Implementación de un método para el pronóstico de demanda de computadores portátiles

dc.contributor.advisorBula, Gustavo Alfredo
dc.contributor.authorGaravito Veléz, Karen Briyith
dc.date.accessioned2021-07-09T21:16:28Z
dc.date.available2021-07-09T21:16:28Z
dc.date.issued2021
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn la búsqueda de las empresas por aumentar su rentabilidad y ofrecer un nivel de servicio adecuado se implementan herramientas para lograr ese objetivo. En este trabajo se hace uso de la implementación del modelo con enfoque jerárquico propuesto por Radim Lenort Petr Besta en el año 2013 para construir el pronóstico de la demanda de los productos de la categoría hardware línea computador portátil para una compañía comercializadora con modelo de negocio B2B (business to business/empresa a empresa). En el proceso de implementación se realiza previamente una depuración de los datos y se genera el pronóstico de la demanda agregada por subcategoría y por línea con el modelo ARIMA, luego se implementa el modelo con enfoque jerárquico para obtener desagregación del pronóstico de la demanda para la línea de computadores portátiles en función de las proporciones históricas. El trabajo se divide en dos fases. En la primera fase se lleva a cabo una revisión sistemática de la literatura para identificar los modelos que han sido usados en la construcción de predicciones de la demanda de productos similares en mercados semejantes al colombiano y en la segunda fase se implementa el modelo con los datos de la empresa en estudio y se analizan los resultados. Al verificar las investigaciones de la industria en estudio la mayoría se enfocan en los eslabones de fabricante y mayorista, a medida que se va en la cadena de suministro aguas abajo se identifica un cambio en el comportamiento de la demanda para el eslabón distribuidor gracias a la cantidad de empresas, el tipo de cliente y el manejo del sistema de inventario pull. Se identifica el modelo propuesto por Lenort en la industria de moda como homóloga a la industria en estudio en su comportamiento de demanda para el eslabón distribuidor. Varios estudios en la industria moda se enfocan en redes neuronales haciendo frecuente precisión en el requerimiento de gran cantidad de datos. La industria de alta tecnología se caracteriza por ciclos de vida cortos lo que limita la cantidad de datos históricos. Se considera que los modelos de redes neuronales son de difícil implementación en la práctica diaria por los recursos requeridos para el entrenamiento de las redes y la elección de los parámetros. El enfoque busca tener un impacto en la facilidad de adopción y la implementación del modelo propuesto y generar eficiencia en los costos ocultos de mantenimiento de inventario, orientados a: depreciación por obsolescencia, tasas de interés por apalancamiento de capital y costos de oportunidad. Con la implementación del modelo propuesto se obtiene un ahorro de $306 millones anuales en los costos ocultos de mantenimiento de inventario relacionados. De los $306 millones, $296 millones se obtienen de la limpieza de los datos y $10 millones por el cambio en el uso del modelo promedio móvil simple al modelo ARIMA con posterior implementación del modelo con enfoque jerárquico. (Apartes del texto)spa
dc.description.abstractIn the search of companies to increase their profitability and offer an adequate level of service, tools are implemented to achieve this objective. In this search, the implementation of the model with a hierarchical approach proposed by Radim Lenort Petr Besta in 2013 is used to build the forecast of demand for the products of the category hardware laptop line for a retailer company with a B2B business model (business to business / business to business). In the implementation process a data refinement is previously performed and the forecast of aggregate demand is generated by subcategory and by line with the ARIMA model, then the model is implemented with a hierarchical approach to obtain a breakdown of the demand forecast for the laptop line based on historical proportions. The work is divided into two phases. In the first phase, a systematic literature review to identify the models that have been used in the construction of predictions of the demand for similar products in markets similar to Colombia, and in the second phase the model is implemented with data from the company and the results are analyzed. When verifying the state of the art of the industry under study, most of them focus on the manufacturer and wholesaler links, as one goes in the downstream supply chain a change in the behavior of demand for the distributor link is identified by the quantity of companies, the type of client and the management of the pull inventory system. The model proposed by Lenort in the fashion industry is identified as homologous to the high-tech industry by the behavior of demand for the distributor link. Several studies in the fashion industry focus on neural networks making precision in the requirement of large amounts of data. The high-tech industry is characterized by short life cycles, which limits the amount of historical data. Neural network models are considered as difficult to implement in daily practice due to the resources required for the training of the networks and the choice of parameters. The approach seeks to have an impact on the ease of adoption and implementation of the proposed model and generate efficiency in the hidden costs of inventory maintenance by depreciation due to obsolescence, interest rates due to capital leverage and opportunity costs. With the implementation of the proposed model, savings of $ 306 million per year are obtained in related hidden inventory maintenance costs. Of the $ 306 million, $ 296 million are by the data cleaning and $ 10 million by the change in the use of the simple moving average model to the ARIMA model with subsequent implementation of the model with a hierarchical process. (Text taken from source)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Industrialspa
dc.description.researchareaGestión de operacionesspa
dc.format.extent125 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79792
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrialspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Industrialspa
dc.relation.referencesAgostino, I. R. S., da Silva, W. V., Pereira da Veiga, C., & Souza, A. M. (2020). Forecasting models in the manufacturing processes and operations management: Systematic literature review. Journal of Forecasting, October 2019, 1–14. https://doi.org/10.1002/for.2674spa
dc.relation.referencesAgrawal, D., & Schorling, C. (1996). Market share forecasting: An empirical comparison of artificial neural networks and multinomial logit model. Journal of Retailing, 72(4), 383–407.spa
dc.relation.referencesAitken, J., Childerhouse, P., & Towill, D. (2003). The impact of product life cycle on supply chain strategy. International Journal of Production Economics, 85(2), 127–140. https://doi.org/10.1016/S0925-5273(03)00105-1spa
dc.relation.referencesAlon, I., Qi, M., & Sadowski, R. J. (2001). Forecasting aggregate retail sales: A comparison of artifcial neural networks and traditional methods. Journal of Retailing and Consumer Services, 8(3), 147–156. https://doi.org/10.1016/S0969-6989(00)00011-4spa
dc.relation.referencesBajracharya, A., Khan, M. R. A., Michael, S., & Tonkoski, R. (2019). Forecasting Data Center Load Using Hidden Markov Model. 2018 North American Power Symposium, NAPS 2018. https://doi.org/10.1109/NAPS.2018.8600677spa
dc.relation.referencesBasallo-Triana, M. J., Rodríguez-Sarasty, J. A., & Benitez-Restrepo, H. D. (2017). Analogue-based demand forecasting of short life-cycle products: a regression approach and a comprehensive assessment. International Journal of Production Research, 55(8), 2336–2350. https://doi.org/10.1080/00207543.2016.1241443spa
dc.relation.referencesBayus, B. L. (1998). An analysis of product lifetimes in a technologically dynamic industry. Management Science, 44(6), 763–775. https://doi.org/10.1287/mnsc.44.6.763spa
dc.relation.referencesBen Taieb, S., & Koo, B. (2019). Regularized regression for hierarchical forecasting without unbiasedness conditions. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1337–1347. https://doi.org/10.1145/3292500.3330976spa
dc.relation.referencesBox, G. E. ., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2016). Time Series Analysis Forecasting and Control.spa
dc.relation.referencesBoylan, J. E., & Syntetos, A. A. (2010). Spare parts management: A review of forecasting research and extensions. IMA Journal of Management Mathematics, 21(3), 227–237. https://doi.org/10.1093/imaman/dpp016spa
dc.relation.referencesBrockwell, P. J., & Davis, R. A. (2016). Introduction to Time Series and Forecasting.spa
dc.relation.referencesBurruss, J. (2002). Forecasting for Short-Lived Products.spa
dc.relation.referencesChanda, U., & Aggarwal, R. (2014). Journal of High Technology Management Research Optimal inventory policies for successive generations of a high technology product. Journal of High Technology Management Research, 25(2), 148–162. https://doi.org/10.1016/j.hitech.2014.07.004spa
dc.relation.referencesChanda, U., & Bardhan, A. K. (2008). Modelling innovation and imitation sales of products with multiple technological generations. Journal of High Technology Management Research, 18(2), 173–190. https://doi.org/10.1016/j.hitech.2007.12.004spa
dc.relation.referencesChatfield, C. (1993). Neural networks: Forecasting breakthrough or passing fad? International Journal of Forecasting, 9(1), 1–3. https://econpapers.repec.org/RePEc:eee:intfor:v:9:y:1993:i:1:p:1-3spa
dc.relation.referencesCho, Y., & Daim, T. (2013). Technology Forecasting Methods (pp. 67–112). https://www.researchgate.net/publication/262725442_Technology_Forecasting_Methods_in_Research_and_Technology_Management_in_the_Electricity_Industry_Methods_Tools_and_Case_Studiesspa
dc.relation.referencesChung, W., Talluri, S., & Narasimhan, R. (2011). Price markdown scheme in a multi-echelon supply chain in a high-tech industry. European Journal of Operational Research, 215(3), 581–589. https://doi.org/10.1016/j.ejor.2011.07.002spa
dc.relation.referencesCox, W. E. (1967). Product Life Cycles as Marketing Models. The Journal of Business, 40(4), 375–384. http://www.jstor.org/stable/2351620spa
dc.relation.referencesDonkor, E. A., Mazzuchi, T. A., Soyer, R., & Alan Roberson, J. (2012). Urban Water Demand Forecasting: Review of Methods and Models. Journal of Water Resources Planning and Management, 140(2), 146–159. https://doi.org/10.1061/(asce)wr.1943-5452.0000314spa
dc.relation.referencesFaraway, J. J. (1998). Time series forecasting with neural networks : a comparative study using the airline data.spa
dc.relation.referencesFeng, G., Huang, G., Lin, Q., & Gay, R. (2009). of Hidden Nodes and Incremental Learning. 20(8), 1352–1357.spa
dc.relation.referencesFildes, R., Nikolopoulos, K., Crone, S. F., & Syntetos, A. A. (2008). Forecasting and operational research: A review. Journal of the Operational Research Society, 59(9), 1150–1172. https://doi.org/10.1057/palgrave.jors.2602597spa
dc.relation.referencesFranses, P. H., & Legerstee, R. (2009). Properties of expert adjustments on model-based SKU-level forecasts. International Journal of Forecasting, 25(1), 35–47. https://doi.org/10.1016/j.ijforecast.2008.11.009spa
dc.relation.referencesGelper, S., Fried, R., & Croux, C. (2010). Robust forecasting with exponential and holt-winters smoothing. Journal of Forecasting, 29(3), 285–300. https://doi.org/10.1002/for.1125spa
dc.relation.referencesGoldman, A., & Marketing, A. (1982). Short product life cycles : implications for the marketing activities of small high-technology companies *. R & D Management, 1&2, 81–89.spa
dc.relation.referencesGoodwin, P., & Wright, G. (2010). The limits of forecasting methods in anticipating rare events. Technological Forecasting and Social Change, 77(3), 355–368.spa
dc.relation.referencesHelo, P. (2004). Managing agility and productivity in the electronics industry. Industrial Management and Data Systems, 104(7), 567–577. https://doi.org/10.1108/02635570410550232spa
dc.relation.referencesHu, K., Acimovic, J., Erize, F., Thomas, D. J., Mieghem, J. A. Van, Hu, K., Acimovic, J., Erize, F., Thomas, D. J., & Mieghem, A. Van. (2019). Manufacturing & Service Operations Management Forecasting New Product Life Cycle Curves : Practical Approach and Empirical Analysis Forecasting New Product Life Cycle Curves : Practical Approach and Empirical Analysis. May.spa
dc.relation.referencesHuang, G. Bin, & Babri, H. A. (1998). Comments on “approximation capability in C(R̄n) by multilayer feedforward networks and related problems.” IEEE Transactions on Neural Networks, 9(4), 714–715. https://doi.org/10.1109/72.701184spa
dc.relation.referencesHyndman, R. J., Ahmed, R. A., Athanasopoulos, G., & Shang, H. L. (2011). Optimal combination forecasts for hierarchical time series. Computational Statistics and Data Analysis, 55(9), 2579–2589. https://doi.org/10.1016/j.csda.2011.03.006spa
dc.relation.referencesJ. Scott Armstrong. (2002). PRINCIPLES OF FORECASTING: A Handbook for Researchers and Practitioners. https://doi.org/10.1007/978-0-306-47630-3spa
dc.relation.referencesJaakkola, H., Gabbouj, M., & Neuvo, Y. (1998). Fundamentals of technology diffusion and mobile phone case study. Circuits, Systems, and Signal Processing, 17, 421–448. https://doi.org/10.1007/BF01202301spa
dc.relation.referencesJu, M., & Yang, Y. A. N. (2010). Forecasting Global Generation of Obsolete Personal Computers. 44(9), 3232–3237.spa
dc.relation.referencesKaytez, F., Taplamacioglu, M. C., Cam, E., & Hardalac, F. (2015). Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines. International Journal of Electrical Power and Energy Systems, 67, 431–438. https://doi.org/10.1016/j.ijepes.2014.12.036spa
dc.relation.referencesKim, H. J., Jee, S. J., & Sohn, S. Y. (2021). Cost–benefit model for multi-generational high-technology products to compare sequential innovation strategy with quality strategy. PLoS ONE, 16(4 April), 1–17. https://doi.org/10.1371/journal.pone.0249124spa
dc.relation.referencesKlimberg, R. K., Sillup, G. P., Boyle, K. J., & Tavva, V. (2010). Forecasting performance measures - What are their practical meaning? In Advances in Business and Management Forecasting (Vol. 7). Elsevier. https://doi.org/10.1108/S1477-4070(2010)0000007012spa
dc.relation.referencesKou, T. C., & Lee, B. C. Y. (2015). The influence of supply chain architecture on new product launch and performance in the high-tech industry. Journal of Business and Industrial Marketing, 30(5), 677–687. https://doi.org/10.1108/JBIM-08-2013-0176spa
dc.relation.referencesKurawarwala, A. A., & Matsuo, H. (1996). Forecasting and Inventory Management of Short Life-Cycle Products. Operations Research, 44(1), 131–150. http://www.jstor.org/stable/171910spa
dc.relation.referencesLapide, L. (2006). Evolution of the forecasting function. Journal of Business Forecasting, 25(1), 22–28.spa
dc.relation.referencesLenort, R., & Besta, P. (2013). Hierarchical sales forecasting system for apparel companies and supply chains. Fibres and Textiles in Eastern Europe, 21(6), 7–11.spa
dc.relation.referencesLin, R. J., Che, R. H., & Ting, C. Y. (2012). Turning knowledge management into innovation in the high-tech industry. Industrial Management and Data Systems, 112(1), 42–63. https://doi.org/10.1108/02635571211193635spa
dc.relation.referencesLin, V. S. (2018). Judgmental adjustments in tourism forecasting practice: How good are they? In Tourism Economics. https://doi.org/10.1177/1354816618806727spa
dc.relation.referencesLu, C. J. (2014). Sales forecasting of computer products based on variable selection scheme and support vector regression. Neurocomputing, 128, 491–499. https://doi.org/10.1016/j.neucom.2013.08.012spa
dc.relation.referencesMontgomery, D. C., Jennings, C. L., & Kulahci, M. (2016). Introduction Time Series Analysis and Forecasting. 671.spa
dc.relation.referencesMoon, J., Chang, N., & Cho, W. (2015). Demand Forecasting for B2B Electronic Products : The Case of Personal Computer Market. Journal of the Korea Society of IT Services, 14, 185–197. https://doi.org/10.9716/KITS.2015.14.4.185spa
dc.relation.referencesNeelamegham, R., & Chintagunta, P. K. (2004). Modeling and Forecasting the Sales of Technology Products. 195–232.spa
dc.relation.referencesNenni, M. E., Giustiniano, L., & Pirolo, L. (2013). Demand forecasting in the fashion industry: A review. International Journal of Engineering Business Management, 5(SPL.ISSUE). https://doi.org/10.5772/56840spa
dc.relation.referencesNikolopoulos, K., Goodwin, P., Patelis, A., & Assimakopoulos, V. (2007). Forecasting with cue information: A comparison of multiple regression with alternative forecasting approaches. European Journal of Operational Research, 180(1), 354–368. https://doi.org/10.1016/j.ejor.2006.03.047spa
dc.relation.referencesOlhager, J. (2012). The role of decoupling points in value chain management. Contributions to Management Science, 37–47. https://doi.org/10.1007/978-3-7908-2747-7_2spa
dc.relation.referencesPankratz, A. (2014). Forecasting With Dynamic Regression Models. Journal of the American Statistical Association, 88(422), 705–706.spa
dc.relation.referencesPuneeth Kumar, K., Manjunath, T. N., & Hegadi, R. S. (2018). Literature Review on Big Data Analytics and Demand Modeling in Supply Chain. 3rd International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques, ICEECCOT 2018, December, 1246–1252. https://doi.org/10.1109/ICEECCOT43722.2018.9001513spa
dc.relation.referencesRen, S., Chan, H.-L., & Ram, P. (2017). A Comparative Study on Fashion Demand Forecasting Models with Multiple Sources of Uncertainty. Annals of Operations Research, 257(1), 335–355. https://doi.org/10.1007/s10479-016-2204-6spa
dc.relation.referencesRen, S., Chan, H. L., & Siqin, T. (2020). Demand forecasting in retail operations for fashionable products: methods, practices, and real case study. Annals of Operations Research, 291(1–2), 761–777. https://doi.org/10.1007/s10479-019-03148-8spa
dc.relation.referencesRivera-Castro, R., Nazarov, I., Xiang, Y., Maksimov, I., Pletnev, A., & Burnaev, E. (2019). An industry case of large-scale demand forecasting of hierarchical components. Proceedings - 18th IEEE International Conference on Machine Learning and Applications, ICMLA 2019, 134–139. https://doi.org/10.1109/ICMLA.2019.00029spa
dc.relation.referencesRoberts, E. B. (1976). Technology Strategy for the Medium-Size Company. Res Manage, 19(4), 29–32. https://doi.org/10.1080/00345334.1976.11756363spa
dc.relation.referencesSanders, N. R., & Manrodt, K. B. (1994). Forecasting Practices in US Corporations: Survey Results. Interfaces, 24(2), 92–100. https://doi.org/10.1287/inte.24.2.92spa
dc.relation.referencesSanders, N. R., & Ritzman, L. P. (2001). JUDGMENTAL ADJUSTMENT OF STATISTICAL FORECASTS. Springer Science+Business Media.spa
dc.relation.referencesShankaranarayanan, G., & Cai, Y. (2006). Supporting data quality management in decision-making. Decision Support Systems, 42(1), 302–317. https://doi.org/10.1016/j.dss.2004.12.006spa
dc.relation.referencesSimchi-levi, D. (2005). Supply Chain Architecture in a High Demand Variability Environment by. 1999.spa
dc.relation.referencesSrinivasan, S. R., Ramakrishnan, S., & Grasman, S. E. (2005). Incorporating cannibalization models into demand forecasting. Marketing Intelligence and Planning, 23(5), 470–485. https://doi.org/10.1108/02634500510612645spa
dc.relation.referencesSt. John, H. M. (1978). The Energy Market for High-Technology Companies. Journal of Marketing, 42(4), 46–53. https://doi.org/10.2307/1250085spa
dc.relation.referencesStyrin, K. (2019). Forecasting Inflation in Russia Using Dynamic Model Averaging. Russian Journal of Money and Finance, 78(1), 03–18. https://doi.org/10.31477/rjmf.201901.03spa
dc.relation.referencesSunil Chopra. (2010). Administracion de Cadena de Suministro. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesTandon, R., Chakraborty, A., Srinivasan, G., Shroff, M., Abdullah, A., Shamasundar, B., Sinha, R., Subramanian, S., Hill, D., & Dhore, P. (2013). Hewlett Packard: Delivering profitable growth for HPDirect.com using operations research. Interfaces, 43(1), 48–61. https://doi.org/10.1287/inte.1120.0661spa
dc.relation.referencesTrappey, C. V., & Wu, H. Y. (2008). An evaluation of the time-varying extended logistic, simple logistic, and Gompertz models for forecasting short product lifecycles. Advanced Engineering Informatics, 22(4), 421–430. https://doi.org/10.1016/j.aei.2008.05.007spa
dc.relation.referencesValencia-Cárdenas, M., Díaz-Serna, F. J., & Correa-Morales, J. C. (2015). Planeación de inventarios con demanda dinámica. Una revisión del estado del arte. DYNA (Colombia), 82(190), 182–191. https://doi.org/10.15446/dyna.v82n190.42828spa
dc.relation.referencesWagner, D. (2008). Lecture Notes in Computer Science: Preface. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 5157 LNCS.spa
dc.relation.referencesWei, W. W. S. (2013). Oxford Handbooks Online Time Series Analysis (Vol. 2, Issue April 2018). https://doi.org/10.1093/oxfordhb/9780199934898.013.0022spa
dc.relation.referencesWilck IV, J. H., Pope, J., & Kauffmann, P. J. (2014). Literature review for forecasting traffic counts for high tourism areas. IIE Annual Conference and Expo 2014, 1272–1281. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84910029456&partnerID=40&md5=32563cd1ae613706f3bba2f7b58e68e0spa
dc.relation.referencesWong, W. K., & Guo, Z. X. (2010). A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm. International Journal of Production Economics, 128(2), 614–624.spa
dc.relation.referencesXu, L. Da, Xu, E. L., & Li, L. (2018). Industry 4.0: State of the art and future trends. International Journal of Production Research, 56(8), 2941–2962. https://doi.org/10.1080/00207543.2018.1444806spa
dc.relation.referencesYang, Y., & Williams, E. (2008). Forecasting Sales and Generation of Obsolete Computers in the U . S .spa
dc.relation.referencesYang, Y., & Williams, E. (2009). Technological Forecasting & Social Change Logistic model-based forecast of sales and generation of obsolete computers in the U . S . Technological Forecasting & Social Change, 76(8), 1105–1114. https://doi.org/10.1016/j.techfore.2009.03.004spa
dc.relation.referencesYelland, P. M. (2009). Bayesian forecasting for low-count time series using state-space models: An empirical evaluation for inventory management. International Journal of Production Economics, 118(1), 95–103. https://doi.org/10.1016/j.ijpe.2008.08.027spa
dc.relation.referencesZhu, K., & Thonemann, U. W. (2004). An adaptive forecasting algorithm and inventory policy for products with short life cycles. Naval Research Logistics, 51(5), 633–653. https://doi.org/10.1002/nav.10124spa
dc.relation.referencesZotteri, G., Kalchschmidt, M., & Caniato, F. (2005). The impact of aggregation level on forecasting performance. 94, 479–491. https://doi.org/10.1016/j.ijpe.2004.06.044spa
dc.rightsDerechos reservados del autorspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalPronósticospa
dc.subject.proposalPrevisiónspa
dc.subject.proposalHardwareeng
dc.subject.proposalAlta tecnologíaspa
dc.subject.proposalDemandaspa
dc.subject.proposalPortátilspa
dc.subject.proposalForecastingeng
dc.subject.proposalForecasteng
dc.subject.proposalLaptopeng
dc.subject.proposalHigh-techeng
dc.subject.proposalDemandeng
dc.subject.unescoComportamiento económicospa
dc.subject.unescoConsumospa
dc.subject.unescoOrdenadorspa
dc.titleImplementación de un método para el pronóstico de demanda de computadores portátilesspa
dc.title.translatedImplementation of a method for the demand forecast for laptopseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1012381454.2021.pdf
Tamaño:
1.81 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo final de maestría en pronósticos de demanda

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: