Expresión y caracterización funcional de una ADN polimerasa I de Geobacillus stearothermophilus

dc.contributor.advisorde Brito Brandão, Pedro Filipe
dc.contributor.advisorCalderón Manrique, Dayana
dc.contributor.authorEstupiñan Molina, Cristian David
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000051741spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Cristian-Estupinanspa
dc.contributor.researchgroupBiotecnología Molecular (CorpoGen)spa
dc.contributor.researchgroupGrupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente (GERMINA)spa
dc.date.accessioned2024-07-16T16:33:17Z
dc.date.available2024-07-16T16:33:17Z
dc.date.issued2024
dc.description.abstractLa ADN polimerasa de Geobacillus stearothermophilus (ADN Pol I Bst), es un miembro de la familia A de las polimerasas, que posee características desplazamiento de hebra que favorecen su aplicación en métodos de amplificación isotérmica. En el presente trabajo se describe la expresión y caracterización funcional de una ADN Pol I Bst, iniciando por la secuenciación del plásmido mediante tecnología Oxford Nanopore, para confirmar la secuencia codificante de la proteína, seguido de un análisis in sillico, con el propósito de determinar la estructura 3D y sitios activos de la proteína. Posteriormente, se realizó la expresión, extracción, purificación, determinación de la actividad catalítica y análisis de funcionalidad mediante Loop Mediated Isothermal Amplification (LAMP) a 65 °C por 60 min, utilizando cómo sustrato ARN de SARS-CoV-2. Los resultados reflejan una secuencia codificante de 576 aminoácidos que pertenece al fragmento grande de ADN Pol I Bst, el cual tiene peso molecular de 61,8 kDa. Se obtuvo una concentración de 2mg/ml de proteína total, que posee una actividad enzimática de 606.4 U y una actividad especifica de 3.0×105 U/mg. Finalmente, se demuestra que la proteína es funcional al amplificar una secuencia perteneciente al Orf1a de ARN de SARS-CoV-2. Aquí se presenta una proteína funcional, con libertad de operación para su distribución y que es aplicable a sistemas de amplificación isotérmica para el diagnóstico de enfermedades de importancia clínica (Texto tomado de la fuente).spa
dc.description.abstractThe DNA polymerase from Geobacillus stearothermophilus (Bst DNA Pol I) is a member of the A family of polymerases, exhibiting strand displacement characteristics that favor its application in isothermal amplification methods. This study describes the expression and functional characterization of a Bst DNA Pol I, starting with plasmid sequencing using Oxford Nanopore technology to confirm the protein's coding sequence. This is followed by in silico analysis to determine the protein's 3D structure and active sites. Subsequently, expression, extraction, purification, determination of catalytic activity, and functionality analysis were performed using Loop-Mediated Isothermal Amplification (LAMP) at 65 °C for 60 min, with SARS-CoV-2 RNA as the substrate. The results reveal a coding sequence of 576 amino acids belonging to the large fragment of Bst DNA Pol I, with a molecular weight of 61.8 kDa. A protein concentration of 2 mg/ml was obtained, exhibiting enzymatic activity of 606.4 U and a specific activity of 3.0×105 U/mg. Finally, it is demonstrated that the protein is functional in amplifying a sequence belonging to the Orf1a of SARS-CoV-2 RNA. While optimization studies are important to enhance the protein production process, this study presents a functional protein with operational freedom for distribution and applicability in isothermal amplification systems for the diagnosis of clinically significant diseases.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Bioquímicaspa
dc.description.methodsEn este proyecto se realizó la expresión y caracterización funcional de una ADN Pol I Bst, a partir de una plásmido previamente clonado. El enfoque metodológico abarca diferentes etapas, iniciando por la secuenciación del plásmido mediante tecnología Oxford Nanopore (Kwok et al., 2014) seguido de análisis secuencias y el procedimiento para el análisis in sillico, con el propósito de determinar la estructura 3D y sitios activos de la proteína. Posteriormente se detalla la metodología de los objetivos planteados que incluyen la expresión, extracción, purificación, determinación de actividad catalítica y, finalmente, el análisis de funcionalidad utilizando como sustrato ARN de SARS-CoV-2.spa
dc.description.researchareaDesarrollo de Productos Biotecnológicosspa
dc.description.sponsorshipMinisterio de Ciencia Tecnología e Innovaciónspa
dc.format.extentxiv, 60 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86461
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesAgustriana, E., Nuryana, I., Laksmi, F. A., Dewi, K. S., Wijaya, H., Rahmani, N., Yudiargo, D. R., Ismadara, A., Helbert, Hadi, M. I., Purnawan, A., & Cameliawati Djohan, A. (2023). Optimized expression of large fragment DNA polymerase I from Geobacillus stearothermophilus in Escherichia coli expression system. Preparative Biochemistry and Biotechnology, 53(4), 384–393. https://doi.org/10.1080/10826068.2022.2095573spa
dc.relation.referencesAidelberg, G., Aronoff, R., Eliseeva, T., Quero, F. J., Vielfaure, H., Codyre, M., Hadasch, K., & Lindner, A. B. (2021). Corona Detective: a simple, scalable, and robust SARS-CoV-2 detection method based on reverse transcription loop-mediated isothermal amplification. Journal of Biomolecular Techniques, 32(3), 89–97. https://doi.org/10.7171/jbt.21-3203-003spa
dc.relation.referencesAlipoor, S. D., Mortaz, E., Jamaati, H., Tabarsi, P., Bayram, H., Varahram, M., & Adcock, I M. (2021). COVID-19: Molecular and Cellular Response. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/FCIMB.2021.563085spa
dc.relation.referencesAschenbrenner, J., & Marx, A. (2017). DNA polymerases and biotechnological applications. Current Opinion in Biotechnology, 48, 187–195. https://doi.org/10.1016/J.COPBIO.2017.04.005spa
dc.relation.referencesAstatke, M., Grindley, N. D. F., & Joyce, C. M. (1995). Deoxynucleoside triphosphate and pyrophosphate binding sites in the catalytically competent ternary complex for the polymerase reaction catalyzed by DNA polymerase I (Klenow fragment). Journal of Biological Chemistry, 270(4), 1945–1954. https://doi.org/10.1074/jbc.270.4.1945spa
dc.relation.referencesBebenek, K. K. T. A. (2004). FUNCTIONS OF DNA POLYMERASES.spa
dc.relation.referencesBentaleb, E. M., Abid, M., El Messaoudi, M. D., Lakssir, B., Ressami, E. M., Amzazi, S., Sefrioui, H., & Ait Benhassou, H. (2016). Development and evaluation of an in-house single step loop-mediated isothermal amplification (SS-LAMP) assay for the detection of Mycobacterium tuberculosis complex in sputum samples from Moroccan patients. BMC Infectious Diseases, 16(1), 517. https://doi.org/10.1186/s12879-016-1864-9spa
dc.relation.referencesBeyerstedt, S., Casaro, E. B., & Rangel, É. B. (2021). COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. European Journal of Clinical Microbiology & Infectious Diseases, 40(5), 905. https://doi.org/10.1007/S10096-020-04138-6spa
dc.relation.referencesBio-Rad Laboratories. (2012). General Protocol for Western Blotting.spa
dc.relation.referencesBruck, I., Goodman, M. F., & O’Donnell, M. (2003). The Essential C Family DnaE Polymerase Is Error-prone and Efficient at Lesion Bypass. Journal of Biological Chemistry, 278(45), 44361–44368. https://doi.org/10.1074/jbc.M308307200spa
dc.relation.referencesBuger, N. J. (1994). The Bradford Method for Protein Quantitationspa
dc.relation.referencesCamacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 10(1), 1–9. https://doi.org/10.1186/1471-2105-10-421/FIGURES/4spa
dc.relation.referencesChim, N., Jackson, L. N., Trinh, A. M., & Chaput, J. C. (2018). Crystal structures of DNA polymerase I capture novel intermediates in the DNA synthesis pathway. ELife, 7. https://doi.org/10.7554/ELIFE.40444spa
dc.relation.referencesCorman, V. M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D. K. W., Bleicker, T., Brünink, S., Schneider, J., Schmidt, M. L., Mulders, D. G. J. C., Haagmans, B. L., Van Der Veer, B., Van Den Brink, S., Wijsman, L., Goderski, G., Romette, J. L., Ellis, J., Zambon, M., … Drosten, C. (2020). Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance, 25(3), 1. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045spa
dc.relation.referencesDe Coster, W., D’Hert, S., Schultz, D. T., Cruts, M., & Van Broeckhoven, C. (2018). NanoPack: visualizing and processing long-read sequencing data. Bioinformatics, 34(15), 2666. https://doi.org/10.1093/BIOINFORMATICS/BTY149spa
dc.relation.referencesDe Coster, W., & Rademakers, R. (2023). NanoPack2: population-scale evaluation of long-read sequencing data. Bioinformatics, 39(5). https://doi.org/10.1093/BIOINFORMATICS/BTAD311spa
dc.relation.referencesDelarue, M., Poch, O., Tordo, N., Moras, D., & Argos, P. (1990). An attempt to unify the structure of polymerases. Protein Engineering, 3(6), 461–467. https://doi.org/10.1093/PROTEIN/3.6.461spa
dc.relation.referencesDoublié, S., & Ellenberger, T. (1998). The mechanism of action of T7 DNA polymerase. Current Opinion in Structural Biology, 8(6), 704–712. https://doi.org/10.1016/S0959-440X(98)80089-4spa
dc.relation.referencesDunn, M. R., & Chaput, J. C. (2016). Reverse Transcription of Threose Nucleic Acid by a Naturally Occurring DNA Polymerase. Chembiochem : A European Journal of Chemical Biology, 17(19), 1804–1808. https://doi.org/10.1002/CBIC.201600338spa
dc.relation.referencesFijalkowska, J., Schaaper, R. M., Jonczyk, P., Banach-Orlowska, M., Fijalkowska, I. J., Schaaper, R. M., & Jonczyk, P. (2005). DNA polymerase II as a fidelity factor in chromosomal DNA synthesis in Escherichia coli. Molecular Microbiology, 58(1), 61–70. https://doi.org/10.1111/J.1365-2958.2005.04805.Xspa
dc.relation.referencesGarcia-Diaz, M., & Bebenek, K. (2007). Multiple functions of DNA polymerases. Critical Reviews in Plant Sciences, 26(2), 105. https://doi.org/10.1080/07352680701252817spa
dc.relation.referencesGraziewicz, M. A., Longley, M. J., & Copeland, W. C. (2006). DNA polymerase γ in mitochondrial DNA replication and repair. Chemical Reviews, 106(2), 383–405. https://doi.org/10.1021/CR040463D/ASSET/CR040463D.FP.PNG_V03spa
dc.relation.referencesGreenough, L., Menin, J. F., Desai, N. S., Kelman, Z., & Gardner, A. F. (2014). Characterization of Family D DNA polymerase from Thermococcus sp. 9°N. Extremophiles, 18(4), 653. https://doi.org/10.1007/S00792-014-0646-9spa
dc.relation.referencesGüixens-Gallardo, P., Hocek, M., & Perlíková, P. (2016). Inhibition of non-templated nucleotide addition by DNA polymerases in primer extension using twisted intercalating nucleic acid modified templates. Bioorganic & Medicinal Chemistry Letters, 26(2), 288–291. https://doi.org/10.1016/J.BMCL.2015.12.034spa
dc.relation.referencesHaendeler, J., Dröse, S., Büchner, N., Jakob, S., Altschmied, J., Goy, C., Spyridopoulos, I., Zeiher, A. M., Brandt, U., & Dimmeler, S. (2009). Mitochondrial Telomerase Reverse Transcriptase Binds to and Protects Mitochondrial DNA and Function From Damage. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(6), 929–935. https://doi.org/10.1161/ATVBAHA.109.185546spa
dc.relation.referencesHall, T. (1999). BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT. https://doi.org/10.14601/PHYTOPATHOL_MEDITERR-14998U1.29spa
dc.relation.referencesHamilton, N. H., & Furey, T. S. (2023). <tt>ROCCO</tt> : A Robust Method for Detection of Open Chromatin via Convex Optimization. Bioinformatics. https://doi.org/10.1093/BIOINFORMATICS/BTAD725spa
dc.relation.referencesHenikoff, S., & Henikoff, J. G. (1992). Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences of the United States of America, 89(22), 10915. https://doi.org/10.1073/PNAS.89.22.10915spa
dc.relation.referencesHu, B., Ge, X., Wang, L. F., & Shi, Z. (2015). Bat origin of human coronaviruses Coronaviruses: Emerging and re-emerging pathogens in humans and animals Susanna Lau Positive-strand RNA viruses. Virology Journal, 12(1), 1–10. https://doi.org/10.1186/S12985-015-0422-1/FIGURES/1spa
dc.relation.referencesHuber, L. B., Betz, K., & Marx, A. (2023). Reverse Transcriptases: From Discovery and Applications to Xenobiology. ChemBioChem, 24(5), e202200521. https://doi.org/10.1002/CBIC.202200521spa
dc.relation.referencesHurtado, L., Díaz, D., Escorcia, K., Flórez, L., Bello, Y., Díaz, Y., Navarro, E., Pacheco, L. C., Galán, N., Maestre, R., Acosta, A., & Pacheco, L. A. (2022). Validación clínica de la prueba RT-LAMP para el diagnóstico rápido del SARS-CoV-2. Biomédica, 42(Suppl 2), 59. https://doi.org/10.7705/BIOMEDICA.6523spa
dc.relation.referencesINS. (2024). Coronavirus Colombia. Instituto Nacional de Salud. https://www.ins.gov.co/Noticias/Paginas/Coronavirus.aspxspa
dc.relation.referencesJackson, L. N., Chim, N., Shi, C., & Chaput, J. C. (2019). Crystal structures of a natural DNA polymerase that functions as an XNA reverse transcriptase. Nucleic Acids Research, 47(13), 6973. https://doi.org/10.1093/NAR/GKZ513spa
dc.relation.referencesJana, M., Ghosh, A., Santra, A., Kar, R. K., Misra, A. K., & Bhunia, A. (2017). Synthesis of novel muramic acid derivatives and their interaction with lysozyme: Action of lysozyme revisited. Journal of Colloid and Interface Science, 498, 395–404. https://doi.org/10.1016/J.JCIS.2017.03.060spa
dc.relation.referencesJeck, W. R., Iafrate, A. J., & Nardi, V. (2021). Nanopore Flongle Sequencing as a Rapid, Single-Specimen Clinical Test for Fusion Detection. The Journal of Molecular Diagnostics, 23(5), 630–636. https://doi.org/10.1016/J.JMOLDX.2021.02.001spa
dc.relation.referencesJones, M. D., & Foulkes, N. S. (1989). Reverse transcription of mRNA by Thermus aquaticus DNA polymerase. Nucleic Acids Research, 17(20), 8387–8388. https://doi.org/10.1093/NAR/17.20.8387spa
dc.relation.referencesKabir, M. S., Clements, M. O., & Kimmitt, P. T. (2015). RT-Bst: An integrated approach for reverse transcription and enrichment of cDNA from viral RNA. British Journal of Biomedical Science, 72(1), 1–6. https://doi.org/10.1080/09674845.2015.11666788spa
dc.relation.referencesKaram, J. D., & Konigsberg, W. H. (2000). DNA polymerase of the T4-related bacteriophages. Progress in Nucleic Acid Research and Molecular Biology, 64. https://doi.org/10.1016/S0079-6603(00)64002-3spa
dc.relation.referencesKashir, J., & Yaqinuddin, A. (2020). Loop mediated isothermal amplification (LAMP) assays as a rapid diagnostic for COVID-19. Medical Hypotheses, 141, 109786. https://doi.org/10.1016/J.MEHY.2020.109786spa
dc.relation.referencesKelleher, C., Teixeira, M. T., Förstemann, K., & Lingner, J. (2002). Telomerase: Biochemical considerations for enzyme and substrate. Trends in Biochemical Sciences, 27(11), 572–579. https://doi.org/10.1016/S0968-0004(02)02206-5spa
dc.relation.referencesKiefer, J. R., Mao, C., Hansen, C. J., Basehore, S. L., Hogrefe, H. H., Braman, J. C., & Beese, L. S. (1997a). Crystal structure of a thermostable Bacillus DNA polymerase I large fragment at 2.1 Å resolution. Structure, 5(1), 95–108. https://doi.org/10.1016/S0969-2126(97)00169-Xspa
dc.relation.referencesKiefer, J. R., Mao, C., Hansen, C. J., Basehore, S. L., Hogrefe, H. H., Braman, J. C., & Beese, L. S. (1997b). Crystal structure of a thermostable Bacillus DNA polymerase I large fragment at 2.1 Å resolution. Structure, 5(1), 95–108. https://doi.org/10.1016/S0969-2126(97)00169-Xspa
dc.relation.referencesKolmogorov, M., Bickhart, D. M., Behsaz, B., Gurevich, A., Rayko, M., Shin, S. B., Kuhn, K., Yuan, J., Polevikov, E., Smith, T. P. L., & Pevzner, P. A. (2020). metaFlye: scalable long-read metagenome assembly using repeat graphs. Nature Methods 2020 17:11, 17(11), 1103–1110. https://doi.org/10.1038/s41592-020-00971-xspa
dc.relation.referencesKornberg, A. (1960). Biologic synthesis of deoxyribonucleic acid. Science, 131(3412), 1503–1508. https://doi.org/10.1126/SCIENCE.131.3412.1503/ASSET/970D30A2-F8D7-4244-BA29-796FBAD48625/ASSETS/SCIENCE.131.3412.1503.FP.PNGspa
dc.relation.referencesKornberg A y Baker T. (1992). DNA replication. Freeman.spa
dc.relation.referencesKrissinel, E., & Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallographica Section D: Biological Crystallography, 60(12 I), 2256–2268. https://doi.org/10.1107/S0907444904026460spa
dc.relation.referencesKwok, H., Briggs, K., & Tabard-Cossa, V. (2014). Nanopore Fabrication by Controlled Dielectric Breakdown. PLOS ONE, 9(3), e92880. https://doi.org/10.1371/JOURNAL.PONE.0092880spa
dc.relation.referencesLee, J. Y., Kong, M., Oh, J., Lim, J. S., Chung, S. H., Kim, J. M., Kim, J. S., Kim, K. H., Yoo, J. C., & Kwak, W. (2021). Comparative evaluation of Nanopore polishing tools for microbial genome assembly and polishing strategies for downstream analysis. Scientific Reports 2021 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-00178-wspa
dc.relation.referencesLeger, A., & Leonardi, T. (2019). pycoQC, interactive quality control for Oxford Nanopore Sequencing. Journal of Open Source Software, 4(34), 1236. https://doi.org/10.21105/joss.01236spa
dc.relation.referencesLi, J. J., Xiong, C., Liu, Y., Liang, J. S., & Zhou, X. W. (2016). Loop-mediated isothermal amplification (LAMP): Emergence as an alternative technology for herbal medicine identification. Frontiers in Plant Science, 7(DECEMBER2016), 214697. https://doi.org/10.3389/FPLS.2016.01956/BIBTEXspa
dc.relation.referencesLing, H., Boudsocq, F., Woodgate, R., & Yang, W. (2001). Crystal structure of a Y-family DNA polymerase in action: A mechanism for error-prone and lesion-bypass replication. Cell, 107(1), 91–102. https://doi.org/10.1016/S0092-8674(01)00515-3spa
dc.relation.referencesMarangoni, A. G. (2003). Enzyme kinetics : a modern approach. Wiley-Interscience.spa
dc.relation.referencesMarra, M. A., Jones, S. J. M., Astell, C. R., Holt, R. A., Brooks-Wilson, A., Butterfield, Y. S. N., Khattra, J., Asano, J. K., Barber, S. A., Chan, S. Y., Cloutier, A., Coughlin, S. M., Freeman, D., Girn, N., Griffith, O. L., Leach, S. R., Mayo, M., McDonald, H., Montgomery, S. B., … Roper, R. L. (2003). The genome sequence of the SARS-associated coronavirus. Science, 300(5624), 1399–1404. https://doi.org/10.1126/SCIENCE.1085953/SUPPL_FILE/MARRA.SOM.PDFspa
dc.relation.referencesMartin, S. K., & Wood, R. D. (2019). DNA polymerase ζ in DNA replication and repair. Nucleic Acids Research, 47(16), 8348–8361. https://doi.org/10.1093/NAR/GKZ705spa
dc.relation.referencesMayanagi, K., Oki, K., Miyazaki, N., Ishino, S., Yamagami, T., Morikawa, K., Iwasaki, K., Kohda, D., Shirai, T., & Ishino, Y. (2020). Two conformations of DNA polymerase D-PCNA-DNA, an archaeal replisome complex, revealed by cryo-electron microscopy. BMC Biology, 18(1). https://doi.org/10.1186/S12915-020-00889-Yspa
dc.relation.referencesMcGuffie, M. J., & Barrick, J. E. (2021). pLannotate: engineered plasmid annotation. Nucleic Acids Research, 49(W1), W516–W522. https://doi.org/10.1093/NAR/GKAB374spa
dc.relation.referencesMinciencias. (2021). resolucion_0665-2021 (2).spa
dc.relation.referencesMo, J. Y., & Schaaper, R. M. (1996). Fidelity and error specificity of the α catalytic subunit of Escherichia coli DNA polymerase III. Journal of Biological Chemistry, 271(31), 18947–18953. https://doi.org/10.1074/jbc.271.31.18947spa
dc.relation.referencesMolero, J. M., Arranz-Izquierdo, J., Gutiérrez-Pérez, M. I., & Redondo Sánchez, J. M. (2021). Aspectos básicos de la COVID-19 para el manejo desde atención primaria. Atencion Primaria, 53(6), 101966. https://doi.org/10.1016/J.APRIM.2020.12.007spa
dc.relation.referencesMorales, F. D., Coronado-Jimenez, L., Gonzalez-Moya, V., Mercedes-Zambrano, M., Sandoval-Herrera, J., & Arturo-Calvache, J. E. (2022). CHEMICAL ENGINEERING TRANSACTIONS Effect of agitation on Taq DNA polymerase production by Escherichia coli in bioreactor. www.cetjournal.itspa
dc.relation.referencesNagamine, K., Hase, T., & Notomi, T. (2002). Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes, 16(3), 223–229. https://doi.org/10.1006/mcpr.2002.0415spa
dc.relation.referencesNeagu, M., Constantin, C., & Surcel, M. (2021). Testing Antigens, Antibodies, and Immune Cells in COVID-19 as a Public Health Topic—Experience and Outlines. International Journal of Environmental Research and Public Health, 18(24). https://doi.org/10.3390/IJERPH182413173spa
dc.relation.referencesNotomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000a). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), e63. https://doi.org/10.1093/NAR/28.12.E63spa
dc.relation.referencesOhmori, H., Friedberg, E. C., Fuchs, R. P. P., Goodman, M. F., Hanaoka, F., Hinkle, D., Kunkel, T. A., Lawrence, C. W., Livneh, Z., Nohmi, T., Prakash, L., Prakash, S., Todo, T., Walker, G. C., Wang, Z., & Woodgate, R. (2001). The Y-family of DNA Polymerases. Molecular Cell, 8(1), 7–8. https://doi.org/10.1016/S1097-2765(01)00278-7spa
dc.relation.referencesOliveira, B. B., Veigas, B., & Baptista, P. V. (2021). Isothermal Amplification of Nucleic Acids: The Race for the Next “Gold Standard.” Frontiers in Sensors, 2, 752600. https://doi.org/10.3389/FSENS.2021.752600spa
dc.relation.referencesO’Reilly, M., Teichmann, S. A., & Rhodes, D. (1999). Telomerases. Current Opinion in Structural Biology, 9(1), 56–65. https://doi.org/10.1016/S0959-440X(99)80008spa
dc.relation.referencesOscorbin, I., & Filipenko, M. (2023). Bst polymerase — a humble relative of Taq polymerase. Computational and Structural Biotechnology Journal, 21, 4519–4535. https://doi.org/10.1016/J.CSBJ.2023.09.008spa
dc.relation.referencesPalacios, M., Santos, E., Velázquez Cervantes, M. A., & León Juárez, M. (2021). COVID-19, una emergencia de salud pública mundial. Revista Clinica Espanola, 221(1), 55. https://doi.org/10.1016/J.RCE.2020.03.001spa
dc.relation.referencesPhang, S.-M., Teo, C.-Y., Lo, E., Wong, V., & Wong, T. (1995). Cloning and complete sequence of the DNA polymerase-encoding gene (BstpolI) and characterisation of the Klenow-like fragment from Bacillus stearothermophilus (DNA sequencing; genomic library; homologies; recombinant). In Gene (Vol. 163, Issue 65).spa
dc.relation.referencesPrakash, S., Johnson, R. E., & Prakash, L. (2005). EUKARYOTIC TRANSLESION SYNTHESIS DNA POLYMERASES: Specificity of Structure and Function. Https://Doi.Org/10.1146/Annurev.Biochem.74.082803.133250, 74, 317–353. https://doi.org/10.1146/ANNUREV.BIOCHEM.74.082803.133250spa
dc.relation.referencesQIAGEN. (2010). Quick-StartProtocol Sample & Assay Technologies QIAprep ® Spin Miniprep Kit. www.qiagen.com/contact.spa
dc.relation.referencesRabe, B. A., & Cepko, C. (2020). SARS-CoV-2 detection using isothermal amplification and a rapid, inexpensive protocol for sample inactivation and purification. Proceedings of the National Academy of Sciences of the United States of America, 117(39), 24450–24458. https://doi.org/10.1073/PNAS.2011221117/-/DCSUPPLEMENTALspa
dc.relation.referencesRamírez, M., Angulo, M. V., Colciencias, G., Fernando, D., Losada, H., Monroy, S. E., & Subdirectora, V. (2019). Misión internacional de sabios para el avance de la Ciencia, la Tecnología y la Innovación. Pacto por la Ciencia, la Tecnología y la Innovación: Un sistema para construir el conocimiento del futuro Presidencia de la República Iván Duque Márquez Vicepresidencia de la Repúblicaspa
dc.relation.referencesRastgoo, N., Sadeghizadeh, M., Bambaei, B., & Hosseinkhani, S. (2009). Restoring 3′-5′ exonuclease activity of thermophilic Geobacillus DNA polymerase I using site-directed mutagenesis in active site. Journal of Biotechnology, 144(4), 245–252. https://doi.org/10.1016/j.jbiotec.2009.09.006spa
dc.relation.referencesRivera, M., Cazaux, S., Cerda, A., Medina, A. A., Núñez, I., Matute, T., Brown, A., Gasulla, J., Federici, F., & Ramirez-Sarmiento, C. A. (2020). Recombinant protein expression and purification of codon-optimized Bst-LF polymerase Reclone.org (The Reagent Collaboration Network). https://doi.org/10.17504/PROTOCOLS.IO.BKSRKWspa
dc.relation.referencesRobert Novy and Barbara Morri. (2003). Glucose supression. InNovations , 13spa
dc.relation.referencesSaldanha, R., Chen, B., Wank, H., Matsuura, M., Edwards, J., & Lambowitz, A. M. (1999). RNA and protein catalysis in group II intron splicing and mobility reactions using purified components. Biochemistry, 38(28), 9069–9083. https://doi.org/10.1021/bi982799lspa
dc.relation.referencesSchrödinger, L. , & D. W. (2020). PyMOL | pymol.org. https://pymol.org/2/#page-topspa
dc.relation.referencesSchwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381. https://doi.org/10.1093/NAR/GKG52spa
dc.relation.referencesSellmann, E., Schroder, K. L., Knoblich, I. M., & Westermann, P. (1992). Purification and characterization of DNA polymerases from Bacillus species. Journal of Bacteriology, 174(13), 4350. https://doi.org/10.1128/JB.174.13.4350-4355.1992spa
dc.relation.referencesShanbhag, V., Sachdev, S., Flores, J. A., Modak, M. J., & Singh, K. (2018). Family A and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions. Biology, 7(1). https://doi.org/10.3390/BIOLOGY7010005spa
dc.relation.referencesShcherbakova, P. V., Pavlov, Y. I., Chilkova, O., Rogozin, I. B., Johansson, E., & Kunkel, T. A. (2003). Unique Error Signature of the Four-subunit Yeast DNA Polymerase ε. Journal of Biological Chemistry, 278(44), 43770–43780. https://doi.org/10.1074/jbc.M306893200spa
dc.relation.referencesShi, C., Shen, X., Niu, S., & Ma, C. (2015). Innate Reverse Transcriptase Activity of DNA Polymerase for Isothermal RNA Direct Detection. Journal of the American Chemical Society, 137(43), 13804–13806. https://doi.org/10.1021/jacs.5b08144spa
dc.relation.referencesSingh, K., Srivastava, A., Patel, S. S., & Modak, M. J. (2007). Participation of the fingers subdomain of Escherichia coli DNA polymerase I in the strand displacement synthesis of DNA. Journal of Biological Chemistry, 282(14), 10594–10604. https://doi.org/10.1074/jbc.M611242200spa
dc.relation.referencesSluis-Cremer, N. (2021). Retroviral reverse transcriptase: Structure, function and inhibition. The Enzymes, 50, 179–194. https://doi.org/10.1016/BS.ENZ.2021.06.00spa
dc.relation.referencesSu, S., Wong, G., Shi, W., Liu, J., Lai, A. C. K., Zhou, J., Liu, W., Bi, Y., & Gao, G. F. (2016). Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends in Microbiology, 24(6), 490. https://doi.org/10.1016/J.TIM.2016.03.003spa
dc.relation.referencesTanner, N. A., & Evans, T. C. (2013). Loop-mediated isothermal amplification for detection of nucleic acids. Current Protocols in Molecular Biology, SUPPL.105. https://doi.org/10.1002/0471142727.mb1514s105spa
dc.relation.referencesTsai, C. H., Chen, J., & Szostak, J. W. (2007). Enzymatic synthesis of DNA on glycerol nucleic acid templates without stable duplex formation between product and template. Proceedings of the National Academy of Sciences of the United States of America, 104(37), 14598–14603. https://doi.org/10.1073/PNAS.0704211104spa
dc.relation.referencesUchiyama, Y., Takeuchi, R., Kodera, H., & Sakaguchi, K. (2009). Distribution and roles of X-family DNA polymerases in eukaryotes. Biochimie, 91(2), 165–170. https://doi.org/10.1016/J.BIOCHI.2008.07.005spa
dc.relation.referencesVandenberg, O., Martiny, D., Rochas, O., van Belkum, A., & Kozlakidis, Z. (2020). Considerations for diagnostic COVID-19 tests. Nature Reviews Microbiology 2020 19:3, 19(3), 171–183. https://doi.org/10.1038/s41579-020-00461-zspa
dc.relation.referencesWang, Y., Ngor, A. K., Nikoomanzar, A., & Chaput, J. C. (2018). Evolution of a General RNA-Cleaving FANA Enzyme. Nature Communications, 9(1). https://doi.org/10.1038/S41467-018-07611-1spa
dc.relation.referencesWardle, J., Burgers, P. M. J., Cann, I. K. O., Darley, K., Heslop, P., Johansson, E., Lin, L. J., McGlynn, P., Sanvoisin, J., Stith, C. M., & Connolly, B. A. (2008). Uracil recognition by replicative DNA polymerases is limited to the archaea, not occurring with bacteria and eukarya. Nucleic Acids Research, 36(3), 705–711. https://doi.org/10.1093/NAR/GKM1023spa
dc.relation.referencesWorldometer. (2024). COVID Live - Coronavirus Statistics - Worldometer. https://www.worldometers.info/coronavirus/spa
dc.relation.referencesYamtich, J., & Sweasy, J. B. (2010). DNA Polymerase Family X: Function, Structure, and Cellular Roles. Biochimica et Biophysica Acta, 1804(5), 1136. https://doi.org/10.1016/J.BBAPAP.2009.07.008spa
dc.relation.referencesZhao, C., & Pyle, A. M. (2016). Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution. Nature Structural & Molecular Biology, 23(6), 558. https://doi.org/10.1038/NSMB.3224spa
dc.relation.referencesZhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). Brief Report: A Novel Coronavirus from Patients with Pneumonia in China, 2019. The New England Journal of Medicine, 382(8), 727. https://doi.org/10.1056/NEJMOA2001017spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.decsADN Polimerasa Ispa
dc.subject.decsDNA Polymerase Ieng
dc.subject.decsPolimerasa Taqspa
dc.subject.decsTaq Polymeraseeng
dc.subject.decsVirus de la Mieloblastosis Aviarspa
dc.subject.decsAvian Myeloblastosis Viruseng
dc.subject.decsCoronavirusspa
dc.subject.decsPrueba de COVID-19spa
dc.subject.decsCOVID-19 Testingeng
dc.subject.proposalGeobacillus stearothermophilusspa
dc.subject.proposalPolimerasaspa
dc.subject.proposalADN Pol I Bstspa
dc.subject.proposalPol Bstspa
dc.subject.proposalLAMPspa
dc.subject.proposalSARS-CoV-2spa
dc.subject.proposalPolyeraseeng
dc.subject.proposalPol I Bst DNAeng
dc.titleExpresión y caracterización funcional de una ADN polimerasa I de Geobacillus stearothermophilusspa
dc.title.translatedExpression and functional characterization of a DNA polymerase I from Geobacillus stearothermophiluseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1069262590.2024.pdf
Tamaño:
1.6 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias-Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: