Estudio de un modelo de difusión no local generalizado con frontera mixta
dc.contributor.advisor | Gómez Sierra, Cesar Augusto | |
dc.contributor.author | Mina Ladino, Jhon Cristian | |
dc.date.accessioned | 2025-09-18T20:37:27Z | |
dc.date.available | 2025-09-18T20:37:27Z | |
dc.date.issued | 2025 | |
dc.description.abstract | In this work, we study a generalized nonlocal diffusion model with mixed boundary conditions. This model, motivated by the need to describe diffusion phenomena with longrange (nonlocal) interactions, extends previous formulations by incorporating integral terms both in the interior of the domain and along its boundary to represent heterogeneous boundary conditions. The problem is mathematically formulated through a parabolic integro-differential equation: a volume term with kernel J(x − y) models nonlocal diffusion inside the region, while boundary terms with kernels Gi(x, y) and data gi(y,t) on parts of the boundary represent the nonlocal interaction through the boundary (mixed conditions). We rigorously prove the existence and uniqueness of the solution in an appropriate function space, using fixed point techniques and a nonlocal comparison principle. In addition, we analyze the asymptotic behavior of the solutions: under stationary boundary conditions (i.e., data gi independent of time), the solution converges to a unique steady state as t → ∞. Furthermore, we propose a numerical discretization of the model (a generalized finite difference scheme), and we establish consistency and convergence results, ensuring that the discrete solution approximates the continuous one as the mesh is refined. (Texto tomado de la fuente) | eng |
dc.description.abstract | En el presente trabajo se estudia un modelo de difusión no local generalizado con condiciones de frontera mixtas. Este modelo, motivado por la necesidad de describir fenómenos de difusión con interacciones a distancia (no locales), extiende formulaciones previas incorporando términos integrales tanto en el interior del dominio como en su frontera para representar condiciones de contorno heterogéneas. Se plantea matemáticamente el problema mediante una ecuación integro-diferencial parabólica: un término de volumen con núcleo J(x−y) modela la difusión no local dentro de la región, mientras que términos de frontera con núcleos Gi(x, y) y datos gi(y,t) en porciones de la frontera representan la interacción no local a través de la frontera (condiciones mixtas). Se demuestran rigurosamente la existencia y unicidad de la solución de este modelo en el espacio de funciones adecuado, utilizando técnicas de punto fijo y un principio de comparación no local. Asimismo, se analiza el comportamiento asintótico de las soluciones: bajo condiciones estacionarias en la frontera (datos gi independientes del tiempo), la solución converge hacia una única solución estacionaria conforme t → ∞. Adicionalmente, se propone una discretización numérica del modelo (esquema de diferencias finitas generalizado) y se establecen resultados de consistencia y convergencia, garantizando que la solución discreta aproxima correctamente a la continua al refinar la malla. (Texto tomado de la fuente) | spa |
dc.description.curriculararea | Matemáticas.Sede Bogotá | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ciencias - Matemáticas | |
dc.description.degreename | Master of Science in Mathematics | |
dc.description.notes | Meritorious mention | eng |
dc.description.notes | Tesis con mención meritoria | spa |
dc.format.extent | iv, 40 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88918 | |
dc.language.iso | eng | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ciencias | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Matemáticas | |
dc.relation.references | Francisco Andreu, José Manuel Mazón, Julio D Rossi, and José Toledo. The neumann problem for nonlocal nonlinear diffusion equations. J. Evol. Equ., 8(1):189–215, 2008. II | |
dc.relation.references | Francisco Andreu, José Manuel Mazón, Julio D Rossi, and José Toledo. A nonlocal p-laplacian evolution equation with neumann boundary conditions. J. Math. Pures Appl., 90(2):201–227, 2008. II | |
dc.relation.references | Francisco Andreu, José Manuel Mazón, Julio D Rossi, and José Toledo. The limit as p → ∞ in a nonlocal p-laplacian evolution equation. a nonlocal approximation of a model for sandpiles. Calc. Var. Partial Differential Equations, 35(3):279–316, 2009. II | |
dc.relation.references | Francisco Andreu, José Manuel Mazón, Julio D Rossi, and José Toledo. A nonlocal p-laplacian evolution equation with nonhomogeneous dirichlet boundary conditions. SIAM J. Math. Anal., 40(5):1815–1851, 2009. II | |
dc.relation.references | Fuensanta Andreu-Vaillo, José Manuel Mazón, Julio D Rossi, and José Javier Toledo-Melero. Nonlocal Diffusion Problems, volume 165 of Mathematical Surveys and Monographs. American Mathematical Society, 2010. II | |
dc.relation.references | Peter Bates. On some nonlocal evolution equations arising in materials science. Nonlinear dynamics and evolution equations, 48:13–52, 2006. II, III | |
dc.relation.references | Mauricio Bogoya, Rafael Ferreira, and Julio D Rossi. Neumann boundary conditions for a nonlocal nonlinear diffusion operator. continuous and discrete models. Proc. Amer. Math. Soc., 135:3837–3846, 2007. II | |
dc.relation.references | Peter Bates and Guozhen Zhao. Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal. J. Math. Anal. Appl., 332:428–440, 2007. II | |
dc.relation.references | Jérôme Coville and Louis Dupaigne. On a nonlocal equation arising in population dynamics. Proc. Roy. Soc. Edinburgh Sect. A, 137:1–29, 2007. III | |
dc.relation.references | Jérôme Coville, Juan Dávila, and Servet Martínez. Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity. SIAM J. Math. Anal., 39(6):1693–1709, 2008. III | |
dc.relation.references | Carmen Cortázar, Manuel Elgueta, Sebastián Martínez, and Julio D Rossi. Random walks and the porous medium equation. Rev. Union Matemática Argentina, 50:149–155, 2009. III | |
dc.relation.references | Carmen Cortázar, Manuel Elgueta, and Julio D Rossi. Nonlocal diffusion problems that approximate the heat equation with dirichlet boundary conditions. Israel J. Math., 170:53–60, 2009. II | |
dc.relation.references | Carmen Cortázar, Manuel Elgueta, Julio D Rossi, and Noemi Wolanski. Boundary fluxes for nonlocal diffusion. J. Differential Equations, 234:360–390, 2007. II | |
dc.relation.references | Carmen Cortázar, Manuel Elgueta, Julio D Rossi, and Noemi Wolanski. How to approximate the heat equation with neumann boundary conditions by nonlocal diffusion problems. Arch. Ration. Mech. Anal., 187(1):137–156, 2008. II | |
dc.relation.references | José Antonio Carrillo and Paul Fife. Spatial effects in discrete generation population models. J. Math. Biol., 50(2):161–188, 2005. III | |
dc.relation.references | Emmanuel Chasseigne. The dirichlet problem for some nonlocal diffusion equations. Differential Integral Equations, 20:1389–1404, 2007. II | |
dc.relation.references | Jérôme Coville. Maximum principles, sliding techniques and applications to nonlocal equations. Electron. J. Differential Equations, (68):1–23, 2007. III | |
dc.relation.references | Paul Fife. Some nonclassical trends in parabolic and parabolic-like evolutions. pages 153–191, 2003. II | |
dc.relation.references | Nicolas Fournier and Philippe Laurencot. Well-posedness of smoluchowski’s coagulation equation for a class of homogeneous kernels. J. Funct. Anal., 233:351– 379, 2006. III | |
dc.relation.references | César Gómez and Mauricio L Bogoya. On a nonlocal diffusion model with neumann boundary conditions. Nonlinear Analysis, 32:17–20, 2020. III, IV | |
dc.relation.references | César Gómez and Julio D Rossi. A nonlocal diffusion problem that approximates the heat equation with neumann boundary conditions. Journal of King Saud University, 75:3198–3209, 2012. III | |
dc.relation.references | Liviu I Ignat and Julio D Rossi. A nonlocal convection-diffusion equation. J. Funct. Anal., 251(2):399–437, 2007. III | |
dc.relation.references | Mina, J. C. (2021). Extensión de la derivada de orden natural a un orden real.. Recuperado de: http://hdl.handle.net/20.500.12209/17262. | |
dc.relation.references | Marco Perez and Julio D Rossi. Blow-up for a non-local diffusion problem with neumann boundary conditions and a reaction term. Analysis TM&A, 70(4):1629– 1640, 2009. III | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Reconocimiento 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados | |
dc.subject.ddc | 510 - Matemáticas | |
dc.subject.proposal | Nonlocal diffusion | eng |
dc.subject.proposal | Mixed boundary conditions | eng |
dc.subject.proposal | Existence and uniqueness | eng |
dc.subject.proposal | Banach fixed-point theorem | eng |
dc.subject.proposal | Comparison principle | eng |
dc.subject.proposal | Asymptotic behavior | eng |
dc.subject.proposal | Stationary solutions | eng |
dc.subject.proposal | Finite difference discretization | eng |
dc.subject.proposal | Consistency and convergence | eng |
dc.subject.proposal | Difusión no local | spa |
dc.subject.proposal | Condiciones de frontera mixtas | spa |
dc.subject.proposal | Existencia y unicidad | spa |
dc.subject.proposal | Teorema del punto fijo de Banach | spa |
dc.subject.proposal | Principio de comparación | spa |
dc.subject.proposal | Comportamiento asintótico | spa |
dc.subject.proposal | Soluciones estacionarias | spa |
dc.subject.proposal | Discretización por diferencias finitas | spa |
dc.subject.proposal | Consistencia y convergencia | spa |
dc.subject.proposal | Condiciones de contorno mixtas | spa |
dc.subject.unam | Procesos de difusión -- Modelos matemáticos | spa |
dc.subject.unam | Ecuaciones diferenciales parabólicas -- Soluciones numéricas | spa |
dc.subject.unam | Differential equations, Parabolic -- Numerical solutions | eng |
dc.subject.unam | Ecuaciones integrales -- Teoría asintótica | spa |
dc.subject.unam | Integral equations -- Asymptotic theory | eng |
dc.subject.unam | Expansiones asintóticas | spa |
dc.subject.unam | Asymptotic expansions | eng |
dc.subject.unam | Diffusion processes -- Mathematical models | eng |
dc.subject.wikidata | Modelo de difusión | spa |
dc.subject.wikidata | Diffusion model | eng |
dc.subject.wikidata | Condición de frontera mixta | spa |
dc.subject.wikidata | Mixed boundary conditions | eng |
dc.title | Estudio de un modelo de difusión no local generalizado con frontera mixta | spa |
dc.title.translated | Study of a generalized non-local diffusion model with mixed boundary | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
dcterms.audience.professionaldevelopment | Público general | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis_Maestria_Jhon_Mina_ESTUDIODEUNMODELODEDIFUSIÓNNOLOCALGENERALIZADOCONFRONTERAMIXTA.pdf
- Tamaño:
- 414.92 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Matemáticas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: