Evaluación de la actividad antiagregante plaquetaria de compuestos derivados de ácido cafeico obtenidos por semisíntesis

dc.contributor.advisorGuerrero Pabón, Mario Francisco
dc.contributor.authorRodriguez Castiblanco, Jessyca Paola
dc.contributor.researchgroupGrupo de Investigaciones en Farmacología Molecular (Farmol)spa
dc.date.accessioned2023-04-26T19:27:11Z
dc.date.available2023-04-26T19:27:11Z
dc.date.issued2022-04-25
dc.descriptionilustracionesspa
dc.description.abstractResumen Evaluación de la actividad antiagregante plaquetaria de compuestos derivados de ácido cafeico obtenidos por semisíntesis Las enfermedades cardiovasculares siguen siendo la principal causa de mortalidad en el mundo, por ello son de gran interés en salud pública. El desarrollo de nuevas terapias antiplaquetarias presentes en el reino vegetal dirigidas a receptores y vías de señalización claves en el mantenimiento de la eficacia antiplaquetaria preservando la hemostasia, es un enorme reto para la investigación. El objetivo de este trabajo fue evaluar la actividad antiagregante plaquetaria de compuestos derivados de ácido cafeico obtenidos por semisíntesis. Metodología. Para la evaluación del efecto antiagregante se empleó la técnica de agregometría de transmisión de luz (LTA), con 21 ml de sangre total de voluntarios sanos, siguiendo dos fases: La fase 1, para efectuar un tamizado de la actividad antiagregante de todos los compuestos y la fase 2, para efectuar curvas concentración – respuesta de 3 de los compuestos de mayor actividad detectados en la fase 1. Resultados. En la fase I todos los compuestos, ensayados a la concentración inicial de tamizado de 200 µg/ml, mostraron efectos antiagregantes marcados frente a los inductores de la agregación plaquetaria ácido araquidónico (AA, 500 µg/ml) y epinefrina (300 µM), con porcentajes de agregación inferior al 34%, mientras se observó una respuesta antiagregante baja en todos los casos frente a ADP (20 uM), con porcentajes de agregación superior a 60% y variable, frente a colágeno (10 ug/ml), con porcentajes entre el 25 y 65%, según el compuesto evaluado. En la fase 2, se probaron los compuestos de mayor actividad de la fase 1: 3-(3-hidroxifenil) acrilato de etilo, cafeato de butilo y metil cinamato frente a AA, de los cuales, 3-(3 hidroxifenil) acrilato de etilo arrojó un perfil concentración – respuesta, con una concentración efectiva 50 (1,22x10 -7 M) similar a la del compuesto fuente, ácido cafeico. Conclusión: Modificaciones estructurales de ácido cafeico llevan a la obtención de compuestos que mantienen una actividad variable de tipo antiagregante plaquetaria, vinculada con la ruta metabólica del ácido araquidónico, resultando de particular interés el compuesto 3-(3-hidroxifenil) acrilato de etilo, cuya potencia antiagregante es comparable a la obtenida con el compuesto fuente, ácido cafeico, lo que le genera interés como compuesto semisintético con potenciales efectos antiagregantes plaquetarios. Texto tomado de la fuente)spa
dc.description.abstractEvaluation of the platelet antiaggregant activity of compounds derived from caffeic acid obtained by semi synthesis Cardiovascular diseases continue to be the main cause of mortality in the world, which is why they are of great interest in public health. The development of new antiplatelet therapies presents in the plant kingdom targeting additional receptors and signaling pathways, with a focus on maintaining antiplatelet efficacy while preserving hemostasis, is an enormous research challenge. The objective of this work was to evaluate the antiplatelet activity of compounds derived from caffeic acid obtained by semisynthesis. Methodology for the evaluation of the antiplatelet effect, two phases were followed -using the light transmission aggregometric technique (LTA), with 21 ml of whole blood from healthy volunteers- phase I, to screen the antiplatelet activity of all the compounds phase II, to make concentration-response curves of 3 of the most active compounds detected in phase 1. Next, all the compounds in the phase 1, tested at the initial screening concentration of 200 μg/ml, showed marked antiaggregation effects against the platelet aggregation inducers (PA), arachidonic acid (AA,500 μg/ml) and epinephrine (EPI) (300 μM), with aggregation percentages below 34 %; while a low antiplatelet response was observed in all cases against ADP (20 uM), with aggregation percentage above 60 % and a variable against collagen (COL), between 25 % - 65 %, depending on the compound evaluated. An effect that was confirmed in phase II, with the most active compounds: 3-(3-hydroxyphenyl) ethyl acrylate, butyl caffeate and methyl cinnamate, of which, 3-(3-hydroxyphenyl) ethyl acrylate gave an effective concentration 50 (1,22 x 10-7M) similar to that of the source compound, caffeic acid. Finally, the structural modifications of caffeic acid lead to the obtaining of compounds that maintain a variable activity of platelet antiaggregant type, linked to the metabolic pathway of arachidonic acid, being of particular interest the compound 3-(3- hydroxyphenyl) ethyl acrylate whose potency antiaggregant is comparable to that obtained with the source compound, caffeic acid, which generates interest as a semi-synthetic compound with potential platelet antiaggregant effects.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencia - Farmacologíaspa
dc.description.researchareafarmacología experimental basicaspa
dc.format.extent75 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83793
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Farmacologíaspa
dc.relation.referencesAdem, Ş., Eyupoglu, V., Sarfraz, I., Rasul, A., Zahoor, A., Ali, M., & Elfiky, A. (2021). Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine, 85, 153310. https://doi.org/10.1016/j.phymed.2020.153310spa
dc.relation.referencesAlberto, M., Asensio, M., & Sánchez, A. (2018). Fisiología de la función plaquetaria. Hematología(22), 231-237. http://www.sah.org.ar/revista/numeros/vol22/sup/38_Fisiologia_de_la_funcion_pla quetaria.pdfspa
dc.relation.referencesBalachandrán, C., Duraipandiyan, V., Al-Dhabi, N., Balakrishna, K., Kalia, N., Rajput, V., . . . Ignacimuthu, S. (2012). Antimicrobial and Antimycobacterial Activities of Methyl Caffeate Isolated from Solanum torvum Swartz. Fruit. Indian Journal of Microbiology, 54(4), 676-681. https://doi.org/10.1007/s12088-012-0313-8spa
dc.relation.referencesBermejo, E. (2017). Plaquetas. Hematología, 10-18. http://www.sah.org.ar/revista/numeros/vol21/extra/06-Vol%2021-extra.pdfspa
dc.relation.referencesBhullar, K., Lassalle-Claux, G., Touaibia, M., & Rupasinghe, H. (2014). Antihypertensive effect of caffeic acid and its analogs through dual renin–angiotensin–aldosterone system inhibition. European Journal of Pharmacology, 730, 125-132. https://doi.org/10.1016/j.ejphar.2014.02.038spa
dc.relation.referencesBrass, L. (2003). Thrombin and platelet activation. Chest Journal, 124(3), 18S-25S. https://doi.org/10.1378/chest.124.3_suppl.18sspa
dc.relation.referencesBrass, L., Tomaiuolo, M., & Stalker, T. (2013). Harnessing the platelet signaling network to produce an optimal hemostatic response. Hematology/Oncology Clinics of North America, 27(3), 381-409. https://doi.org/10.1016/J.Hoc.2013.02.002spa
dc.relation.referencesBuitrago, D. (2012). Estudio de los mecanismos antihipertensivos y antiagregantes plaquetarios de los metabolitos secundarios obtenidos de Solanum tuberosum. [Tesis doctoral]. Bogotá, D. C.: Universidad Nacional de Colombia.spa
dc.relation.referencesBuitrago, D., Puebla, P., & Guerrero, M. (2019). Antiplatelet activity of metabolites isolated from Solanum tuberosum. Latin American Journal of Pharmacy, 38(8), 1575-1581.spa
dc.relation.referencesBuitrago, D., Ramos, G., Rincón, J., & Guerrero, M. (2007). Actividad antiagregante del extracto etanólico de Solanum tuberosum en plaquetas humanas. Vitae, 14(1), 49- 54. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121- 40042007000100007spa
dc.relation.referencesFarndale, R. (2006). Collagen-induced platelet activation. Blood Cells, Molecules, and Diseases, 36(2), 162-165. https://doi.org/10.1016/j.bcmd.2005.12.016spa
dc.relation.referencesFitzgerald, G. (1991). Mechanisms of platelet activation: thromboxane A2 as an amplifying signal for other agonists. The American Journal of Cardiology, 68(7), B11–B15. https://doi.org/10.1016/0002-9149(91)90379-yspa
dc.relation.referencesFontana, P. (2003). Adenosine diphosphate-induced platelet aggregation is associated with P2Y12 gene sequence variations in healthy subjects. Circulation, 108(8), 989-995. https://doi.org/10.1161/01.cir.0000085073.69spa
dc.relation.referencesGeraldo, R., Sathler, P., Lourenço, A., Saito, M., Cabral, L. R., & Castro, H. (2014). Platelets: still a therapeutical target for haemostatic disorders. International Journal of Molecular Sciences, 15(10), 17901-17919. https://doi.org/10.3390/ijms151017901spa
dc.relation.referencesGonzález, A, Bizarro P, Rojas M. (2019). El megacariocito: una célula muy original. Rev. Fac. Med. (Méx.) ; 62( 1 ): 6-18. https://doi.org/10.22201/fm.24484865e.2019.62.1.02.spa
dc.relation.referencesGhoshal, K., & Bhattacharyya, M. (2014). Overview of platelet physiology: its hemostatic and nonhemostatic. Role in Disease Pathogenesis, 1-16. https://doi.org/10.1155/2014/781857spa
dc.relation.referencesGresele, P., Born, G., Patrono, C., & Page, C. (2012). Antiplatelet agents. Springer. https://doi.org/10.1007/978-3-642-29423-5spa
dc.relation.referencesHarrison, P. (2005). Platelet function analysis. Blood Reviews, 19(2), 111–123. https://doi.org/10.1016/j.blre.2004.05.002.spa
dc.relation.referencesHsiao, G., Lee, J., Lin, K., Shen, C., Fong, T., Chou, D., & Sheu, J. (2007). Characterization of a novel and potent collagen antagonist, caffeic acid phenethyl ester, in human platelets: In vitro and in vivo studies. Cardiovascular Research, 75(4), 782-792. https://doi.org/10.1016/j.cardiores.2007.05.005spa
dc.relation.referencesHung, C., Tsai, W., Kuo, L., & Kuo, Y. (2005). Evaluation of caffeic acid amide analogues as anti-platelet aggregation and anti-oxidative agents. Bioorganic & Medicinal Chemistry, 13(5), 131791-131797. https://doi.org/10.1016/j.bmc.2004.11.055spa
dc.relation.referencesJantas, D., Chwastek, J., Malarz, J., Stojakowska, A., & Lasoń, W. (2020). Neuroprotective effects of methyl caffeate against hydrogen peroxide-induced cell damage: involvement of caspase 3 and cathepsin D inhibition. Biomolecules, 10(11), 1530. https://doi.org/10.3390/biom10111530spa
dc.relation.referencesJeske, W. (2020). Platelet production, structure, and function. Rodak’s Hematology, 136- 153. https://doi.org/10.1016/b978-0-323-53045-3.00019-2spa
dc.relation.referencesKinra, M., Arora, D., Mudgal, J., Pai, K., Mallikarjuna, C., & Nampoothiri, M. (2019). Effect of caffeic acid on ischemia-reperfusion-induced acute renal failure in rats. Pharmacology, 103(5-6), 315-319. https://doi.org/10.1159/000497474spa
dc.relation.referencesKoupenova, M., & Ravid, K. (2018). Biology of platelet purinergic receptors and implications for platelet heterogeneity. Frontiers in Pharmacology, 9. https://doi.org/10.3389/fphar.2018.00037spa
dc.relation.referencesKyung, M., Lee, Y., & Yun-Choi, H. (2002). Anti-platelet effect of the constituents isolated from the barks and fruits of Magnolia obovata. Archives of Pharmacal Research, 25(3), 325-328. https://doi.org/10.1007/BF02976634spa
dc.relation.referencesLee, D., Kim, H., Cho, H., Bae, J., Yu, Y., & Park, H. (2014). Antiplatelet effects of caffeic acid due to Ca2+ mobilizationinhibition via cAMP-dependent Inositol-1, 4, 5- Trisphosphate receptor phosphorylation. Journal of Atherosclerosis and Thrombosis, 21(1), 23-37. https://doi.org/10.5551/jat.18994spa
dc.relation.referencesLim, H., Kyu, P., Shin, Y. S., Yong, K., & Hyun, K. (2017). Methyl caffeate and some plant constituents inhibit age-related inflammation: effects on senescence-associated secretory phenotype (SASP) formation. Archives of Pharmacal Pharmacal Research, 40(4), 524-535. https://doi.org/10.1007/s12272-017-0909-yspa
dc.relation.referencesLinden, M., Frelinger, A., Barnard, M., Przyklenk, K., Furman, M., & Michelson, A. (2004). Application of flow cytometry to platelet disorders. Seminars in Thrombosis and Hemostasis, 30(5), 501-511. https://doi.org/10.1055/s-2004-835671spa
dc.relation.referencesLiu, Y. (2012). Patente nº EP2640376A2spa
dc.relation.referencesLu, Y., Li, Q., Liu, Y., Sun, K., Fan, J., Wang, C., & Han, J. (2015). Inhibitory effect of caffeic acid on ADP-induced thrombus formation and platelet activation involves mitogenactivated protein kinases. Scientific Reports, 5, 13824. https://doi.org/10.1038/srep13824spa
dc.relation.referencesMajithia, A., & Bhatt, D. (2019). Novel Antiplatelet Therapies for Atherothrombotic diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 39, 546–557. https://doi.org/10.1161/ATVBAHA.118.310955spa
dc.relation.referencesMichelson, A. (2013). Platelets. Academic Press.spa
dc.relation.referencesMinisterio de Salud. (1993). Resolución 8430 del 4 de octubre de 1993. [Por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud]. Bogotá, D. C., Colombia. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/RESOL UCION-8430-DE-1993.PDFspa
dc.relation.referencesMonteiro, K., Guimarães, R., Mosquera, L., Rocha, A., Machado, A., Bispo, A., . . . Chagas, M. (2019). Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Frontiers in Oncology, 9, 541. https://doi.org/10.3389/fonc.2019.00541spa
dc.relation.referencesMonteiro, M., O´Connor, J., & Martínez, M. (2001). La citometría de flujo en el análisis de las plaquetas: (I) aspectos estructurales y funcionales de las plaquetas. Revista de Diagnóstico Biológico, 50(3), 111-136. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0034- 79732001000300002&lng=espa
dc.relation.referencesMuhammad, N., Ahmad, F., Teoh, S., & Yahaya, M. (2021). Caffeic acid on metabolic syndrome: a review. Molecules, 26(18), 5490. https://doi.org/10.3390/molecules26185490spa
dc.relation.referencesMurugappan, S. (2006). The role of ADP receptors in platelet function. Frontiers in Bioscience, 11(1), 1977-1986. https://doi.org/10.2741/1939spa
dc.relation.referencesOffermanns, S. (2006). Activation of platelet function through G protein-coupled receptors. Circulation Research, 99(12), 1293-1304. https://doi.org/10.1161/01.res.0000251742.713spa
dc.relation.referencesPyo, M., Lee, Y., & Yun-Choi, H. (2002). Anti-platelet effect of the constituents isolated from the barks and fruits of Magnolia obovata. Archives of Pharmacal Research, 25(3), 325-328. https://doi.org/10.1007/bf0297663spa
dc.relation.referencesRajiv, G., Ignacimuthu, S., Paulraj, M., & Sasikumar, P. (2011). Antihyperglycemic activity and antidiabetic effect of methyl caffeate isolated from Solanum torvum Swartz. fruit in streptozotocin induced diabetic rats. European Journal of Pharmacology, 670(2), 623-631. https://doi.org/10.1016/j.ejphar.2011.09.159spa
dc.relation.referencesSánchez-Arias, A., Bobadilla-Serrano, M., Dimas-Altamirano, B., Gómez-Ortega, M., & González-González, G. (2016). Enfermedad cardiovascular: primera causa de morbilidad. Revista Mexicana de Cardiología, 27(s3), s98-s102. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=66578spa
dc.relation.referencesSilva, H., & Lopes, N. (2020). Cardiovascular effects of caffeic acid and its derivatives: a comprehensive review. Frontiers in Physiology, 11, 595516. https://doi.org/10.3389/fphys.2020.595516spa
dc.relation.referencesSilva, T., Oliveira, C., & Borges, F. (2014). Caffeic acid derivatives, analogs and applications: a patent review (2009 – 2013). Expert Opinion on Therapeutic Patents, 24(11), 1257-1270. https://doi.org/10.1517/13543776.2014.959492spa
dc.relation.referencesSolla, I., Bembibre, L., & Freire, J. (2011). Manejo del Síndrome coronario agudo en Urgencias de Atención Primaria. Cadernos de Atención Primaria, 18(1), 49-55. https://www.agamfec.com/wp/wp-content/uploads/2014/07/18_1_actua_1.pdfspa
dc.relation.referencesSpencer, F., & Becker, R. (1997). Platelets: structure, function, and their fundamental contribution to hemostasis and pathologic thrombosis. In: Becker R.C. (eds). En R. Becker, Textbook of coronary thrombosis and thrombolysis. Developments in cardiovascular medicine. Springer. https://doi.org/10.1007/978-0-585-33754-8_3spa
dc.relation.referencesTexas Heart Institute. (2020). Enfermedad arterial coronaria. Texas Heart Institute: https://www.texasheart.org/heart-health/heartinformationcenter/topics/enfermedad-arterial-coronaria/spa
dc.relation.referencesTyszka-Czochara, M., Bukowska-Strakova, K., Kocemba-Pilarczyk, K., & Majka, M. (2018). Caffeic acid targets AMPK signaling and regulates tricarboxylic acid cycle anaplerosis while metformin downregulates HIF-1α-Induced glycolytic enzymes in human cervical squamous cell carcinoma lines. Nutrients, 10(7), 841. https://doi.org/10.3390/nu10070841spa
dc.relation.referencesVan der Meijden, P., & Heemskerk, J. (2019). Platelet biology and functions: new concepts and clinical perspectives. Nature Reviews Cardiology, 16, 166-179. https://doi.org/10.1038/s41569-018-0110-0spa
dc.relation.referencesVarga-Szabo, D., Pleines, I., & Nieswandt, B. (2008). Cell adhesion mechanisms in platelets. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(3), 403-412. https://doi.org/10.1161/atvbaha.107.150474spa
dc.relation.referencesVeeren, B., Bringart, M., Turpin, C., Rondeau, P., Planesse, C., Ait-Arsa, I., & Bascands, J. (2021). Caffeic acid, one of the major phenolic acids of the medicinal plant antirhea borbonica, reduces renal tubulointerstitial fibrosis. Biomedicines, 9(4), 358. https://doi.org/10.3390/biomedicines9040358spa
dc.relation.referencesWang, A., Leible, M., Lin, J., Weiss, J., & Zhong, Q. (2020). Caffeic acid phenethyl ester loaded in skim milk microcapsules: physicochemical properties and enhanced in vitro bioaccessibility and bioactivity against colon cancer cells. Journal of Agricultural and Food Chemistry, 68(50), 14978-14987. https://doi.org/10.1021/acs.jafc.0c05143spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.decsEnfermedades cardiovascularesspa
dc.subject.decsCardiovascular Diseaseseng
dc.subject.decsProductos biológicosspa
dc.subject.decsBiological Productseng
dc.subject.proposalÁcido araquidónicospa
dc.subject.proposalÁcido cafeicospa
dc.subject.proposalAntiagregante plaquetariospa
dc.subject.proposalDerivados de ácido cafeicospa
dc.subject.proposalArachidonic acideng
dc.subject.proposalCaffeic acideng
dc.subject.proposalPlatelet antiaggreganteng
dc.subject.proposalCaffeic acid derivativeseng
dc.titleEvaluación de la actividad antiagregante plaquetaria de compuestos derivados de ácido cafeico obtenidos por semisíntesisspa
dc.title.translatedEvaluation of the platelet antiaggregant activity of compounds derived from caffeic acid obtained by semi synthesiseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEvaluación de la actividad antiagregante plaquetaria de compuestos derivados de ácido cafeico obtenidos por semisíntesisspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
10693042602022.pdf
Tamaño:
1.35 MB
Formato:
Adobe Portable Document Format
Descripción:
Maestría en Ciencias - Farmacología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: