, D. W., Walker, A. S., & Golubchik, T. (2014). Prediction of Staphylococcus aureus Antimicrobial Resistance by Whole-Genome Sequencing. Journal of Clinical Microbiology, 52(4), 1182-1191. https://doi.org/10.1128/JCM.03117-13spa
dc.relation.referencesGwinn, M., MacCannell, D., & Armstrong, G. L. (2019). Next-Generation Sequencing of Infectious Pathogens. JAMA, 321(9), 893-894. https://doi.org/10.1001/jama.2018.21669spa
dc.relation.referencesHamidian, M., Ambrose, S. J., & Hall, R. M. (2016). A large conjugative Acinetobacter baumannii plasmid carrying the sul2 sulphonamide and strAB streptomycin resistance genes. Plasmid, 87-88, 43-50. https://doi.org/10.1016/j.plasmid.2016.09.001spa
dc.relation.referencesHamidian, M., & Nigro, S. J. (2019). Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii. Microbial Genomics. https://doi.org/10.1099/mgen.0.000306spa
dc.relation.referencesHasani, A., Sheikhalizadeh, V., Ahangarzadeh Rezaee, M., Rahmati-Yamchi, M., Hasani, A., Ghotaslou, R., & Goli, H. R. (2016). Frequency of Aminoglycoside-Modifying Enzymes and ArmA Among Different Sequence Groups of Acinetobacter baumannii in Iran. Microbial Drug Resistance, 22(5), 347-353. https://doi.org/10.1089/mdr.2015.0254spa
dc.relation.referencesHauskrecht, M., Pelikan, R., Valko, M., & Lyons-Weiler, J. (2011). Feature Selection and Dimensionality Reduction in Genomics and Proteomics. 28.spa
dc.relation.referencesHe, T., Wang, R., Liu, D., Walsh, T. R., Zhang, R., Lv, Y., Ke, Y., Ji, Q., Wei, R., Liu, Z., Shen, Y., Wang, G., Sun, L., Lei, L., Lv, Z., Li, Y., Pang, M., Wang, L., Sun, Q., … Wang, Y. (2019). Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nature Microbiology, 4(9), 1450-1456. https://doi.org/10.1038/s41564-019-0445-2spa
dc.relation.referencesHealth, C. for D. and R. (2020). Antimicrobial Susceptibility Test (AST) Systems—Class II Special Controls Guidance for Industry and FDA. FDA. https://www.fda.gov/medical-devices/guidance-documents-medical-devices-and- radiation-emitting-products/antimicrobial-susceptibility-test-ast-systems-class-iispecial-controls-guidance-industry-and-fdaspa
dc.relation.referencesHer, H.-L., & Wu, Y.-W. (2018). A pan-genome-based machine learning approach for predicting antimicrobial resistance activities of the Escherichia coli strains. Bioinformatics, 34(13), i89-i95. https://doi.org/10.1093/bioinformatics/bty276spa
dc.relation.referencesHicks, A. L., Wheeler, N., Sánchez-Busó, L., Rakeman, J. L., Harris, S. R., & Grad, Y. H. (2019). Evaluation of parameters affecting performance and reliability of machine learning-based antibiotic susceptibility testing from whole genome sequencing data. bioRxiv, 607127. https://doi.org/10.1101/607127spa
dc.relation.referencesHombach, M., Böttger, E. C., & Roos, M. (2013). The critical influence of the intermediate category on interpretation errors in revised EUCAST and CLSI antimicrobial susceptibility testing guidelines. Clinical Microbiology and Infection, 19(2), E59-E71. https://doi.org/10.1111/1469-0691.12090spa
dc.relation.referencesHonarmand Jahromy, S., Ranjbar, S., & Pishkar, L. (2020). Phenotypic Activity of Efflux Pumps by Carbonyl Cyanide M-Chlorophenyl Hydrazone (CCCP) and Mutations in GyrA and ParC Genes Among Ciprofloxacin-Resistant Acinetobacter baumannii Isolates. Jundishapur Journal of Microbiology, 13(4). https://doi.org/10.5812/jjm.99435spa
dc.relation.referencesHyun, J. C., Kavvas, E. S., Monk, J. M., & Palsson, B. O. (2020). Machine learning with random subspace ensembles identifies antimicrobial resistance determinants from pan-genomes of three pathogens. PLOS Computational Biology, 16(3), e1007608. https://doi.org/10.1371/journal.pcbi.1007608spa
dc.relation.referencesInstituto Nacional de Salud. (2019). Fichas y Protocolos. https://www.ins.gov.co/buscadoreventos/Paginas/Fichas-y-Protocolos.aspxspa
dc.relation.referencesIsler, B., Doi, Y., Bonomo, R. A., & Paterson, D. L. (2019). New Treatment Options against Carbapenem-Resistant Acinetobacter baumannii Infections. Antimicrobial Agents and Chemotherapy, 63(1). https://doi.org/10.1128/AAC.01110-18spa
dc.relation.referencesJahan, M. I., Rahaman, M. M., Hossain, M. A., & Sultana, M. (2019). Occurrence of intI1- associated VIM-5 carbapenemase and co-existence of all four classes of βlactamase in carbapenem-resistant clinical Pseudomonas aeruginosa DMC-27b. Journal of Antimicrobial Chemotherapy, dkz426. https://doi.org/10.1093/jac/dkz426spa
dc.relation.referencesJenuth, J. P. (1999). The NCBI. En S. Misener & S. A. Krawetz (Eds.), Bioinformatics Methods and Protocols (pp. 301-312). Humana Press. https://doi.org/10.1385/1- 59259-192-2:301spa
dc.relation.referencesJeukens, J., Freschi, L., Kukavica-Ibrulj, I., Emond-Rheault, J.-G., Tucker, N. P., & Levesque, R. C. (2019). Genomics of antibiotic-resistance prediction in Pseudomonas aeruginosa: Predicting antibiotic resistance in Pseudomonas. Annals of the New York Academy of Sciences, 1435(1), 5-17. https://doi.org/10.1111/nyas.13358spa
dc.relation.referencesJia, B., Raphenya, A. R., Alcock, B., Waglechner, N., Guo, P., Tsang, K. K., Lago, B. A., Dave, B. M., Pereira, S., Sharma, A. N., Doshi, S., Courtot, M., Lo, R., Williams, L. E., Frye, J. G., Elsayegh, T., Sardar, D., Westman, E. L., Pawlowski, A. C., … McArthur, A. G. (2017). CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Research, 45(D1), D566-D573. https://doi.org/10.1093/nar/gkw1004spa
dc.relation.referencesJiménez Pearson, M. A., Galas, M., Corso, A., Hormazábal, J. C., Duarte Valderrama, C., Salgado Marcano, N., Ramón-Pardo, P., & Melano, R. G. (2019). Consenso latinoamericano para definir, categorizar y notificar patógenos multirresistentes, con resistencia extendida o panresistentes. Revista Panamericana de Salud Pública, 43. https://doi.org/10.26633/RPSP.2019.65spa
dc.relation.referencesKankainen, M., Ojala, T., & Holm, L. (2012). BLANNOTATOR: Enhanced homology-based function prediction of bacterial proteins. BMC Bioinformatics, 13(1), 33. https://doi.org/10.1186/1471-2105-13-33spa
dc.relation.referencesKester, J. C., & Fortune, S. M. (2014). Persisters and beyond: Mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Critical Reviews in Biochemistry and Molecular Biology, 49(2), 91-101. https://doi.org/10.3109/10409238.2013.869543spa
dc.relation.referencesKhaledi, A., Weimann, A., Schniederjans, M., Asgari, E., Kuo, T.-H., Oliver, A., Cabot, G., Kola, A., Gastmeier, P., Hogardt, M., Jonas, D., Mofrad, M. R. K., Bremges, A., McHardy, A. C., & Häussler, S. (2019). Fighting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics. BioRxiv, 643676. https://doi.org/10.1101/643676spa
dc.relation.referencesKhurshid, M., Rasool, M. H., Siddique, M. H., Azeem, F., Naeem, M., Sohail, M., Sarfraz, M., Saqalein, M., Taj, Z., Nisar, M. A., Qamar, M. U., & Shahzad, A. (2019). Molecular mechanisms of antibiotic co-resistance among carbapenem resistant Acinetobacter baumannii. The Journal of Infection in Developing Countries, 13(10), 899-905. https://doi.org/10.3855/jidc.11410spa
dc.relation.referencesKim, J., Greenberg, D. E., Pifer, R., Jiang, S., Xiao, G., Shelburne, S. A., Koh, A., Xie, Y., & Zhan, X. (2020). VAMPr: VAriant Mapping and Prediction of antibiotic resistance via explainable features and machine learning. PLOS Computational Biology, 16(1), e1007511. https://doi.org/10.1371/journal.pcbi.1007511spa
dc.relation.referencesKöser, C. U., Ellington, M. J., Cartwright, E. J. P., Gillespie, S. H., Brown, N. M., Farrington, M., Holden, M. T. G., Dougan, G., Bentley, S. D., Parkhill, J., & Peacock, S. J. (2012). Routine Use of Microbial Whole Genome Sequencing in Diagnostic and Public Health Microbiology. PLOS Pathogens, 8(8), e1002824. https://doi.org/10.1371/journal.ppat.1002824spa
dc.relation.referencesLabreche, M. J., Graber, C. J., & Nguyen, H. M. (2015). Recent Updates on the Role of Pharmacokinetics-pharmacodynamics in Antimicrobial Susceptibility Testing as Applied to Clinical Practice. Clinical Infectious Diseases, 61(9), 1446-1452. https://doi.org/10.1093/cid/civ498spa
dc.relation.referencesLadner, J. T. (2019). Precision epidemiology for infectious disease control. Nature Medicine, 25, 6.spa
dc.relation.referencesLee, C.-R., Lee, J. H., Park, M., Park, K. S., Bae, I. K., Kim, Y. B., Cha, C.-J., Jeong, B. C., & Lee, S. H. (2017). Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Frontiers in Cellular and Infection Microbiology, 7. https://doi.org/10.3389/fcimb.2017.00055spa
dc.relation.referencesLi, B., & Webster, T. J. (2018). Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. Journal of Orthopaedic Research, 36(1), 22-32. https://doi.org/10.1002/jor.23656spa
dc.relation.referencesLi, Y., Metcalf, B. J., Chochua, S., Li, Z., Gertz, R. E., Walker, H., Hawkins, P. A., Tran, T., McGee, L., Beall, B. W., & on behalf of the Active Bacterial Core surveillance team. (2017). Validation of β-lactam minimum inhibitory concentration predictions for pneumococcal isolates with newly encountered penicillin binding protein (PBP) sequences. BMC Genomics, 18(1), 621. https://doi.org/10.1186/s12864-017-4017- 7spa
dc.relation.referencesLin, M.-F., Lin, Y.-Y., Tu, C.-C., & Lan, C.-Y. (2017). Distribution of different efflux pump genes in clinical isolates of multidrug-resistant Acinetobacter baumannii and their correlation with antimicrobial resistance. Journal of Microbiology, Immunology and Infection, 50(2), 224-231. https://doi.org/10.1016/j.jmii.2015.04.004spa
dc.relation.referencesLopez, P. (2019, noviembre 7). Problema grave, la resistencia bacteriana a los antibióticos. Gaceta UNAM. https://www.gaceta.unam.mx/problema-grave-la-resistenciabacteriana-a-los-antibioticos/spa
dc.relation.referencesMaasdorp, S., Potgieter, S., Glover, E., & Joubert, G. (2021). Treatment outcomes of Acinetobacter baumannii-associated pneumonia and/or bacteraemia at the intensive care unit of Universitas Academic Hospital, Bloemfontein, South Africa. African Journal of Thoracic and Critical Care Medicine, 27(1), 14. https://doi.org/10.7196/AJTCCM.2021.v27i1.122spa
dc.relation.referencesMacesic, N., Polubriaginof, F., & Tatonetti, N. P. (2017b). Machine learning: Novel bioinformatics approaches for combating antimicrobial resistance. Current Opinion in Infectious Diseases, 30(6), 511. https://doi.org/10.1097/QCO.0000000000000406spa
dc.relation.referencesMacesic, N., Walk, O. J. B. D., Pe’er, I., Tatonetti, N. P., Peleg, A. Y., & Uhlemann, A.-C. (2020). Predicting Phenotypic Polymyxin Resistance in Klebsiella pneumoniae through Machine Learning Analysis of Genomic Data. MSystems, 5(3). https://doi.org/10.1128/mSystems.00656-19spa
dc.relation.referencesMaglogiannis, I. G. (Ed.). (2007). Emerging artificial intelligence applications in computer engineering: Real word AI systems with applications in eHealth, HCI, information retrieval and pervasive technologies. IOS Press.spa
dc.relation.referencesMaguire, F., Rehman, M. A., Carrillo, C., Diarra, M. S., & Beiko, R. G. (2019). Identification of Primary Antimicrobial Resistance Drivers in Agricultural Nontyphoidal Salmonella enterica Serovars by Using Machine Learning. MSystems, 4(4). https://doi.org/10.1128/mSystems.00211-19spa
dc.relation.referencesMailman, M. D., Feolo, M., Jin, Y., Kimura, M., Tryka, K., Bagoutdinov, R., Hao, L., Kiang, A., Paschall, J., Phan, L., Popova, N., Pretel, S., Ziyabari, L., Shao, Y., Wang, Z. Y., Sirotkin, K., Ward, M., Kholodov, M., Zbicz, K., … Sherry, S. T. (2007). The NCBI dbGaP database of genotypes and phenotypes. Nature genetics, 39(10), 1181- 1186. https://doi.org/10.1038/ng1007-1181spa
dc.relation.referencesMarchand, M., Shawe-Taylor, J., Brodley, C. E., & Danyluk, A. (2003). The Set Covering Machine. Journal of Machine Learning Research, 3(4/5), 723-746. http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct =true&db=a9h&AN=12320303&lang=es&site=eds-livespa
dc.relation.referencesMartínez-Agüero, S., Mora-Jiménez, I., Lérida-García, J., Álvarez-Rodríguez, J., & Soguero-Ruiz, C. (2019). Machine Learning Techniques to Identify Antimicrobial Resistance in the Intensive Care Unit. Entropy, 21(6), 603. https://doi.org/10.3390/e21060603spa
dc.relation.referencesMentasti, M., Prime, K., Sands, K., Khan, S., & Wootton, M. (2020). Rapid detection of OXA-23-like, OXA-24-like and OXA-58-like carbapenemases from Acinetobacter species by real-time PCR. Journal of Hospital Infection. https://doi.org/10.1016/j.jhin.2020.06.015spa
dc.relation.referencesMobasseri, P., Azimi, L., Salehi, M., Hosseini, F., & Fallah, F. (2018). Multi-drug Resistance Profiles and Expression of AdeIJK and AbeM in Acinetobacter baumannii Collected from Humans by Real-time PCR. Journal of Medical Bacteriology, 7(1-2), 50-56. http://jmb.tums.ac.ir/index.php/jmb/article/view/383spa
dc.relation.referencesMoniri, R., Farahani, R. K., Shajari, G., Shirazi, MH. N., & Ghasemi, A. (2010). Molecular Epidemiology of Aminoglycosides Resistance in Acinetobacter Spp. With Emergence of Multidrug-Resistant Strains. Iranian Journal of Public Health, 39(2), 63-68. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3481761/spa
dc.relation.referencesMoradigaravand, D., Palm, M., Farewell, A., Mustonen, V., Warringer, J., & Parts, L. (2018). Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data. PLOS Computational Biology, 14(12), e1006258. https://doi.org/10.1371/journal.pcbi.1006258spa
dc.relation.referencesMorens, D. M., Folkers, G. K., & Fauci, A. S. (2004). The challenge of emerging and reemerging infectious diseases. Nature, 430(6996), 242-249. https://doi.org/10.1038/nature02759spa
dc.relation.referencesMunck, C., Gumpert, H. K., Wallin, A. I. N., Wang, H. H., & Sommer, M. O. A. (2014). Prediction of resistance development against drug combinations by collateral responses to component drugs. Science Translational Medicine, 6(262), 262ra156- 262ra156. https://doi.org/10.1126/scitranslmed.3009940spa
dc.relation.referencesMúnera, J. M. V., Villamil, G. A. R., & Quiceno, J. N. J. (2014). Acinetobacter baumannii: Importancia clínica, mecanismos de resistencia y diagnóstico. CES Medicina, 28(2), 233-246. http://revistas.ces.edu.co/index.php/medicina/article/view/2857spa
dc.relation.referencesNgiam, K. Y., & Khor, I. W. (2019). Big data and machine learning algorithms for healthcare delivery. The Lancet Oncology, 20(5), e262-e273. https://doi.org/10.1016/S1470-2045(19)30149-4spa
dc.relation.referencesNguyen, M., Brettin, T., Long, S. W., Musser, J. M., Olsen, R. J., Olson, R., Shukla, M., Stevens, R. L., Xia, F., Yoo, H., & Davis, J. J. (2018). Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae. Scientific Reports, 8(1), 1-11. https://doi.org/10.1038/s41598-017-18972-wspa
dc.relation.referencesNguyen, M., Long, S. W., McDermott, P. F., Olsen, R. J., Olson, R., Stevens, R. L., Tyson, G. H., Zhao, S., & Davis, J. J. (2018). Using Machine Learning To Predict Antimicrobial MICs and Associated Genomic Features for Nontyphoidal Salmonella. Journal of Clinical Microbiology, 57(2), e01260-18, /jcm/57/2/JCM.01260-18.atom. https://doi.org/10.1128/JCM.01260-18spa
dc.relation.referencesNigro, S. J., & Hall, R. M. (2018). Does the intrinsic oxaAb (blaOXA-51-like) gene of Acinetobacter baumannii confer resistance to carbapenems when activated by ISAba1? Journal of Antimicrobial Chemotherapy. https://doi.org/10.1093/jac/dky334spa
dc.relation.referencesNowak, P., Paluchowska, P., & Budak, A. (2014). Co-occurrence of carbapenem and aminoglycoside resistance genes among multidrug-resistant clinical isolates of Acinetobacter baumannii from Cracow, Poland. Medical Science Monitor Basic Research, 20, 9-14. https://doi.org/10.12659/MSMBR.889811spa
dc.relation.referencesObermeyer, Z., & Emanuel, E. J. (2016). Predicting the Future—Big Data, Machine Learning, and Clinical Medicine. New England Journal of Medicine, 375(13), 1216- 1219. https://doi.org/10.1056/NEJMp1606181spa
dc.relation.referencesOkser, S., Pahikkala, T., Airola, A., Salakoski, T., Ripatti, S., & Aittokallio, T. (2014). Regularized Machine Learning in the Genetic Prediction of Complex Traits. PLoS Genetics, 10(11), e1004754. https://doi.org/10.1371/journal.pgen.1004754spa
dc.relation.referencesOpazo, A., Sonnevend, A., Lopes, B., Hamouda, A., Ghazawi, A., Pal, T., & Amyes, S. G. B. (2012). Plasmid-encoded PER-7 -lactamase responsible for ceftazidime resistance in Acinetobacter baumannii isolated in the United Arab Emirates. Journal of Antimicrobial Chemotherapy, 67(7), 1619-1622. https://doi.org/10.1093/jac/dks087spa
dc.relation.referencesOpazo, Andrés, Domínguez, M., Bello, H., Amyes, S. G. B., & González-Rocha, G. (2012). OXA-type carbapenemases in Acinetobacter baumannii in South America. The Journal of Infection in Developing Countries, 6(04), 311-316. https://doi.org/10.3855/jidc.2310spa
dc.relation.referencesOrganización Mundial de la Salud. (2011). Mejorar la prevención y el control de infecciones. https://www.who.int/world-health-day/2011/whd2011-fs5-prevcontr-es.pdf?ua=1spa
dc.relation.referencesOrganización Mundial de la Salud. (2016, septiembre 21). Los líderes mundiales se comprometen en la ONU a abordar la resistencia a los antimicrobianos. https://www.who.int/es/news-room/detail/21-09-2016-at-un-global-leaders-committo-act-on-antimicrobial-resistancespa
dc.relation.referencesOrganización Mundial de la Salud. (2018a). Global Priority List of Antibiotic-resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. http://apps.who.int/medicinedocs/en/m/abstract/Js23171en/spa
dc.relation.referencesOrganización Mundial de la Salud. (2018b, enero 29). OMS | Datos recientes revelan los altos niveles de resistencia a los antibióticos en todo el mundo. WHO. http://www.who.int/mediacentre/news/releases/2018/antibiotic-resistancefound/es/spa
dc.relation.referencesOrganización Mundial de la Salud. (2018c, febrero 5). Resistencia a los antibióticos. https://www.who.int/es/news-room/fact-sheets/detail/resistencia-a-los-antibióticosspa
dc.relation.referencesOrganización Mundial de la Salud. (2018d, febrero 15). Resistencia a los antimicrobianos. https://www.who.int/es/news-room/fact-sheets/detail/resistencia-a-losantimicrobianosspa
dc.relation.referencesPark, S., Lee, K. M., Yoo, Y. S., Yoo, J. S., Yoo, J. I., Kim, H. S., Lee, Y. S., & Chung, G. T. (2011). Alterations of gyrA, gyrB, and parC and Activity of Efflux Pump in Fluoroquinolone-resistant Acinetobacter baumannii. Osong Public Health and Research Perspectives, 2(3), 164-170. https://doi.org/10.1016/j.phrp.2011.11.040spa
dc.relation.referencesParquet, M. del C., Savage, K. A., Allan, D. S., Ang, M. T. C., Chen, W., Logan, S. M., & Holbein, B. E. (2019). Antibiotic-Resistant Acinetobacter baumannii Is Susceptible to the Novel Iron-Sequestering Anti-infective DIBI In Vitro and in Experimental Pneumonia in Mice. Antimicrobial Agents and Chemotherapy, 63(9), e00855-19. https://doi.org/10.1128/AAC.00855-19spa
dc.relation.referencesPataki, B. Á., Matamoros, S., van der Putten, B. C. L., Remondini, D., Giampieri, E., AytanAktug, D., Hendriksen, R. S., Lund, O., Csabai, I., & Schultsz, C. (2019). Understanding and predicting ciprofloxacin minimum inhibitory concentration in Escherichia coli with machine learning [Preprint]. Microbiology. https://doi.org/10.1101/806760spa
dc.relation.referencesPedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825-2830. http://jmlr.org/papers/v12/pedregosa11a.htmlspa
dc.relation.referencesPesesky, M. W., Hussain, T., Wallace, M., Patel, S., Andleeb, S., Burnham, C.-A. D., & Dantas, G. (2016). Evaluation of Machine Learning and Rules-Based Approaches for Predicting Antimicrobial Resistance Profiles in Gram-negative Bacilli from Whole Genome Sequence Data. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01887spa
dc.relation.referencesPotron, A., Poirel, L., & Nordmann, P. (2015). Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. International Journal of Antimicrobial Agents, 45(6), 568-585. https://doi.org/10.1016/j.ijantimicag.2015.03.001spa
dc.relation.referencesPrada Cardozo, D. A. (2018). Evaluación de los perfiles genómicos de resistencia a antibióticos de aislamientos colombianos de Acinetobacter baumannii mediante secuenciación del genoma completo [Masters, Universidad Nacional de Colombia - Sede Bogotá]. http://www.bdigital.unal.edu.co/64552/spa
dc.relation.referencesPython Software Foundation. (2021, March 1). Welcome to. Python.Org. Retrieved July 6, 2020, from https://www.python.org/spa
dc.relation.referencesQu, K., Guo, F., Liu, X., Lin, Y., & Zou, Q. (2019). Application of Machine Learning in Microbiology. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.00827spa
dc.relation.referencesRanjbar, R., & Farahani, A. (2019). Study of genetic diversity, biofilm formation, and detection of Carbapenemase, MBL, ESBL, and tetracycline resistance genes in multidrug-resistant Acinetobacter baumannii isolated from burn wound infections in Iran. Antimicrobial Resistance & Infection Control, 8(1), 172. https://doi.org/10.1186/s13756-019-0612-5spa
dc.relation.referencesRaschka, S. (2015). Python Machine Learning (Vol. 1). Packt Publishing Ltd. Ríos, R., Mattar, S., & González, M. (2011). Bibliometric analysis of publications on infectious diseases in Colombia, 2000-2009. Revista de Salud Pública, 13(2), 298- 307. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0124- 00642011000200011&lng=en&nrm=iso&tlng=ptspa
dc.relation.referencesRolain, J.-M., Loucif, L., Al-Maslamani, M., Elmagboul, E., Al-Ansari, N., Taj-Aldeen, S., Shaukat, A., Ahmedullah, H., & Hamed, M. (2016). Emergence of multidrugresistant Acinetobacter baumannii producing OXA-23 Carbapenemase in Qatar. New Microbes and New Infections, 11, 47-51. https://doi.org/10.1016/j.nmni.2016.02.006spa
dc.relation.referencesRost, B. (1999). Twilight zone of protein sequence alignments. Protein Engineering, Design and Selection, 12(2), 85-94. https://doi.org/10.1093/protein/12.2.85spa
dc.relation.referencesSader, H. S., Jones, R. N., Gales, A. C., Winokur, P., Kugler, K. C., Pfaller, M. A., & Doern, G. V. (1998). Antimicrobial susceptibility patterns for pathogens isolated from patients in Latin American medical centers with a diagnosis of pneumonia: Analysis of results from the SENTRY Antimicrobial Surveillance Program (1997). Diagnostic Microbiology and Infectious Disease, 32(4), 289-301. https://doi.org/10.1016/S0732-8893(98)00124-2spa
dc.relation.referencesSalih, T. S., & Shafeek, R. R. (2019). In silico Detection of Acquired Antimicrobial Resistance Genes in 110 Complete Genome Sequences of Acinetobacter baumannii. 12(5), 6.spa
dc.relation.referencesSamuel, S. O., Kayode, O. O., Musa, O. I., Nwigwe, G. C., Aboderin, A. O., Salami, T. a. T., & Taiwo, S. S. (2010). Nosocomial infections and the challenges of control in developing countries. African Journal of Clinical and Experimental Microbiology, 11(2). https://doi.org/10.4314/ajcem.v11i2.53916spa
dc.relation.referencesSanchez, Cynthia: front-end and UI. Marjanovic, Zvezdana: graphic design. (2021). The makers’ choice for sysadmins, developers and desktop users. OpenSUSE. Retrieved October 15, 2020, from https://www.opensuse.org/spa
dc.relation.referencesSchrider, D. R., & Kern, A. D. (2018). Supervised Machine Learning for Population Genetics: A New Paradigm. Trends in Genetics, 34(4), 301-312. https://doi.org/10.1016/j.tig.2017.12.005spa
dc.relation.referencesSheikhalizadeh, V., Hasani, A., Ahangarzadeh Rezaee, M., Rahmati-yamchi, M., Hasani, A., Ghotaslou, R., & Goli, H. R. (2017). Comprehensive study to investigate the role of various aminoglycoside resistance mechanisms in clinical isolates of Acinetobacter baumannii. Journal of Infection and Chemotherapy, 23(2), 74-79. https://doi.org/10.1016/j.jiac.2016.09.012spa
dc.relation.referencesSid Ahmed, M. A., Khan, F. A., Sultan, A. A., Söderquist, B., Ibrahim, E. B., Jass, J., & Omrani, A. S. (2020). β-lactamase-mediated resistance in MDR-Pseudomonas aeruginosa from Qatar. Antimicrobial Resistance & Infection Control, 9(1), 170. https://doi.org/10.1186/s13756-020-00838-yspa
dc.relation.referencesSu, M., Satola, S. W., & Read, T. D. (2019). Genome-Based Prediction of Bacterial Antibiotic Resistance. Journal of Clinical Microbiology, 57(3). https://doi.org/10.1128/JCM.01405-18spa
dc.relation.referencesSultan, I., Rahman, S., Jan, A. T., Siddiqui, M. T., Mondal, A. H., & Haq, Q. M. R. (2018). Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02066spa
dc.relation.referencesTacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, N., … Zorzet, A. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 18(3), 318-327. https://doi.org/10.1016/S1473- 3099(17)30753-3spa
dc.relation.referencesThe Comprehensive Antibiotic Resistance Database. (2020). Resistance Gene Identifier. Retrieved October 15, 2019, from https://card.mcmaster.ca/analyze/rgispa
dc.relation.referencesTroyano-Hernáez, P., Gutiérrez-Arroyo, A., Gómez-Gil, R., Mingorance, J., & LázaroPerona, F. (2018). Emergence of Klebsiella pneumoniae Harboring the aac(6ʹ)-Ian Amikacin Resistance Gene. Antimicrobial Agents and Chemotherapy, 62(12), e01952-18, /aac/62/12/e01952-18.atom. https://doi.org/10.1128/AAC.01952-18spa
dc.relation.referencesVan Camp, P.-J., Haslam, D. B., & Porollo, A. (2020). Prediction of Antimicrobial Resistance in Gram-Negative Bacteria From Whole-Genome Sequencing Data. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01013spa
dc.relation.referencesWarner, W. A., Kuang, S. N., Hernandez, R., Chong, M. C., Ewing, P. J., Fleischer, J., Meng, J., Chu, S., Terashita, D., English, L., Chen, W., & Xu, H. H. (2016). Molecular characterization and antimicrobial susceptibility of Acinetobacter baumannii isolates obtained from two hospital outbreaks in Los Angeles County, California, USA. BMC Infectious Diseases, 16(1), 194. https://doi.org/10.1186/s12879-016-1526-yspa
dc.relation.referencesWeinstein, M. P., & Clinical and Laboratory Standards Institute. (2019). Performance standards for antimicrobial susceptibility testing.spa
dc.relation.referencesWiegand, I., Hilpert, K., & Hancock, R. E. W. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163-175. https://doi.org/10.1038/nprot.2007.521spa
dc.relation.referencesWilson, D. N., Hauryliuk, V., Atkinson, G. C., & O’Neill, A. J. (2020). Target protection as a key antibiotic resistance mechanism. Nature Reviews Microbiology, 18(11), 637- 648. https://doi.org/10.1038/s41579-020-0386-zspa
dc.relation.referencesXu, C., & Jackson, S. A. (2019). Machine learning and complex biological data. Genome Biology, 20(1), 76, s13059-019-1689-0. https://doi.org/10.1186/s13059-019-1689-0 Yakkala, H., Samantarrai, D., Gribskov, M., & Siddavattam, D. (2019). Comparative genome analysis reveals niche-specific genome expansion in Acinetobacter baumannii strains. PLOS ONE, 14(6), e0218204. https://doi.org/10.1371/journal.pone.0218204spa
dc.relation.referencesYamamoto, N., Hamaguchi, S., Akeda, Y., Santanirand, P., Kerdsin, A., Seki, M., Ishii, Y., Paveenkittiporn, W., Bonomo, R. A., Oishi, K., Malathum, K., & Tomono, K. (2015). Clinical Specimen-Direct LAMP: A Useful Tool for the Surveillance of blaOXA-23- Positive Carbapenem-Resistant Acinetobacter baumannii. PLOS ONE, 10(7), e0133204. https://doi.org/10.1371/journal.pone.0133204spa
dc.relation.referencesZankari, E., Hasman, H., Kaas, R. S., Seyfarth, A. M., Agersø, Y., Lund, O., Larsen, M. V., & Aarestrup, F. M. (2013). Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. Journal of Antimicrobial Chemotherapy, 68(4), 771-777. https://doi.org/10.1093/jac/dks496spa
dc.relation.referencesZhang, C., Ju, Y., Tang, N., Li, Y., Zhang, G., Song, Y., Fang, H., Yang, L., & Feng, J. (2019). Systematic analysis of supervised machine learning as an effective approach to predicate β-lactam resistance phenotype in Streptococcus pneumoniae. Briefings in Bioinformatics. https://doi.org/10.1093/bib/bbz056spa
dc.relation.referencesZhang, Yanpeng, Li, Z., He, X., Ding, F., Wu, W., Luo, Y., Fan, B., & Cao, H. (2018). Overproduction of efflux pumps caused reduced susceptibility to carbapenem under consecutive imipenem-selected stress in Acinetobacter baumannii. Infection and Drug Resistance, 11, 457-467. https://doi.org/10.2147/IDR.S151423spa
dc.relation.referencesZheng, W., Sun, W., & Simeonov, A. (2019). Drug repurposing screens and synergistic drug-combinations for infectious diseases. British Journal of Pharmacology, 181- 191. https://doi.org/10.1111/bph.13895@10.1111/(ISSN)1476-5381.BJP-BJCPOpen-Access-Collectionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.decsAcinetobacter baumannii
dc.subject.decsBacteriasspa
dc.subject.decsBacteriaeng
dc.subject.decsFarmacorresistencia Microbianaspa
dc.subject.decsDrug Resistance, Microbialeng
dc.subject.lembArtificial intelligenceeng
dc.subject.lembInteligencia artificialspa
dc.subject.proposalAcinetobacter baumanniiother
dc.subject.proposalAprendizaje de máquinaspa
dc.subject.proposalPredicción fenotípica de resistenciaspa
dc.subject.proposalConcentración mínima inhibitoriaspa
dc.subject.proposalRegresión lassospa
dc.subject.proposalRandom foresteng
dc.subject.proposalGradient boostingeng
dc.titlePredicción del perfil de resistencia a partir de las secuencias del genoma de aislamientos colombianos de Acinetobacter baumanniispa
dc.title.translatedPrediction of the resistance profile from the genome sequences of colombian isolates of Acinetobacter baumanniieng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
105363113.2021.pdf
Tamaño:
3.61 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: