El huevo como alimento funcional: nuevas estrategias de enriquecimiento con ácidos grasos omega-3 y con las xantofilas luteína y zeaxantina

dc.contributor.advisorDiaz Gonzalez, Gonzalo Jairspa
dc.contributor.authorAguillón Páez, Yandy Johannaspa
dc.contributor.cvlacYandy Aguillón [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000049634]spa
dc.contributor.googlescholarYandy Aguillon [https://scholar.google.com/citations?user=Lxwu3B4AAAAJ&hl=es]spa
dc.contributor.orcidYandy Aguillón [0000-0001-5559-4510]spa
dc.contributor.researchgroupGrupo de Investigación en Toxicología y Nutrición Aviarspa
dc.contributor.scopusYandy Aguillón [https://www.scopus.com/authid/detail.uri?authorId=57216732836]spa
dc.date.accessioned2024-07-02T23:05:48Z
dc.date.available2024-07-02T23:05:48Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, mapasspa
dc.description.abstractEl objetivo del presente trabajo fue investigar formas novedosas de enriquecimiento del huevo de gallina con ácidos grasos omega-3 y con las xantofilas luteína y zeaxantina, utilizando 21 plantas nativas y/o naturalizadas de un bosque muy húmedo premontano. Todas las plantas mostraron niveles detectables de luteína, con algunas diferencias entre especies vegetales. La zeaxantina solo se encontró en algunas plantas y a niveles más bajos que los encontrados para luteína. El contenido de luteína y zeaxantina en maíces cultivados en Colombia e importados (USA, Argentina y Brasil) presentó amplias variaciones en el contenido de xantofilas. El perfil de ácidos grasos de las 21 especies de plantas evaluadas presentó diferencias importantes entre especies, pero en todos los casos el cociente ω-6/ω-3 fue inferior a 1,1. En los ensayos biológicos, se encontró que la cinética de deposición en yema de luteína y de zeaxantina no difirió en las 4 estirpes comerciales de gallinas de postura evaluadas. Por otra parte, se encontró que con la suplementación de apenas 15 g de follaje sobre dietas elaboradas con maíz blanco se lograron obtener huevos con un aporte de luteína y zeaxantina 40% superior a lo encontrado en un huevo comercial (200 µg/huevo). Sin embargo, el cociente ω-6/ω-3 no se logró disminuir a valores < 5, lo cual demuestra que con el suministro de una sola especie o de la cantidad suplementada no es posible lograr un cociente menor. Adicionalmente, se encontró que el parámetro de estimación de estrés oxidativo de la yema (TBARS) mostró valores ligeramente menores con el suministro de las plantas. Los estudios realizados demuestran la viabilidad del uso de plantas para mejorar la calidad nutricional del huevo y sugieren la necesidad de evaluar otros compuestos que se puedan depositar y presenten beneficios para los humanos. (Texto tomado de la fuente).spa
dc.description.abstractThe aim of these series of studies was to investigate novel ways of enriching chicken eggs with omega-3 fatty acids and with the xanthophylls lutein and zeaxanthin through the use of 21 native and/or naturalized plants from a very humid premontane forest in Colombia. All plants showed detectable levels of lutein, with some differences between plant species. Zeaxanthin was only found in some plants and at lower levels than those found for lutein. The lutein and zeaxanthin content in corn grown in Colombia and in imported corn (USA, Argentina, and Brazil) showed wide variations in the xanthophyll content. The fatty acid profile of the 21 plant species evaluated showed important differences between species, but in all cases the ω-6/ω-3 ratio was lower than 1.1. In the biological assays, it was found that the kinetics of lutein and zeaxanthin yolk deposition did not differ in the 4 commercial strains of laying hens evaluated. On the other hand, it was found that with the supplementation of just 15 g of foliage on diets made with white corn, it was possible to obtain eggs with a contribution of lutein and zeaxanthin 40% higher than that found in a commercial egg (200 µg/egg). However, the ω-6/ω-3 ratio never reached values < 5, which demonstrates that with the supplementation with a single plant species or with the supplemented amount it is not possible to achieve a lower ratio. Additionally, it was found that the oxidative stress estimation parameter (TBARS) showed slightly lower values with the plant supplementation. The studies carried out demonstrate the viability of using plants to improve the nutritional quality of the egg and suggest the need to evaluate other compounds that can reach the egg and that have nutritional benefits for humans.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Salud Animal o Doctor en Ciencias - Producción Animalspa
dc.description.researchareaToxicologíaspa
dc.format.extentxviii, 224 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86361
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicina Veterinaria y de Zootecniaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina Veterinaria y de Zootecnia - Doctorado en Ciencias - Salud Animal o Producción Animalspa
dc.relation.referencesAbdollahi, M. R., Ravindran, V., & Svihus, B. (2013). Pelleting of broiler diets: An overview with emphasis on pellet quality and nutritional value. Animal feed science and technology, 179(1-4), 1-23.spa
dc.relation.referencesAgostoni, C., & Bruzzese, M. G. (1992). Fatty acids: their biochemical and functional classification. La Pediatría Medica e Cirugía: medical and surgical pediatrics, 14(5), 473-479.spa
dc.relation.referencesAgrosavia-Alimentro. Axonopus scoparius. Acceso: 15-julio-2023. En línea: https://alimentro.agrosavia.co/Home/Index?ReturnUrl=%2fspa
dc.relation.referencesAguillón Páez, Y. J. (2020). Determinación de parámetros de calidad en maíces nacionales e importados y evaluación en raciones balanceadas para pollos de engorde y gallinas de postura. Tesis de maestría. Universidad Nacional de Colombia, Bogotá.spa
dc.relation.referencesAlig, B. N., Malheiros, R. D., & Anderson, K. E. (2023). Evaluation of Physical Egg Quality Parameters of Commercial Brown Laying Hens Housed in Five Production Systems. Animals, 13(4), 716.spa
dc.relation.referencesAlikwe, P. C. N., Ohimain, E. I., & Omotosho, S. M. (2014). Evaluation of the proximate, mineral, phytochemical and amino acid composition of Bidens pilosa as potential feed/feed additive for non-ruminant livestock. Animal and Veterinary Sciences, 2(2), 18-21.spa
dc.relation.referencesAriza Cortés, W., Toro Murillo, J. L., & Lores Medina, A. (2009). Análisis florístico y estructural de los bosques premontanos en el municipio de Amalfi (Antioquia, Colombia). Colombia forestal, 12(1), 81-102.spa
dc.relation.referencesAsprilla-Perea, J., Díaz-Puente, J. M., & Martín-Fernández, S. (2021). Estimating the potential of wild foods for nutrition and food security planning in tropical areas: Experimentation with a method in Northwestern Colombia. Ambio, 1-17.spa
dc.relation.referencesAvila, F, V.A. Funk, M. Diazgranados, S. Díaz-Piedrahíta & O. Vargas 2023-6-16. Melanthera nivea (L.) Small En Bernal, R., S.R. Gradstein & M. Celis (eds.). 2015. Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. http://catalogoplantasdecolombia.unal.edu.cospa
dc.relation.referencesAza, J. (2018). El amargo negocio del azúcar. La república. Recuperado de https://www.larepublica.co/analisis/alfonso-aza-jacome-2763812/el-amargo-negocio-del-azucar-2806906spa
dc.relation.referencesBaker, H. G. (1965). Characteristics and modes of origin of weeds. Characteristics and modes of origin of weeds., 147-172spa
dc.relation.referencesBalnave, D. (1970). Essential fatty acids in poultry nutrition. World's poultry science journal, 26(1), 442-460.spa
dc.relation.referencesBarrero Barrero, D, Camelo Salamanca, D, Ovalle Escobar, A, Rozo Fernández, A y Mahecha Vega, G. (2012.). Vegetación del territorio CAR: 450 especies de sus llanuras y montañas. 958-8188-06-7spa
dc.relation.referencesBrazionis, L., Rowley, K., Itsiopoulos, C., & O'Dea, K. (2008). Plasma carotenoids and diabetic retinopathy. British Journal of Nutrition, 101(2), 270-277.spa
dc.relation.referencesBendich, A., & Olson, J. A. (1989). Biological actions of carotenoids 1. The FASEB journal, 3(8), 1927-1932.spa
dc.relation.referencesBermudez, L. (2002). Leguminosas espontáneas de posible valor forrajero en Colombia. Produmedios.spa
dc.relation.referencesBhat, R. S., Alsuhaibani, A. S., Albugami, F. S., & Aldawsari, F. S. (2024). Omega 3 Fatty Acid as a Health Supplement: An Overview of its Manufacture and Regulatory Aspects. Current Research in Nutrition and Food Science Journal, 12(1).spa
dc.relation.referencesBöhm, V., Lietz, G., Olmedilla-Alonso, B., Phelan, D., Reboul, E., Bánati, D., ... & Bohn, T. (2021). From carotenoid intake to carotenoid blood and tissue concentrations–implications for dietary intake recommendations. Nutrition Reviews, 79(5), 544-573.spa
dc.relation.referencesBone, R. A., Landrum, J. T., Friedes, L. M., Gomez, C. M., Kilburn, M. D., Menendez, E., Vidal, I., & Wang, W. (1997). Distribution of lutein and zeaxanthin stereoisomers in the human retina. Experimental eye research, 64(2), 211-218.spa
dc.relation.referencesBonet, M. L., Canas, J. A., Ribot, J., & Palou, A. (2015). Carotenoids and their conversion products in the control of adipocyte function, adiposity and obesity. Archives of biochemistry and biophysics, 572, 112-125.spa
dc.relation.referencesBourgeron, P. 1983. Spatial Ed). Tropical aspects of vegetation. In: Golly. F. B. (Rain Forest Ecosystem, Structure and function. Elsevier, Amsterdam.spa
dc.relation.referencesCabrera, R. (2005). Las plantas y sus usos en las islas de Providencia y Santa Catalina. Programa Editorial UNIVALLE. Pág.17.spa
dc.relation.referencesCasagrande, M., Alletto, L., Naudin, C., Lenoir, A., Siah, A., & Celette, F. (2017). Enhancing planned and associated biodiversity in French farming systems. Agronomy for sustainable development, 37, 1-16.spa
dc.relation.referencesCastellanos, L., & Rodriguez, M. (2015). El efecto de omega 3 en la salud humana y consideraciones en la ingesta. Revista chilena de nutrición, 42(1), 90-95.spa
dc.relation.referencesCervantes-Ceballos, L., Sánchez-Hoyos, J., Sanchez-Hoyos, F., Torres-Niño, E., Mercado-Camargo, J., Echeverry-Gómez, A., ... & Gómez-Estrada, H. (2022). An Overview of Genus Malachra L.—Ethnobotany, Phytochemistry, and Pharmacological Activity. Plants, 11(21), 2808.spa
dc.relation.referencesCheeke, P. R., & Dierenfeld, E. S. (2010). Comparative animal nutrition and metabolism. CABI.spa
dc.relation.referencesChung, H. Y., Rasmussen, H. M., & Johnson, E. J. (2004). Lutein bioavailability is higher from lutein-enriched eggs than from supplements and spinach in men. The Journal of nutrition, 134(8), 1887-1893.spa
dc.relation.referencesCrowe, K. M., & Francis, C. (2013). Position of the academy of nutrition and dietetics: functional foods. Journal of the Academy of Nutrition and Dietetics, 113(8), 1096-1103.spa
dc.relation.referencesDe Almeida Jackix, E., Monteiro, E. B., Raposo, H. F., Vanzela, E. C., & Amaya‐Farfán, J. (2013). Taioba (Xanthosoma sagittifolium) leaves: nutrient composition and physiological effects on healthy rats. Journal of food science, 78(12), H1929-H1934.spa
dc.relation.referencesDe las Comunidades Europeas, D. O. (1999). Directiva 1999/74/CE del Consejo de 14 de abril de 2003, 806 por la que se establecen las normas mínimas de protección de las gallinas ponedoras.spa
dc.relation.referencesDe Pee, S., & West, C. E. (1996). Dietary carotenoids and their role in combating vitamin A deficiency: a review of the literature. European journal of clinical nutrition, 50, S38-53.spa
dc.relation.referencesDesmodium cajanifolium DC., Flora de Nicaragua, Trópicos.org, 2009 Consultada el 16 de julio de 2023.spa
dc.relation.referencesDhellot, J. R., Matouba, E., Maloumbi, M. G., Nzikou, J. M., Dzondo, M. G., Linder, M., ... & Desobry, S. (2006). Extraction and nutritional properties of Solanum nigrum L seed oil. African Journal of Biotechnology, 5(10).spa
dc.relation.referencesDiaz, G. (2010). Plantas tóxicas de importancia en salud y producción animal en Colombia. Universidad Nacional de Colombia. Bogotá.spa
dc.relation.referencesDiaz, G. J. (2015). Toxicosis by plant alkaloids in humans and animals in Colombia. Toxins, 7(12), 5408-5416.spa
dc.relation.referencesDikmen, B. Y., Ipek, A., Şahan, Ü., Sözcü, A., & BAYCAN, S. C. (2017). Impact of different housing systems and age of layers on egg quality characteristics. Turkish Journal of Veterinary & Animal Sciences, 41(1), 77-84.spa
dc.relation.referencesEmanuelli, T., Augusti, P. R., & Roehrs, M. (2017). Protective effects of carotenoids in cardiovascular disease and diabetes. Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 347-382.spa
dc.relation.referencesEnglmaierová, M., Tůmová, E., Charvátová, V., & Skřivan, M. (2014). Effects of laying hens housing system on laying performance, egg quality characteristics, and egg microbial contamination Original Paper. Czech Journal of Animal Science, 59(8).spa
dc.relation.referencesEspinosa, F & Sarukhán, J. (1997). Manual de Malezas del Valle de México. Claves, descripciones e ilustraciones. Universidad Nacional Autónoma de México. Fondo de Cultura Económica. México, D. F.spa
dc.relation.referencesFENALCE. Federación Nacional de Cultivadores de Cereales y Leguminosas. (2023). Estadísticas. Recuperado de https://fenalce.co/estadisticas/ \spa
dc.relation.referencesFlorula digital. Estación Biológica La Selva. Páginas de Especies: Acalypha diversifolia. https://sura.ots.ac.cr/local/florula4/find_sp4.php?key_species_code=LS00.... Consultada el 15 de julio de 2023.spa
dc.relation.referencesFlorula digital. Estación Biológica La Selva. Páginas de Especies: Acalypha macrostachya. Consultada el 15 de julio de 2023. En línea: https://sura.ots.ac.cr/local/florula4/find_sp4.php?key_species_code=LS00....spa
dc.relation.referencesFranchini, A., Sirri, F., Tallarico, N., Minelli, G., Iaffaldano, N., & Meluzzi, A. (2002). Oxidative stability and sensory and functional properties of eggs from laying hens fed supranutritional doses of vitamins E and C. Poultry Science, 81(11), 1744-1750.spa
dc.relation.referencesFuhrman, B., Elis, A., & Aviram, M. (1997). Hypocholesterolemic effect of lycopene and β-carotene is related to suppression of cholesterol synthesis and augmentation of LDL receptor activity in macrophages. Biochemical and biophysical research communications, 233(3), 658-662.spa
dc.relation.referencesGalani, V. (2019). Musa paradisiaca Linn. -A Comprehensive Review. Scholars International Journal of Traditional and Complementary Medicine, 45-56.spa
dc.relation.referencesGonzalez, K. (3 de enero 2020). Ficha Técnica de la Caña Forrajera (Saccharum officinarum).Info pastos y forrajes.com. https://infopastosyforrajes.com/pasto-de-corte/cana-forrajera/#Origen_y_descripcion_de_la_Cana_Forrajeraspa
dc.relation.referencesGorusupudi, A., Nelson, K., & Bernstein, P. S. (2017). The age-related eye disease 2 study: micronutrients in the treatment of macular degeneration. Advances in Nutrition, 8(1), 40-53.spa
dc.relation.referencesGoto, T., Takahashi, N., Kato, S., Kim, Y. I., Kusudo, T., Taimatsu, A., ... & Uemura, T. (2012). Bixin activates PPARα and improves obesity-induced abnormalities of carbohydrate and lipid metabolism in mice. Journal of agricultural and food chemistry, 60(48), 11952-11958.spa
dc.relation.referencesGuerra, C. Jesica., (2019). Catalogo de plantas utilizadas en agricultura urbana en la ciudad de Bogotá, Jardín botánico de Bogotá José Celestino Mutis. Recuperado de: https://www.jbb.gov.co/documentos/tecnica/2019/catalog-plantas-usadas-agricultura-urb.pdfspa
dc.relation.referencesHandelman, G. J., Nightingale, Z. D., Lichtenstein, A. H., Schaefer, E. J., & Blumberg, J. B. (1999). Lutein and zeaxanthin concentrations in plasma after dietary supplementation with egg yolk. The American journal of clinical nutrition, 70(2), 247-251.spa
dc.relation.referencesHarper, J.L. (ed.) (1960) The Biology of Weeds. Blackwell Scientific, Oxford.spa
dc.relation.referencesHerbario JBB en línea - Jardín Botánico José Celestino Mutis. Acceso:19-sep-2023. En línea: https://herbario.jbb.gov.co/especimen/37369spa
dc.relation.referencesHodson de Jaramillo, E., Castaño, J., Poveda, G., Roldán, G., & Chavarriaga Aguirre, P. (2017). Seguridad alimentaria y nutricional en Colombia.spa
dc.relation.referencesHoldridge, L. R., & Grenke, W. C. (1971). Forest environments in tropical life zones: a pilot study. Forest environments in tropical life zones: a pilot study.spa
dc.relation.referencesJabran, K., Mahajan, G., Sardana, V., & Chauhan, B. S. (2015). Allelopathy for weed control in agricultural systems. Crop protection, 72, 57-65.spa
dc.relation.referencesJaramillo, Á. H., Mojica, J., Caro, É. A., & Sosa, J. (2018). Evaluación de la calidad del huevo de gallina en dos sistemas de alojamiento–piso convencional con suplementación de sauco (Sambucus nigra) y pastoreo con kikuyo (Pennisetum clandestinum)–en la Sabana de Bogotá. Revista Siembra CBA, (1), 59-77.spa
dc.relation.referencesKhachik, F., Beecher, G. R., Goli, M. B., & Lusby, W. R. (1991). Separation, identification, and quantification of carotenoids in fruits, vegetables and human plasma by high performance liquid chromatography. Pure and Applied Chemistry, 63(1), 71-80.spa
dc.relation.referencesKrawczyk, J., & Gornowicz, E. (2010). Quality of eggs from hens kept in two different free-range systems in comparison with a barn system. Archiv für Geflügelkunde, 74(3), 151-157.spa
dc.relation.referencesKress, J. (1990). The diversity and distribution of Heliconia (Heliconiaceae) in Brazil. Acta Botanica Brasilica, 4, 159-167spa
dc.relation.referencesKulinka, M., Marquez, P., Porcel, N., & Rodriguez Lombroni, R. (2017). Capacidad antioxidante y contenido de carotenoides y tocoferoles totales en huevos de campo e industriales. Tesis pregrado. Universidad Nacional de Córdoba.spa
dc.relation.referencesKumar, P., Banik, S. P., Ohia, S. E., Moriyama, H., Chakraborty, S., Wang, C. K., ... & Bagchi, D. (2024). Current Insights on the Photoprotective Mechanism of the Macular Carotenoids, Lutein and Zeaxanthin: Safety, Efficacy and Bio-Delivery. Journal of the American Nutrition Association, 1-14.spa
dc.relation.referencesKumar, C. G., Sripada, S., & Poornachandra, Y. (2018). Status and future prospects of fructooligosaccharides as nutraceuticals. In Role of materials science in food bioengineering (pp. 451-503). Academic Press.spa
dc.relation.referencesLandrum, J., Bone, R. A., Joa, H., D Kilburn, M., Moore, L. L., & Sprague, K. E. (1997). A one-year study of the macular pigment: the effect of 140 days of a lutein supplement. Experimental eye research, 65(1), 57-62.spa
dc.relation.referencesLeeson, S., & Summers, J. (2001). Scott’s. Nutrition of the chicken. 4rd edition. University Books, Guelph, Ontario, Canada.spa
dc.relation.referencesLeeson, S., & Summers, J. D. (2005). Commercial poultry nutrition. Nottingham University Press.spa
dc.relation.referencesLedvinka, Z., Zita, L., & Klesalová, L. (2012). Egg quality and some factors influencing it: a review. Scientia agriculturae bohemica, 43(1), 46-52.spa
dc.relation.referencesLewko, L., & Gornowicz, E. (2011). Effect of housing system on egg quality in laying hens. Annals of Animal Science, 11(4), 607spa
dc.relation.referencesLondoño Londoño, J. (2012). Antioxidantes: importancia biológica y métodos para medir su actividad. In Desarrollo y transversalidad serie Lasallista Investigación y Ciencia. Corporación Universitaria Lasallista.spa
dc.relation.referencesMachlin, L. J., & Gordon, R. S. (1960, January). The requirement of the chicken for certain unsaturated fatty acids. In Poultry Science (Vol. 39, No. 5, pp. 1271-1271).spa
dc.relation.referencesMahecha, G., Ovalle, A., Camelo, D., Rozo, A., & Barrero, D. (2004). Vegetación del territorio CAR. Corporación Autónona Regional de Cundinamarca _ CAR. Primera Edición. Bogotá.spa
dc.relation.referencesMárquez, G. (2003). Ecosistemas Estratégicos de Colombia. Universidad Nacional de Colombia. Pág. 65.spa
dc.relation.referencesMartinez, M., Anibal. (2012). Hierba mora, chipilín, jícama y bledo Para alimentarse con calidad y economía. Universidad de San Carlos de Guatemala. Recuperado de: https://hica.csuca.org/docscsuca/libros/HierbaMoraChipilinJicamayBledoFinal-email.pdfspa
dc.relation.referencesMartorell, M. (2013). Acción de alimentos funcionales ricos en ácidos grasos esenciales sobre el estrés oxidativo. Tesis Doctoral. Universitat de les Illes Balears. Palma de Mallocar.spa
dc.relation.referencesMataix, J., & Gil, A. (2004). Libro blanco de los omega-3. Instituto omega-3. Granada, España: Ed. Puleva Food.spa
dc.relation.referencesMeydani, S. N. (1996). Effect of (n-3) polyunsaturated fatty acidson cytokine production and their biologic function. Nutrition, 12(1), S8-S14.spa
dc.relation.referencesMorales, E. (1994). Ácidos grasos poliinsaturados de cadena larga en la nutrición del lactante. Revista del Hospital Materno Infantil Ramón Sardá, 13, 73-75.spa
dc.relation.referencesNaranjo, J. F., & Cuartas, C. A. (2011). Caracterización nutricional y de la cinética de degradación ruminal de algunos de los recursos forrajeros con potencial para la suplementación de rumiantes en el trópico alto de Colombia. Revista CES medicina veterinaria y zootecnia, 6(1), 9-19.spa
dc.relation.referencesNys, Y., & Guyot, N. (2011). Egg formation and chemistry. In Improving the safety and quality of eggs and egg products (pp. 83-132). Woodhead publishingspa
dc.relation.referencesOjeda, A., Obispo, N., Canelones, C.E., & Muñoz, D. (2012). Selección de especies leñosas por vacunos en silvopastoreo de un bosque semicaducifolio en Venezuela. Archivos de Zootecnia, 61(235), 355-365spa
dc.relation.referencesOlmedilla, B., Granado, F., & Blanco, I. (2001). Carotenoides y salud humana. Serie informes. Fundación Española de la Nutrición (FEN). Madrid.spa
dc.relation.referencesParker, R. S. (1996). Absorption, metabolism, and transport of carotenoids. The FASEB Journal, 10(5), 542-551.spa
dc.relation.referencesParks, J. C., (1993). Melanthera. En: Barkworth, M. E., K. M. Capels, S. Long & M. B. Piep (eds.). Flora of North America. Vol. 21. New York, NY.spa
dc.relation.referencesPhilippe, F. X., Mahmoudi, Y., Cinq-Mars, D., Lefrançois, M., Moula, N., Palacios, J., ... & Godbout, S. (2020). Comparison of egg production, quality and composition in three production systems for laying hens. Livestock Science, 232, 103917 Pohl, R. W. & G. Davidse, 1994. Oplismenus. En: Davidse, G., M. Sousa & A. O. Chater (eds. grales). Flora Mesoamericana. Vol. 6: Alismataceae a Cyperaceae. Universidad Nacional Autónoma de México, México, D.F.spa
dc.relation.referencesPopova, T., Petkov, E., Ayasan, T., & Ignatova, M. (2020). Quality of eggs from layers reared under alternative and conventional system. Brazilian Journal of Poultry Science, 22.spa
dc.relation.referencesProducers, U. E. (2017). Animal Husbandry Guidelines-for US Egg Laying Flocks. Recuperado 20 septiembre 2020. En línea: https://uepcertified.com/uep-certified-resources/spa
dc.relation.referencesRamírez, Ramírez, E. J. y Urroz, Alvarez, L. T. (2006). Composición e Identificación de Especies forrajeras y no Forrajeras en las Fincas Santa Rosa y Las Mercedes de la Universidad Nacional Agraria. Managua, Tesis Ingeniero en Zootecnia, Managua. 92 pág.spa
dc.relation.referencesReal Academia Española. (2023). Funcionalización. En Diccionario de la lengua española. Edición tricentenario.spa
dc.relation.referencesReiser, R. (1950). The essential role of fatty acids in rations for growing chicks. Journal of Nutrition, 42, 319-323.spa
dc.relation.referencesReyes, C., Doll, J., & Cárdenas, J. (1972). Malezas tropicales. Instituto Colombiano Agropecuario. En línea: https://repository.agrosavia.co/handle/20.500.12324/13876spa
dc.relation.referencesRojas-Sandoval J, 2018. Sechium edule (chayote). Invasive Species Compendium. Wallingford, UK: CABI. DOI:10.1079/ISC.49493.20203482792spa
dc.relation.referencesSalisbury, E. J. (1961). Weeds and aliens. Weeds and aliens. Pág. 354spa
dc.relation.referencesSamiullah, S., Omar, A. S., Roberts, J., & Chousalkar, K. (2017). Effect of production system and flock age on eggshell and egg internal quality measurements. Poultry Science, 96(1), 246-258.spa
dc.relation.referencesSantana, S. (2008). El huevo como aliado de la nutricion y la salud. Revista Cubana de Alimentación y Nutrición (mayo), 5-6spa
dc.relation.referencesSilva, L. M., & Alquini, Y. (2003). Anatomia comparativa de folhas e caules de Axonopus scoparius (Flügge) Kuhlm. e Axonopus fissifolius (Raddi) Kuhlm.(Poaceae). Brazilian Journal of Botany, 26, 185-192.spa
dc.relation.referencesSimopoulos, A. P (2009). Omega-6/omega-3 essential fatty acids: biological effects. World Review of Nutrition and Dietetics, 99(1), 1-16.spa
dc.relation.referencesSimopoulos, A. P. (2002). Omega‐3 fatty acids in wild plants, nuts and seeds. Asia Pacific Journal of Clinical Nutrition, 11, S163-S173.spa
dc.relation.referencesSimopoulos, A. P., Norman, H. A., Gillaspy, J. E., & Duke, J. A. (1992). Common purslane: a source of omega-3 fatty acids and antioxidants. Journal of the American College of Nutrition, 11(4), 374-382spa
dc.relation.referencesSimopoulos, A. P., & Salem, J. N. (1989). n-3 fatty acids in eggs from range-fed Greek chickens. The new England journal of medicine, 321(20), 1412-1412.spa
dc.relation.referencesSingh, R., Cheng, K. M., & Silversides, F. G. (2009). Production performance and egg quality of four strains of laying hens kept in conventional cages and floor pens. Poultry science, 88(2), 256-264.spa
dc.relation.referencesSiro, I., Kápolna, E., Kápolna, B., & Lugasi, A. (2008). Functional food. Product development, marketing and consumer acceptance—A review. Appetite, 51(3), 456-467.spa
dc.relation.referencesSolís, O., Carlos. (2014). Experiencias en la producción comercial de hierba mora (Solanum americanum Mill, Solanaceae); Tactic, Alta Verapaz.. Universidad Rafael Landivar. Recuperado de: http://recursosbiblio.url.edu.gt/tesisjcem/2014/06/09/Solis-Carlos.pdfspa
dc.relation.referencesStahl, W. (2005). Macular carotenoids: lutein and zeaxanthin. In Nutrition and the Eye (Vol. 38, pp. 70-88). Karger Publishersspa
dc.relation.referencesSommerburg, O., Keunen, J. E., Bird, A. C., & Van Kuijk, F. J. (1998). Fruits and vegetables that are sources for lutein and zeaxanthin: the macular pigment in human eyes. British Journal of Ophthalmology, 82(8), 907-910.spa
dc.relation.referencesSurai, P. F., & Sparks, N. H. C. (2001). Designer eggs: from improvement of egg composition to functional food. Trends in food science & Technology, 12(1), 7-16.spa
dc.relation.referencesTrevisan, M., Browne, R., Ram, M., Muti, P., Freudenheim, J., Carosella, A. M., & Armstrong, D. (2001). Correlates of markers of oxidative status in the general population. American journal of epidemiology, 154(4), 348-356.spa
dc.relation.referencesTropicos.org. Missouri Botanical Garden. Acceso:15 Sep 2023 en línea; http://legacy.tropicos.org/NamePage.aspx?nameId=42000363&projectId=7spa
dc.relation.referencesUntea, A. E., Varzaru, I., Panaite, T. D., Gavris, T., Lupu, A., & Ropota, M. (2020). The effects of dietary inclusion of bilberry and walnut leaves in laying hens’ diets on the antioxidant properties of eggs. Animals, 10(2), 191.spa
dc.relation.referencesVargas, L. A. (2014, January). El maíz, viajero sin equipaje. In Anales de antropología (Vol. 48, No. 1, pp. 123-137). No longer published by Elsevier.spa
dc.relation.referencesVelázquez-Martínez, M., Ortiz, S. L., Mendo, O. H., & Sánchez, J. G. (2011). Caracterización químico-nutricional de diferentes especies nativas de un sitio pastoreado por terneras en el norte de Veracruz. Abanico veterinario, 1(1), 24-29.spa
dc.relation.referencesVieira, E. F., Pinho, O., Ferreira, I. M., & Delerue-Matos, C. (2019). Chayote (Sechium edule): A review of nutritional composition, bioactivities and potential applications. Food chemistry, 275, 557-568.spa
dc.relation.referencesWatkins, B. A. (1991). Importance of essential fatty acids and their derivatives in poultry. The Journal of nutrition, 121(9), 1475-1485.spa
dc.relation.referencesWest, C. E., & Castenmiller, J. J. (1998). Quantification of the" SLAMENGHI" factors for carotenoid bioavailability and bioconversion. International Journal for Vitamin and Nutrition research. Internationale Zeitschrift fur Vitamin-und Ernahrungsforschung. Journal International de Vitaminologie et de Nutrition, 68(6), 371-377.spa
dc.relation.referencesWFO (2023): Myriocarpa stipitata Benth. Accessed on: 14 Sep 2023. Published on the Internet;http://www.worldfloraonline.org/taxon/wfo-0000451878.spa
dc.relation.referencesWilliams, I. O., Onyenweaku, E. O., & Atangwho, I. J. (2016). Nutritional and antimicrobial evaluation of Saccharum officinarum consumed in Calabar, Nigeria. African Journal of Biotechnology, 15(33), 1789-1795.spa
dc.relation.referencesYahia, E. M., de Jesús Ornelas-Paz, J., Emanuelli, T., Jacob-Lopes, E., Zepka, L. Q., & Cervantes-Paz, B. (2017). Chemistry, stability, and biological actions of carotenoids. Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2(285), 285-346.spa
dc.relation.referencesZhang, L. X., Cooney, R. V., & Bertram, J. S. (1991). Carotenoids enhance gap junctional communication and inhibit lipid peroxidation in C3H/10T1/2 cells: relationship to their cancer chemopreventive action. Carcinogenesis, 12(11), 2109-2114.spa
dc.relation.referencesCapítulo 2spa
dc.relation.referencesAlam, A. U., Couch, J. R., & Creger, C. R. (1968). The carotenoids of the marigold, Tagetes erecta. Canadian Journal of Botany, 46(12), 1539-1541.spa
dc.relation.referencesAge-Related Eye Disease Study Research Group, SanGiovanni JP, Chew EY, Clemons TE, Ferris FL 3rd, Gensler G, Lindblad AS, Milton RC, Seddon JM, Sperduto RD. The relationship of dietary carotenoid and vitamin A, E, and C intake with age-related macular degeneration in a case-control study: AREDS Report No. 22. Arch Ophthalmol. 2007 Sep;125(9):1225-32. doi: 10.1001/archopht.125.9.1225. PMID: 17846363.spa
dc.relation.referencesBjörkman, O. (1981). Responses to different quantum flux densities. Physiological plant ecology I: Responses to the physical environment, 57-107.spa
dc.relation.referencesBrugnoli, E., & Björkman, O. (1992). Chloroplast movements in leaves: influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation. Photosynthesis Research, 32, 23-35.spa
dc.relation.referencesCohu, C. M., Lombardi, E., Adams III, W. W., & Demmig-Adams, B. (2014). Increased nutritional quality of plants for long-duration spaceflight missions through choice of plant variety and manipulation of growth conditions. Acta Astronautica, 94(2), 799-806.spa
dc.relation.referencesde Azevedo-Meleiro, C. H., & Rodriguez-Amaya, D. B. (2005). Carotenoids of endive and New Zealand spinach as affected by maturity, season and minimal processing. Journal of Food Composition and Analysis, 18(8), 845-855.spa
dc.relation.referencesDemmig-Adams, B., López-Pozo, M., Stewart, J. J., & Adams III, W. W. (2020). Zeaxanthin and lutein: Photoprotectors, anti-inflammatories, and brain food. Molecules, 25(16), 3607.spa
dc.relation.referencesde Souza, A. S. N., de Oliveira Schmidt, H., Pagno, C., Rodrigues, E., da Silva, M. A. S., Flôres, S. H., & de Oliveira Rios, A. (2022). Influence of cultivar and season on carotenoids and phenolic compounds from red lettuce influence of cultivar and season on lettuce. Food Research International, 155, 111110.spa
dc.relation.referencesFalster, D. S., & Westoby, M. (2003). Leaf size and angle vary widely across species: what consequences for light interception? New phytologist, 158(3), 509-525.spa
dc.relation.referencesGarcía-Plazaola, J. I., Matsubara, S., & Osmond, C. B. (2007). The lutein epoxide cycle in higher plants: its relationships to other xanthophyll cycles and possible functions. Functional Plant Biology, 34(9), 759-773.spa
dc.relation.referencesGrace, S. C., & Logan, B. A. (1996). Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. Plant physiology, 112(4), 1631-1640.spa
dc.relation.referencesJahns, P., & Holzwarth, A. R. (2012). The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1817(1), 182-193.spa
dc.relation.referencesLogan, B. A., Grace, S. C., Adams III, W. W., & Demmig-Adams, B. (1998). Seasonal differences in xanthophyll cycle characteristics and antioxidants in Mahonia repens growing in different light environments. Oecologia, 116, 9-17.spa
dc.relation.referencesNiinemets, Ü., Bilger, W., Kull, O., & Tenhunen, J. D. (1998). Acclimation to high irradiance in temperate deciduous trees in the field: changes in xanthophyll cycle pool size and in photosynthetic capacity along a canopy light gradient. Plant, Cell & Environment, 21(12), 1205-1218.spa
dc.relation.referencesNisar, N., Li, L., Lu, S., Khin, N. C., & Pogson, B. J. (2015). Carotenoid metabolism in plants. Molecular plant, 8(1), 68-82.spa
dc.relation.referencesPerry, A., Rasmussen, H., & Johnson, E. (2009). Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. Journal of food Composition and Analysis, 22(1), 9-15.spa
dc.relation.referencesQuackenbush, F. W., & Miller, S. L. (1972). Composition and analysis of the carotenoids in marigold petals. Journal of the Association of Official Analytical Chemists, 55(3), 617-621.spa
dc.relation.referencesSandmann, G. (2015). Carotenoids of biotechnological importance. Biotechnology of isoprenoids, 449-467.spa
dc.relation.referencesShrivastava, A., & Gupta, V. B. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists, 2, 21-25spa
dc.relation.referencesYeum, K. J., Booth, S. L., Sadowski, J. A., Liu, C., Tang, G., Krinsky, N. I., & Russell, R. M. (1996). Human plasma carotenoid response to the ingestion of controlled diets high in fruits and vegetables. The American journal of clinical nutrition, 64(4), 594-602.spa
dc.relation.referencesZaheer, K. (2017). Hen egg carotenoids (lutein and zeaxanthin) and nutritional impacts on human health: a review. CYTA-Journal of Food, 15(3), 474-487spa
dc.relation.referencesZhang, J. L., Li, X. G., Xu, X. H., Chen, H. P., Li, Y. L., & Guy, R. D. (2021). Seasonal progression of photoprotection responses in different aged savin juniper plants under shade and sun. Trees, 35(5), 1601-1612spa
dc.relation.referencesCapítulo 3spa
dc.relation.referencesAttia, Z., Pogoda, C. S., Reinert, S., Kane, N. C., & Hulke, B. S. (2021). Breeding for sustainable oilseed crop yield and quality in a changing climate. Theoretical and Applied Genetics, 134(6), 1817-1827.spa
dc.relation.referencesBhandari, S. R., Park, M. Y., Chae, W. B., Kim, D. Y., & Kwak, J. H. (2013). Seasonal variation in fatty acid composition in various parts of broccoli cultivars. Korean Journal of Agricultural Science, 40(4), 289-296.spa
dc.relation.referencesBatsale, M., Bahammou, D., Fouillen, L., Mongrand, S., Joubès, J., & Domergue, F. (2021). Biosynthesis and functions of very-long-chain fatty acids in the responses of plants to abiotic and biotic stresses. Cells, 10(6), 1284.spa
dc.relation.referencesCabiddu, A., Decandia, M., Addis, M., Piredda, G., Pirisi, A., & Molle, G. (2005). Managing Mediterranean pastures in order to enhance the level of beneficial fatty acids in sheep milk. Small Ruminant Research, 59(2-3), 169-180.spa
dc.relation.referencesChen, Y., Cui, Q., Xu, Y., Yang, S., Gao, M., & Wang, Y. (2015). Effects of tung oilseed FAD2 and DGAT2 genes on unsaturated fatty acid accumulation in Rhodotorula glutinis and Arabidopsis thaliana. Molecular Genetics and Genomics, 290, 1605-1613.spa
dc.relation.referencesCahoon, E. B., & Li-Beisson, Y. (2020). Plant unusual fatty acids: learning from the less common. Current opinion in plant biology, 55, 66-73.spa
dc.relation.referencesDewhurst, R. J., Scollan, N. D., Youell, S. J., Tweed, J. K., & Humphreys, M. O. (2001). Influence of species, cutting date and cutting interval on the fatty acid composition of grasses. Grass and forage Science, 56(1), 68-74.spa
dc.relation.referencesGuil, J. L., Torija, M. E., Giménez, J. J., & Rodriguez, I. (1996). Identification of fatty acids in edible wild plants by gas chromatography. Journal of Chromatography A, 719(1), 229-235.spa
dc.relation.referencesHarwood, J. L. (2010). Plant fatty acid synthesis. The AOCS Lipid Library” Electronic resource http://lipidlibrary. aocs. org.spa
dc.relation.referencesIosypenko, O. O., Kyslychenko, V. S., Omelchenko, Z. I., & Burlaka, I. S. (2019). Fatty acid composition of vegetable marrows and zucchini leaves. Pharmacia, 66(4), 201-207.spa
dc.relation.referencesJerónimo, E., Cachucho, L., Soldado, D., Guerreiro, O., Bessa, R. J., & Alves, S. P. (2020). Fatty acid content and composition of the morphological fractions of Cistus Ladanifer L. and its seasonal variation. Molecules, 25(7), 1550.spa
dc.relation.referencesKumar, V. (2023). Chapter-2 Plant Responses to Biotic and Abiotic Stresses. Chief Editor Dr. Walunjkar Babasaheb Changdeo, 29.spa
dc.relation.referencesLiu, L., Howe, P., Zhou, Y. F., Xu, Z. Q., Hocart, C., & Zhang, R. (2000). Fatty acids and β-carotene in Australian purslane (Portulaca oleracea) varieties. Journal of chromatography A, 893(1), 207-213.spa
dc.relation.referencesMojica-Rodríguez, J. E., Castro-Rincón, E., Carulla-Fornaguera, J., & Lascano-Aguilar, C. E. (2017). Efeito da espécie e da idade de rebrotação no perfil de ácidos graxos de leguminosas e arbustivas tropicais. Ciencia y Tecnología Agropecuaria, 18(3), 463-477.spa
dc.relation.referencesMurata, N., Sato, N., Takahashi, N., & Hamazaki, Y. (1982). Compositions and positional distributions of fatty acids in phospholipids from leaves of chilling-sensitive and chilling-resistant plants. Plant and Cell Physiology, 23(6), 1071-1079.spa
dc.relation.referencesNokhsorov, V. V., Dudareva, L. V., Semenova, N. V., & Petrov, K. A. (2023). Study of the Effect of Mowing and Drying on the Lipid Composition of Grass Leaves in Permafrost Ecosystems. Agronomy, 13(9), 2252spa
dc.relation.referencesOhlrogge, J. B., & Jaworski, J. G. (1997). Regulation of fatty acid synthesis. Annual review of plant biology, 48(1), 109-136.spa
dc.relation.referencesOhlrogge, J., Thrower, N., Mhaske, V., Stymne, S., Baxter, M., Yang, W., ... & Matthäus, B. (2018). Plant FA db: a resource for exploring hundreds of plant fatty acid structures synthesized by thousands of plants and their phylogenetic relationships. The Plant Journal, 96(6), 1299-1308.spa
dc.relation.referencesOmara-Alwala, T. R., Mebrahtu, T., Prior, D. E., & Ezekwe, M. O. (1991). Omega-three fatty acids in purslane (Portulaca oleracea) tissues. Journal of the American Oil Chemists’ Society, 68, 198-199.spa
dc.relation.referencesSavych, A., Basaraba, R., Muzyka, N., & Ilashchuk, P. (2021). Analysis of fatty acid composition content in the plant components of antidiabetic herbal mixture by GC-MS. Pharmacia, 68(2), 433-439.spa
dc.relation.referencesSimopoulos, A. P. (2002). Omega‐3 fatty acids in wild plants, nuts and seeds. Asia Pacific Journal of Clinical Nutrition, 11, S163-S173.spa
dc.relation.referencesSukhija, P. S., & Palmquist, D. L. (1988). Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. Journal of agricultural and food chemistry, 36(6), 1202-1206.spa
dc.relation.referencesThelen, J. J., & Ohlrogge, J. B. (2002). Metabolic engineering of fatty acid biosynthesis in plants. Metabolic engineering, 4(1), 12-21.spa
dc.relation.referencesTrépanier, M., Bécard, G., Moutoglis, P., Willemot, C., Gagné, S., Avis, T. J., & Rioux, J. A. (2005). Dependence of arbuscular-mycorrhizal fungi on their plant host for palmitic acid synthesis. Applied and environmental microbiology, 71(9), 5341-5347.spa
dc.relation.referencesWoolhouse, H. W. (1981). Crop physiology in relation to agricultural production: the genetic link (pp. 1-21). London: Butterworths.spa
dc.relation.referencesCapítulo 4spa
dc.relation.referencesBartov, I., & Bornstein, S. (1967). Studies on egg yolk pigmentation: 3. The effect of origin and storage conditions of yellow corn on the utilization of its xanthophyll. Poultry science, 46(4), 796-805.spa
dc.relation.referencesBernstein, P. S., Li, B., Vachali, P. P., Gorusupudi, A., Shyam, R., Henriksen, B. S., & Nolan, J. M. (2016). Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Progress in retinal and eye research, 50, 34-66.spa
dc.relation.referencesCaldwell, C. R., & Britz, S. J. (2006). Effect of supplemental ultraviolet radiation on the carotenoid and chlorophyll composition of green house-grown leaf lettuce (Lactuca sativa L.) cultivars. Journal of Food Composition and Analysis, 19(6-7), 637-644.spa
dc.relation.referencesCastaneda, M. P., Hirschler, E. M., & Sams, A. R. (2005). Skin pigmentation evaluation in broilers fed natural and synthetic pigments. Poultry science, 84(1), 143-147.spa
dc.relation.referencesCazzonelli, C. I., & Pogson, B. J. (2010). Source to sink: regulation of carotenoid biosynthesis in plants. Trends in plant science, 15(5), 266-274.spa
dc.relation.referencesFENALCE. Federación Nacional de Cultivadores de Cereales, Leguminosas y Soya. 2022a. Histórico de área, producción y rendimiento cereales y leguminosas. Available in: https://acortar.link/N3lAsA. Accessed in: 10 Apr. 2022.spa
dc.relation.referencesFENALCE: Federación Nacional de Cultivadores de Cereales, Leguminosas y Soya. 2022b. Importaciones de cereales y leguminosas. Available in: https://acortar.link/CRGFO Accessed in: 10 Apr. 2022.spa
dc.relation.referencesLogan, B. A., Demmig-Adams, B., Adams III, W. W., & Grace, S. C. (1998). Antioxidants and xanthophyll cycle-dependent energy dissipation in Cucurbita pepo L. and Vinca major L. acclimated to four growth PPFDs in the field. Journal of Experimental Botany, 49(328), 1869-1879.spa
dc.relation.referencesMoros, E. E., Darnoko, D., Cheryan, M., Perkins, E. G., & Jerrell, J. (2002). Analysis of xanthophylls in corn by HPLC. Journal of agricultural and food chemistry, 50(21), 5787-5790.spa
dc.relation.referencesOrdóñez, T. C., & Rodríguez, E. (2013). Frutos tropicales como fuente de carotenoides: biosíntesis, composición, biodisponibilidad y efectos del procesamiento. Revista Venezolana de Ciencia y Tecnología de Alimentos, 4(1), 001-023.spa
dc.relation.referencesPaes, M.; Guimarães, P.; Schaffert, R. (2009). Carotenoids of biological importance in Brazilian corn cultivars. Cereal Foods World, v.54, p.A58, (Abstract).spa
dc.relation.referencesPerry, A., Rasmussen, H., & Johnson, E. J. (2009). Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. Journal of food Composition and Analysis, 22(1), 9-15.spa
dc.relation.referencesRanum, P., Peña‐Rosas, J. P., & Garcia‐Casal, M. N. (2014). Global maize production, utilization, and consumption. Annals of the new York academy of sciences, 1312(1), 105-112.spa
dc.relation.referencesSajilata, M. G., Singhal, R. S., & Kamat, M. Y. (2008). The carotenoid pigment zeaxanthin—a review. Comprehensive reviews in food science and food safety, 7(1), 29-49.spa
dc.relation.referencesSerna-Saldivar, S.O. (2018). Corn: chemistry and technology. 3.ed. United Kingdom: Elsevier, 2018. p.289-368.spa
dc.relation.referencesShrivastava, A., & Gupta, V. B. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci, 2(1), 21-25.spa
dc.relation.referencesUpdike, A. A., & Schwartz, S. J. (2003). Thermal processing of vegetables increases cis isomers of lutein and zeaxanthin. Journal of Agricultural and Food Chemistry, 51(21), 6184-6190.spa
dc.relation.referencesWise, R.R.; Hoober, J.K. (Eds.). (2007). The structure and function of plastids. [Heidelberg]: Springer,. v.23, p.325-326.spa
dc.relation.referencesWorld weather. Time and Data, (1995). Available in: https://www.timeanddate.com/. Accessed in: 16 Sep. 2021.spa
dc.relation.referencesWurtzel, E. T. (2004). Chapter five Genomics, genetics, and biochemistry of maize carotenoid biosynthesis. In Recent advances in phytochemistry (Vol. 38, pp. 85-110). Elsevier.spa
dc.relation.referencesYeum, K. J., Booth, S. L., Sadowski, J. A., Liu, C., Tang, G., Krinsky, N. I., & Russell, R. M. (1996). Human plasma carotenoid response to the ingestion of controlled diets high in fruits and vegetables. The American journal of clinical nutrition, 64(4), 594-602.spa
dc.relation.referencesCapítulo 5spa
dc.relation.referencesAguillón-Páez, Y. J., & Díaz, G. J. (2023). Lutein and zeaxanthin content in corn imported from three countries of the American continent and in corn cultivated in Colombian territory. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 75, 500-510.spa
dc.relation.referencesBabcock Brown. Guía del producto. Alojamiento en jaulas. Hendrix Genetics. Netherlands-EU. 1-16. En línea: https://www.babcock-poultry.com/en/product/ 29/07/2023spa
dc.relation.referencesBunea, A., Copaciu, F. M., Paşcalău, S., Dulf, F., Rugină, D., Chira, R., & Pintea, A. (2017). Chromatographic analysis of lypophilic compounds in eggs from organically fed hens. Journal of Applied Poultry Research, 26(4), 498-508.spa
dc.relation.referencesBuxadé, C.C. 2000. La gallina ponedora. 2a Edición. Ediciones Mundi-Prensa. Madrid, España.spa
dc.relation.referencesCougnard-Gregoire, A., Merle, B. M., Aslam, T., Seddon, J. M., Aknin, I., Klaver, C. C., ... & Delcourt, C. (2023). Blue Light Exposure: Ocular Hazards and Prevention—A Narrative Review. Ophthalmology and therapy, 12(2), 755-788.spa
dc.relation.referencesCrupi, P., Faienza, M. F., Naeem, M. Y., Corbo, F., Clodoveo, M. L., & Muraglia, M. (2023). Overview of the Potential Beneficial Effects of Carotenoids on Consumer Health and Well-Being. Antioxidants, 12(5), 1069.spa
dc.relation.referencesDansou, D. M., Zhang, H., Yu, Y., Wang, H., Tang, C., Zhao, Q., ... & Zhang, J. (2023). Carotenoid enrichment in eggs: from biochemistry perspective. Animal Nutrition. 14, 315-333.spa
dc.relation.referencesEnglmaierová, M., Skrivan, M., & Bubancová, I. (2013). A comparison of lutein, spray-dried Chlorella, and synthetic carotenoids effects on yolk colour, oxidative stability, and reproductive performance of laying hens. Czech Journal of Animal Science, 58(9), 412-419.spa
dc.relation.referencesFry, J. L., Moore, J. S., & O’Steen, A. W. (1965). Strain difference and initial quality relationships to rate of interior egg quality decline. Poultry Science, 44(3), 649-652.spa
dc.relation.referencesGe, S., Ferreira Júnior, Á., Zhang, X., & Morgan, P. M. (2021). The Domestic Hen. In IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice (pp. 15-30). Cham: Springer International Publishing.spa
dc.relation.referencesHaugh, R. (1937). The Haugh unit for measuring egg quality. United States egg and poultry magazine, 43, 522-555.spa
dc.relation.referencesHill, A. T., Eissinger, R. C., Hamilton, D. M., & Patko, J. (1980). Sample sizes required for predicting albumen quality in stored eggs from eight commercial stocks. Canadian Journal of Animal Science, 60(4), 979-989.spa
dc.relation.referencesHy-line Brown Internactional. Ponedoras comerciales Hy-line Brown. Guía de manejo. En línea: http://www.hyline.com 29/07/2023spa
dc.relation.referencesIsa Brown. Guía del producto. Alojamiento en jaulas. Hendrix Genetics. Netherlands-EU. 1–16. En línea: https://bit.ly/3MDth0d. 28/07/2023spa
dc.relation.referencesKaradas, F., Grammenidis, E., Surai, P. F., Acamovic, T., & Sparks, N. H. C. (2006). Effects of carotenoids from lucerne, marigold and tomato on egg yolk pigmentation and carotenoid composition. British poultry science, 47(5), 561-566.spa
dc.relation.referencesKljak, K., Carović-Stanko, K., Kos, I., Janječić, Z., Kiš, G., Duvnjak, M., ... & Bedeković, D. (2021). Plant carotenoids as pigment sources in laying hen diets: Effect on yolk color, carotenoid content, oxidative stability and sensory properties of eggs. Foods, 10(4), 721spa
dc.relation.referencesKidwell, M. G., Nordskog, A. W., & Forsythe, R. H. (1964). Variation among commercial strains of chickens in loss of egg albumen quality. Poultry Science, 43(1), 38-42.spa
dc.relation.referencesLeeson, S., Summers, J., & Díaz, G. (2000). Nutrición aviar comercial. Bogotá -Colombia. ISBN. 958-33-1300-9spa
dc.relation.referencesLeeson, S., & Caston, L. (2004). Enrichment of eggs with lutein. Poultry Science, 83(10), 1709-1712.spa
dc.relation.referencesLohmann Brown. Lohmann Brown-Classic Layers. Management Guide Cage Housing. Germany. En línea. https://lohmann-breeders.com/cage 29/07/2023spa
dc.relation.referencesMellado-Ortega, E., & Hornero-Méndez, D. (2015). Carotenoids in cereals: An ancient resource with present and future applications. Phytochemistry reviews, 14, 873-890spa
dc.relation.referencesMelo, T. V., Ferreira, R. A., Oliveira, V. C., Carneiro, J. B. A., Moura, A. M. A., Silva, C. S., & Nery, V. L. H. (2008). Calidad del huevo de codornices utilizando harina de algas marinas y fosfato monoamónico. Archivos de zootecnia, 57(219), 313-319spa
dc.relation.referencesPalacio Honguín, S., Tascón Terranova, V. & Palacios A. (2019). Comparación de parámetros productivos de las líneas genéticas Hy-line Brown, Isa Brown, Babcock Brown en granja avícola la reserva.spa
dc.relation.referencesPerry, A., Rasmussen, H., & Johnson, E. J. (2009). Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. Journal of food Composition and Analysis, 22(1), 9-15.spa
dc.relation.referencesPiccaglia, R., Marotti, M., & Grandi, S. (1998). Lutein and lutein ester content in different types of Tagetes patula and T. erecta. Industrial Crops and Products, 8(1), 45-51.spa
dc.relation.referencesQuackenbush, F. W. (1973). Use of heat to saponify xanthophyll esters and speed analysis for carotenoids in feed materials: collaborative study. Journal of the Association of Official Analytical Chemists, 56(3), 748-753.spa
dc.relation.referencesSauer, L., Li, B., & Bernstein, P. S. (2019). Ocular carotenoid status in health and disease. Annual Review of Nutrition, 39, 95-120.spa
dc.relation.referencesSchlatterer, J., & Breithaupt, D. E. (2006). Xanthophylls in commercial egg yolks: quantification and identification by HPLC and LC-(APCI) MS using a C30 phase. Journal of agricultural and food chemistry, 54(6), 2267-2273.spa
dc.relation.referencesShin, H. S., Kim, J. W., Lee, D. G., Lee, S., & Kil, D. Y. (2016). Bioavailability of lutein in corn distillers dried grains with solubles relative to lutein in corn gluten meal based on lutein retention in egg yolk. Journal of the Science of Food and Agriculture, 96(10), 3401-3406.spa
dc.relation.referencesSkřivan, M., Englmaierová, M., Skřivanová, E., & Bubancová, I. (2015). Increase in lutein and zeaxanthin content in the eggs of hens fed marigold flower extract. Czech Journal of Animal Science, 60(3), 89-96spa
dc.relation.referencesSoriano Tigrero, J. R. (2021). Efectos en la calidad del huevo de la gallina lohmann brown en diferentes tiempos de conservación a temperatura ambiente en Santa Elena (Bachelor's thesis, La Libertad: Universidad Estatal Península de Santa Elena, 2021).spa
dc.relation.referencesSun, T., Rao, S., Zhou, X., & Li, L. (2022). Plant carotenoids: Recent advances and future perspectives. Molecular Horticulture, 2(1), 3.spa
dc.relation.referencesSurai, P. F., & Kochish, I. I. (2020). Carotenoids in Aviculture. Pigments from Microalgae Handbook, 515-540.spa
dc.relation.referencesWilliams, A. W., Boileau, T. W., & Erdman Jr, J. W. (1998). Factors influencing the uptake and absorption of carotenoids. Proceedings of the Society for Experimental Biology and Medicine, 218(2), 106-108.spa
dc.relation.referencesCapítulo 6spa
dc.relation.referencesAbdel-Aal, E. S. M., Akhtar, H., Zaheer, K., & Ali, R. (2013). Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients, 5(4), 1169-1185.spa
dc.relation.referencesAguillón-Páez, Y. J., & Díaz, G. J. (2023). Lutein and Zeaxanthin Content in 21 Plant Species from a Very Humid Premontane Forest in Colombia Palatable for Free-Range Laying Hens. Plants, 12(19), 3484.spa
dc.relation.referencesAguillón-Páez, Y. J., Romero, L. A., & Diaz, G. J. (2020). Effect of full-fat sunflower or flaxseed seeds dietary inclusion on performance, egg yolk fatty acid profile and egg quality in laying hens. Animal Nutrition, 6(2), 179-184.spa
dc.relation.referencesAOAC. 2006. Association of Official Analytical Chemists. Official Methods of Analyses. 18th Ed. Gaithers burg MD, USA.spa
dc.relation.referencesAtawodi, S. E., Mari, D., Atawodi, J. C., & Yahaya, Y. (2008). Assessment of Leucaena leucocephala leaves as feed supplement in laying hens. African Journal of Biotechnology, 7(3), 317-321.spa
dc.relation.referencesBarraj, L., Tran, N., & Mink, P. (2009). A comparison of egg consumption with other modifiable coronary heart disease lifestyle risk factors: a relative risk apportionment study. Risk Analysis: An International Journal, 29(3), 401-415.spa
dc.relation.referencesBidura, I. G. N. G., Partama, I. B. G., Utami, I. A. P., Candrawati, D. P. M. A., Puspani, E., Suasta, I. M., ... & Siti, N. W. (2020, April). Effect of Moringa oleifera leaf powder in diets on laying hens performance, β-carotene, cholesterol, and minerals contents in egg yolk. In IOP Conference Series: Materials Science and Engineering (Vol. 823, No. 1, p. 012006). IOP Publishing.spa
dc.relation.referencesCarranco, M. E., Castillo, R. M., Escamilla, A., Martínez, M., Pérez-Gil, F., & Stephan, E. (2002). Composición química, extracción de proteína foliar y perfil de aminoácidos de siete plantas acuáticas. Revista Cubana de Ciencia Agrícola, 36(3), 247-258.spa
dc.relation.referencesCayan, H., & Erener, G. (2015). Effect of olive leaf (Olea europaea) powder on laying hens performance, egg quality and egg yolk cholesterol levels. Asian-Australasian Journal of Animal Sciences, 28(4), 538.spa
dc.relation.referencesCherian, G., Wolfe, F. W., & Sim, J. S. (1996). Dietary oils with added tocopherols: effects on egg or tissue tocopherols, fatty acids, and oxidative stability. Poultry Science, 75(3), 423-431.spa
dc.relation.referencesCherian, G., Traber, M. G., Goeger, M. P., & Leonard, S. W. (2007). Conjugated linoleic acid and fish oil in laying hen diets: effects on egg fatty acids, thiobarbituric acid reactive substances, and tocopherols during storage. Poultry science, 86(5), 953-958.spa
dc.relation.referencesDada, O. A., & Oworu, O. O. (2010). Mineral and nutrient leaf composition of two cassava (Manihot esculenta Crantz) cultivars defoliated at varying phenological phases. Notulae Scientia Biologicae, 2(4), 44-48.spa
dc.relation.referencesEilat-Adar, S., Sinai, T., Yosefy, C., & Henkin, Y. (2013). Nutritional recommendations for cardiovascular disease prevention. Nutrients, 5(9), 3646-3683.spa
dc.relation.referencesFraeye, I., Bruneel, C., Lemahieu, C., Buyse, J., Muylaert, K., & Foubert, I. (2012). Dietary enrichment of eggs with omega-3 fatty acids: A review. Food Research International, 48(2), 961-969.spa
dc.relation.referencesFolch, J., Lees, M., Stanley, G. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, 497-507.spa
dc.relation.referencesGerzilov, V., Nikolov, A., Petrov, P., Bozakova, N., Penchev, G., & Bochukov, A. (2015). Effect of a dietary herbal mixture supplement on the growth performance, egg production and health status in chickens. Journal of Central European Agriculture.spa
dc.relation.referencesGonzalez-Esquerra, R., & Leeson, S. (2000). Effect of feeding hens regular or deodorized menhaden oil on production parameters, yolk fatty acid profile, and sensory quality of eggs. Poultry Science, 79(11), 1597-1602.spa
dc.relation.referencesGrčević, M., Kralik, Z., Kralik, G., & Galović, O. (2019). Effects of dietary marigold extract on lutein content, yolk color and fatty acid profile of omega‐3 eggs. Journal of the Science of Food and Agriculture, 99(5), 2292-2299.spa
dc.relation.referencesHammershøj, M., & Steenfeldt, S. (2012). The effects of kale (Brassica oleracea ssp. acephala), basil (Ocimum basilicum) and thyme (Thymus vulgaris) as forage material in organic egg production on egg quality. British Poultry Science, 53(2), 245-256.spa
dc.relation.referencesHorsted, K., Hammershøj, M., & Hermansen, J. E. (2007). Short-term effects on productivity and egg quality in nutrient-restricted versus non-restricted organic layers with access to different forage crops. Acta Agriculturae Scand Section A, 56(1), 42-54.spa
dc.relation.referencesJang, I., Ko, Y., Kang, S., Kim, S., Song, M., Cho, K., ... & Sohn, S. (2014). Effects of dietary lutein sources on lutein-enriched egg production and hepatic antioxidant system in laying hens. The Journal of Poultry Science, 51(1), 58-65.spa
dc.relation.referencesKaradas, F., Grammenidis, E., Surai, P. F., Acamovic, T., & Sparks, N. H. C. (2006). Effects of carotenoids from lucerne, marigold and tomato on egg yolk pigmentation and carotenoid composition. British poultry science, 47(5), 561-566.spa
dc.relation.referencesKarsten, H. D., Patterson, P. H., Stout, R., & Crews, G. (2010). Vitamins A, E and fatty acid composition of the eggs of caged hens and pastured hens. Renewable Agriculture and Food Systems, 25(1), 45-54.spa
dc.relation.referencesKljak, K., Carović-Stanko, K., Kos, I., Janječić, Z., Kiš, G., Duvnjak, M., ... & Bedeković, D. (2021). Plant carotenoids as pigment sources in laying hen diets: Effect on yolk color, carotenoid content, oxidative stability and sensory properties of eggs. Foods, 10(4), 721.spa
dc.relation.referencesKralik, Z., Kralik, G., Košević, M., Galović, O., & Samardžić, M. (2023). Natural Multi-Enriched Eggs with n-3 Polyunsaturated Fatty Acids, Selenium, Vitamin E, and Lutein. Animals, 13(2), 321.spa
dc.relation.referencesKop-Bozbay, C., Akdag, A., Bozkurt-Kiraz, A., Gore, M., Kurt, O., & Ocak, N. (2021). Laying performance, egg quality characteristics, and egg yolk fatty acids profile in layer hens housed with free access to chicory-and/or white clover-vegetated or non-vegetated areas. Animals, 11(6), 1708.spa
dc.relation.referencesLi, Y., Zhou, C., Zhou, X., & Li, L. (2013). Egg consumption and risk of cardiovascular diseases and diabetes: a meta-analysis. Atherosclerosis, 229(2), 524-530.spa
dc.relation.referencesLorenz, C., Kany, T., & Grashorn, M. A. (2013). Method to estimate feed intake from pasture in broilers and laying hens. Archiv für Geflügelkunde, 77(3), 160-165.spa
dc.relation.referencesMaina, A. N., Lewis, E., & Kiarie, E. G. (2023). Egg production, egg quality, and fatty acids profiles in eggs and tissues in Lohmann LSL lite hens fed algal oils rich in docosahexaenoic acid (DHA). Poultry Science, 102(10), 102921.spa
dc.relation.referencesMenrad, K. (2003). Market and marketing of functional food in Europe. Journal of food engineering, 56(2-3), 181-188.spa
dc.relation.referencesMesías, F. J., Martínez‐Carrasco, F., Martínez, J. M., & Gaspar, P. (2011). Functional and organic eggs as an alternative to conventional production: a conjoint analysis of consumers' preferences. Journal of the Science of Food and Agriculture, 91(3), 532-538.spa
dc.relation.referencesMiranda, J. M., Anton, X., Redondo-Valbuena, C., Roca-Saavedra, P., Rodriguez, J. A., Lamas, A., ... & Cepeda, A. (2015). Egg and egg-derived foods: effects on human health and use as functional foods. Nutrients, 7(1), 706-729.spa
dc.relation.referencesMugnai, C., Sossidou, E. N., Dal Bosco, A., Ruggeri, S., Mattioli, S., & Castellini, C. (2014). The effects of husbandry system on the grass intake and egg nutritive characteristics of laying hens. Journal of the Science of Food and Agriculture, 94(3), 459-467spa
dc.relation.referencesNimalaratne, C., Wu, J., & Schieber, A. (2013). Egg yolk carotenoids: Composition, analysis, and effects of processing on their stability. In Carotenoid cleavage products (pp. 219-225). American Chemical Society.spa
dc.relation.referencesPerry, A., Rasmussen, H., & Johnson, E. J. (2009). Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. Journal of food Composition and Analysis, 22(1), 9-15.spa
dc.relation.referencesPopova, T., Petkov, E., Ayasan, T., & Ignatova, M. (2020). Quality of eggs from layers reared under alternative and conventional system. Brazilian Journal of Poultry Science, 22.spa
dc.relation.referencesSalih, A. M., Smith, D. M., Price, J. F., & Dawson, L. E. (1987). Modified extraction 2-thiobarbituric acid method for measuring lipid oxidation in poultry. Poultry Science, 66(9), 1483-1488.spa
dc.relation.referencesSherratt, S. C., Libby, P., Budoff, M. J., Bhatt, D. L., & Mason, R. P. (2023). Role of omega-3 fatty acids in cardiovascular disease: the debate continues. Current Atherosclerosis Reports, 25(1), 1-17.spa
dc.relation.referencesSilversides, F. G., & Lefrancois, M. R. (2005). The effect of feeding hemp seed meal to laying hens. British poultry science, 46(2), 231-235.spa
dc.relation.referencesSimčič, M., Stibilj, V., & Holcman, A. (2011). Fatty acid composition of eggs produced by the Slovenian autochthonous Styrian hen. Food chemistry, 125(3), 873-877.spa
dc.relation.referencesSteenfeldt, S., Kjaer, J. B., & Engberg, R. M. (2007). Effect of feeding silages or carrots as supplements to laying hens on production performance, nutrient digestibility, gut structure, gut microflora and feather pecking behaviour. British poultry science, 48(4), 454-468.spa
dc.relation.referencesTufarelli, V., Ragni, M., & Laudadio, V. (2018). Feeding forage in poultry: a promising alternative for the future of production systems. Agriculture, 8(6), 81.spa
dc.relation.referencesUntea, A. E., Varzaru, I., Panaite, T. D., Gavris, T., Lupu, A., & Ropota, M. (2020). The effects of dietary inclusion of bilberry and walnut leaves in laying hens’ diets on the antioxidant properties of eggs. Animals, 10(2), 191.spa
dc.relation.referencesZaheer, K. (2015). An updated review on chicken eggs: production, consumption, management aspects and nutritional benefits to human health. Food and Nutrition Sciences, 6(13), 1208.spa
dc.relation.referencesDiscusión generalspa
dc.relation.referencesAlagawany, M., Elnesr, S. S., & Farag, M. R. (2018). The role of exogenous enzymes in promoting growth and improving nutrient digestibility in poultry. Iranian journal of veterinary research, 19(3), 157.spa
dc.relation.referencesBernstein, P. S., Li, B., Vachali, P. P., Gorusupudi, A., Shyam, R., Henriksen, B. S., & Nolan, J. M. (2016). Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Progress in retinal and eye research, 50, 34-66.spa
dc.relation.referencesBunea, A., Copaciu, F. M., Paşcalău, S., Dulf, F., Rugină, D., Chira, R., & Pintea, A. (2017). Chromatographic analysis of lypophilic compounds in eggs from organically fed hens. Journal of Applied Poultry Research, 26(4), 498-508.spa
dc.relation.referencesCastaneda, M. P., Hirschler, E. M., & Sams, A. R. (2005). Skin pigmentation evaluation in broilers fed natural and synthetic pigments. Poultry science, 84(1), 143-147.spa
dc.relation.referencesCaldwell, C. R., & Britz, S. J. (2006). Effect of supplemental ultraviolet radiation on the carotenoid and chlorophyll composition of green house-grown leaf lettuce (Lactuca sativa L.) cultivars. Journal of Food Composition and Analysis, 19(6-7), 637-644.spa
dc.relation.referencesChung, H. Y., Rasmussen, H. M., & Johnson, E. J. (2004). Lutein bioavailability is higher from lutein-enriched eggs than from supplements and spinach in men. The Journal of nutrition, 134(8), 1887-1893.spa
dc.relation.referencesDansou, D. M., Zhang, H., Yu, Y., Wang, H., Tang, C., Zhao, Q., ... & Zhang, J. (2023). Carotenoid enrichment in eggs: From biochemistry perspective. Animal Nutrition.spa
dc.relation.referencesDemmig-Adams, B., López-Pozo, M., Stewart, J. J., & Adams III, W. W. (2020). Zeaxanthin and lutein: Photoprotectors, anti-inflammatories, and brain food. Molecules, 25(16), 3607spa
dc.relation.referencesDíaz-Gómez, J., Moreno, J. A., Angulo, E., Sandmann, G., Zhu, C., Ramos, A. J., ... & Nogareda, C. (2017). High-carotenoid biofortified maize is an alternative to color additives in poultry feed. Animal Feed Science and Technology, 231, 38-46.spa
dc.relation.referencesDiaz, G. J. (2015). Toxicosis by plant alkaloids in humans and animals in Colombia. Toxins, 7(12), 5408-5416.spa
dc.relation.referencesFENALCE. Federación Nacional de Cultivadores de Cereales y Leguminosas. (2023). Estadísticas. Recuperado de https://fenalce.co/estadisticas/spa
dc.relation.referencesJang, I., Ko, Y., Kang, S., Kim, S., Song, M., Cho, K., ... & Sohn, S. (2014). Effects of dietary lutein sources on lutein-enriched egg production and hepatic antioxidant system in laying hens. The Journal of Poultry Science, 51(1), 58-65.spa
dc.relation.referencesJaramillo, Á. H., Mojica, J., Caro, É. A., & Sosa, J. (2018). Evaluación de la calidad del huevo de gallina en dos sistemas de alojamiento–piso convencional con suplementación de sauco (Sambucus nigra) y pastoreo con kikuyo (Pennisetum clandestinum)–en la Sabana de Bogotá. Revista Siembra CBA, (1), 59-77.spa
dc.relation.referencesKhachik, F., London, E., De Moura, F. F., Johnson, M., Steidl, S., DeTolla, L., ... & Fowler, B. (2006). Chronic ingestion of (3R, 3′ R, 6′ R)-lutein and (3R, 3′ R)-zeaxanthin in the female rhesus macaque. Investigative ophthalmology & visual science, 47(12), 5476-5486.spa
dc.relation.referencesKljak, K., Duvnjak, M., Bedeković, D., Kiš, G., Janječić, Z., & Grbeša, D. (2021). Commercial corn hybrids as a single source of dietary carotenoids: Effect on egg yolk carotenoid profile and pigmentation. Sustainability, 13(21), 12287.spa
dc.relation.referencesKumar, V. (2023). Chapter-2 Plant Responses to Biotic and Abiotic Stresses. Chief Editor Dr. Walunjkar Babasaheb Changdeo, 29.spa
dc.relation.referencesLogan, B. A., Demmig-Adams, B., Adams III, W. W., & Grace, S. C. (1998). Antioxidants and xanthophyll cycle-dependent energy dissipation in Cucurbita pepo L. and Vinca major L. acclimated to four growth PPFDs in the field. Journal of Experimental Botany, 49(328), 1869-1879.spa
dc.relation.referencesMoreno, J. A., Díaz-Gómez, J., Fuentes-Font, L., Angulo, E., Gosálvez, L. F., Sandmann, G., ... & Nogareda, C. (2020). Poultry diets containing (keto) carotenoid-enriched maize improve egg yolk color and maintain quality. Animal Feed Science and Technology, 260, 114334.spa
dc.relation.referencesNiinemets, Ü., Bilger, W., Kull, O., & Tenhunen, J. D. (1998). Acclimation to high irradiance in temperate deciduous trees in the field: changes in xanthophyll cycle pool size and in photosynthetic capacity along a canopy light gradient. Plant, Cell & Environment, 21(12), 1205-1218.spa
dc.relation.referencesNogareda, C., Moreno, J. A., Angulo, E., Sandmann, G., Portero, M., Capell, T., ... & Christou, P. (2016). Carotenoid‐enriched transgenic corn delivers bioavailable carotenoids to poultry and protects them against coccidiosis. Plant Biotechnology Journal, 14(1), 160-168.spa
dc.relation.referencesOlmedilla-Alonso, B., Rodríguez-Rodríguez, E., Beltrán-de-Miguel, B., Sánchez-Prieto, M., & Estévez-Santiago, R. (2021). Changes in Lutein Status Markers (Serum and Faecal Concentrations, Macular Pigment) in Response to a Lutein-Rich Fruit or Vegetable (Three Pieces/Day) Dietary Intervention in Normolipemic Subjects. Nutrients, 13(10), 3614.spa
dc.relation.referencesQuackenbush, F. W. (1973). Use of heat to saponify xanthophyll esters and speed analysis for carotenoids in feed materials: collaborative study. Journal of the Association of Official Analytical Chemists, 56(3), 748-753.spa
dc.relation.referencesSimčič, M., Stibilj, V., & Holcman, A. (2011). Fatty acid composition of eggs produced by the Slovenian autochthonous Styrian hen. Food chemistry, 125(3), 873-877.spa
dc.relation.referencesSimopoulos, A. P. (2002). Omega‐3 fatty acids in wild plants, nuts and seeds. Asia Pacific Journal of Clinical Nutrition, 11, S163-S173.spa
dc.relation.referencesSiro, I., Kápolna, E., Kápolna, B., & Lugasi, A. (2008). Functional food. Product development, marketing and consumer acceptance—A review. Appetite, 51(3), 456-467.spa
dc.relation.referencesTian, Y., Zhu, H., Zhang, L., & Chen, H. (2022). Consumer preference for nutritionally fortified eggs and impact of health benefit information. Foods, 11(8), 1145.spa
dc.relation.referencesUntea, A. E., Varzaru, I., Panaite, T. D., Gavris, T., Lupu, A., & Ropota, M. (2020). The effects of dietary inclusion of bilberry and walnut leaves in laying hens’ diets on the antioxidant properties of eggs. Animals, 10(2), 191.spa
dc.relation.referencesWang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in plant science, 9(5), 244-252.spa
dc.relation.referencesWery, J., Silim, S. N., Knights, E. J., Malhotra, R. S., & Cousin, R. (1993). Screening techniques and sources of tolerance to extremes of moisture and air temperature in cool season food legumes. Euphytica, 73, 73-83.spa
dc.relation.referencesZhang, J. L., Li, X. G., Xu, X. H., Chen, H. P., Li, Y. L., & Guy, R. D. (2021). Seasonal progression of photoprotection responses in different aged savin juniper plants under shade and sun. Trees, 35(5), 1601-1612.spa
dc.relation.referencesAguirre, P. (2019). Alimentos funcionales entre las nuevas y viejas corporalidades. AIBR: Revista de Antropología Iberoamericana, 14(1), 95-120.spa
dc.relation.referencesBolsa Mercantil de Colombia. (2023). Análisis de producto sector avícola. Gerencia Corporativa de Analítica y Estudios Económicos. Recuperado de 16 de noviembre de 2023 de https://www.bolsamercantil.com.co/sites/default/files/2023-05/Informe%20sector%20av%C3%ADcola%20-%20Final%20difusi%C3%B3n_0.pdfspa
dc.relation.referencesFENAVI. Federación Nacional de Avicultura de Colombia.(2023). Estadísticas. Recuperado de 16 de noviembre de 2023 https://fenavi.org/informacion-estadistica/#1538599468784-33441e59-1807spa
dc.relation.referencesKumar, C. G., Sripada, S., & Poornachandra, Y. (2018). Status and future prospects of fructooligosaccharides as nutraceuticals. Role of materials science in food bioengineering, 451-503.spa
dc.relation.referencesLewis, N. M., Seburg, S., & Flanagan, N. L. (2000). Enriched eggs as a source of n-3 polyunsaturated fatty acids for humans. Poultry Science, 79(7), 971-974. Simopoulos, A. P. (2016). An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients, 8(3), 128.spa
dc.relation.referencesOlea, J. L., Aragon, J. A., Zapata, M. E., & Tur, J. A. (2012). Characteristics of patients with wet age-related macular degeneration and low intake of lutein and zeaxanthin. Archivos de la Sociedad Española de Oftalmología (English Edition), 87(4), 112-118.spa
dc.relation.referencesOnoruoiza, M. A., Ayodele, A. M., & David-Momoh, T. E. (2024). A Review on the Effects of Functional Food on Humans and Microorganisms. Int J Probiotics and Dietetics, 4(1), 01-14spa
dc.relation.referencesZaheer, K. (2017). Hen egg carotenoids (lutein and zeaxanthin) and nutritional impacts on human health: a review. CYTA-Journal of Food, 15(3), 474-487.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocÁcidos grasosspa
dc.subject.agrovocfatty acidseng
dc.subject.agrovocProductos de origen animalspa
dc.subject.agrovocanimal productseng
dc.subject.agrovocEnriquecimiento de los alimentosspa
dc.subject.agrovocfood enrichmenteng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animalspa
dc.subject.proposalÁcidos grasosspa
dc.subject.proposalBosquespa
dc.subject.proposalGallinasspa
dc.subject.proposalHuevospa
dc.subject.proposalPlantasspa
dc.subject.proposalXantofilasspa
dc.subject.proposalEggseng
dc.subject.proposalFatty acidseng
dc.subject.proposalForesteng
dc.subject.proposalLaying henseng
dc.subject.proposalPlantseng
dc.subject.proposalXanthophyllseng
dc.titleEl huevo como alimento funcional: nuevas estrategias de enriquecimiento con ácidos grasos omega-3 y con las xantofilas luteína y zeaxantinaspa
dc.title.translatedThe egg as a functional food: new enrichment strategies with omega-3 fatty acids and the xanthophylls lutein and zeaxanthineng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
10726059602024.pdf
Tamaño:
8.58 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Salud Animal o Producción Animal

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: