Determinación de condiciones in-vitro para la expansión de células T Stem de memoria para terapia adoptiva de células

dc.contributor.advisorParra López, Carlos Alberto
dc.contributor.authorLalinde Ruiz, Nicolás
dc.contributor.researchgroupInmunología y Medicina Traslacionalspa
dc.date.accessioned2022-11-03T15:09:45Z
dc.date.available2022-11-03T15:09:45Z
dc.date.issued2022-09-27
dc.descriptionilustraciones, graficasspa
dc.description.abstractLa terapia adoptiva de células tiene el potencial de aumentar la inmunidad antitumoral, al modificar las células in-vitro para expandir linfocitos que reconozcan y ataquen el tumor. La capacidad funcional y sobrevida de las células transferidas al paciente dependerá de las subpoblaciones de memoria que sean expandidas en el laboratorio, por lo que la obtención de células de memoria poco diferenciadas es deseable. El objetivo principal de este trabajo fue determinar una estrategia de expansión in-vitro de linfocitos T CD4 stem de memoria humanos. Partiendo de células vírgenes estimuladas con un agente policlonal y adicionando diferentes combinaciones de citoquinas de la familia gamma común, se encontró que la combinación de IL-7, IL-15 e IL-21 o IL-7 e IL-21 fueron los cócteles que produjeron una mayor cantidad de células con fenotipo stem de memoria, medido por citometría de flujo. Adicionalmente, a través de la medición de proteínas de membrana y análisis in-sillico, se estableció una estrecha relación de los linfocitos T stem de memoria con el programa de diferenciación de linfocitos T foliculares, lo que consideramos contribuye a un mejor entendimiento de los procesos que subyacen la generación y mantenimiento de la memoria y, por ende, puede mejorar las estrategias actuales de expansión de linfocitos T con fines de inmunoterapia. (Texto tomado de la fuente)spa
dc.description.abstractAdoptive cell therapy has the potential to increase antitumor immunity by modifying cells in-vitro to expand lymphocytes that recognize and attack the tumor. The functional capacity and survival of the cells transferred to the patient heavily depends on the memory subpopulations that are being expanded in the laboratory, hence, obtaining early memory cells is desirable. The main objective of our work was to determine a strategy for in-vitro expansion of human stem cell-like memory T CD4 lymphocytes. Starting from naive cells, stimulated with a polyclonal agent supplemented with different combinations of cytokines from the common gamma family, we found that the combination of IL-7, IL-15 and IL-21 or IL-7 and IL-21 were the cocktails that produced a greater number of cells with a stem memory phenotype, measured by flow cytometry. Additionally, through the measurement of membrane proteins and in-silico analysis, a close relationship between stem cell-like memory and the follicular helper T cells differentiation program was established, which we believe contributes to a better understanding of the processes that underlie the generation and maintenance of memory and, therefore, may improve current strategies of expansion of T cells for immunotherapy purposes.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Inmunologíaspa
dc.description.researchareaMedicina Traslacionalspa
dc.format.extent154 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82620
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Inmunologíaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesPerica K, Varela JC, Oelke M, Schneck J. Adoptive T cell immunotherapy for cancer. Rambam Maimonides medical journal. 2015;6(1):e0004.spa
dc.relation.referencesRohaan MW, Wilgenhof S, Haanen J. Adoptive cellular therapies: the current landscape. Virchows Archiv : an international journal of pathology. 2019;474(4):449-61.spa
dc.relation.referencesKondo T, Imura Y, Chikuma S, Hibino S, Omata-Mise S, Ando M, et al. Generation and application of human induced-stem cell memory T cells for adoptive immunotherapy. Cancer science. 2018;109(7):2130-40.spa
dc.relation.referencesEsfahani K, Roudaia L, Buhlaiga N, Del Rincon SV, Papneja N, Miller WH, Jr. A review of cancer immunotherapy: from the past, to the present, to the future. Current oncology. 2020;27(Suppl 2):S87-S97.spa
dc.relation.referencesMorotti M, Albukhari A, Alsaadi A, Artibani M, Brenton JD, Curbishley SM, et al. Promises and challenges of adoptive T-cell therapies for solid tumours. British journal of cancer. 2021;124(11):1759-76.spa
dc.relation.referencesDafni U, Michielin O, Lluesma SM, Tsourti Z, Polydoropoulou V, Karlis D, et al. Efficacy of adoptive therapy with tumor-infiltrating lymphocytes and recombinant interleukin-2 in advanced cutaneous melanoma: a systematic review and meta-analysis. Annals of oncology : official journal of the European Society for Medical Oncology. 2019;30(12):1902-13.spa
dc.relation.referencesJune CH. Adoptive T cell therapy for cancer in the clinic. The Journal of clinical investigation. 2007;117(6):1466-76.spa
dc.relation.referencesMet O, Jensen KM, Chamberlain CA, Donia M, Svane IM. Principles of adoptive T cell therapy in cancer. Seminars in immunopathology. 2019;41(1):49-58.spa
dc.relation.referencesCrompton JG, Sukumar M, Restifo NP. Uncoupling T-cell expansion from effector differentiation in cell-based immunotherapy. Immunological reviews. 2014;257(1):264-76.spa
dc.relation.referencesGattinoni L, Klebanoff CA, Palmer DC, Wrzesinski C, Kerstann K, Yu Z, et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. The Journal of clinical investigation. 2005;115(6):1616-26.spa
dc.relation.referencesSpolski R, Gromer D, Leonard WJ. The gamma c family of cytokines: fine-tuning signals from IL-2 and IL-21 in the regulation of the immune response. F1000Research. 2017;6:1872.spa
dc.relation.referencesCieri N, Camisa B, Cocchiarella F, Forcato M, Oliveira G, Provasi E, et al. IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood. 2013;121(4):573-84.spa
dc.relation.referencesPietrobon V, Todd LA, Goswami A, Stefanson O, Yang Z, Marincola F. Improving CAR T-Cell Persistence. International journal of molecular sciences. 2021;22(19).spa
dc.relation.referencesHegde PS, Chen DS. Top 10 Challenges in Cancer Immunotherapy. Immunity. 2020;52(1):17-35.spa
dc.relation.referencesTaefehshokr S, Parhizkar A, Hayati S, Mousapour M, Mahmoudpour A, Eleid L, et al. Cancer immunotherapy: Challenges and limitations. Pathology, research and practice. 2022;229:153723.spa
dc.relation.referencesArcangeli S, Falcone L, Camisa B, De Girardi F, Biondi M, Giglio F, et al. Next-Generation Manufacturing Protocols Enriching TSCM CAR T Cells Can Overcome Disease-Specific T Cell Defects in Cancer Patients. Frontiers in immunology. 2020;11:1217.spa
dc.relation.referencesMajzner RG, Mackall CL. Clinical lessons learned from the first leg of the CAR T cell journey. Nature medicine. 2019;25(9):1341-55.spa
dc.relation.referencesLi Y, Wu D, Yang X, Zhou S. Immunotherapeutic Potential of T Memory Stem Cells. Frontiers in oncology. 2021;11:723888.spa
dc.relation.referencesKaech SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation: implications for vaccine development. Nature reviews Immunology. 2002;2(4):251-62.spa
dc.relation.referencesRosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348(6230):62-8.spa
dc.relation.referencesRosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science. 1986;233(4770):1318-21.spa
dc.relation.referencesBelldegrun A, Muul LM, Rosenberg SA. Interleukin 2 expanded tumor-infiltrating lymphocytes in human renal cell cancer: isolation, characterization, and antitumor activity. Cancer research. 1988;48(1):206-14.spa
dc.relation.referencesDudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2008;26(32):5233-9.spa
dc.relation.referencesBusch DH, Frassle SP, Sommermeyer D, Buchholz VR, Riddell SR. Role of memory T cell subsets for adoptive immunotherapy. Seminars in immunology. 2016;28(1):28-34.spa
dc.relation.referencesSallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401(6754):708-12.spa
dc.relation.referencesPicker LJ, Treer JR, Ferguson-Darnell B, Collins PA, Bergstresser PR, Terstappen LW. Control of lymphocyte recirculation in man. II. Differential regulation of the cutaneous lymphocyte-associated antigen, a tissue-selective homing receptor for skin-homing T cells. Journal of immunology. 1993;150(3):1122-36.spa
dc.relation.referencesGattinoni L, Zhong XS, Palmer DC, Ji Y, Hinrichs CS, Yu Z, et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nature medicine. 2009;15(7):808-13.spa
dc.relation.referencesGattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, et al. A human memory T cell subset with stem cell-like properties. Nature medicine. 2011;17(10):1290-7.spa
dc.relation.referencesKwok WW, Tan V, Gillette L, Littell CT, Soltis MA, LaFond RB, et al. Frequency of epitope-specific naive CD4(+) T cells correlates with immunodominance in the human memory repertoire. Journal of immunology. 2012;188(6):2537-44.spa
dc.relation.referencesGattinoni L, Speiser DE, Lichterfeld M, Bonini C. T memory stem cells in health and disease. Nature medicine. 2017;23(1):18-27.spa
dc.relation.referencesMasopust D, Vezys V, Marzo AL, Lefrancois L. Preferential localization of effector memory cells in nonlymphoid tissue. Science. 2001;291(5512):2413-7.spa
dc.relation.referencesMahnke YD, Brodie TM, Sallusto F, Roederer M, Lugli E. The who's who of T-cell differentiation: human memory T-cell subsets. European journal of immunology. 2013;43(11):2797-809.spa
dc.relation.referencesWherry EJ, Teichgraber V, Becker TC, Masopust D, Kaech SM, Antia R, et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nature immunology. 2003;4(3):225-34.spa
dc.relation.referencesAhmed R, Bevan MJ, Reiner SL, Fearon DT. The precursors of memory: models and controversies. Nature reviews Immunology. 2009;9(9):662-8.spa
dc.relation.referencesGasper DJ, Tejera MM, Suresh M. CD4 T-cell memory generation and maintenance. Critical reviews in immunology. 2014;34(2):121-46.spa
dc.relation.referencesKlebanoff CA, Gattinoni L, Restifo NP. Sorting through subsets: which T-cell populations mediate highly effective adoptive immunotherapy? Journal of immunotherapy. 2012;35(9):651-60.spa
dc.relation.referencesJoshi NS, Kaech SM. Effector CD8 T cell development: a balancing act between memory cell potential and terminal differentiation. Journal of immunology. 2008;180(3):1309-15.spa
dc.relation.referencesLanzavecchia A, Sallusto F. Progressive differentiation and selection of the fittest in the immune response. Nature reviews Immunology. 2002;2(12):982-7.spa
dc.relation.referencesChang JT, Palanivel VR, Kinjyo I, Schambach F, Intlekofer AM, Banerjee A, et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science. 2007;315(5819):1687-91.spa
dc.relation.referencesGattinoni L, Klebanoff CA, Restifo NP. Paths to stemness: building the ultimate antitumour T cell. Nature reviews Cancer. 2012;12(10):671-84.spa
dc.relation.referencesSimons BD, Clevers H. Strategies for homeostatic stem cell self-renewal in adult tissues. Cell. 2011;145(6):851-62.spa
dc.relation.referencesRochman Y, Spolski R, Leonard WJ. New insights into the regulation of T cells by gamma(c) family cytokines. Nature reviews Immunology. 2009;9(7):480-90.spa
dc.relation.referencesJicha DL, Mule JJ, Rosenberg SA. Interleukin 7 generates antitumor cytotoxic T lymphocytes against murine sarcomas with efficacy in cellular adoptive immunotherapy. The Journal of experimental medicine. 1991;174(6):1511-5.spa
dc.relation.referencesShevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity. 2009;30(5):636-45.spa
dc.relation.referencesToe JG, Pellegrini M, Mak TW. Promoting immunity during chronic infection--the therapeutic potential of common gamma-chain cytokines. Molecular immunology. 2013;56(1-2):38-47.spa
dc.relation.referencesLin JX, Migone TS, Tsang M, Friedmann M, Weatherbee JA, Zhou L, et al. The role of shared receptor motifs and common Stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity. 1995;2(4):331-9.spa
dc.relation.referencesRathmell JC, Farkash EA, Gao W, Thompson CB. IL-7 enhances the survival and maintains the size of naive T cells. Journal of immunology. 2001;167(12):6869-76.spa
dc.relation.referencesWaldmann TA. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nature reviews Immunology. 2006;6(8):595-601.spa
dc.relation.referencesEttinger R, Sims GP, Fairhurst AM, Robbins R, da Silva YS, Spolski R, et al. IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. Journal of immunology. 2005;175(12):7867-79.spa
dc.relation.referencesOzaki K, Spolski R, Ettinger R, Kim HP, Wang G, Qi CF, et al. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. Journal of immunology. 2004;173(9):5361-71.spa
dc.relation.referencesChen Y, Yu F, Jiang Y, Chen J, Wu K, Chen X, et al. Adoptive Transfer of Interleukin-21-stimulated Human CD8+ T Memory Stem Cells Efficiently Inhibits Tumor Growth. Journal of immunotherapy. 2018;41(6):274-83.spa
dc.relation.referencesAlvarez-Fernandez C, Escriba-Garcia L, Vidal S, Sierra J, Briones J. A short CD3/CD28 costimulation combined with IL-21 enhance the generation of human memory stem T cells for adoptive immunotherapy. Journal of translational medicine. 2016;14(1):214.spa
dc.relation.referencesNakayamada S, Takahashi H, Kanno Y, O'Shea JJ. Helper T cell diversity and plasticity. Current opinion in immunology. 2012;24(3):297-302.spa
dc.relation.referencesPepper M, Pagan AJ, Igyarto BZ, Taylor JJ, Jenkins MK. Opposing signals from the Bcl6 transcription factor and the interleukin-2 receptor generate T helper 1 central and effector memory cells. Immunity. 2011;35(4):583-95.spa
dc.relation.referencesPepper M, Jenkins MK. Origins of CD4(+) effector and central memory T cells. Nature immunology. 2011;12(6):467-71.spa
dc.relation.referencesHe J, Tsai LM, Leong YA, Hu X, Ma CS, Chevalier N, et al. Circulating precursor CCR7(lo)PD-1(hi) CXCR5(+) CD4(+) T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure. Immunity. 2013;39(4):770-81.spa
dc.relation.referencesVinuesa CG, Linterman MA, Yu D, MacLennan IC. Follicular Helper T Cells. Annual review of immunology. 2016;34:335-68.spa
dc.relation.referencesBreitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. The Journal of experimental medicine. 2000;192(11):1545-52.spa
dc.relation.referencesBowen MB, Butch AW, Parvin CA, Levine A, Nahm MH. Germinal center T cells are distinct helper-inducer T cells. Human immunology. 1991;31(1):67-75.spa
dc.relation.referencesAnsel KM, Ngo VN, Hyman PL, Luther SA, Forster R, Sedgwick JD, et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature. 2000;406(6793):309-14.spa
dc.relation.referencesForster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell. 1996;87(6):1037-47.spa
dc.relation.referencesWalker LS, Gulbranson-Judge A, Flynn S, Brocker T, Raykundalia C, Goodall M, et al. Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers. The Journal of experimental medicine. 1999;190(8):1115-22.spa
dc.relation.referencesKing C, Tangye SG, Mackay CR. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annual review of immunology. 2008;26:741-66.spa
dc.relation.referencesLocci M, Havenar-Daughton C, Landais E, Wu J, Kroenke MA, Arlehamn CL, et al. Human circulating PD-1+CXCR3-CXCR5+ memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses. Immunity. 2013;39(4):758-69.spa
dc.relation.referencesKeir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annual review of immunology. 2008;26:677-704.spa
dc.relation.referencesJeza VT, Li X, Chen J, Liang Z, Aggrey AO, Wu X. IL-21 Augments Rapamycin in Expansion of Alpha Fetoprotein Antigen Specific Stem-Cell-like Memory T Cells in vitro. The Pan African medical journal. 2017;27:163.spa
dc.relation.referencesMueller SN, Gebhardt T, Carbone FR, Heath WR. Memory T cell subsets, migration patterns, and tissue residence. Annual review of immunology. 2013;31:137-61.spa
dc.relation.referencesOlenchock BA, Rathmell JC, Vander Heiden MG. Biochemical Underpinnings of Immune Cell Metabolic Phenotypes. Immunity. 2017;46(5):703-13.spa
dc.relation.referencesPearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013;38(4):633-43.spa
dc.relation.referencesBuck MD, O'Sullivan D, Pearce EL. T cell metabolism drives immunity. The Journal of experimental medicine. 2015;212(9):1345-60.spa
dc.relation.referencesSena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA, et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity. 2013;38(2):225-36.spa
dc.relation.referencesAraujo L, Khim P, Mkhikian H, Mortales CL, Demetriou M. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. eLife. 2017;6.spa
dc.relation.referencesPearce EL, Poffenberger MC, Chang CH, Jones RG. Fueling immunity: insights into metabolism and lymphocyte function. Science. 2013;342(6155):1242454.spa
dc.relation.referencesO'Sullivan D, van der Windt GJ, Huang SC, Curtis JD, Chang CH, Buck MD, et al. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity. 2014;41(1):75-88.spa
dc.relation.referencesvan der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity. 2012;36(1):68-78.spa
dc.relation.referencesVella LA, Buggert M, Manne S, Herati RS, Sayin I, Kuri-Cervantes L, et al. T follicular helper cells in human efferent lymph retain lymphoid characteristics. The Journal of clinical investigation. 2019;129(8):3185-200.spa
dc.relation.referencesKared H, Tan SW, Lau MC, Chevrier M, Tan C, How W, et al. Immunological history governs human stem cell memory CD4 heterogeneity via the Wnt signaling pathway. Nature communications. 2020;11(1):821.spa
dc.relation.referencesBai J, Gao Z, Li X, Dong L, Han W, Nie J. Regulation of PD-1/PD-L1 pathway and resistance to PD-1/PD-L1 blockade. Oncotarget. 2017;8(66):110693-707.spa
dc.relation.referencesAgata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. International immunology. 1996;8(5):765-72.spa
dc.relation.referencesYamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y, et al. Expression of programmed death 1 ligands by murine T cells and APC. Journal of immunology. 2002;169(10):5538-45.spa
dc.relation.referencesDiPiazza A, Richards KA, Knowlden ZA, Nayak JL, Sant AJ. The Role of CD4 T Cell Memory in Generating Protective Immunity to Novel and Potentially Pandemic Strains of Influenza. Frontiers in immunology. 2016;7:10.spa
dc.relation.referencesSpolski R, Leonard WJ. Interleukin-21: a double-edged sword with therapeutic potential. Nature reviews Drug discovery. 2014;13(5):379-95.spa
dc.relation.referencesParrish-Novak J, Dillon SR, Nelson A, Hammond A, Sprecher C, Gross JA, et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature. 2000;408(6808):57-63.spa
dc.relation.referencesBugya Z, Prechl J, Szenasi T, Nemes E, Bacsi A, Koncz G. Multiple Levels of Immunological Memory and Their Association with Vaccination. Vaccines. 2021;9(2).spa
dc.relation.referencesFuertes Marraco SA, Soneson C, Cagnon L, Gannon PO, Allard M, Abed Maillard S, et al. Long-lasting stem cell-like memory CD8+ T cells with a naive-like profile upon yellow fever vaccination. Science translational medicine. 2015;7(282):282ra48.spa
dc.relation.referencesda Silva Antunes R, Paul S, Sidney J, Weiskopf D, Dan JM, Phillips E, et al. Definition of Human Epitopes Recognized in Tetanus Toxoid and Development of an Assay Strategy to Detect Ex Vivo Tetanus CD4+ T Cell Responses. PloS one. 2017;12(1):e0169086.spa
dc.relation.referencesMayer S, Laumer M, Mackensen A, Andreesen R, Krause SW. Analysis of the immune response against tetanus toxoid: enumeration of specific T helper cells by the Elispot assay. Immunobiology. 2002;205(3):282-9.spa
dc.relation.referencesCrooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence and human vaccine immune responses. Immunity & ageing : I & A. 2019;16:25.spa
dc.relation.referencesPereira B, Xu XN, Akbar AN. Targeting Inflammation and Immunosenescence to Improve Vaccine Responses in the Elderly. Frontiers in immunology. 2020;11:583019.spa
dc.relation.referencesRodriguez IJ, Lalinde Ruiz N, Llano Leon M, Martinez Enriquez L, Montilla Velasquez MDP, Ortiz Aguirre JP, et al. Immunosenescence Study of T Cells: A Systematic Review. Frontiers in immunology. 2020;11:604591.spa
dc.relation.referencesBruggner RV, Bodenmiller B, Dill DL, Tibshirani RJ, Nolan GP. Automated identification of stratifying signatures in cellular subpopulations. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(26):E2770-7.spa
dc.relation.referencesDing ZC, Shi H, Aboelella NS, Fesenkova K, Park EJ, Liu Z, et al. Persistent STAT5 activation reprograms the epigenetic landscape in CD4(+) T cells to drive polyfunctionality and antitumor immunity. Science immunology. 2020;5(52).spa
dc.relation.referencesJohnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, Barnett B, et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science. 2009;325(5943):1006-10.spa
dc.relation.referencesMartinez GJ, Hu JK, Pereira RM, Crampton JS, Togher S, Bild N, et al. Cutting Edge: NFAT Transcription Factors Promote the Generation of Follicular Helper T Cells in Response to Acute Viral Infection. Journal of immunology. 2016;196(5):2015-9.spa
dc.relation.referencesSalerno F, Turner M, Wolkers MC. Dynamic Post-Transcriptional Events Governing CD8(+) T Cell Homeostasis and Effector Function. Trends in immunology. 2020;41(3):240-54.spa
dc.relation.referencesTough DF, Rioja I, Modis LK, Prinjha RK. Epigenetic Regulation of T Cell Memory: Recalling Therapeutic Implications. Trends in immunology. 2020;41(1):29-45.spa
dc.relation.referencesCorrado M, Pearce EL. Targeting memory T cell metabolism to improve immunity. The Journal of clinical investigation. 2022;132(1).spa
dc.relation.referencesLi W, Zhang L. Rewiring Mitochondrial Metabolism for CD8(+) T Cell Memory Formation and Effective Cancer Immunotherapy. Frontiers in immunology. 2020;11:1834.spa
dc.relation.referencesZorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, et al. Mitochondrial membrane potential. Analytical biochemistry. 2018;552:50-9.spa
dc.relation.referencesMcKinstry KK, Strutt TM, Swain SL. Regulation of CD4+ T-cell contraction during pathogen challenge. Immunological reviews. 2010;236:110-24.spa
dc.relation.referencesZhan Y, Carrington EM, Zhang Y, Heinzel S, Lew AM. Life and Death of Activated T Cells: How Are They Different from Naive T Cells? Frontiers in immunology. 2017;8:1809.spa
dc.relation.referencesJameson SC, Masopust D. Understanding Subset Diversity in T Cell Memory. Immunity. 2018;48(2):214-26.spa
dc.relation.referencesJohnston RJ, Choi YS, Diamond JA, Yang JA, Crotty S. STAT5 is a potent negative regulator of TFH cell differentiation. The Journal of experimental medicine. 2012;209(2):243-50.spa
dc.relation.referencesLalinde-Ruiz N, Rodriguez IJ, Bernal-Estevez DA, Parra-Lopez CA. Young but not older adults exhibit an expansion of CD45RA(+)CCR7(+)CD95(+) T follicular helper cells in response to tetanus vaccine. Experimental gerontology. 2021;156:111599.spa
dc.relation.referencesRovini A, Heslop K, Hunt EG, Morris ME, Fang D, Gooz M, et al. Quantitative analysis of mitochondrial membrane potential heterogeneity in unsynchronized and synchronized cancer cells. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2021;35(1):e21148.spa
dc.relation.referencesOestreich KJ, Yoon H, Ahmed R, Boss JM. NFATc1 regulates PD-1 expression upon T cell activation. Journal of immunology. 2008;181(7):4832-9.spa
dc.relation.referencesQuintelier K, Couckuyt A, Emmaneel A, Aerts J, Saeys Y, Van Gassen S. Analyzing high-dimensional cytometry data using FlowSOM. Nature protocols. 2021;16(8):3775-801.spa
dc.relation.referencesSchmitt N, Bentebibel SE, Ueno H. Phenotype and functions of memory Tfh cells in human blood. Trends in immunology. 2014;35(9):436-42.spa
dc.relation.referencesLaidlaw BJ, Craft JE, Kaech SM. The multifaceted role of CD4(+) T cells in CD8(+) T cell memory. Nature reviews Immunology. 2016;16(2):102-11.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.otherLinfocitos Tspa
dc.subject.otherT-Lymphocyteseng
dc.subject.otherTécnicas In Vitrospa
dc.subject.otherIn Vitro Techniqueseng
dc.subject.proposalTerapia adoptiva de célulasspa
dc.subject.proposalMemoriaspa
dc.subject.proposalLinfocitos T CD4spa
dc.subject.proposalVacunaciónspa
dc.subject.proposalLinfocitos T foliculares helperspa
dc.subject.proposalAdoptive cell therapyeng
dc.subject.proposalMemoryeng
dc.subject.proposalCD4 T lymphocyteseng
dc.subject.proposalVaccinationeng
dc.subject.proposalHelper Follicular T Lymphocyteseng
dc.titleDeterminación de condiciones in-vitro para la expansión de células T Stem de memoria para terapia adoptiva de célulasspa
dc.title.translatedDetermination of in-vitro conditions to expand stem memory T Cells for adoptive cell therapyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018467284. 2022.pdf
Tamaño:
8.39 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Inmunología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: