Contribución al desarrollo de un sistema autoemulsificable para aplicación tópica de floretina

dc.contributor.advisorArgón Novoa, Diana Marcelaspa
dc.contributor.authorRodríguez Martínez, Ingrid Andreaspa
dc.contributor.researchgroupSistemas de Liberación Controlada de Moléculas Biológicamente Activasspa
dc.date.accessioned2025-09-12T16:46:08Z
dc.date.available2025-09-12T16:46:08Z
dc.date.issued2025-09-04
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLa floretina es un flavonoide que ha sido asociado con actividad antiinflamatoria y antimicrobiana característica de etapas iniciales en el acné. Sin embargo, se encuentran desafíos asociados a problemas de solubilidad y estabilidad de la molécula, son áreas abiertas a la investigación y profundización que pueden contribuir a mejorar el desempeño de la floretina en su aplicación en el campo tópico. Bajo este contexto, se plantea la hipótesis de que el desarrollo de un sistema de administración tópica tipo sistema de administración de fármacos autoemulsificables (SEDDS) con floretina como ingrediente activo permitirá mejorar la solubilidad y estabilidad de este compuesto. Con el propósito de desarrollar y profundizar en este problema de investigación, en el presente trabajo se condujeron estudios de comprobación y determinación cualitativa y cuantitativa de la actividad de la floretina frente a Staphylococcus epidermidis y Cutinobacterium acnes, dos bacterias gran positivas que son referentes en procesos de disbiosis en cuadros de acné. Así mismo, se conducen ensayos de preformulación y formulación enfocados al desarrollo y caracterización de un sistema autoemulsificable portador de floretina, con el objetivo de contribuir a desarrollar un vehículo que mejora la solubilidad y estabilidad de la molécula para favorecer su actividad frente a las bacterias de referencia. Bajo este escenario, se llevaron a cabo pruebas de desafío en celdas de Franz utilizando piel porcina orientadas a conocer el comportamiento del sistema sobre esta matriz, identificando la retención de la formulación en la epidermis y una acumulación cuantificable de la floretina en el estrato corneo. (Texto tomado de la fuente).spa
dc.description.abstractPhloretin is a flavonoid that has been associated with anti-inflammatory and antimicrobial activity, in early stages of acne. However, challenges related to the molecule's solubility and stability has been described as open areas for further research and development to enhance phloretin’s performance in topical applications. This framework conducts the hypothesis to develop a topical delivery system based on a self-emulsifying drug delivery system (SEDDS). Therefore, phloretin incorporation as the active ingredient in these systems, could enhance the solubility and stability properties. To research the understanding of this scientific inquiry, qualitative studies were conducted to assess the activity of phloretin against Staphylococcus epidermidis and Cutibacterium acnes. Both are a gram-positive bacterias commonly associated with dysbiosis in acne-related conditions. Likewise, the development and characterization of a self-emulsifying drug delivery system (SEDDS) with phloretin focused on the preformulation and formulation studies, was carried out. This fact supports the design of a delivery vehicle that improves the molecule's solubility and stability and improves its activity against the reference bacteria. In this scenario, challenge tests were carried out in Franz cells using porcine skin. The tests promote the understanding of the system's behavior on this matrix. The formulation retention in the epidermis was identified, and a quantifiable accumulation of phloretin in the stratum corneum was also verified.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en ciancias Farmacéuticasspa
dc.description.researchareaTecnología farmacéuticaspa
dc.format.extent151 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88741
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias Farmacéuticasspa
dc.relation.indexedBiremespa
dc.relation.referencesAbu-Azzam, O., & Nasr, M. (2020). In vitro anti-inflammatory potential of phloretin microemulsion as a new formulation for prospective treatment of vaginitis. Pharmaceutical Development and Technology, 25(8). https://doi.org/10.1080/10837450.2020.1764032
dc.relation.referencesAeschbacher, M., Reinhardt, C. A., & Zbinden, G. (1986). A rapid cell membrane permeability test using flourescent dyes and flow cytometry. Cell Biology and Toxicology, 2(2). https://doi.org/10.1007/BF00122693
dc.relation.referencesAkagi, T., Nagura, M., Hiura, A., Kojima, H., & Akashi, M. (2017). Construction of Three-Dimensional Dermo-Epidermal Skin Equivalents Using Cell Coating Technology and Their Utilization as Alternative Skin for Permeation Studies and Skin Irritation Tests. Tissue Engineering - Part A, 23(11–12). https://doi.org/10.1089/ten.tea.2016.0529
dc.relation.referencesAlison, G., Jessica, W., Shuai, X., & Paras, P. V. (2024). A randomized controlled double-blinded split-face prospective clinical trial to assess the efficacy, safety, and tolerability of a novel 3-step routine compared to benzoyl peroxide for the treatment of mild to moderate acne vulgaris. Arch Dermatol Res, 316(6).
dc.relation.referencesAnunciato Casarini, T. P., Frank, L. A., Pohlmann, A. R., & Guterres, S. S. (2020). Dermatological applications of the flavonoid phloretin. In European Journal of Pharmacology (Vol. 889). https://doi.org/10.1016/j.ejphar.2020.173593
dc.relation.referencesAraújo, J., Gonzalez, E., Egea, M. A., Garcia, M. L., & Souto, E. B. (2009). Nanomedicines for ocular NSAIDs: safety on drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 5(4). https://doi.org/10.1016/j.nano.2009.02.003
dc.relation.referencesAree, T. (2023). How cyclodextrin encapsulation improves molecular stability of apple polyphenols phloretin, phlorizin, and ferulic acid: Atomistic insights through structural chemistry. Food Chemistry, 409. https://doi.org/10.1016/j.foodchem.2022.135326
dc.relation.referencesATCC. (2025a). Product data sheet Cutibacterium acnes Scholz y Kilian 6919 TM Handling Procedures. Https://Www.Atcc.Org/Products/6919
dc.relation.referencesATCC. (2025b). Product data sheet Staphylococcus epidermidis (Winslow y Winslow) Evans. Handling Procedures. Https://Www.Atcc.Org/Products/14990.
dc.relation.referencesBadran, M. M., Taha, E. I., Tayel, M. M., & Al-Suwayeh, S. A. (2014). Ultra-fine self nanoemulsifying drug delivery system for transdermal delivery of meloxicam: Dependency on the type of surfactants. Journal of Molecular Liquids, 190. https://doi.org/10.1016/j.molliq.2013.10.015
dc.relation.referencesBarthe, M., Bavoux, C., Finot, F., Mouche, I., Cuceu-Petrenci, C., Forreryd, A., Hansson, A. C., Johansson, H., Lemkine, G. F., Thénot, J. P., & Osman-Ponchet, H. (2021). Safety testing of cosmetic products: Overview of established methods and new approach methodologies (nams). In Cosmetics (Vol. 8, Issue 2). https://doi.org/10.3390/cosmetics8020050
dc.relation.referencesBehzad, S., Sureda, A., Barreca, D., Nabavi, S. F., Rastrelli, L., & Nabavi, S. M. (2017). Health effects of phloretin: from chemistry to medicine. Phytochemistry Reviews, 16(3). https://doi.org/10.1007/s11101-017-9500-x
dc.relation.referencesBharath, S., & Matthew, L. (2024). Dose–Response Curves and the Determination of IC50 and EC50 Values. Journal of Medicinal Chemistry, 67(20).
dc.relation.referencesBielfeldt, S., Bonnier, F., Byrne, H. J., Chourpa, I., Dancik, Y., Lane, M. E., Lunter, D. J., Munnier, E., Puppels, G., Tfayli, A., & Ziemons, E. (2022). Monitoring dermal penetration and permeation kinetics of topical products; the role of Raman microspectroscopy. In TrAC - Trends in Analytical Chemistry (Vol. 156). https://doi.org/10.1016/j.trac.2022.116709
dc.relation.referencesBiochemazon. (2025). The Ultimate Guide to PBS Phosphate Buffered Saline (1×PBS Buffer, pH 7.2-7.4) for Cell Culture and Research. Https://Biochemazone.Com/Pbs-Phosphate-Buffered-Saline-for-Cell-Culture/#:~:Text=Buffer%20Types,And%20cells%20between%20experimental%20setups.
dc.relation.referencesBisht, A., Hemrajani, C., Rathore, C., Dhiman, T., Rolta, R., Upadhyay, N., Nidhi, P., Gupta, G., Dua, K., Chellappan, D. K., Dev, K., Sourirajan, A., Chakraborty, A., Aljabali, A. A. A., Bakshi, H. A., Negi, P., & Tambuwala, M. M. (2022). Hydrogel composite containing azelaic acid and tea tree essential oil as a therapeutic strategy for Propionibacterium and testosterone-induced acne. Drug Delivery and Translational Research, 12(10). https://doi.org/10.1007/s13346-021-01092-4
dc.relation.referencesBorrel, V., Thomas, P., Catovic, C., Racine, P. J., Konto-Ghiorghi, Y., Lefeuvre, L., Duclairoir-Poc, C., Zouboulis, C. C., & Feuilloley, M. G. J. (2019). Acne and Stress: Impact of Catecholamines on Cutibacterium acnes. Frontiers in Medicine, 6. https://doi.org/10.3389/fmed.2019.00155
dc.relation.referencesBouwstra, J. A., Helder, R. W. J., & El Ghalbzouri, A. (2021). Human skin equivalents: Impaired barrier function in relation to the lipid and protein properties of the stratum corneum. In Advanced Drug Delivery Reviews (Vol. 175). https://doi.org/10.1016/j.addr.2021.05.012
dc.relation.referencesBurma, N. E., Woo, T. E., & Parsons, L. (2022). Topical Clascoterone for Acne Vulgaris. Skin Therapy Letter, 27(1).
dc.relation.referencesByrd, A. L., Belkaid, Y., & Segre, J. A. (2018). The human skin microbiome. Nature Publishing Group, 16. https://doi.org/10.1038/nrmicro.2017.157
dc.relation.referencesCal, K. (2009). Across skin barrier: Known methods, new performances. Frontiers in Drug Design and Discovery, 4(1).
dc.relation.referencesCalderón-Pardo, D. E., Serafini, M. R., Alves, I. A., & Aragón, D. M. (2023). New Molecules of Importance in the Prevention and Treatment of Acne: A Systematic Patent Review (2016-2020). Current Medicinal Chemistry, 31(21). https://doi.org/10.2174/0929867331666230817155906
dc.relation.referencesCardona, M. I. (2021). Desarrollo de sistemas mucopenetrantes de administración oral como estrategia para aumentar la biodisponibilidad del flavonoide rutina en un extracto de cálices de Physalis peruviana [Doctoral thesis]. Universidad Nacional de Colombia.
dc.relation.referencesCasarini, T. P. A., Frank, L. A., Benin, T., Onzi, G., Pohlmann, A. R., & Guterres, S. S. (2021). Innovative hydrogel containing polymeric nanocapsules loaded with phloretin: Enhanced skin penetration and adhesion. Materials Science and Engineering C, 120. https://doi.org/10.1016/j.msec.2020.111681
dc.relation.referencesCaussin, J., Gooris, G. S., Janssens, M., & Bouwstra, J. A. (2008). Lipid organization in human and porcine stratum corneum differs widely, while lipid mixtures with porcine ceramides model human stratum corneum lipid organization very closely. Biochimica et Biophysica Acta - Biomembranes, 1778(6). https://doi.org/10.1016/j.bbamem.2008.03.003
dc.relation.referencesChangediya, V. V, Jani, R., & Kakde, P. (2019). A Review on Nanoemulsions: A Recent Drug Delivery Tool. Journal of Drug Delivery and Therapeutics, 9(5). https://doi.org/10.22270/jddt.v9i5.3577
dc.relation.referencesChen, L., Wu, M., Jiang, S., Zhang, Y., Li, R., Lu, Y., Liu, L., Wu, G., Liu, Y., Xie, L., & Xu, L. (2019). Skin toxicity assessment of silver nanoparticles in a 3D epidermal model compared to 2D keratinocytes. International Journal of Nanomedicine, 14. https://doi.org/10.2147/IJN.S225451
dc.relation.referencesCheon, D., Kim, J., Jeon, D., Shin, H.-C., & Kim, Y. (2019). Molecules Target Proteins of Phloretin for Its Anti-Inflammatory and Antibacterial Activities Against Propionibacterium acnes-Induced Skin Infection. Molecules. https://doi.org/10.3390/molecules24071319
dc.relation.referencesCheon, D., Lee, W. C., Lee, Y., Lee, J. Y., & Kim, Y. (2019). Structural basis of branched-chain fatty acid synthesis by Propionibacterium acnes β-ketoacyl acyl Carrier protein synthase. Biochemical and Biophysical Research Communications, 509(1). https://doi.org/10.1016/j.bbrc.2018.12.134
dc.relation.referencesCheryl, K. (2013). Chapter Two - Storage of Bacteria and Yeast. In Methods in Enzymology (Vol. 533, pp. 15–21).
dc.relation.referencesChoi, S. J., & McClements, D. J. (2020). Nanoemulsions as delivery systems for lipophilic nutraceuticals: strategies for improving their formulation, stability, functionality and bioavailability. In Food Science and Biotechnology (Vol. 29, Issue 2). https://doi.org/10.1007/s10068-019-00731-4
dc.relation.referencesChouhan, N., Mittal, V., Kaushik, D., Khatkar, A., & Raina, M. (2014). Self Emulsifying Drug Delivery System (SEDDS) for Phytoconstituents: A Review. Current Drug Delivery, 12(2). https://doi.org/10.2174/1567201811666141021142606
dc.relation.referencesCLSI. (2018). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard – 11th Edition. CLSI document M07-A11. In Wayne, PA: Clinical and Laboratory Standards Institutey.
dc.relation.referencesCorbisiero, M. F., Batta, N., Kyllo, H., Smyth, A., Allen, L., & Franco-Paredes, C. (2023). Clinical spectrum of Cutibacterium acnes infections: The SAPHO syndrome. IDCases, 32. https://doi.org/10.1016/j.idcr.2023.e01784
dc.relation.referencesCPMP/ICH. (2003). ICH Topic Q 1 A Stability Testing Guidelines : Stability Testing of New Drug Substances and Products. European Medicines Agency, January.
dc.relation.referencesDallo, M., Patel, K., & Hebert, A. A. (2023). Topical Antibiotic Treatment in Dermatology. In Antibiotics (Vol. 12, Issue 2). https://doi.org/10.3390/antibiotics12020188
dc.relation.referencesDanaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. R. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. In Pharmaceutics (Vol. 10, Issue 2). https://doi.org/10.3390/pharmaceutics10020057
dc.relation.referencesDas, P. K. (2017). Effect of temperature on zeta potential of functionalized gold nanorod. Microfluidics and Nanofluidics, 21(5). https://doi.org/10.1007/s10404-017-1931-6
dc.relation.referencesde Almeida Delatti, M., Castellan, C. C., Costa, A., & Dos Santos, M. (2023). Acne Vulgaris. In Dermatology in Public Health Environments: A Comprehensive Textbook, Second Edition. https://doi.org/10.1007/978-3-031-13505-7_23
dc.relation.referencesde Almeida, I. de A. A., Honório, T. da S., do Carmo, F. A., de Freitas, Z. M. F., Simon, A., Rangel Rodrigues, C., Pereira de Sousa, V., Cabral, L. M., & de Abreu, L. C. L. (2023). Development of SEDDS formulation containing caffeine for dermal delivery. International Journal of Cosmetic Science, 45(2). https://doi.org/10.1111/ics.12841
dc.relation.referencesDe Godoi, S. N., Quatrin, P. M. I., Sagrillo, M. R., Nascimento, K., Wagner, R., Klein, B., Santos, R. C. V., & Ourique, A. F. (2017). Evaluation of Stability and in Vitro Security of Nanoemulsions Containing Eucalyptus globulus Oil. BioMed Research International, 2017. https://doi.org/10.1155/2017/2723418
dc.relation.referencesDebraj, D., Carpenter, J., & Vatti, A. K. (2023). Understanding the Effect of the Oil-to-Surfactant Ratio on Eugenol Oil-in-Water Nanoemulsions Using Experimental and Molecular Dynamics Investigations. Industrial and Engineering Chemistry Research, 62(41). https://doi.org/10.1021/acs.iecr.3c02345
dc.relation.referencesDel Rosso, J. Q., & Kircik, L. (2024). The primary role of sebum in the pathophysiology of acne vulgaris and its therapeutic relevance in acne management. In Journal of Dermatological Treatment (Vol. 35, Issue 1). https://doi.org/10.1080/09546634.2023.2296855
dc.relation.referencesDesheng Wu, Lisha Hao, Xiaohan Liu, Xiaofeng Li, & Guanglei Zhao. (2024). The Anti-Biofilm Properties of Phloretin and Its Analogs against Porphyromonas gingivalis and Its Complex Flora. Foods, 13(13).
dc.relation.referencesDeshpande, R. D., Shah, D. S., Gurram, S., Jha, D. K., Batabyal, P., Amin, P. D., & Sathaye, S. (2023). Formulation, characterization, pharmacokinetics and antioxidant activity of phloretin oral granules. International Journal of Pharmaceutics, 645. https://doi.org/10.1016/j.ijpharm.2023.123386
dc.relation.referencesDursun, R., Daye, M., & Durmaz, K. (2019). Acne and rosacea: What’s new for treatment? Dermatologic Therapy, 32(5). https://doi.org/10.1111/dth.13020
dc.relation.referencesEberlin, S., Silva, M. S. da, Facchini, G., Silva, G. H. da, Pinheiro, A. L. T. A., Eberlin, S., & Pinheiro, A. da S. (2020). The Ex Vivo Skin Model as an Alternative Tool for the Efficacy and Safety Evaluation of Topical Products. In ATLA Alternatives to Laboratory Animals (Vol. 48, Issue 1). https://doi.org/10.1177/0261192920914193
dc.relation.referencesEl Maghraby, G. M., Arafa, M. F., & Sultan, A. A. (2023). Self-emulsifying systems for drug delivery: advances and challenges. In Advanced and Modern approaches for Drug Delivery. https://doi.org/10.1016/B978-0-323-91668-4.00030-7
dc.relation.referencesEMA, European Medicines Agency, Scientific Committee of Consumer Safefty, Sanidad, D. E., & Social, Y. B. (2024). Guideline on quality and equivalence of topical products. Ema/Chmp/Qwp/708282/2018, 44. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-quality-equivalence-locally-applied-locally-acting-cutaneous-products_en.pdf
dc.relation.referencesErnstmeyer, K., & Christman, E. (2021). Chapter 16 Administration of Medications Via Other Routes. In Open Resources for Nursing (Open RN). https://www.ncbi.nlm.nih.gov/books/NBK593196/.
dc.relation.referencesFitz-Gibbon, S., Tomida, S., Chiu, B. H., Nguyen, L., Du, C., Liu, M., Elashoff, D., Erfe, M. C., Loncaric, A., Kim, J., Modlin, R. L., Miller, J. F., Sodergren, E., Craft, N., Weinstock, G. M., & Li, H. (2013). Propionibacterium acnes strain populations in the human skin microbiome associated with acne. Journal of Investigative Dermatology, 133(9). https://doi.org/10.1038/jid.2013.21
dc.relation.referencesFood and Drug Administration (FDA). (2019). Human Dermal (Skin) Safety Testing for Topical Drug Products: Regulatory Utility and Evaluation; Public Workshop; Request for Comments. News & Events for Human Drugs .
dc.relation.referencesFournière, M., Latire, T., Souak, D., Feuilloley, M. G. J., & Bedoux, G. (2020). Staphylococcus epidermidis and cutibacterium acnes: Two major sentinels of skin microbiota and the influence of cosmetics. In Microorganisms (Vol. 8, Issue 11). https://doi.org/10.3390/microorganisms8111752
dc.relation.referencesGallo, R. L. (2017). Human Skin Is the Largest Epithelial Surface for Interaction with Microbes. In Journal of Investigative Dermatology (Vol. 137, Issue 6). https://doi.org/10.1016/j.jid.2016.11.045
dc.relation.referencesGalvan, A., Cappellozza, E., Pellequer, Y., Conti, A., Pozza, E. D., Vigato, E., Malatesta, M., & Calderan, L. (2023). An Innovative Fluid Dynamic System to Model Inflammation in Human Skin Explants. International Journal of Molecular Sciences, 24(7). https://doi.org/10.3390/ijms24076284
dc.relation.referencesGarcia, C., Pardo, J., & Seas, C. (2003). Bacteremia por Staphylococcus epidermidis y abceso de partes blandas en un paciente post-operado: reporte de un caso. Revista Medica Herediana, 14(4).
dc.relation.referencesGattefossé. (2025). Labrafil® M 1944 CS. Technical information. Https://Www.Gattefosse.Com/Pharmaceuticals/Product-Finder/Labrafil-m-1944-Cs#:~:Text=A%20nonionic%20water%2Ddispersible%20surfactant,To%20improve%20stability%20of%20emulsions.
dc.relation.referencesGerstel, D., Jacques-Jamin, C., Schepky, A., Cubberley, R., Eilstein, J., Grégoire, S., Hewitt, N., Klaric, M., Rothe, H., & Duplan, H. (2016). Comparison of protocols for measuring cosmetic ingredient distribution in human and pig skin. Toxicology in Vitro, 34. https://doi.org/10.1016/j.tiv.2016.03.012
dc.relation.referencesGhumatkar, P. J., Patil, S. P., Peshattiwar, V., Vijaykumar, T., Dighe, V., Vanage, G., & Sathaye, S. (2019). The modulatory role of phloretin in Aβ 25–35 induced sporadic Alzheimer’s disease in rat model. Naunyn-Schmiedeberg’s Archives of Pharmacology, 392(3). https://doi.org/10.1007/s00210-018-1588-z
dc.relation.referencesGollnick, H., Cunliffe, W., Berson, D., Dreno, B., Finlay, A., Leyden, J. J., Shalita, A. R., Thiboutot, D., & Schwarz, T. (2003). Management of acne: A report from a global alliance to improve outcomes in acne. Journal of the American Academy of Dermatology, 49(1 SUPPL.). https://doi.org/10.1067/mjd.2003.618
dc.relation.referencesGovey-Scotland, J., Johnstone, L., Myant, C., & Friddin, M. S. (2023). Towards skin-on-a-chip for screening the dermal absorption of cosmetics. In Lab on a Chip (Vol. 23, Issue 24). https://doi.org/10.1039/d3lc00691c
dc.relation.referencesGuideline, I. C. H. H. T. (2005). Validation of analytical procedures: text and methodology Q2 (R1). IFPMA: Geneva.
dc.relation.referencesGunst, R. F., Myers, R. H., & Montgomery, D. C. (1996). Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Technometrics, 38(3). https://doi.org/10.2307/1270613
dc.relation.referencesGursoy, R. N., & Benita, S. (2004). Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomedicine and Pharmacotherapy, 58(3). https://doi.org/10.1016/j.biopha.2004.02.001
dc.relation.referencesHabeshian, K. A., & Cohen, B. A. (2020). Current issues in the treatment of acne vulgaris. Pediatrics, 145(2). https://doi.org/10.1542/PEDS.2019-2056L
dc.relation.referencesHabtemariam, S. (2023). The Molecular Pharmacology of Phloretin: Anti-Inflammatory Mechanisms of Action. In Biomedicines (Vol. 11, Issue 1). https://doi.org/10.3390/biomedicines11010143
dc.relation.referencesHagen, M., & Baker, M. (2017). Skin penetration and tissue permeation after topical administration of diclofenac. In Current Medical Research and Opinion (Vol. 33, Issue 9). https://doi.org/10.1080/03007995.2017.1352497
dc.relation.referencesHeng, A. H. S., & Chew, F. T. (2020). Systematic review of the epidemiology of acne vulgaris. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-62715-3
dc.relation.referencesHernández, A. C., Rodríguez, I. A. ;, Serafini, M., & Aragón, M. (2024). Innovative applications of marine-derived algae in cosmetics: A patent review (2010 2023). Algal Research, 84(103806).
dc.relation.referencesHoover, E., Aslam, S., & Krishnamurthy, K. (2022). Physiology, Sebaceous Glands. StatPearls.
dc.relation.referencesHuang, L., Yang, S., Yu, X., Fang, F., Zhu, L., Wang, L., Zhang, X., Yang, C., Qian, Q., & Zhu, T. (2024). Association of different cell types and inflammation in early acne vulgaris. In Frontiers in Immunology (Vol. 15). https://doi.org/10.3389/fimmu.2024.1275269
dc.relation.referencesHuang, W. C., Dai, Y. W., Peng, H. L., Kang, C. W., Kuo, C. Y., & Liou, C. J. (2015). Phloretin ameliorates chemokines and ICAM-1 expression via blocking of the NF-κB pathway in the TNF-α-induced HaCaT human keratinocytes. International Immunopharmacology, 27(1). https://doi.org/10.1016/j.intimp.2015.04.024
dc.relation.referencesHughes, A. J., Tawfik, S. S., Baruah, K. P., O’Toole, E. A., & O’Shaughnessy, R. F. L. (2021). Tape strips in dermatology research*. In British Journal of Dermatology (Vol. 185, Issue 1). https://doi.org/10.1111/bjd.19760
dc.relation.referencesHwang, J. H., Jeong, H., Lee, N., Hur, S., Lee, N., Han, J. J., Jang, H. W., Choi, W. K., Nam, K. T., & Lim, K. M. (2021). Ex vivo live full-thickness porcine skin model as a versatile in vitro testing method for skin barrier research. International Journal of Molecular Sciences, 22(2). https://doi.org/10.3390/ijms22020657
dc.relation.referencesI.M. Mahbubul. (2019). 1 - Introduction to Nanofluid. In Preparation, Characterization, Properties and Application of Nanofluid (pp. 1–13).
dc.relation.referencesIskandar, B., Mei, H. C., Liu, T. W., Lin, H. M., & Lee, C. K. (2024). Evaluating the effects of surfactant types on the properties and stability of oil-in-water Rhodiola rosea nanoemulsion. Colloids and Surfaces B: Biointerfaces, 234. https://doi.org/10.1016/j.colsurfb.2023.113692
dc.relation.referencesJeong, W. Y., Kwon, M., Choi, H. E., & Kim, K. S. (2021). Recent advances in transdermal drug delivery systems: a review. In Biomaterials Research (Vol. 25, Issue 1). https://doi.org/10.1186/s40824-021-00226-6
dc.relation.referencesJeremy, A. H. T., Holland, D. B., Roberts, S. G., Thomson, K. F., & Cunliffe, W. J. (2003). Inflammatory events are involved in acne lesion initiation. Journal of Investigative Dermatology, 121(1). https://doi.org/10.1046/j.1523-1747.2003.12321.x
dc.relation.referencesJesumani, V., Du, H., Aslam, M., Pei, P., & Huang, N. (2019). Potential use of seaweed bioactive compounds in skincare—a review. In Marine Drugs (Vol. 17, Issue 12). https://doi.org/10.3390/md17120688
dc.relation.referencesJiao, Q., Zhi, L., You, B., Wang, G., Wu, N., & Jia, Y. (2024). Skin homeostasis: Mechanism and influencing factors. In Journal of Cosmetic Dermatology (Vol. 23, Issue 5). https://doi.org/10.1111/jocd.16155
dc.relation.referencesJu, Q., Tao, T., Hu, T., Karadağ, A. S., Al-Khuzaei, S., & Chen, W. C. (2017). Sex hormones and acne. Clinics in Dermatology, 35(2). https://doi.org/10.1016/j.clindermatol.2016.10.004
dc.relation.referencesJung, M., Triebel, S., Anke, T., Richling, E., & Erkel, G. (2009). Influence of apple polyphenols on inflammatory gene expression. Molecular Nutrition and Food Research, 53(10). https://doi.org/10.1002/mnfr.200800575
dc.relation.referencesKalepu, S., & Nekkanti, V. (2015). Insoluble drug delivery strategies: Review of recent advances and business prospects. In Acta Pharmaceutica Sinica B (Vol. 5, Issue 5). https://doi.org/10.1016/j.apsb.2015.07.003
dc.relation.referencesKanwar, I. L., Haider, T., Kumari, A., Dubey, S., Jain, P., & Soni, V. (2018). Models for acne: A comprehensive study. Drug Discoveries & Therapeutics, 12(6), 329–340. https://doi.org/10.5582/ddt.2018.01079
dc.relation.referencesKhalid, A., Arshad, M. U., Imran, A., Haroon Khalid, S., & Shah, M. A. (2023). Development, stabilization, and characterization of nanoemulsion of vitamin D3-enriched canola oil. Frontiers in Nutrition, 10. https://doi.org/10.3389/fnut.2023.1205200
dc.relation.referencesKhan, M., Ali, M., Shah, W., Shah, A., & Yasinzai, M. M. (2019). Curcumin-loaded self-emulsifying drug delivery system (cu-SEDDS): a promising approach for the control of primary pathogen and secondary bacterial infections in cutaneous leishmaniasis. Applied Microbiology and Biotechnology, 103(18). https://doi.org/10.1007/s00253-019-09990-x
dc.relation.referencesKhan, M., Nadhman, A., Sehgal, S. A., Siraj, S., & Yasinzai, M. M. (2018). Formulation and Characterization of a Self-Emulsifying Drug Delivery System (SEDDS) of Curcumin for the Topical Application in Cutaneous and Mucocutaneous Leishmaniasis. Current Topics in Medicinal Chemistry, 18(18). https://doi.org/10.2174/1568026618666181025104818
dc.relation.referencesKhiao In, M., Richardson, K. C., Loewa, A., Hedtrich, S., Kaessmeyer, S., & Plendl, J. (2019). Histological and functional comparisons of four anatomical regions of porcine skin with human abdominal skin. Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia, 48(3). https://doi.org/10.1111/ahe.12425
dc.relation.referencesKommuru, T. R., Gurley, B., Khan, M. A., & Reddy, I. K. (2001). Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: Formulation development and bioavailability assessment. International Journal of Pharmaceutics, 212(2). https://doi.org/10.1016/S0378-5173(00)00614-1
dc.relation.referencesKowalska-Krochmal, B., & Dudek-Wicher, R. (2021). The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. In Pathogens (Vol. 10, Issue 2). https://doi.org/10.3390/pathogens10020165
dc.relation.referencesKum, H., Roh, K. B., Shin, S., Jung, K., Park, D., & Jung, E. (2016). Evaluation of anti-acne properties of phloretin in vitro and in vivo. International Journal of Cosmetic Science, 38(1). https://doi.org/10.1111/ics.12263
dc.relation.referencesKurokawa, I., & Nakase, K. (2020a). Open Peer Review Recent advances in understanding and managing acne [version 1; peer review: 2 approved]. https://doi.org/10.12688/f1000research.25588.1
dc.relation.referencesKurokawa, I., & Nakase, K. (2020b). Open Peer Review Recent advances in understanding and managing acne [version 1; peer review: 2 approved]. https://doi.org/10.12688/f1000research.25588.1
dc.relation.referencesLademann, J., Jacobi, U., Surber, C., Weigmann, H. J., & Fluhr, J. W. (2009). The tape stripping procedure - evaluation of some critical parameters. European Journal of Pharmaceutics and Biopharmaceutics, 72(2). https://doi.org/10.1016/j.ejpb.2008.08.008
dc.relation.referencesLaguna D. (2021). Análisis de extractos promisorios de Productos Naturales Marinos mediante redes moleculares. Universidad Nacional de Colombia.
dc.relation.referencesLambrechts, I. A., de Canha, M. N., & Lall, N. (2017). Exploiting medicinal plants as possible treatments for acne vulgaris. In Medicinal Plants for Holistic Health and Well-Being. https://doi.org/10.1016/B978-0-12-812475-8.00004-4
dc.relation.referencesŁapińska, U., Voliotis, M., Lee, K. K., Campey, A., Stone, R. M. L., Tuck, B., Phetsang, W., Zhang, B., Tsaneva-Atanasova, K., Blaskovich, M. A. T., & Pagliara, S. (2022). Fast bacterial growth reduces antibiotic accumulation and efficacy. ELife, 11. https://doi.org/10.7554/ELIFE.74062
dc.relation.referencesLau, E. (2001). Preformulation Studies. Separation Science and Technology, 3(C), 173–233. https://doi.org/10.1016/S0149-6395(01)80007-6
dc.relation.referencesLawrence, M. J., & Rees, G. D. (2000). Microemulsion-based media as novel drug delivery systems. Advanced Drug Delivery Reviews, 45(1). https://doi.org/10.1016/S0169-409X(00)00103-4
dc.relation.referencesLee E, & Anjum F. (2025). Staphylococcus epidermidis Infection. Https://Www.Ncbi.Nlm.Nih.Gov/Books/NBK563240/.
dc.relation.referencesLee, H. J., & Kim, M. (2022). Skin Barrier Function and the Microbiome. In International Journal of Molecular Sciences (Vol. 23, Issue 21). https://doi.org/10.3390/ijms232113071
dc.relation.referencesLewińska, A., Domżał-Kędzia, M., Jaromin, A., & Łukaszewicz, M. (2020). Nanoemulsion stabilized by safe surfactin from Bacillus subtilis as a multifunctional, custom-designed smart delivery system. Pharmaceutics, 12(10). https://doi.org/10.3390/pharmaceutics12100953
dc.relation.referencesLi, B., Li, R., & Yan, W. (2011). Solubilities of phloretin in 12 solvents at different temperatures. Journal of Chemical and Engineering Data, 56(4). https://doi.org/10.1021/je101168w
dc.relation.referencesLi, X., Cao, Y., An, S. J., Xiang, Y., Huang, H. X., Xu, B., Zhang, Y., Li, Y. F., Lu, Y. G., & Cai, T. J. (2022). The association between short-term ambient air pollution and acne vulgaris outpatient visits: a hospital-based time-series analysis in Xi’an. Environmental Science and Pollution Research, 29(10). https://doi.org/10.1007/s11356-021-16607-2
dc.relation.referencesLi, Y., Dong, C., Cun, D., Liu, J., Xiang, R., & Fang, L. (2016). Lamellar Liquid Crystal Improves the Skin Retention of 3-O-Ethyl-Ascorbic Acid and Potassium 4-Methoxysalicylate In Vitro and In Vivo for Topical Preparation. AAPS PharmSciTech, 17(3). https://doi.org/10.1208/s12249-015-0353-6
dc.relation.referencesLijia, X., Guo, J., Chen, Q., Baoping, J., & Zhang, W. (2014). Quantitation of phlorizin and phloretin using an ultra highperformance liquid chromatography–electrospray ionization tandemmass spectrometric method. Journal of Chromatography B, 1570(0232), 67–72.
dc.relation.referencesLim, K. M. (2021). Skin epidermis and barrier function. In International Journal of Molecular Sciences (Vol. 22, Issue 6). https://doi.org/10.3390/ijms22063035
dc.relation.referencesLing, J., Du, Y., Sheng, Y., Wang, W., Wu, H., Chen, G., & Lv, H. (2023). Influence of cryopreservation methods of ex vivo rat and pig skin on the results of in vitro permeation test. European Journal of Pharmaceutics and Biopharmaceutics, 189. https://doi.org/10.1016/j.ejpb.2023.06.004
dc.relation.referencesLommen, A., Godejohann, M., Venema, D. P., Hollman, P. C. H., & Spraul, M. (2000). Application of directly coupled HPLC-NMR-MS to the identification and confirmation of quercetin glycosides and phloretin glycosides in apple peel. Analytical Chemistry, 72(8). https://doi.org/10.1021/ac9912303
dc.relation.referencesM. Remsberg, C., A. Yáñez, J., Vega-Villa, K. R., D. Miranda, N., & K. Andrews, P. (2010). HPLC-UV Analysis of Phloretin in Biological Fluids and Application to Pre-Clinical Pharmacokinetic Studies. Journal of Chromatography & Separation Techniques, 01(01). https://doi.org/10.4172/2157-7064.1000101
dc.relation.referencesMacLeod, D. T., Cogen, A. L., & Gallo, R. L. (2009). Skin Microbiology. In Encyclopedia of Microbiology, Third Edition. https://doi.org/10.1016/B978-012373944-5.00205-4
dc.relation.referencesMartin, A. N. (1993). Physical Pharmacy. The American Journal of the Medical Sciences, 241(1). https://doi.org/10.1097/00000441-196101000-00040
dc.relation.referencesMavranezouli, I., Daly, C. H., Welton, N. J., Deshpande, S., Berg, L., Bromham, N., Arnold, S., Phillippo, D. M., Wilcock, J., Xu, J., Ravenscroft, J. C., Wood, D., Rafiq, M., Fou, L., Dworzynski, K., & Healy, E. (2022). A systematic review and network meta-analysis of topical pharmacological, oral pharmacological, physical and combined treatments for acne vulgaris*. In British Journal of Dermatology (Vol. 187, Issue 5). https://doi.org/10.1111/bjd.21739
dc.relation.referencesMeyerholz, D. K., & Beck, A. P. (2018). Principles and approaches for reproducible scoring of tissue stains in research. In Laboratory Investigation (Vol. 98, Issue 7). https://doi.org/10.1038/s41374-018-0057-0
dc.relation.referencesMichalak, M., Pierzak, M., Kręcisz, B., & Suliga, E. (2021). Bioactive compounds for skin health: A review. In Nutrients (Vol. 13, Issue 1). https://doi.org/10.3390/nu13010203
dc.relation.referencesMohamed, S. A., & Hargest, R. (2022). Surgical anatomy of the skin. In Surgery (United Kingdom) (Vol. 40, Issue 1). https://doi.org/10.1016/j.mpsur.2021.11.021
dc.relation.referencesMohammadi-Samani, S., Masoumzadeh, P., Ghasemiyeh, P., & Alipour, S. (2022). Oxybutynin-Nanoemulgel Formulation as a Successful Skin Permeation Strategy: In-vitro and ex-vivo Evaluation. Frontiers in Materials, 9. https://doi.org/10.3389/fmats.2022.848629
dc.relation.referencesMongomery, D. C. (2017). Design and Analysis of Experiments. In John Willy & Sons.
dc.relation.referencesMusakhanian, J., Osborne, D. W., & Rodier, J. (2024). Skin Penetration and Permeation Properties of Transcutol® in Complex Formulations. AAPS PharmSciTech , 25(201).
dc.relation.referencesNair, A., Jacob, S., Al-Dhubiab, B., Attimarad, M., & Harsha, S. (2013). Basic considerations in the dermatokinetics of topical formulations. Brazilian Journal of Pharmaceutical Sciences, 49(3). https://doi.org/10.1590/S1984-82502013000300004
dc.relation.referencesNakhate, K. T., Badwaik, H., Choudhary, R., Sakure, K., Agrawal, Y. O., Sharma, C., Ojha, S., & Goyal, S. N. (2022). Therapeutic Potential and Pharmaceutical Development of a Multitargeted Flavonoid Phloretin. In Nutrients (Vol. 14, Issue 17). https://doi.org/10.3390/nu14173638
dc.relation.referencesNarang, A. S., Mantri, R. V., & Raghavan, K. S. (2017). Excipient compatibility and functionality. In Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice: Second Edition. https://doi.org/10.1016/B978-0-12-802447-8.00006-6
dc.relation.referencesNast, A., Dréno, B., Bettoli, V., Degitz, K., Erdmann, R., Finlay, A. Y., Ganceviciene, R., Haedersdal, M., Layton, A., López-Estebaranz, J. L., Ochsendorf, F., Oprica, C., Rosumeck, S., Rzany, B., Sammain, A., Simonart, T., Veien, N. K., Živković, M. V., Zouboulis, C. C., & Gollnick, H. (2012). European evidence-based (S3) guidelines for the treatment of acne. In Journal of the European Academy of Dermatology and Venereology (Vol. 26, Issue SUPPL. 1). https://doi.org/10.1111/j.1468-3083.2011.04374.x
dc.relation.referencesNeupane, R., Boddu, S. H. S., Renukuntla, J., Babu, R. J., & Tiwari, A. K. (2020). Alternatives to biological skin in permeation studies: Current trends and possibilities. In Pharmaceutics (Vol. 12, Issue 2). https://doi.org/10.3390/pharmaceutics12020152
dc.relation.referencesOECD. (2004a). OECD Guideline for testing of chemicals. Skin Absorption: in vitro Method (427). Test, April.
dc.relation.referencesOECD. (2004b). Test No. 428: Skin Absorption: In Vitro Method.
dc.relation.referencesOspina, V. E., Mantilla, J. C., Conde, C. A., & Escobar, P. (2014). Permeación en piel humana de una nanoemulsión de ftalocianina de aluminio clorada para la optimización de tratamientos tópicos de leishmaniasis cutánea. Revista Ciencias de La Salud, 12(2). https://doi.org/10.12804/revsalud12.2.2014.05
dc.relation.referencesOtto, M. (2012). Molecular basis of Staphylococcus epidermidis infections. In Seminars in Immunopathology (Vol. 34, Issue 2). https://doi.org/10.1007/s00281-011-0296-2
dc.relation.referencesPataveepaisit, H., & Srisuriyachai, F. (2020). Characteristics evaluation of fluorescein sodium as fluorescent tracer for petroleum wells. IOP Conference Series: Earth and Environmental Science, 609(1). https://doi.org/10.1088/1755-1315/609/1/012102
dc.relation.referencesPate, K., & Safier, P. (2016). Chemical metrology methods for CMP quality. Advances in Chemical Mechanical Planarization (CMP), 299–325. https://doi.org/10.1016/B978-0-08-100165-3.00012-7
dc.relation.references(PHE), P. H. E. (2020). UK Standards for Microbiology Investigations: UK Standards for Microbiology Investigations Identification of Staphylococcus species, Micrococcus species and Rothia species. Public Health England (PHE), 7(4).
dc.relation.referencesPonto, T., Latter, G., Luna, G., Leite-Silva, V. R., Wright, A., & Benson, H. A. E. (2021). Novel self-nano-emulsifying drug delivery systems containing astaxanthin for topical skin delivery. Pharmaceutics, 13(5). https://doi.org/10.3390/pharmaceutics13050649
dc.relation.referencesPouton, C. W. (2000). Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and “self-microemulsifying” drug delivery systems. European Journal of Pharmaceutical Sciences, 11(SUPPL. 2). https://doi.org/10.1016/S0928-0987(00)00167-6
dc.relation.referencesPouton, C. W. (2006). Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification system. European Journal of Pharmaceutical Sciences, 29(3-4 SPEC. ISS.). https://doi.org/10.1016/j.ejps.2006.04.016
dc.relation.referencesPrapapan, O., Chatchavarn, C. C., Suvanprakorn, P., Neumann, H. A. M., Knobler, R., Prombandankul, A., & Siriapaipun, K. (2020). Proposal for a 4-type Classification of Acne: An Evidence-Based Review of the Literature. The Open Dermatology Journal, 14(1). https://doi.org/10.2174/1874372202014010038
dc.relation.referencesQamhieh, K. (2024). Effect of Dielectric Constant on the Zeta Potential of Spherical Electric Double Layers. Molecules, 29(11), 2484. https://doi.org/10.3390/molecules29112484
dc.relation.referencesQuan, T. (2016). Molecular mechanisms of skin aging and age-related diseases. In Molecular Mechanisms of Skin Aging and Age-Related Diseases. https://doi.org/10.1201/b21370
dc.relation.referencesRaina, N., Rani, R., Thakur, V. K., & Gupta, M. (2023). New Insights in Topical Drug Delivery for Skin Disorders: From a Nanotechnological Perspective. In ACS Omega (Vol. 8, Issue 22). https://doi.org/10.1021/acsomega.2c08016
dc.relation.referencesRay, P., Singh, S., & Gupta, S. (2019). Topical Antimicrobial Therapy: Current Status and Challenges. Indian Journal of Medical Microbiology, 37(3), 299–308. https://doi.org/10.4103/IJMM.IJMM_19_443
dc.relation.referencesRimon, A., Rakov, C., Lerer, V., Sheffer-Levi, S., Oren, S. A., Shlomov, T., Shasha, L., Lubin, R., Zubeidat, K., Jaber, N., Mujahed, M., Wilensky, A., Coppenhagen-Glazer, S., Molho-Pessach, V., & Hazan, R. (2023). Topical phage therapy in a mouse model of Cutibacterium acnes-induced acne-like lesions. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-36694-8
dc.relation.referencesRivera, A., Viñado, B., Benito, N., Docobo-Pérez, F., Fernández-Cuenca, F., Fernández-Domínguez, J., Guinea, J., López-Navas, A., Moreno, M. Á., Larrosa, M. N., Oliver, A., & Navarro, F. (2023). Recommendations of the Spanish Antibiogram Committee (COESANT) for in vitro susceptibility testing of antimicrobial agents by disk diffusion. In Enfermedades Infecciosas y Microbiologia Clinica (Vol. 41, Issue 9). https://doi.org/10.1016/j.eimc.2022.04.015
dc.relation.referencesRoberts, W. (2021). Air pollution and skin disorders. In International Journal of Women’s Dermatology (Vol. 7, Issue 1). https://doi.org/10.1016/j.ijwd.2020.11.001
dc.relation.referencesRogiers V, & Pauwels M. (2008). Safety Assessment of Cosmetics in Europe.Critical Analysis of the Safety Assessment of Cosmetic Ingredients Performed at the European Level. Curr Probl Dermatol.
dc.relation.referencesRomes, N. B., Abdul Wahab, R., Abdul Hamid, M., Oyewusi, H. A., Huda, N., & Kobun, R. (2021). Thermodynamic stability, in-vitro permeability, and in-silico molecular modeling of the optimal Elaeis guineensis leaves extract water-in-oil nanoemulsion. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-00409-0
dc.relation.referencesRoseboom, I. C., Rosing, H., Beijnen, J. H., & Dorlo, T. P. C. (2020). Skin tissue sample collection, sample homogenization, and analyte extraction strategies for liquid chromatographic mass spectrometry quantification of pharmaceutical compounds. In Journal of Pharmaceutical and Biomedical Analysis (Vol. 191). https://doi.org/10.1016/j.jpba.2020.113590
dc.relation.referencesRozo, G., Rozo, C., Puyana, M., Ramos, F. A., Almonacid, C., & Castro, H. (2019). Two compounds of the Colombian algae Hypnea musciformis prevent oxidative damage in human low density lipoproteins LDLs. Journal of Functional Foods, 60. https://doi.org/10.1016/j.jff.2019.06.001
dc.relation.referencesSaenger, T., Hübner, F., & Humpf, H. U. (2017). Short-term biomarkers of apple consumption. Molecular Nutrition and Food Research, 61(3). https://doi.org/10.1002/mnfr.201600629
dc.relation.referencesSalazar, J., Carmona, T., Zacconi, F. C., Venegas-Yazigi, D., Cabello-Verrugio, C., Il Choi, W., & Vilos, C. (2023). The Human Dermis as a Target of Nanoparticles for Treating Skin Conditions. In Pharmaceutics (Vol. 15, Issue 1). https://doi.org/10.3390/pharmaceutics15010010
dc.relation.referencesSalim, A., & Ghada, A. M. (2024). The Genetic Tree of Seven Cutibacterium acnes Strains and their Susceptibility to Common Antibiotics. Journal of Education and Science , 33(3).
dc.relation.referencesSalvioni, L., Morelli, L., Ochoa, E., Labra, M., Fiandra, L., Palugan, L., Prosperi, D., & Colombo, M. (2021). The emerging role of nanotechnology in skincare. In Advances in Colloid and Interface Science (Vol. 293). https://doi.org/10.1016/j.cis.2021.102437
dc.relation.referencesSamara, E. (2021). Metodologías para evaluar la eficacia de los productos en la regulación de la microbiota cutánea}. Asociación Colombiana de Ciencia y Tecnología Cosmética
dc.relation.referencesSantos, A. C., Morais, F., Simões, A., Pereira, I., Sequeira, J. A. D., Pereira-Silva, M., Veiga, F., & Ribeiro, A. (2019). Nanotechnology for the development of new cosmetic formulations. In Expert Opinion on Drug Delivery (Vol. 16, Issue 4). https://doi.org/10.1080/17425247.2019.1585426
dc.relation.referencesScott Hultman, C. (2016). Discussion: A Comparison of Methods to Assess Mastectomy Flap Viability in Skin-Sparing Mastectomy and Immediate Reconstruction: A Prospective Cohort Study. In Plastic and Reconstructive Surgery (Vol. 137, Issue 2). https://doi.org/10.1097/01.prs.0000475745.10344.57
dc.relation.referencesSerajuddin, A. T. M. (2007). Salt formation to improve drug solubility. In Advanced Drug Delivery Reviews (Vol. 59, Issue 7). https://doi.org/10.1016/j.addr.2007.05.010
dc.relation.referencesSevern, M. M., & Horswill, A. R. (2023). Staphylococcus epidermidis and its dual lifestyle in skin health and infection. In Nature Reviews Microbiology (Vol. 21, Issue 2). https://doi.org/10.1038/s41579-022-00780-3
dc.relation.referencesSharkawy, A., Barreiro, M. F., & Rodrigues, A. E. (2021). New Pickering emulsions stabilized with chitosan/collagen peptides nanoparticles: Synthesis, characterization and tracking of the nanoparticles after skin application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 616. https://doi.org/10.1016/j.colsurfa.2021.126327
dc.relation.referencesShimizu, N., Takahara, C., & Ogami, H. (2024). Antibacterial Activity of Defensive Secretions from the Lace Bug Stephanitis svensoni (Drake) (Hemiptera: Tingidae). Insects, 15(4), 257. https://doi.org/10.3390/insects15040257
dc.relation.referencesShukla, T., Upmanyu, N., Sahu, P., & Mishra, V. (2021). Transcutol: an emerging penetration enhancer for topical drug delivery. . Pharmaceutical Nanotechnology, , 9(5), 337–348.
dc.relation.referencesSingh, N., Rai, S., & Bhattacharya, S. (2020). A Conceptual Analysis of Solid Self-emulsifying Drug Delivery System and its Associate Patents for the Treatment of Cancer. Recent Patents on Nanotechnology, 15(2). https://doi.org/10.2174/1872210514666200909155516
dc.relation.referencesSkowron, K., Bauza-Kaszewska, J., Kraszewska, Z., Wiktorczyk-Kapischke, N., Grudlewska-Buda, K., Kwiecińska-Piróg, J., Wałecka-Zacharska, E., Radtke, L., & Gospodarek-Komkowska, E. (2021). Human Skin Microbiome: Impact of Intrinsic and Extrinsic Factors on Skin Microbiota. Microorganisms, 9(3), 543. https://doi.org/10.3390/microorganisms9030543
dc.relation.referencesSomala, N., Laosinwattana, C., & Teerarak, M. (2022). Formulation process, physical stability and herbicidal activities of Cymbopogon nardus essential oil-based nanoemulsion. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-14591-2
dc.relation.referencesStokes, J. M., Lopatkin, A. J., Lobritz, M. A., & Collins, J. J. (2019). Bacterial Metabolism and Antibiotic Efficacy. In Cell Metabolism (Vol. 30, Issue 2). https://doi.org/10.1016/j.cmet.2019.06.009
dc.relation.referencesSummerfield, A., Meurens, F., & Ricklin, M. E. (2015). The immunology of the porcine skin and its value as a model for human skin. In Molecular Immunology (Vol. 66, Issue 1). https://doi.org/10.1016/j.molimm.2014.10.023
dc.relation.referencesSzenk, M., Dill, K. A., & de Graff, A. M. R. (2017). Why Do Fast-Growing Bacteria Enter Overflow Metabolism? Testing the Membrane Real Estate Hypothesis. In Cell Systems (Vol. 5, Issue 2). https://doi.org/10.1016/j.cels.2017.06.005
dc.relation.referencesTang, T., Xu, Y., Wang, L., & Zhang, P. (2023). In vitro acne disease model from inertial focusing effect for studying the interactions between sebocyte glands and macrophages. Biotechnology Journal, 18(11). https://doi.org/10.1002/biot.202300108
dc.relation.referencesTanzer, T. L., & Horne, J. G. (1982). The assessment of skin viability using fluorescein angiography prior to amputation. Journal of Bone and Joint Surgery - Series A, 64(6). https://doi.org/10.2106/00004623-198264060-00010
dc.relation.referencesThilak, M., Haiou, Q., Desiree, V. H., Siyam M., A., Angel, P., & Taylor, I. (2019). Chapter 11 - Characterization of Nanomaterials: Tools and Challenges. In Nanomaterials for Food Applications (pp. 313–353).
dc.relation.referencesTriggle, D. J. (2006). Comprehensive Medicinal Chemistry II Volume 2 : Strategy and Drug Research. In Strategy (Vol. 2).
dc.relation.referencesTuli, H. S., Rath, P., Chauhan, A., Ramniwas, S., Vashishth, K., Varol, M., Jaswal, V. S., Haque, S., & Sak, K. (2022). Phloretin, as a Potent Anticancer Compound: From Chemistry to Cellular Interactions. In Molecules (Vol. 27, Issue 24). https://doi.org/10.3390/molecules27248819
dc.relation.referencesvan Staden, D., du Plessis, J., & Viljoen, J. (2020a). Development of a self-emulsifying drug delivery system for optimized topical delivery of clofazimine. Pharmaceutics, 12(6). https://doi.org/10.3390/pharmaceutics12060523
dc.relation.referencesvan Staden, D., du Plessis, J., & Viljoen, J. (2020b). Development of topical/transdermal self-emulsifying drug delivery systems, not as simple as expected. In Scientia Pharmaceutica (Vol. 88, Issue 2). https://doi.org/10.3390/scipharm88020017
dc.relation.referencesW. Caldwell, G., Yan, Z., Lang, W., & A. Masucci, J. (2012). The IC50 Concept Revisited. Current Topics in Medicinal Chemistry, 12(11). https://doi.org/10.2174/156802612800672844
dc.relation.referencesWang, J., Zhao, Y., Zhai, B., Cheng, J., Sun, J., Zhang, X., & Guo, D. (2023). Phloretin Transfersomes for Transdermal Delivery: Design, Optimization, and In Vivo Evaluation. Molecules, 28(19). https://doi.org/10.3390/molecules28196790
dc.relation.referencesWang, Q., Hu, C., Zhang, H., Zhang, Y., Liu, T., Qian, A., & Xia, Q. (2016). Evaluation of a new solid non-aqueous self-double-emulsifying drug-delivery system for topical application of quercetin. Journal of Microencapsulation, 33(8). https://doi.org/10.1080/02652048.2016.1264494
dc.relation.referencesWang, Q., Sun, R., Huang, J., & Xia, Q. (2021). Development and characterization of a new non-aqueous self-double-emulsifying drug delivery system for topical application of rutin. Journal of Drug Delivery Science and Technology, 61. https://doi.org/10.1016/j.jddst.2019.101243
dc.relation.referencesWang, Q., Zhang, H., Huang, J., Xia, N., Li, T., & Xia, Q. (2018). Self-double-emulsifying drug delivery system incorporated in natural hydrogels: a new way for topical application of vitamin C. Journal of Microencapsulation, 35(1). https://doi.org/10.1080/02652048.2018.1425752
dc.relation.referencesWestman, M., Al-Bader, T., Merinville, E., Cattley, K., Lafon-Kolb, V., Darbon, J., Mavon, A., & Laloeuf, A. (2014). In vivo cosmetic product efficacy testing by analyzing epidermal proteins extracted from tape strips. Cosmetics, 1(1). https://doi.org/10.3390/cosmetics1010029
dc.relation.referencesWilliams, M. R., Bagood, M. D., Enroth, T. J., Bunch, Z. L., Jiang, N., Liu, E., Almoughrabie, S., Khalil, S., Li, F., Brinton, S., Cech, N. B., Horswill, A. R., & Gallo, R. L. (2023). Staphylococcus epidermidis activates keratinocyte cytokine expression and promotes skin inflammation through the production of phenol-soluble modulins. Cell Reports, 42(9). https://doi.org/10.1016/j.celrep.2023.113024
dc.relation.referencesXu, H., & Li, H. (2019). Acne, the Skin Microbiome, and Antibiotic Treatment. In American Journal of Clinical Dermatology (Vol. 20, Issue 3). https://doi.org/10.1007/s40257-018-00417-3
dc.relation.referencesYang, X., Gao, P., Jiang, Z., Luo, Q., Mu, C., & Cui, M. (2021). Preparation and Evaluation of Self-emulsifying Drug Delivery System (SEDDS) of Cepharanthine. AAPS PharmSciTech, 22(7). https://doi.org/10.1208/s12249-021-02085-9
dc.relation.referencesYongsong, Z., Na, X., Zhenzhen, D., Jingjing, S., Yanan, Z., Cao, L., Xuesong, H., & Zuoshan, F. (2025). Preparation, structural changes and functional properties of the covalent complexes of almond protein and phloretin. Int J Biol Macromol , 293(139322).
dc.relation.referencesYujing, L., Wanting, J., Cheng, P., Donghai, W., Yiling, X., Hong, Y., Xinhua, X., & Jing, W. (2024). Advances in polymeric nano-delivery systems targeting hair follicles for the treatment of acne. Drug Deliv, 31(2372269).
dc.relation.referencesZaenglein, A. L., Pathy, A. L., Schlosser, B. J., Alikhan, A., Baldwin, H. E., Berson, D. S., Bowe, W. P., Graber, E. M., Harper, J. C., Kang, S., Keri, J. E., Leyden, J. J., Reynolds, R. V., Silverberg, N. B., Stein Gold, L. F., Tollefson, M. M., Weiss, J. S., Dolan, N. C., Sagan, A. A., … Bhushan, R. (2016). Guidelines of care for the management of acne vulgaris. Journal of the American Academy of Dermatology, 74(5). https://doi.org/10.1016/j.jaad.2015.12.037
dc.relation.referencesZhang, C., & Li, B. (2022). Fabrication of nanoemulsion delivery system with high bioaccessibility of carotenoids from Lycium barbarum by spontaneous emulsification. Food Science and Nutrition, 10(8). https://doi.org/10.1002/fsn3.2863
dc.relation.referencesZhao, P., Zhang, Y., Deng, H., & Meng, Y. (2022). Antibacterial mechanism of apple phloretin on physiological and morphological properties of Listeria monocytogenes. Food Science and Technology (Brazil), 42. https://doi.org/10.1590/fst.55120
dc.relation.referencesZhao, Y. yuan, Fan, Y., Wang, M., Wang, J., Cheng, J. xue, Zou, J. bo, Zhang, X. fei, Shi, Y. jun, & Guo, D. yan. (2020). Studies on pharmacokinetic properties and absorption mechanism of phloretin: In vivo and in vitro. Biomedicine and Pharmacotherapy, 132. https://doi.org/10.1016/j.biopha.2020.110809
dc.relation.referencesZheng, Y., Hunt, R. L., Villaruz, A. E., Fisher, E. L., Liu, R., Liu, Q., Cheung, G. Y. C., Li, M., & Otto, M. (2022). Commensal Staphylococcus epidermidis contributes to skin barrier homeostasis by generating protective ceramides. Cell Host and Microbe, 30(3). https://doi.org/10.1016/j.chom.2022.01.004
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.proposalAcnéspa
dc.subject.proposalFloretinaspa
dc.subject.proposalSEDDSspa
dc.subject.proposalS. epidermidisspa
dc.subject.proposalC. acnesspa
dc.subject.proposalAcneeng
dc.subject.proposalPhloterineng
dc.subject.proposalSelf-emulsifying drug delivery systemeng
dc.subject.proposalS. epidermidiseng
dc.subject.proposalC. acneseng
dc.subject.unescoTratamiento médicospa
dc.subject.unescoMedical treatmenteng
dc.subject.unescoFarmacologíaspa
dc.subject.unescoPharmacologyeng
dc.subject.unescoEnfermedad de la pielspa
dc.subject.unescoSkin diseaseseng
dc.titleContribución al desarrollo de un sistema autoemulsificable para aplicación tópica de floretinaspa
dc.title.translatedContribution to the development of a self-emulsifying system for the topical application of phloretineng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleBALCAR-Q: Bioprospección y Química de Algas del Caribespa
oaire.fundernameMinCienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Contribución al desarrollo de un sistema autoemulsificable para aplicación tópica de floretina.pdf
Tamaño:
7.13 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: